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A Proof of Proposition 1

We first show how to connect the loss function associated with MAML to a Meta Least Square
Problem.

Proposition A.1 (Proposition 1 Restated). Under the mixed linear regression model, the expectation
of the meta-training loss taken over task and data distributions can be rewritten as:

E
[
L̂(A,ω, βtr;D)

]
= L(A,ω, βtr) = EB,γ

1

2

[
∥Bω − γ∥2

]
. (1)

The meta data are given by

B =
1

√
n2

Xout
(
I− βtr

n1
XinTXin

)
(2)

γ =
1

√
n2

(
Xout

(
I− βtr

n1
XinTXin

)
θ + zout − βtr

n1
XoutXin⊤zin

)
(3)

where Xin ∈ Rn1×d,zin ∈ Rn1 ,Xout ∈ Rn2×d and zout ∈ Rn2 denote the inputs and noise for
training and validation. Furthermore,we have

γ = Bθ∗ + ξ with meta noise E[ξ | B] = 0. (4)

Proof. We first rewrite L(A,ω, βtr) as follows:

L(A,ω, βtr) = E
[
ℓ(A(ω, βtr;Din);Dout)

]
= E

 1

2n2

n2∑
j=1

(〈
xout
j ,A(ω, βtr;Din)

〉
− yout

j

)2
= E

[
1

2n2
∥Xout

(
I− βtr

n1
XinTXin

)
ω +

βtr

n1
XinTyin − yout∥2

]
.

Using the mixed linear model:

yin = Xinθ + zin, yout = Xoutθ + zout, (5)
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we have

L(A,ω, βtr)

= E
[

1

2n2
∥Xout

(
I− βtr

n1
XinTXin

)
ω

−
(
Xout

(
I− βtr

n1
XinTXin

)
θ + zout − βtr

n1
XoutXin⊤zin

)
∥2
]

= EB,γ
1

2

[
∥Bω − γ∥2

]
.

Moreover, note that θ − θ∗ has mean zero and is independent of data and noise, and define

ξ =
1

√
n2

(
Xout

(
I− βtr

n1
XinTXin

)
(θ − θ∗) + zout − βtr

n1
XoutXin⊤zin

)
. (6)

We call ξ as meta noise, and then we have

γ = Bθ∗ + ξ and E[ξ | B] = 0.

Lemma A.1 (Meta Excess Risk). Under the mixed linear regression model, the meta excess risk can
be rewritten as follows:

R(ωT , β
te) =

1

2
E∥ωT − θ∗∥2Hm,βte

where ∥a∥2A = aTAa. Moreover, the Bayes error is given by

L(A,ω∗, βte) =
1

2
tr(ΣθHm,βte) +

σ2βte2

2m
+

σ2

2
.

Proof. Recall that

R(ωT , β
te) ≜ E

[
L(A,ωT , β

te)
]
− L(A,ω∗, βte)

where ω∗ denotes the optimal solution to the population meta-test error. Under the mixed linear
model, such a solution can be directly calculated [11], and we obtain ω∗ = E[θ] = θ∗. Hence,

R(ωT , β
te) = EB,γ

1

2

[
∥BωT − γ∥2 − ∥Bθ∗ − γ∥2

]
,

where

B =xout⊤
(
I− βte

m
XinTXin

)
γ =xout⊤

(
I− βte

m
XinTXin

)
θ + zout − βte

m
xout⊤Xin⊤zin, (7)

and xout ∈ Rd, zout ∈ Rd, Xin ∈ Rm×d and zin ∈ Rm. The forms of B and γ are slightly different
since we allow a new adaptation rate βte and the inner loop has m samples at test stage. Similarly

ξ =

xout⊤
(
I− βte

m
XinTXin

)
(θ − θ∗)︸ ︷︷ ︸

ξ1

+ zout︸︷︷︸
ξ2

−βtr

m
xout⊤Xin⊤zin︸ ︷︷ ︸

ξ3

 . (8)

Then we have

R(ωT , β
te) = EB,γ

1

2

[
∥BωT − γ∥2 − ∥Bθ∗ − γ∥2

]
= EB,γ

1

2

[
∥B(ωT − θ∗)∥2

]
=

1

2
E∥ωT − θ∗∥2Hm,βte
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where the last equality follows because E
[
B⊤B

]
= Hm,βte at the test stage.

The Bayes error can be calculated as follows:

L(A,ω∗, βte) = EB,γ
1

2

[
∥Bθ∗ − γ∥2

]
= EB,γ

1

2

[
ξ2
]

(a)
=

1

2

(
E
[
ξ21
]
+ E

[
ξ22
]
+ E

[
ξ23
])

=
1

2
(tr(ΣθHm,βte) +

βte2σ2

m
+ σ2)

where (a) follows because ξ1, ξ2, ξ3 are independent and have zero mean conditioned on Xin and
xout.

B Analysis for Upper Bound (Theorem 1)

B.1 Preliminaries

We first introduce some additional notations.

Definition 1 (Inner product of matrices). For any two matrices C,D, the inner product of them is
defined as

⟨C,D⟩ = tr(C⊤D).

We will use the following property about the inner product of matrices throughout our proof.

Property B.1. If C ⪰ 0 and D ⪰ D′, then we have ⟨C,D⟩ ≥ ⟨C,D′⟩.
Definition 2 (Linear operator). Let ⊗ denote the tensor product. Define the following linear operators
on symmetric matrices:

M = E
[
B⊤ ⊗B⊤ ⊗B⊗B

]
M̃ := Hn1,βtr ⊗Hn1,βtr I := I⊗ I

T := Hn1,βtr ⊗ I+ I⊗Hn1,βtr − αM, T̃ = Hn1,βtr ⊗ I+ I⊗Hn1,βtr − αHn1,βtr ⊗Hn1,βtr .

We next define the operation of the above linear operators on a symmetric matrix A as follows.

M◦A = E
[
B⊤BAB⊤B

]
, M̃ ◦A = Hn1,βtrAHn1,βtr , I ◦A = A,

T ◦A = Hn1,βtrA+AHn1,βtr − αE
[
B⊤BAB⊤B

]
T̃ ◦A = Hn1,βtrA+AHn1,βtr − αHn1,βtrAHn1,βtr .

Based on the above definitions, we have the following equations hold.

(I − αT ) ◦A = E
[(
I− αB⊤B

)
A
(
I− αB⊤B

)]
(I − αT̃ ) ◦A = (I− αHn1,βtr)A(I− αHn1,βtr).

For the linear operators, we have the following technical lemma.

Lemma B.1. We call the linear operator O a PSD mapping, if for every symmetric PSD matrix A,
O ◦A is also PSD matrix. Then we have:

(i) M, M̃ and (M−M̃) are all PSD mappings.

(ii) T̃ − T , I − αT and I − αT̃ are all PSD mappings.

(iii) If 0 < α < 1
maxi{µi(Hn1,βtr )} , then T̃ −1 exists, and is a PSD mapping.

(iv) If 0 < α < 1
maxi{µi(Hn1,βtr )} , T̃ −1 ◦Hn1,βtr ⪯ I.

(v) If 0 < α < 1
c(βtr,Σ) tr(Σ) , then T −1 ◦ A exists for PSD matrix A, and T −1 is a PSD

mapping.
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Proof. Items (i) and (iii) directly follow from the proofs in [14, 22]. For (iv), by the existence of
T̃ −1, we have

T̃ −1 ◦Hn1,βtr =

∞∑
t=0

α(I − αT̃ )t ◦Hn1,βtr

=

∞∑
t=0

α(I− αHn1,βtr)tHn1,βtr(I− αHn1,βtr)t

⪯
∞∑
t=0

α(I− αHn1,βtr)tHn1,βtr = I.

For (v), for any PSD matrix A, consider

T −1 ◦A = α

∞∑
k=0

(I − αT )k ◦A.

We first show that
∑∞

k=0(I − αT )k ◦A is finite, and then it suffices to show that the trace is finite,
i.e.,

∞∑
k=0

tr
(
(I − αT )k ◦A

)
< ∞. (9)

Let Ak = (I − γT )k ◦A. Combining with the definition of T , we obtain

tr (Ak) = tr (Ak−1)− 2α tr (Hn1,βtrAk−1) + α2 tr
(
AE

[
B⊤BB⊤B

])
.

Letting A = I in Proposition B.1, we have E
[
B⊤BB⊤B

]
⪯ c(βtr,Σ) tr(Σ)Hn1,βtr . Hence

tr (Ak) ≤ tr (Ak−1)−
(
2α− α2c(βtr,Σ) tr(Σ)

)
tr (Hn1,βtrAk−1)

≤ tr ((I− αHn1,βtr)Ak−1) by α <
1

c(βtr,Σ) tr(Σ)

≤
(
1− αmin

i
{µi(Hn1,βtr)}

)
tr (Ak−1) .

If α < 1
mini{µi(Hn1,βtr )} , then we substitute it into eq. (9) and obtain

∞∑
k=0

tr
(
(I − αT )k ◦A

)
=

∞∑
k=0

tr (Ak) ≤
tr(A)

αmini{µi(Hn1,βtr)}
< ∞

which guarantees the existence of T −1. Moreover, Ak is a PSD matrix for every k since I − αT is a
PSD mapping. The T −1 ◦A = α

∑∞
k=0 Ak must be a PSD matrix, which implies that T −1 is PSD

mapping.

Property B.2 (Commutity). Suppose Assumption 2 holds, then for all n > 0, |β| < 1/λ1, Hn,β with
different n and β commute with each other.

B.2 Fourth Moment Upper Bound for Meta Data

In this section, we provide a technical result for the fourth moment of meta data B, which is essential
throughout the proof of our upper bound.

Proposition B.1. Suppose Assumptions 1-3 hold. Given |β| < 1
λ1

, for any PSD matrix A, we have

E
[
B⊤BAB⊤B

]
⪯ c(βtr,Σ)E [tr(AΣ)]Hn1,βtr

where c(β,Σ) := c1

(
1 + 8|β|λ1

√
C(β,Σ)σ2

x + 64
√

C(β,Σ)σ4
xβ

2 tr(Σ2)
)

.
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Proof. Recall that B = 1√
n2

Xout(I− β
n1

Xin⊤Xin). With a slight abuse of notations, we write βtr as
β, Xin as X in this proof. First consider the case β ≥ 0. By the definition of B, we have

E
[
B⊤BAB⊤B

]
= E

[
(I− β

n1
X⊤X)

1

n2
Xout⊤Xout(I− β

n1
X⊤X)A(I− β

n1
X⊤X)

1

n2
Xout⊤Xout(I− β

n1
XX)

]
⪯ c1E

[
tr

(
(I− β

n1
X⊤X)A(I− β

n1
X⊤X)Σ

)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
⪯ c1E

[
tr

(
A(Σ+

β2

n2
1

X⊤XΣX⊤X)

)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
where the second inequality follows from Assumption 1. Let xi denote the i-th row of X. Note
that xi = Σ

1
2 zi, where zi is independent σx-sub-gaussian vector. For any xi1 ,xi2 ,xi3 ,xi4 , where

1 ≤ i1, i2, i3, i4 ≤ n1, we have:

E
[
tr(Axi1x

⊤
i2Σxi3x

⊤
i4)(I−

β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
= E

[
tr(Σ

1
2AΣ

1
2 zi1z

⊤
i2Σ

2zi3z
⊤
i4)(I−

β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
=
∑
k,j

µkλ
2
jE
[
(z⊤i4uk)(z

⊤
i1uk)(z

⊤
i4vj)(z

⊤
i1vj)(I−

β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]

where the SVD of Σ
1
2AΣ

1
2 is

∑
j µjuju

⊤
j , the SVD of Σ is

∑
j λjvjv

⊤
j . For any unit vector

w ∈ Rd, we have:

w⊤E
[
H

− 1
2

n1,β
tr(Axi1x

⊤
i2Σxi3x

⊤
i4)(I−

β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,β

]
w

≤
∑
k,j

µkλ
2
j

√
E
[(
(z⊤i4uk)(z⊤i1uk)(z⊤i4vj)(z⊤i1vj)2

)]
×

√
E
[
∥w⊤H

− 1
2

n1,β
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)H

− 1
2

n1,β
w∥2

]
≤ 64

√
C(β,Σ)σ4

x tr(AΣ) tr(Σ2)

where the first inequality follows from the Cauchy Schwarz inequality; the last inequality is due to
Assumption 3 and the property of sub-Gaussian distributions [19]. Therefore,

E
[
H

− 1
2

n1,β
tr(Axi1x

⊤
i2Σxi3x

⊤
i4)(I−

β

n1
X⊤X)Σ(I− β

n1
X⊤X)H

− 1
2

n1,β

]
⪯ 64

√
C(β,Σ)σ4

x tr(AΣ2)I

which implies

E
[
tr(Axi1x

⊤
i2Σxi3x

⊤
i4)(I−

β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
⪯ 64

√
C(β,Σ)σ4

x tr(AΣ2)Hn1,β .

Hence,

E
[
B⊤BAB⊤B

]
⪯ c1E

[
tr
(
A(Σ+ 64

√
Cσ4

xβ
2Σ tr(Σ2))

)
(I− β

n
X⊤X)Σ(I− β

n
X⊤X)

]
⪯ c1(1 + 64

√
C(β,Σ)σ4

xβ
2 tr(Σ2))E [tr(AΣ)]Hn1,β .

6



Now we turn to β < 0, and derive

E
[
B⊤BAB⊤B

]
⪯ c1E

[
tr

(
(I− β

n1
X⊤X)A(I− β

n1
X⊤X)Σ

)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]

= c1E

tr
A(Σ− β

n1
(X⊤XΣ+ΣX⊤X)︸ ︷︷ ︸

J1

+
β2

n2
1

X⊤XΣX⊤X)


· (I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
.

We can bound the extra term J1 in the similar way as β > 0. For any xi, 1 ≤ i ≤ n1, we have

E
[
tr
(
Axix

⊤
i Σ
)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
= E

[
tr
(
z⊤i Σ

3
2AΣ

1
2 zi

)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
=
∑
k

ιkE
[
(z⊤i κk)

2(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
where the SVD of Σ

3
2AΣ

1
2 is

∑
k ιkκkκ

⊤
k . Similarly, for any unit vector w ∈ Rd, we can obtain

w⊤E
[
H

− 1
2

n1,β
tr

(
Axix

⊤
i Σ)(I− β

n1
X⊤X

)
Σ(I− β

n1
X⊤X)H

− 1
2

n1,β

]
w

≤
∑
k

ιk

√
E[(z⊤i κk)4]

√
E[∥w⊤H

− 1
2

n1,β
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)H

− 1
2

n1,β
w∥2]

≤ 4
√

C(β,Σ)σ2
x tr(AΣ2)

which implies:

E
[
tr

(
Axix

⊤
i Σ)(I− β

n1
X⊤X

)
Σ(I− β

n1
X⊤X)

]
⪯ 4
√

C(β,Σ)σ2
x tr(AΣ2)Hn1,β .

Hence,

E
[
B⊤BAB⊤B

]
⪯ c1E

[
tr
(
A(Σ− 8β

√
Cσ2

xΣ
2 + 64

√
Cσ4

xβ
2Σ tr(Σ2))

)
(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
⪯ c1

(
1− 8βλ1

√
C(β,Σ)σ2

x + 64
√

C(β,Σ)σ4
xβ

2 tr(Σ2)
)
E [tr(AΣ)]Hn1,β .

Together with the discussions for β > 0, we have

c(β,Σ) = c1(1 + 8|β|λ1

√
C(β,Σ)σ2

x + 64
√
C(β,Σ)σ4

xβ
2 tr(Σ2)),

which completes the proof.

B.3 Bias-Variance Decomposition

We will use the bias-variance decomposition similar to theoretical studies of classic linear regres-
sion [14, 8, 22]. Consider the error at each iteration: ϱt = ωt − θ∗, where ωt is the SGD output at
each iteration t. Then the update rule can be written as:

ϱt := (I− αB⊤
t Bt)ϱt−1 + αB⊤

t ξt

where Bt, ξt are the meta data and noise at iteration t (see eqs. (2) and (6)). It is helpful to consider
ϱt as the sum of the following two random processes:

7



• If there is no meta noise, the error comes from the bias:

ϱbias
t := (I− αB⊤

t Bt)ϱ
bias
t−1 ϱbias

t = ϱ0.

• If the SGD trajectory starts from θ∗, the error originates from the variance:

ϱvar
t := (I− αB⊤

t Bt)ϱ
var
t−1 + αB⊤

t ξt ϱvar = 0

and E[ϱvar
t ] = 0.

With slightly abused notations, we have:

ϱt = ϱbias
t + ϱvar

t .

Define the averaged output of ϱbias
t , ϱvar

t and ϱt after T iterations as:

ϱbias
T =

1

T

T∑
t=1

ϱbias
t , ϱvar

T =
1

T

T∑
t=1

ϱvar
t , ϱT =

1

T

T∑
t=1

ϱt. (10)

Similarly, we have
ϱT = ϱbias

T + ϱvar
T .

Now we are ready to introduce the bias-variance decomposition for the excess risk.
Lemma B.2 (Bias-variance decomposition). Following the notations in eq. (10), then the excess risk
can be decomposed as

R(ωT , β
te) ≤ 2Ebias + 2Evar

where

Ebias =
1

2
⟨Hm,βte ,E[ϱbias

T ⊗ ϱbias
T ]⟩, Evar =

1

2
⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩. (11)

Proof. By Lemma A.1, we have

R(ωT , β
te) =

1

2
⟨Hm,βte ,E[ϱT ⊗ ϱT ]⟩

=
1

2
⟨Hm,βte ,E[(ϱbias

T + ϱvar
T )⊗ (ϱbias

T + ϱvar
T )]⟩

≤ 2

(
1

2
⟨Hm,βte ,E[ϱbias

T ⊗ ϱbias
T ]⟩+ 1

2
⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩

)
where the last inequality follows because for vector-valued random variables u and v, E∥u+ v∥2H ≤(√

E∥u∥2H +
√
E∥v∥2H

)2
and from Cauchy-Schwarz inequality.

For t = 0, 1, · · · , T − 1, consider the following bias and variance iterates:

Dt = (I − αT ) ◦Dt−1 and D0 = (ωt − θ∗)(ωt − θ∗)⊤

Vt = (I − αT ) ◦Vt−1 + α2Π and V0 = 0 (12)

where Π = E[B⊤ξξ⊤B]. One can verify that

Dt = E
[
ϱbias
t ⊗ ϱbias

t

]
, Vt = E [ϱvar

t ⊗ ϱvar
t ] .

With such notations, we can further bound the bias and variance terms.
Lemma B.3. Following the notations in eq. (12), we have

E bias ≤ 1

αT 2

〈(
I− (I− αHn1,βtr)T

)
H−1

n1,βtrHm,βte ,

T−1∑
t=0

Dt

〉
, (13)

E var ≤ 1

T 2

T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Vt

〉
. (14)
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Proof. Similar calculations have appeared in the prior works [14, 22]. However, our meta linear
model contains additional terms, and hence we provide a proof here for completeness. We first have

E[ϱvar
T ⊗ ϱvar

T ] =
1

T 2

T−1∑
t=0

T−1∑
k=0

E[ϱvar
t ⊗ ϱvar

k ]

⪯ 1

T 2

T−1∑
t=0

T−1∑
k=t

E[ϱvar
t ⊗ ϱvar

k ] + E[ϱvar
k ⊗ ϱvar

t ]

where the last inequality follows because we double count the diagonal terms t = k.

For t ≤ k, E[ϱvar
k |ϱvar

t ] = (I− αHn1,βtr)k−tϱvar
t , since E[B⊤

t ξt|ϱt−1] = 0. From this, we have

E[ϱvar
T ⊗ ϱvar

T ] ⪯ 1

T 2

T−1∑
t=0

T−1∑
k=t

Vt(I− αHn1,βtr)k−t +Vt(I− αHn1,βtr)k−t.

Substituting the above inequality into 1
2 ⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩, we obtain:

Evar =
1

2
⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩

≤ 1

2T 2

T−1∑
t=0

T−1∑
k=t

⟨Hm,βte ,Vt(I− αHn1,βtr)k−t⟩+ ⟨Hm,βte ,Vt(I− αHn1,βtr)k−t⟩

=
1

T 2

T−1∑
t=0

T−1∑
k=t

⟨(I− αHn1,βtr)k−tHm,βte ,Vt⟩

where the last inequality follows from Assumption 2 that F and Σ commute, and hence Hm,βte and
I− αHn1,βtr commute.

For the bias term, similarly we have:

Ebias ≤
1

T 2

T−1∑
t=0

T−1∑
k=t

⟨(I− αHn1,βtr)k−tHm,βte ,Dt⟩ (15)

=
1

αT 2

T−1∑
t=0

⟨
(
I− (I− αHn1,βtr)T−t

)
H−1

n1,βtrHm,βte ,Dt⟩ (16)

≤ 1

αT 2
⟨
(
I− (I− αHn1,βtr)T

)
H−1

n1,βtrHm,βte ,

T−1∑
t=0

Dt⟩ (17)

which completes the proof.

B.4 Bounding the Bias

Now we start to bound the bias term. By Lemma B.3, we focus on bounding the summation of Dt,
i.e.
∑T−1

t=0 Dt. Consider St :=
∑t−1

k=0 Dk, and the following lemma shows the properties of St

Lemma B.4. St satisfies the recursion form:

St = (I − αT ) ◦ St−1 +D0.

Moreover, if α < 1
c(βtr,Σ) tr(Σ) , then we have:

D0 = S0 ⪯ S1 ⪯ · · · ⪯ S∞

where S∞ :=
∑∞

k=0(I − αT )k ◦D0 = α−1T −1 ◦D0.

9



Proof. By eq. (12), we have

St =

t−1∑
k=0

Dk =

t−1∑
k=0

(I − αT )k ◦D0

= D0 + (I − αT ) ◦

(
t−2∑
k=0

(I − αT )k ◦D0

)
= D0 + (I − αT ) ◦ St−1.

By Lemma B.1, (I − αT ) is PSD mapping, and hence Dt = (I − αT ) ◦Dt−1 is a PSD matirx
for every t, which implies St−1 ⪯ St−1 +Dt = St. The form of S∞ can be directly obtained by
Lemma B.1.

Then we can decompose St as follows:

St = D0 + (I − αT̃ ) ◦ St−1 + α(T̃ − T ) ◦ St−1

= D0 + (I − αT̃ ) ◦ St−1 + α2(M−M̃) ◦ St−1

⪯ D0 + (I − αT̃ ) ◦ St−1 + α2M◦ ST

=

t−1∑
k=0

(I − αT̃ )k ◦ (D0 + α2M◦ ST ) (18)

where the inequality follows because St ⪯ ST for any t ≤ T . Therefore, it is crucial to understand
M◦ ST .

Lemma B.5. For any symmetric matrix A, if α < 1
c(βtr,Σ) tr(Σ) , it holds that

M◦ T −1 ◦A ⪯
c(βtr,Σ) tr

(
ΣH−1

n1,βtrA
)

1− αc(βtr,Σ) tr(Σ)
·Hn1,βtr .

Proof. Denote C = T −1 ◦A. Recalling T̃ = T + αM− αM̃, we have

T̃ ◦C = T ◦C+ αM◦C− αM̃ ◦C
⪯ A+ αM◦C.

Recalling that T̃ −1 exists and is a PSD mapping, we then have

M◦C ⪯ αM◦ T̃ −1 ◦M ◦C+M◦ T̃ −1 ◦A

⪯
∞∑
k=0

(αM◦ T̃ −1)k ◦ (M◦ T̃ −1 ◦A). (19)

By Proposition B.1, we have M◦ T̃ −1 ◦A ⪯ c(βtr,Σ) tr(ΣT̃ −1 ◦A)︸ ︷︷ ︸
J2

Hn1,βtr . Substituting back

into eq. (19), we obtain:

∞∑
k=0

(αM◦ T̃ −1)k ◦ (M◦ T̃ −1 ◦A) ⪯
∞∑
k=0

(αM◦ T̃ −1)k ◦ (J2Hn1,βtr)

⪯ J2

∞∑
k=0

(αc(βtr,Σ) tr(Σ))kHn1,βtr ⪯ J2
1− αc(βtr,Σ) tr(Σ)

Hn1,βtr

where the second inequality follows since T̃ −1 ◦ Hn1,βtr ⪯ I (Lemma B.1) and M ◦ I ⪯
c(βtr,Σ) tr(Σ)Hn1,βtr (Proposition B.1).
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Finally, we bound J2 as follows:

tr
(
ΣT̃ −1 ◦A

)
= α tr

( ∞∑
k=0

Σ(I− αHn1,βtr)kA(I− αHn1,βtr)k

)

= α tr

( ∞∑
k=0

Σ(I− αHn1,βtr)2kA

)
= tr

(
Σ
(
2Hn1,βtr − αH2

n1,βtr

)−1
A
)

≤ tr
(
ΣH−1

n1,βtrA
)

where the second equality follows because Σ and Hn1,βtr commute, and the last inequality holds
since α < 1

maxi{µi(Hn1,βtr )} . Putting all these results together completes the proof.

Lemma B.6 (Bounding M◦ ST ).

M◦ ST ⪯
c(βtr,Σ) · tr

(
ΣH−1

n1,βtr

[
I − (I − αT̃ )T

]
◦D0

)
α(1− c(βtr,Σ)α tr(Σ))

·Hn1,βtr .

Proof. ST can be further derived as follows:

ST =

T−1∑
k=0

(I − αT )k ◦D0 = α−1T −1 ◦
[
I − (I − αT )T

]
◦D0.

Since T̃ −T is a PSD mapping by Lemma B.1, we have I−αT̃ ≤ I−αT . Hence I−(I−αT )T ⪯
I − (I − αT̃ )T . Combining with the fact that T −1 is also a PSD mapping, we have:

ST ⪯ α−1T −1 ◦
[
I − (I − αT̃ )T

]
◦D0.

Letting A =
[
I − (I − αT̃ )T

]
◦D0 in Lemma B.5, we obtain:

M◦ ST ⪯ α−1M◦ T −1 ◦
[
I − (I − αT̃ )T

]
◦D0

⪯
c(βtr,Σ) · tr

(
ΣH−1

n1,βtr

[
I − (I − αT̃ )T

]
◦D0

)
α(1− c(βtr,Σ)α tr(Σ))

·Hn1,βtr .

Now we are ready to derive the upper bound on the bias term.

Lemma B.7 (Bounding the bias). If α < 1
c(βtr,Σ) tr(Σ) , for sufficiently large n1, s.t. µi(Hn1,βtr) > 0,

∀i, then we have

Ebias ≤
∑
i

(
1

α2T 2
1µi(Hn1,βtr )≥ 1

αT
+ µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
ω2
i µi(Hm,βte)

µi(Hn1,βtr)2

+
2c(βtr,Σ)

Tα (1− c(βtr,Σ)α tr(Σ))

∑
i

(
1

µi(Hn1,βtr)
1µi(Hn1,βtr )≥ 1

αT
+ Tα1µi(Hn1,βtr )< 1

αT

)
· λiω

2
i

×
∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µi(Hn1,βtr)21µi(Hn1,βtr )< 1

αT

)
· µi(Hn1,βtr)

µi(Hm,βte)
.
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Proof. Applying Lemma B.6 to eq. (18), we can obtain:

St ⪯
t−1∑
k=0

(I − αT̃ )k ◦

αc(βtr,Σ) · tr
(
ΣH−1

n1,βtr

[
I − (I − αT̃ )T

]
◦D0

)
1− c(β,Σ)α tr(Σ)

·Hn1,βtr +D0


=

t−1∑
k=0

(I− αHn1,βtr)k·αc(βtr,Σ) · tr
(
ΣH−1

n1,βtr(D0 − (I− αHn1,βtr)TD0(I− αHn)
T )
)

1− c(βtr,Σ)α tr(Σ)
·Hn1,βtr︸ ︷︷ ︸

G1

+ D0︸︷︷︸
G2


· (I− αHn1,βtr)k.

Letting t = T , and substituting the upper bound of ST into the bias term in Lemma B.3, we obtain:

E bias ≤ 1

αT 2

T−1∑
k=0

〈
((I− αHn1,βtr)2k − (I− αHn,β)

T+2k)H−1
n,βHm,βte ,G1 +G2

〉
≤ 1

αT 2

T−1∑
k=0

〈
((I− αHn1,βtr)k − (I− αHn1,βtr)T+k)H−1

n1,βtrHm,βte ,G1 +G2

〉
.

We first consider

d1 =
1

αT 2

T−1∑
k=0

〈
((I− αHn1,βtr)k − (I− αHn1,βtr)T+k)H−1

n1,βtrHm,βte ,G1

〉
.

Since Hn1,βtr , Hm,βte and I− αHn1,βtr commute, we have

d1 =
c(βtr,Σ) · tr

(
ΣH−1

n1,βtr(D0 − (I− αHn1,βtr)TD0(I− αHn1,βtr)T )
)

(1− c(βtr,Σ)α tr(Σ))T 2

×
T−1∑
k=0

〈(
(I− αHn1,βtr)k − (I− αHn1,βtr)T+k

)
,Hm,βte

〉
.

For the first term, since Σ, Hn1,βtr and I−αHn1,βtr can be diagonalized simultaneously, considering
the eigen-decompositions under the basis of Σ and recalling Σ = VΛV⊤, we have:

tr
(
ΣH−1

n1,βtr [D0 − (I− αHn1,βtr)TD0(I− αHn1,βtr)T ]
)

=
∑
i

(
1− (1− αµi(Hn1,βtr))

2T
)
· (⟨w0 −w∗,vi⟩)2

λi

µi(Hn1,βtr)

≤ 2
∑
i

(
1λi(Hn,β)≥ 1

αT
+ Tαµi(Hn,β)1µi(Hn1,βtr )< 1

αT

)
· (⟨w0 −w∗,vi⟩)2

λi

µi(Hn1,βtr)

where the last inequality holds since 1− (1− αx)2T ≤ min{2, 2Tαx}.

For the second term, similarly, Hm,βte and I − αHn1,βtr can be diagonalized simultaneously. We
then have

T−1∑
k=0

〈(
(I− αHn1,βtr)k − (I− αHn1,βtr)T+k

)
,Hm,βte

〉
≤

T−1∑
k=0

∑
i

[(1− αµi(Hn1,βtr))k − (1− αµi(Hn1,βtr))T+k]µi(Hm,βte)

=
1

α

∑
i

[1− (1− αµi(Hn1,βtr))T ]2
µi(Hm,βte)

µi(Hn1,βtr)

≤ 1

α

∑
i

(
1λi(Hn,β)≥ 1

αT
+ T 2α2λi(Hn,β)1λi(Hn,β)<

1
αT

) µi(Hm,βte)

µi(Hn1,βtr)
.
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Now we turn to:

d2 =
1

αT 2

T−1∑
k=0

〈
((I− αHn1,βtr)k − (I− αHn1,βtr)T+k)H−1

n1,βtrHm,βte ,G2

〉
.

Considering the orthogonal decompositions of Hm,βte and Hn1,βtr under V, Hn1,βtr = VΛ1V
⊤,

Hm,βte = VΛ2V
⊤, where the diagonal entries of Λ1 are µi(Hn1,βtr) (and µi(Hm,βte) for Λ2). Then

we have:

d2 =
1

αT 2

T−1∑
k=0

〈(
(I− αΛ1)

k − (I− αΛ1)
T+k

)
Λ−1

1 Λ2︸ ︷︷ ︸
J3

,V⊤D0V

〉

=
1

αT 2

T−1∑
k=0

∑
i

[
(1− αµi(Hn1,βtr))

k − (1− αµi(Hn1,βtr))
T+k

] ω2
i µi(Hm,βte)

µi(Hn1,βtr)

=
1

α2T 2

∑
i

[
1− (1− αµi(Hn1,βtr))

T
]2 ω2

i µi(Hm,βte)

µ2
i (Hn1,βtr)

≤ 1

α2T 2

∑
i

(
1µi(Hn1,βtr )≥ 1

αT
+ α2T 2µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

) ω2
i µi(Hm,βte)

µ2
i (Hn1,βtr)

where ωi = ⟨ω0 − θ∗,vi⟩ is the diagonal entry of V⊤D0V and the second equality holds since J3

is a diagonal matrix.

B.5 Bounding the Variance

Note that the noisy part Π = E[B⊤ξξ⊤B] in eq. (12) is important in the variance iterates. In order to
analyze the variance term, we first understand the role of Π by the following lemma.
Lemma B.8 (Bounding the noise).

Π = E[B⊤ξξ⊤B] ⪯ f(βtr, n2, σ,Σ,Σθ)Hn1,βtr

where f(β, n, σ,Σ,Σθ) = [c(β,Σ) tr(ΣθΣ) + 4c1σ
2σ2

xβ
2
√
C(β,Σ) tr(Σ2) + σ2/n].

Proof. With a slight abuse of notations, we write βtr as β in this proof. By definition of meta data
and noise, we have

Π = E[B⊤ξξ⊤B]

=
σ2

n2
Hn1,β + E[B⊤BΣθB

⊤B] + σ2 · β2

n2n2
1

E[B⊤XoutXin⊤XinXout⊤B].

The second term can be directly bounded by Proposition B.1:

E[B⊤BΣθB
⊤B] ⪯ c(β,Σ) tr(ΣθΣ)Hn1,β .

For the third term, we utilize the technique similar to Proposition B.1, and by Assumption 1, we have:

σ2 · β2

n2n2
1

E
[
B⊤XoutXin⊤XinXout⊤B

]
⪯ σ2c1 ·

β2

n2
1

E
[
tr(Xin⊤XinΣ)(I− β

n1
Xin⊤Xin)Σ(I− β

n1
Xin⊤Xin)

]
.

Following the analysis for J1 in the proof of Proposition B.1, and letting A = I, we obtain:

1

n2
1

E
[
tr(Xin⊤XinΣ)(I− β

n1
Xin⊤Xin)Σ(I− β

n1
Xin⊤Xin)

]
⪯ 4
√

C(β,Σ)σ2
x tr(Σ

2)Hn1,β .

Putting all these results together completes the proof.

Lemma B.9 (Property of Vt). If the stepsize satisfies α < 1
c(βtr,Σ) tr(Σ) , it holds that

0 = V0 ⪯ V1 ⪯ · · · ⪯ V∞ ⪯ αf(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)
I.
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Proof. Similar calculations has appeared in prior works [14, 22]. However, our analysis of the meta
linear model needs to handle the complicated meta noise, and hence we provide a proof here for
completeness.

We first show that Vt−1 ⪯ Vt. By recursion:

Vt = (I − αT ) ◦Vt−1 + α2Π

(a)
= α2

t−1∑
k=0

(I − αT )k ◦Π

= Vt−1 + α2(I − αT )t−1 ◦Π
(b)

⪰ Vt−1

where (a) holds by solving the recursion and (b) follows because I − αT is a PSD mapping.

The existence of V∞ can be shown in the way similar to the proof of Lemma B.1. We first have

Vt = α2
t−1∑
k=0

(I − αT )k ◦Π ⪯ α2
∞∑
k=0

(I − αT )k ◦Π︸ ︷︷ ︸
Ak

.

By previous analysis in Lemma B.1 , if α < 1
c(βtr,Σ) tr(Σ) , we have

tr (Ak) ≤
(
1− αmin

i
{µi(Hn1,βtr)}

)
tr (At−1) .

Therefore,

tr (Vt) ≤ α2
∞∑
k=0

tr (Ak) ≤
α tr(Π)

mini{µi(Hn1,βtr)}
< ∞.

The trace of Vt is uniformly bounded from above, which indicates that V∞ exists.

Finally, we bound V∞. Note that V∞ is the solution to:

V∞ = (I − αT ) ◦V∞ + α2Π.

Then we can write V∞ as V∞ = T −1 ◦ αΠ. Following the analysis in the proof of Lemma B.5, we
have:

T̃ ◦V∞ = T̃ ◦ T −1 ◦ αΠ
⪯ αΠ+ αM◦V∞

⪯ αf(βtr, n2, σ,Σ,Σθ)Hn1,βtr + αM◦V∞

where the last inequality follows from Lemma B.8. Applying T̃ −1, which exists and is a PSD
mapping, to the both sides, we have

V∞ ⪯ αf(βtr, n2, σ,Σ,Σθ) · T̃ −1 ◦Hn1,βtr + αT̃ −1 ◦M ◦V∞

(a)

⪯ αf(βtr, n2, σ,Σ,Σθ) ·
∞∑
t=0

(
αT̃ −1 ◦M

)t
◦ T̃ −1 ◦Hn1,βtr

(b)

⪯ αf(βtr, n2, σ,Σ,Σθ)

∞∑
t=0

(αc(βtr,Σ) tr(Σ))tI

=
αf(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)
I

where (a) holds by directly solving the recursion; (b) follows from the fact that T̃ −1 ◦Hn1,βtr ⪯ I
from Lemma B.1 and M◦ I ⪯ c(βtr,Σ) tr(Σ)Hn1,βtr by letting A = I in Proposition B.1.

Now we are ready to provide the upper bound on the variance term.
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Lemma B.10 (Bounding the Variance). If α < 1
c(βtr,Σ) tr(Σ) , for sufficiently large n1, s.t.

µi(Hn1,βtr) > 0, ∀i, then we have

Evar ≤
f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))

×
∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
µi(Hm,βte)

µi(Hn1,βtr)
.

Proof. Recall

Vt = (I − αT ) ◦Vt−1 + α2Π

= (I − αT̃ ) ◦Vt−1 + α2(M−M̃) ◦Vt−1 + α2Π

⪯ (I − αT̃ ) ◦Vt−1 + α2M◦Vt−1 + α2Π. (20)

By the uniform bound on Vt and M is a PSD mapping, we have:

M◦Vt ⪯ M◦V∞

(a)

⪯ M◦ αf(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)
I

(b)

⪯ αf(βtr, n2, σ,Σ,Σθ)c(β
tr,Σ) tr(Σ)

1− αc(βtr,Σ) tr(Σ)
·Hn1,βtr

where (a) directly follows from Lemma B.9; (b) holds because M ◦ I ⪯ c(βtr,Σ) tr(Σ)Hn1,βtr

(letting A = I in Proposition B.1). Substituting it back into eq. (20), we have:

Vt ⪯ (I − αT̃ ) ◦Vt−1 + α2 αfc(βtr,Σ) tr(Σ)

1− αc(βtr,Σ) tr(Σ)
·Hn1,βtr + α2fHn1,βtr

= (I − αT̃ ) ◦Vt−1 +
α2f(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)
Hn1,βtr

(a)
=

α2f(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)

t−1∑
k=0

(I− αT̃ )k ◦Hn1,βtr

(b)

⪯ αf(βtr, n2, σ,Σ,Σθ)

1− αc(βtr,Σ) tr(Σ)
(I− (I− αHn,β)

t)

where (a) holds by solving the recursion and (b) is due to the fact that

t−1∑
k=0

(I− αT̃ )k ◦Hn1,βtr =

t−1∑
k=0

(I− αHn1,βtr)kHn1,βtr(I− αHn1,βtr)k

⪯
t−1∑
k=0

(I− αHn1,βtr)kHn1,βtr

=
1

α
[I− (I− αHn1,βtr)t].

Substituting the bound for Vt back into the variance term in Lemma B.3, we have

E var ≤ 1

T 2

T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Vt

〉
=

1

αT 2

T−1∑
t=0

〈
(I− (I− αHn1,βtr)T−t)H−1

n1,βtrHm,βte ,Vt

〉
≤ f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))T 2

T−1∑
t=0

〈
I− (I− αHn,β)

T−t,
(
I− (I− αHn,β)

t
)
H−1

n,βHm,η

〉
.
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Simultaneously diagonalizing Hn1,βtr and Hm,βte as the analysis in Lemma B.7, we have

Evar ≤
f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))T 2

·
∑
i

T−1∑
t=0

(
1− (1− αµi(Hn1,βtr))

T−t
)(

1− (1− αµi(Hn1,βtr))
t
) µi(Hm,βte)

µi(Hn1,βtr)

≤ f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))T 2

·
∑
i

T−1∑
t=0

(
1− (1− αµi(Hn1,βtr))

T
)(

1− (1− αµi(Hn1,βtr))
T
) µi(Hm,βte)

µi(Hn1,βtr)

=
f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))T

∑
i

(
1− (1− αµi(Hn1,βtr))

T
)2 µi(Hm,βte)

µi(Hn1,βtr)

≤ f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))T

∑
i

(min {1, αTµi(Hn1,βtr)})2 µi(Hm,βte)

µi(Hn1,βtr)

≤ f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))

·
∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µ2

i (Hn1,βtr)1µi(Hn,β)<
1

αT

)
µi(Hm,βte)

µi(Hn1,βtr)
,

which completes the proof.

B.6 Proof of Theorem 1

Theorem B.3 (Theorem 1 Restated). Let ωi = ⟨ω0 − θ∗,vi⟩. If |βtr|, |βte| < 1/λ1, n1 is large
ensuring that µi(Hn1,βtr) > 0, ∀i and α < 1/ (c(βtr,Σ) tr(Σ)), then the meta excess risk R(ωT , β

te)
is bounded above as follows

R(ωT , β
te) ≤ Bias + Var

where

Bias =
2

α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)

Var =
2

(1− αc(βtr,Σ) tr(Σ))

(∑
i

Ξi

)

×[f(βtr, n2, σ,Σθ,Σ) + 2c(βtr,Σ)
∑

i

(
1
µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr )
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i ].

Proof. By Lemma B.2, we have

R(ωT , β
te) ≤ 2Ebias + 2Evar.
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Using Lemma B.7 to bound Ebias, and Lemma B.10 to bound Evar, we have

R(ωT , β
te)

≤ 2f(βtr, n2, σ,Σ,Σθ)

(1− αc(βtr,Σ) tr(Σ))

×
∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
µi(Hm,βte)

µi(Hn1,βtr)

+
4c(βtr,Σ)

Tα(1− c(βtr,Σ)α tr(Σ))

∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µi(Hn1,βtr)21µi(Hn1,βtr )< 1

αT

)
×
∑
i

(
1

µi(Hn1,βtr)
1µi(Hn1,βtr )≥ 1

αT
+ Tα1µi(Hn1,βtr )< 1

αT

)
· λi (⟨ω0 − θ∗,vi⟩)2

+ 2
∑
i

(
1

α2T 2
1µi(Hn1,βtr )≥ 1

αT
+ µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
ω2
i µi(Hm,βte)

µi(Hn1,βtr)2
.

Incorporating with the definition of effective meta weight

Ξi(Σ, α, T ) =

{
µi(Hm,βte)/ (Tµi(Hn1,βtr)) µi(Hn1,βtr) ≥ 1

αT ;

Tα2µi(Hn1,βtr)µi(Hm,βte) µi(Hn1,βtr) < 1
αT ,

(21)

we obtain(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ Tα2µ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
µi(Hm,βte)

µi(Hn1,βtr)
= Ξi(Σ, α, T ).

Therefore,
R(ωT , β

te) ≤ Bias + Var

where

Bias =
2

α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)

Var =
2

(1− αc(βtr,Σ) tr(Σ))

(∑
i

Ξi

)

×[f(βtr, n2, σ,Σθ,Σ) + 2c(βtr,Σ)
∑
i

(
1µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i︸ ︷︷ ︸

V2

].

Note that the term V2 is obtained by our analysis for Ebias. However, it originates from the stochasticity
of SGD, and hence we treat this term as the variance in our final results.

C Analysis for Lower Bound (Theorem 2)

C.1 Fourth Moment Lower Bound for Meta Nosie

Similarly to upper bound, we need some technical results for the fourth moment of meta data B and
noise ξ to proceed the lower bound analysis.

Lemma C.1. Suppose Assumption 1-3 hold. Given |βtr| < 1
λ1

, for any PSD matrix A, we have

E[B⊤BAB⊤B] ⪰ Hn1,βtrAHn1,βtr +
b1
n2

tr(Hn1,βtrA)Hn1,βtr (22)

Π ⪰ 1

n2
g(βtr, n1, σ,Σθ,Σ)Hn1,βtr (23)

where g(β, n, σ,Σ,Σθ) := σ2 + b1 tr(ΣθHn,β) + β21β≤0b1 tr(Σ
2)/n.
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Proof. With a slight abuse of notations, we write βtr as β, Xin as X in this proof. Note that
x ∈ Rd ∼ Px is independent of Xin. We first derive

E[B⊤BAB⊤B]

=
1

n2
E
[
(I− β

n1
X⊤X)xx⊤(I− β

n1
X⊤X)A(I− β

n1
X⊤X)xx⊤(I− β

n1
X⊤X)

]
+

n2 − 1

n2
E
[
(I− β

n2
X⊤X)Σ(I− β

n1
X⊤X)A(I− β

n1
X⊤X)Σ(I− β

n1
X⊤X)

]
(a)

⪰ b1
n2

E
[
tr(A(I− β

n
X⊤X)Σ(I− β

n
X⊤X))(I− β

n
X⊤X)Σ(I− β

n
X⊤X)

]
+Hn1,βAHn1,β

⪰ b1
n2

tr(Hn1,βA)Hn1,β +Hn1,βAHn1,β

where (a) is implied by Assumption 1.

Recall that Π takes the following form:

Π =
σ2

n2
Hn1,β + E[B⊤BΣθB

⊤B] + σ2 · β2

n2n2
1

E[B⊤XoutX⊤XXout⊤B].

The second term can be directly bounded by letting A = Σθ in eq. (22), and we have:

E[B⊤BΣθB
⊤B] ⪰ b1

n2
tr(Hn1,βΣθ)Hn1,β .

For the third term:
1

n2
E[B⊤XoutX⊤XXout⊤B]

=
1

n2
E
[
(I− β

n1
X⊤X)xx⊤X⊤Xxx⊤(I− β

n1
X⊤X)

]
+

n2 − 1

n2
E
[
(I− β

n1
X⊤X)ΣX⊤XΣ(I− β

n1
X⊤X)

]
⪰ n1b1 tr(Σ

2)

n2
Hn1,β1β≤0

Putting these results together completes the proof.

C.2 Bias-Variance Decomposition

For the lower bound analysis, we also decompose the excess risk into bias and variance terms.
Lemma C.2 (Bias-variance decomposition, lower bound). Following the notations in eq. (12), the
excess risk can be decomposed as follows:

R(ωT , β
te) ≥ Ebias + Evar

where

Ebias =
1

2T 2
·
T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Dt

〉
,

Evar =
1

2T 2
·
T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Vt

〉
.

Proof. The proof is similar to that for Lemma B.3, and the inequality sign is reversed since we only
calculate the half of summation. In particular,

E[ϱvar
T ⊗ ϱvar

T ] =
1

T 2

∑
1≤t<k≤T−1

E[ϱvar
t ⊗ ϱvar

k ] +
1

T 2

∑
1≤k<t≤T−1

E[ϱvar
t ⊗ ϱvar

k ]

⪰ 1

T 2

∑
1≤t<k≤T−1

E[ϱvar
t ⊗ ϱvar

k ].
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For t ≤ k, E[ϱvar
k |ϱvar

t ] = (I− αHn1,βtr)k−tϱvar
t , since E[B⊤

t ξt|ϱt−1] = 0. From this

E[ϱvar
T ⊗ ϱvar

T ] ⪰ 1

T 2

T−1∑
t=0

T−1∑
k=t

Vt(I− αHn1,βtr)k−t.

Plugging this into 1
2 ⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩, we obtain:

1

2
⟨Hm,βte ,E[ϱvar

T ⊗ ϱvar
T ]⟩

≥ 1

2T 2

T−1∑
t=0

T−1∑
k=t+1

⟨Hm,βte ,Vt(I− αHn1,βtr)k−t⟩

=
1

2T 2

T−1∑
t=0

T−1∑
k=t

⟨(I− αHn1,βtr)k−tHm,βte ,Vt⟩

= Evar.

The proof is the same for the term Ebias.

C.3 Bounding the Bias

We first bound the summation of Dt, i.e. Sk =
∑k−1

t=0 Dt.

Lemma C.3 (Bounding St). If the stepsize satisfies α < 1/(2maxi{µi(Hn1,βtr)}), then for any
k ≥ 2, it holds that

Sk ⪰ b1
4n2

tr
((

I− (I− αHn1,βtr)k/2
)
D0

)
·
(
I− (I− αHn1,βtr)k/2

)
+

k−1∑
t=0

(I− αHn1,βtr)t ·D0 · (I− αHn1,βtr)t.

Proof. By eq. (18), since M̃ −M is a PSD mapping, we have

Sk = D0 + (I − αT̃ ) ◦ Sk−1 + α2(M−M̃) ◦ Sk−1 (24)

⪰
k−1∑
t=0

(I − αT̃ )t ◦D0

=

k−1∑
t=0

(I− αHn1,βtr)t ·D0 · (I− αHn1,βtr)t.

Note that for PSD A,

(M−M̃) ◦A = E[B⊤BAB⊤B]−Hn1,βtrAHn1,βtr

By Lemma C.1, we have

(M−M̃) ◦ Sk ⪰ b1
n2

tr (Hn1,βtrSk)Hn1,βtr

⪰ b1
n2

tr

(
k−1∑
t=0

(I− αHn1,βtr)2tHn1,βtr ·D0

)
Hn1,βtr

⪰ b1
n2

tr

(
k−1∑
t=0

(I− 2αHn1,βtr)tHn1,βtr ·D0

)
Hn1,βtr

⪰ b1
2n2α

tr
((
I− (I− αHn1,βtr)k

)
D0

)
Hn1,βtr . (25)
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Substituting eq. (25) back into eq. (24), and solving the recursion, we obtain

Sk ⪰
k−1∑
t=0

(I − αT̃ )t ◦
{
b1α

2n2
tr
((
I− (I− αHn1,βtr)k−1−t

)
D0

)
H+D0

}

=
b1α

2n2

k−1∑
t=0

tr
((
I− (I− αHn1,βtr)k−1−t

)
D0

)
· (I− αHn1,βtr)2tHn1,βtr︸ ︷︷ ︸

J4

+

k−1∑
t=0

(I− αHn1,βtr)t ·D0 · (I− αHn1,βtr)t.

The term J4 can be further bounded by the following:

J4 ⪰
k−1∑
t=0

tr
((
I− (I− αHn1,βtr)k−1−t

)
D0

)
· (I− 2αHn1,βtr)tHn1,βtr

⪰ tr
((

I− (I− αHn1,βtr)k/2
)
D0

)
·
k/2−1∑
t=0

(I− 2αHn1,βtr)tHn1,βtr

⪰ 1

2α
tr
((

I− (I− αHn1,βtr)k/2
)
D0

)
·
(
I− (I− αHn1,βtr)k/2

)
which completes the proof.

Then we can bound the bias term.

Lemma C.4 (Bounding the bias). Let ωi = ⟨ω0 − θ∗,vi⟩. If α < 1
c(βtr,Σ) tr(Σ) , for sufficiently large

n1, s.t. µi(Hn1,βtr) > 0, ∀i, then we have

Ebias ≥
1

100α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)
+

b1
1000n2(1− αc(βtr,Σ) tr(Σ))

∑
i

Ξi

×
∑
i

(1µi(Hn1,βtr )≥ 1
αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i .

Proof. From Lemma C.2, we have

Ebias =
1

2T 2
·
T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Dt

〉
=

1

2αT 2
·
T−1∑
t=0

〈(
I− (I− αHn1,βtr)T−t

)
H−1

n1,βtrHm,βte ,Dt

〉

≥ 1

2αT 2

〈(
I− (I− αHn1,βtr)T/2

)
H−1

n1,βtrHm,βte ,

T/2∑
t=0

Dt

〉

≥ 1

2αT 2

〈(
I− (I− αHn1,βtr)T/2

)
H−1

n1,βtrHm,βte ,ST
2

〉
.

Applying Lemma C.3 to ST
2

, we obtain:

Ebias ≥d1 + d2
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where

d1 =
b1

8αn2T 2
tr
((

I− (I− αHn1,βtr)T/4
)
D0

)
×
〈(

I− (I− αHn1,βtr)T/2
)
H−1

n1,βtrHm,βte ,
(
I− (I− αHn1,βtr)T/4

)〉
d2 =

1

2αT 2

〈(
I− (I− αHn1,βtr)T/2

)
H−1

n1,βtrHm,βte ,

T/2−1∑
t=0

(I− αHn1,βtr)t ·D0 · (I− αHn1,βtr)t

〉
.

Moreover,

d2 ≥ 1

2αT 2

〈(
I− (I− αHn1,βtr)T/2

)
H−1

n1,βtrHm,βte ,

T/2−1∑
t=0

(I− 2αHn1,βtr)tD0

〉
;

≥ 1

4α2T 2

〈(
I− (I− αHn1,βtr)T/2

)2
H−2

n1,βtrHm,βte ,D0

〉
.

Using the diagonalizing technique similar to the proof for Lemma B.7, we have

d1 ≥ b1
8αn2T 2

(∑
i

(
1− (1− αµi(Hn1,βtr))

T/4
)
ω2
i

)
(26)

×

(∑
i

(
1− (1− αµi(Hn1,βtr))

T/4
)2 µi(Hm,βte)

µi(Hn1,βtr)

)
, (27)

d2 ≥ 1

4α2T 2

∑
i

(
1− (1− αµi(Hn1,βtr))

T/4
)2 µi(Hm,βte)

µ2
i (Hn1,βtr)

ω2
i . (28)

We use the following fact to bound the polynomial term. For h1(x) = 1− (1− x)
T
4 , we have

h1(x) ≥
{

1
5 x ≥ 1/T
T
5 x x < 1/T

i.e., 1−(1− αµi(Hn1,βtr))
T/4 ≥

(
1
51αµi(Hn1,βtr )≥ 1

T
+

αµi(Hn1,βtr )

5 1αµi(Hn1,βtr )< 1
T

)
. Substituting

this back into eqs. (27) and (28), and using the definition of effective meta weight Ξi complete the
proof.

C.4 Bounding the Variance

We first bound the term Vt.

Lemma C.5 (Bounding Vt). If the stepsize satisfies α < 1/(maxi{µi(Hn1,βtr)}), it holds that

Vt ⪰
αg(βtr, n1,Σ,Σθ)

2
·
(
I− (I− αHn1,βtr)2t

)
.
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Proof. With a slight abuse of notations, we write g(βtr, n1,Σ,Σθ) as g. By definition,

Vt = (I − αT ) ◦Vt−1 + α2Π

= (I − αT̃ ) ◦Vt−1 + (M−M̃) ◦Vt−1 + α2Π

(a)

⪰ (I − αT̃ ) ◦Vt−1 + α2gHn1,βtr

(b)
= α2g ·

t−1∑
k=0

(I − αT̃ )k ◦Hn1,βtr

= α2g ·
t−1∑
k=0

(I− αHn1,βtr)kHn1,βtr(I− αHn1,βtr)k (by the definition of I − αT̃ )

= αg ·
(
I− (I− αHn1,βtr)2t

)
· (2I− αHn1,βtr)

−1

(c)

⪰ αg

2
·
(
I− (I− αHn1,βtr)2t

)
where (a) follows from the Lemma C.1, (b) follows by solving the recursion and (c) holds since we
directly replace (2I− αHn1,βtr)

−1 by (2I)−1.

Lemma C.6 (Bounding the variance). Let ωi = ⟨ω0 − θ∗,vi⟩. If α < 1
c(βtr,Σ) tr(Σ) , for sufficiently

large n1, s.t. µi(Hn1,βtr) > 0, ∀i, for T > 10, then we have

Evar ≥
g(βtr, n1,Σ,Σθ)

100n2(1− αc(βtr,Σ) tr(Σ))

∑
i

Ξi.

Proof. From Lemma C.2, we have

Evar =
1

2T 2
·
T−1∑
t=0

T−1∑
k=t

〈
(I− αHn1,βtr)k−tHm,βte ,Vt

〉
=

1

2αT 2
·
T−1∑
t=0

〈(
I− (I− αHn1,βtr)T−t

)
H−1

n1,βtrHm,βte ,Vt

〉
.

Then applying Lemma C.5, and writting g(βtr, n1,Σ,Σθ) as g, we obtain

Evar ≥ g

4T 2
·
T−1∑
t=0

〈(
I− (I− αHn1,βtr)T−t

)
H−1

n1,βtrHm,βte ,
(
I− (I− αHn1,βtr)2t

)〉
=

g

4T 2

∑
i

µi(Hm,βte)

µi(Hn1,βtr)

T−1∑
t=0

(1− (1− αµi(Hn1,βtr)T−t))(1− (1− αµi(Hn1,βtr)2t))

≥ g

4T 2

∑
i

µi(Hm,βte)

µi(Hn1,βtr)

T−1∑
t=0

(1− (1− αµi(Hn1,βtr)T−t−1))(1− (1− αµi(Hn1,βtr)t)) (29)

where the equality holds by applying the diagonalizing technique again. Following the trick similar
to that in [22] to lower bound the function h2(x) :=

∑T−1
t=0

(
1− (1− x)T−t−1

)
(1− (1− x)t)

defined on x ∈ (0, 1), for T > 10, we have

f(x) ≥

{
T
20 ,

1
T ≤ x < 1

3T 3

50 x2, 0 < x < 1
T

Substituting this back into eq. (29), and using the definition of effective meta weight Ξi completes
the proof.
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C.5 Proof of Theorem 2

Theorem C.1 (Theorem 2 Restated). Let ωi = ⟨ω0 − θ∗,vi⟩. If |βtr|, |βte| < 1/λ1, n1 is large
ensuring that µi(Hn1,βtr) > 0, ∀i and α < 1/ (c(βtr,Σ) tr(Σ)). For T > 10, the meta excess risk
R(ωT , β

te) is bounded below as follows

R(ωT , β
te) ≥ 1

100α2T

∑
i

Ξi
ω2
i

µi(Hn1,βtr)
+

1

n2
· 1

(1− αc(βtr,Σ) tr(Σ))

∑
i

Ξi

×[
1

100
g(βtr, n1,Σ,Σθ) +

b1
1000

∑
i

(1µi(Hn1,βtr )≥ 1
αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i ].

Proof. The proof can be completed by combining Lemmas C.4 and C.6.

D Proofs for Section 4.2

D.1 Proof of Lemma 1

Proof of Lemma 1. For the single task setting, we first simplify our notations in Theorem B.3 as
follows.

c(0,Σ) = c1, f(0, n2, σ,Σ,0) = σ2/n2, Hn1,βtr = Σ.

By Theorem B.3, we have

Bias =
2

α2T

∑
i

(
1

T
1λi≥ 1

αT
+ Tα2λ2

i1λi<
1

αT

)
ω2
i µi(Hm,βte)

λ2
i

≤ 2

α2T

∑
i

(αλi1λi≥ 1
αT

+ αλi1λi<
1

αT
)
ω2
i µi(Hm,βte)

λ2
i

.

For large m, we have µi(Hm,βte) = (1− βteλi)
2λi + o(1). Therefore,

Bias ≤ 2(1− βteλd)
2

α2T

∑
i

ω2
i ≤ O(

1

T
).

For the variance term,

Var =
2

(1− αc1 tr(Σ))

∑
i

(
1

T
1λi≥ 1

αT
+ Tα2λ2

i1λi<
1

αT

)
µi(Hm,βte)

λi︸ ︷︷ ︸
J5

×[
σ2

n2
+ 2c1

∑
i

(
1λi≥ 1

αT

Tαλi
+ 1λi<

1
αT

)
λiω

2
i ].

It is easy to check that∑
i

(
1λi≥ 1

αT

Tαλi
+ 1λi<

1
αT

)
λiω

2
i ≤

∑
i

(
1λi≥ 1

αT

Tα
+

1

αT
1λi<

1
αT

)
ω2
i ≤ O(1/T ).

Moreover,

J5 ≤ (1− βteλd)
2
∑
i

(
1

T
1λi≥ 1

αT
+ Tα2λ2

i1λi<
1

αT

)
.

The term
∑

i

(
1
T 1λi≥ 1

αT
+ Tα2λ2

i1λi<
1

αT

)
has the form similar to Corollary 2.3 in [22] and we

directly have J5 = O
(
log−p(T )

)
, which implies

Var = O
(
log−p(T )

)
.

Thus we complete the proof.
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D.2 Proof of Proposition 2

Proof of Proposition 2. We first consider the bias term in Theorems B.3 and C.1 (up to absolute
constants):

Bias =
2

α2T

∑
i

(
1

T
1µi(Hn1,βtr )≥ 1

αT
+ α2Tµ2

i (Hn1,βtr)1µi(Hn1,βtr )< 1
αT

)
ω2
i µi(Hm,βte)

µi(Hn1,βtr)2
.

If µi(Hn1,βtr) ≥ 1
αT , 1

T ≤ αµi(Hn1,βtr); and if µi(Hn1,βtr) < 1
αT , then α2Tµ2

i (Hn1,βtr) <
αµi(Hn1,βtr). Hence

Bias ≤ 1

α2T

∑
i

ω2
i µi(Hm,βte)

µi(Hn1,βtr)
≤ 2

α2T
·max

i

µi(Hm,βte)

µi(Hn1,βtr)
∥ω0 − θ∗∥2 = O(

1

T
).

Moreover, ∑
i

(
1µi(Hn1,βtr )≥ 1

αT

Tαµi(Hn1,βtr)
+ 1µi(Hn1,βtr )< 1

αT

)
λiω

2
i

(a)

≤ 1

αT

∑
i

λi

µi(Hn1,βtr)
ω2
i

≤ 1

αT
max

i

λi

µi(Hn1,βtr)
∥ω0 − θ∗∥2 = O(

1

T
)

where (a) holds since we directly upper bound µi(Hn1,βtr) by 1
αT when µi(Hn1,βtr) < 1

αT . There-
fore, it is essential to analyze f(βtr, n2, σ,Σ,Σθ) (

∑
i Ξi) and g(βtr, n1, σ,Σ,Σθ) (

∑
i Ξi) from

variance term in the upper and lower bounds respectively.

Then we calculate some rates of interesting in Theorems B.3 and C.1 under the specific data and task
distributions in Proposition 2.

If the spectrum of Σ satisfies λk = k−1 log−p(k + 1), then it is easily verified that tr(Σs) = O(1)
for s = 1, · · · , 4. By discussions on Assumption 3 in Appendix F, we have C(β,Σ) = Θ(1) for
given β. Hence,

c(βtr,Σ) = Θ(1)

f(βtr, n2, σ,Σ,Σθ) = c(βtr,Σ) tr(ΣθΣ) + Θ(1)

g(βtr, n1, σ,Σ,Σθ) = b1 tr(ΣθHn1,βtr) + Θ(1).

If r ≥ 2p− 1, then we have g(βtr, n1, σ,Σ,Σθ) ≥ Ω
(
logr−p+1(d)

)
≥ Ω

(
logr−p+1(T )

)
.

Let k† := card{i : µi(Hn1,βtr) ≥ 1/αT}. For large n1, we have µi(Hn1,βtr) = (1−βtrλi)
2λi+o(1).

If k† = O (T/ logp(T + 1)), then

min
1≤i≤k†+1

µi(Hn1,βtr) = ω

(
logp(T )

T [log(T )− p log(log(T ))]p

)
= ω

(
1

T

)
which contradicts the definition of k†. Hence k† = Ω(T/ logp(T + 1)). Then∑

i

Ξi ≥ Ω

(
k† · 1

T

)
= Ω

(
1

logp(T )

)
.

Therefore, by Theorem C.1, R(ω, βte) = Ω
(
logr−2p+1(T )

)
.

For r < 2p− 1, if d = T l, where l can be sufficiently large (d ≫ T ) but still finite, then

• If p− 1 < r < 2p− 1, f(βtr, n2, σ,Σ,Σθ) ≤ O(logr−p+1 T );

• If r ≤ p− 1, f(βtr, n2, σ,Σ,Σθ) ≤ O
(
log (log(T ))

)
.
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Following the analysis similar to that for Corollary 2.3 in [22], we have
∑

i Ξi = O( 1
logp(T ) ). Then

by Theorem B.3

R(ωT , β
te) = O

(
1

logp−(r−p+1)+(T )

)
.

D.3 Proof of Proposition 3

Proof of Proposition 3. Following the analysis in Appendix D.2, it is essential to analyze
f(βtr, n2, σ,Σ,Σθ) (

∑
i Ξi). If d = T l, where l can be sufficiently large but still finite, then

f(βtr, n2, σ,Σ,Σθ) = Θ̃(1)

for λk = kq (q > 1) or λk = e−k.

Following the analysis similar to that for Corollary 2.3 in [22], we have

• If λk = kq (q > 1), then
∑

i Ξi = O
(

1

T
q−1
q

)
;

• If λk = e−k, then
∑

i Ξi = O
(

log(T )
T

)
.

Substituting these results back into Theorem B.3, we obtain

• If λk = kq (q > 1), then R(ωT , β
te) = Õ

(
1

T
q−1
q

)
;

• If λk = e−k, then R(ωT , β
te) = Õ

(
1
T

)
.

E Proofs for Section 4.3

E.1 Proof of Proposition 4

Proof of Proposition 4. Following the analysis in Appendix D.2, it is crucial to analyze
f(βtr, n2, σ,Σ,Σθ) (

∑
i Ξi).

Then we calculate the rate of interest in Theorems B.3 and C.1 under some specific data and task
distributions in Proposition 4. We have tr(Σ2) = 1

s + 1
d−s = Θ( log

p(T )
T ). Moreover, by discussions

on Assumption 3 in Appendix F, C(β,Σ) = Θ(1). Hence

c(β,Σ) := c1 + Õ(
1

T
);

f(β, n, σ,Σ,Σθ) := 2c1O(1) +
σ2

n
+ Õ

(
1

T

)
.

By the definition of Ξi, we have∑
i

Ξi = O
(
s · µ1(Hm,βte)

Tµ1(Hn1,βtr)
+

1

d− s
· T µd(Hn1,βtr)µd(Hm,βte)

λ2
d

)
= O

(
1

logp(T )

)
µ1(Hm,βte)

µ1(Hn1,βtr)
+O

( 1

logq(T )

)µd(Hn1,βtr)µd(Hm,βte)

λ2
d

= O
(

1

logp(T )

)
(1− βteλ1)

2

(1− βtrλ1)2
+O

( 1

logq(T )

)
(1− βteλd)

2(1− βtrλd)
2

where the last equality follows from the fact that for large n, we have µi(Hn,β) = (1−βλi)
2λi+o(1).

Combining with the bias term which is O( 1
T ), and applying Theorem B.3 completes the proof.
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E.2 Proof of Corollary 1

Proof of Corollary 1. For t ∈ (s,K], by Theorem C.1, one can verify that t = Θ̃(K) for diminishing
risk. Let t = K log−l(K), where p > l > 0. Following the analysis in Appendix E.1, we have

R(ωβtr

t , βte) ≲ Õ(
1

K
) + (2c1ν

2 +
σ2

n2
) (30)

×
[
O
( 1

logp−l(K)

) (1− βteλ1)
2

(1− βtrλ1)2
+O

( 1

logp+l(K)

)(
1− βtrλd

)2(
1− βteλd

)2]
. (31)

To clearly illustrate the trade-off in the stopping time, we let l = 0 for convenience. If R(ωβtr

t , βte) <
ϵ, we have

tϵ ≤ exp
(
ϵ−

1
p

[ Ul

(1− βtrλ1)2
+ Ut(1− βtrλd)

2
] 1

p
)

where

Ul = O
(
(2c1ν

2 +
σ2

n2
)(1− βteλ1)

2
)

and Ul = O
(
(2c1ν

2 +
σ2

n2
)(1− βteλd)

2
)
.

The arguments are similar for the lower bound, and we can obtain:

Ll = O
(
(2

b1ν
2

n2
+

σ2

n2
)(1− βteλ1)

2
)

and Ll = O
(
(2

b1ν
2

n2
+

σ2

n2
)(1− βteλd)

2
)
.

F Discussions on Assumptions

Discussions on Assumption 2 If Px is Gaussian distribution, then we have

F = E[xx⊤Σxx⊤] = 2Σ3 +Σ tr(Σ2).

This implies that F and Σ commute because Σ3 and Σ commute. Moreover, in this case

β2

n
(F−Σ3) =

β2

n
(Σ3 +Σ tr(Σ2)).

Therefore, if n ≫ λ1(λ
2
1+tr(Σ2)), then the eigen-space of Hn,β will be dominated by (I−βΣ)2Σ.

Discussions on Assumption 3 Assumption 3 is an eighth moment condition for x := Σ
1
2 z, where

z is a σx sub-Gaussian vector. Given β, for sufficiently large n s.t. µi(Hn,b) > 0, ∀i, and if tr(Σk)
are all O(1) for k = 1, · · · , 4, then by the quadratic form and the sub-Gaussian property, which has
finite higher order moments, we can conclude that C(β,Σ) = Θ(1).

The following lemma further shows that if Px is a Gaussian distribution, we can derive the analytical
form for C(β,Σ).
Lemma F.1. Given |β| < 1

λ1
, for sufficiently large n s.t. µi(Hn,b) > 0, ∀i, and if Px is a Gaussian

distribution, assuming Σ is diagonal, we have:

C(β,Σ) = 210(1 +
β4 tr(Σ2)2

(1− βλ1)4
).

Proof. Let ei ∈ Rd denote the vector that the i-th coordinate is 1, and all other coordinates equal 0.
For x ∼ Px, denote xx⊤ = [xij ]1≤i,j≤d. Then we have:

E[∥e⊤i H
− 1

2

n,β(I−
β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,βei∥
2]

≤ E[∥e⊤i H
− 1

2

n,β(I− βxx⊤)Σ(I− βxx⊤)H
− 1

2

n,βei∥
2]

= E

(e⊤i H−1
n,βei)

2

∑
j ̸=i

β2λjx
2
ij + λi(1− βxii)

2

2

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For Gaussian distributions, we have

E[x2
ijx

2
ik] =


9λ2

iλ
2
j j = k and ̸= i

105λ4
i i = j = k

3λ2
iλjλk i ̸= j ̸= k

We can further obtain:

E[∥e⊤i H
− 1

2

n,β(I−
β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,βei∥
2]

≤ 105(e⊤i H
−1
n,βei)

2

∑
j ̸=i

β2λ2
j + (1− βλi)

2

2

(a)

≤ 210(e⊤i H
−1
n,βei)

2[β4 tr(Σ2)2 + (1− βλi)
4]

(b)

≤ 210[(e⊤i H
−1
n,βei)

2β4 tr(Σ2)2 + 1]

where (a) follows from the Cauchy-Schwarz inequality, and (b) follows the fact that (e⊤i H
−1
n,βei)

2 =
1

[(1−βλi)λ2
i+

β2

n (λ2
i+tr(Σ2)λi)]2

≤ 1/(1− βλi)
4.

Therefore, for any unit v ∈ Rd, we have

E[∥v⊤H
− 1

2

n,β(I−
β

n
X⊤X)Σ(I− β

n
X⊤X)H

− 1
2

n,βv∥
2]

≤ max
v

210[(v⊤H−1
n,βv)

2β4 tr(Σ2)2 + 1] ≤ 210

(
1 +

β4 tr(Σ2)2

(1− βλ1)4

)
.

G Further Related Work

G.1 Underparameterized Setting

Provable guarantees of meta-learning have been extensively studied in the underparameterized regime,
i.e. the number of tasks or the data size is much larger than the data dimension. Here we highlight
some existing related studies and discuss their differences from ours.

[4] provides the generalization error bounds for S/Q meta-learners. Their generalization error bound
is O(β

√
n) +O( M√

n
), where the β is the uniform stability parameter, n is the number of task, and M

is the uniform bound on the loss function. Note that with the square loss as considered in our setting,
M can be as large as the dimension d of the input. For the overparameterized regime, where d ≫ n,
the bound becomes asymptotically large and not useful.

[9] shows the generalization guarantees of MAML on recurring and unseen tasks respectively, where
the excess risk bound is roughly Õ(G

2

T )+O( G2

mn ), depending on the total iterations T , the number of
tasks m, the available data size for each task n, and the uniform bound for gradient norm G. Notice
that the gradient norm typically scales polynomially with the input dimension d. Therefore, in the
overparameterized regime (d ≫ mn), the bound again becomes vacuous.

[6] aims to theoretically characterize the performance between MAML and the standard Empirical
Risk Minimization (ERM). Firstly, they show that the empirical training solutions will converge
to their population-optimal values with concentration bounds, which have terms O(

√
d√
n
) or O(

√
d√
τ
)

where n is the sample size and τ is the number of training episodes per task. Such bounds will be
crude in the overparameterized regime(d ≫ n, τ ). Then from the generalization perspective, they only
give excess risks for the population-optimal solutions, whereas we analyze the generalization property
of empirical training solutions based on their optimization trajectory. Moreover, the comparison
between the excess risk of MAML and ERM for the population-optimal solutions requires m = Ω(d),
where m is the number of task. Therefore, such comparison does not apply to the overparameterized
regime (d ≫ m).
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From what has been discussed above, all of these bounds, are useful (i.e., yield small or vanishing
error) only for underparameterized regime, where sample size n is much larger than the dimension
d of input (i.e., n ≫ d), but become vacuous (i.e., yield large error bound) for overparameterized
regime, where n ≪ d. Thus, they fail to explain why the overparameterized neural network can still
generalize well.

In contrast, our work provides a much more refined data-dependent upper bound by incorporating
the data and task roles. Our bound can be written in a concise form as O(h(Σ,Σθ,α,T )

T ) (see Theorem
1 in Section 4 for exact form of the bound), where the function h(·) is determined by data and
task covariances Σ and Σθ, step-size α and the total number T of SGD iterations (here T scales
linearly with the sample size). Note that the dimension d is implicitly captured in Σ,Σθ. In the
overparameterized regime with d ≫ T , the function h(·) explicitly captures the effect of data and
task conditions to guarantee the value of h(·) to be small compared to T , and thus the excess risk
can diminish under overparameterization. In Propositions 2 and 3, we further give specific examples
about data and task covariances Σ,Σθ that yield small excess risk and good generalization.

Besides the above key difference, our paper also provides the following important results that were
not studied in [4, 9, 6]. (a) We provide the lower bound to justify the tightness of our results in the
overparameterized regime, whereas [4, 9, 6] do not have such a result. (b) Our results capture how
the task diversity affects the excess risk in the overparameterized regime. In particular, we give an
example (in Proposition 2), for which the excess risk exhibits a phase transition with respect to task
diversity. Such an interesting behavior is not captured in [4, 9, 6].

G.2 Overparameterized Setting

Despite the overparameterization is crucial to demystify the remarkable generalization ability of
deep meta-learning [21, 13], there are only a few theoretical analysis being developed to study
the generalization of MAML in the overparameterized regime. [20] studied the MAML with over-
parameterized deep neural nets with a generalization gap quantifying the difference between the
empirical and population loss functions at their optimal solutions. However, their bound is derived
by conventional complexity-based techniques and does not consider the data or task-dependency
similarly as [4, 9, 6] discussed in Appendix G.1, which tends to be weak in the high dimensional,
especially in the overparameterized regime. Most related to our work are recent studies [2, 24],
where they develop more precise generalization bounds for overparameterized setting under a mixed
linear regression model. Yet, their empirical training solutions are directly calculated by taking
the closed-form of training objective’s minimum, which are not obtained by trained with SGD as
ours. More crucially, they consider only the simple isotropic covariance for data and tasks, which
are directly scaled by d, i.e. Σ = 1

dI. Thus, they do not explicitly capture how the generalization
performance of MAML depends on the data and task distributions.

H Future Directions

This work takes a step towards understanding the benefits of overparameterization for MAML from
the generalization aspect. There are many important future work directions, and we elaborate some
interesting directions in this section.

H.1 Generalizing to Other Learning Methods

Our result can directly extend to the random feature(RF) model, adopting the similar analysis for
nonlinear model in [12] : the data x is generated by σ(Wz), where W is the random feature matrix
and σ(·) is the nonlinear (activation) function. Hence, the RF model can be regarded as training a
two-layer neural network where the weights in the first layer are chosen randomly and then fixed and
only the output layer is optimized.

Beyond the fixed feature approach, understanding the overparameterization in neural networks is
much more challenging. Recently, [3] made important progress towards this aspect. They studied the
benign overfitting phenomenon in training a two-layer convolutional neural network, and provided
new analysis to tackle the neural network learning process. One possible direction is to generalize
our analysis to neural networks by further advancing the techniques in [3].
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H.2 Meta-batch Setting

We can consider to incorporate a practical meta-batch setting in our framework, i.e. given a set of
tasks in advance, and at each iteration, the task is sampled from the set with replacement uniformly at
random and will be visited multiple times during optimization. This is broadly referred as multi-pass
SGD [16], while we have studied the single-pass setting, that each task is used only once. For
multi-pass SGD, the iterate analysis in Appendix B.3 will be more challenging since we have to
consider the dependence on history that leads to a complicated calculation of the expected error
matrix. To handle such complication, we may adopt some analysis techniques recently developed
for multi-pass SGD [23, 17, 16], and further advance them to analyze meta-batch MAML in meta
learning.

Intuitively, we expect in such a setting, meta-batch size (of tasks) will play an important role in
determining the excess risk. Specifically, how meta-batch size compares with the effect of data
covariance and task diversity (coupled with the number of SGD iterations) will determine whether
benign fitting in the overparameterized regime can occur.

H.3 Longer Inner Loops

Another important direction is to study the MAML beyond the one-step gradient update in the inner
loop. Two possible cases are discussed as follows.

If the inner loop continually takes gradient updates towards the per-task loss function until converges
(additionally regularized by the distance between task-specific parameter and the model parameter),
then the algorithm is equivalent to another well-known meta method, iMAML [18]. Under the mixed
linear regression model, similarly, we can reformulate the problem as a meta least square problem
with modified meta inputs and output responses [7, 1]. Therefore, our analysis can directly generalize
to such a setting with modified meta least square problem.

If the inner loop only takes a few steps of gradient updates, the analysis will be more challenging,
because the update of meta parameter in the outer loop will involve Hessian, and the analysis of such
an algorithm will need to handle the complicated statistical correlation between the gradient and
Hessian estimators [15], where new techniques are required. Recently, [5] proposed that one can treat
the Hessian as identity operator in theoretical analysis, where the corresponding algorithm is called
FO-MAML, and FO-MAML typically achieves a performance similar to MAML in practice [10].
Such relaxation may make the problem more tractable. Then the remaining problem is to extend our
technique for overparameterized MAML to FO-MAML, which is an interesting research direction
for future study.
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