
Supplementary Material

In this section, we present definitions that were not explicitly stated in the main manuscript, alongside
additional validation experiments that showcase the robustness of our algorithms, and theoretical
proofs of Lemma 2 and Theorems 3 and 4.

A Definitions

Definition 5 (Laplacian operator) The Laplacian operator [8] L : Rp(p−1)/2
+ → Rp×p, which takes

a nonnegative vector w and outputs a Laplacian matrix Lw, is defined as

[Lw]ij =


−wi+s(j), if i > j,

[Lw]ji, if i < j,

−
∑
i 6=j [Lw]ij , if i = j,

(23)

where s(j) = j−1
2 (2p− j)− j.

Definition 6 (Degree operator) The degree operator d : Rp(p−1)/2 → Rp, which takes a nonnegative
vector w and outputs the diagonal of a Degree matrix, is defined as

dw = diag(Lw). (24)

Definition 7 (Adjoint of Laplacian operator) The adjoint of Laplacian operator [8] L∗ : Rp×p →
Rp(p−1)/2 is defined as

(L∗P )s(i,j) = Pi,i − Pi,j − Pj,i + Pj,j (25)

where s(i, j) = i− j + j−1
2 (2p− j), i > j.

Definition 8 (Adjoint of degree operator) The adjoint of degree operator d∗ : Rp → Rp(p−1)/2 is
given as

(d∗y)s(i,j) = yi + yj , (26)

where s(i, j) = i− j + j−1
2 (2p− j), i > j.

Definition 9 (Modularity) The modularity of a graph G [49] is defined as Q : G → R:

Q(G) ,
1

2|E|
∑
i,j∈V

(
Wij −

didj
2|E|

)
1(ti = tj), (27)

where di is the weighted degree of the i-th node, i.e. di , [d (w)]i, ti is the type (or label) of the i-th
node, and 1(·) is the indicator function.

B Additional Experiments

B.1 Empirical Convergence

In this section, we illustrate the empirical convergence performance of the proposed algorithms. All
the experiments were carried out in a MacBook Pro 13in. 2019 with Intel Core i7 2.8GHz, 16GB of
RAM. In Figure 9, we observe that the Lagrangian function quickly approaches a stationary value
after a transient phase typical of ADMM-like algorithms.

C Proofs

C.1 Proof of Lemma 2

Proof We define an index set Ωt:

Ωt ,

{
l : [Lx]tt =

∑
l∈Ωt

xl

}
, t ∈ [1, 2, . . . , p]. (28)
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Figure 9: Empirical convergence for Algorithm 1 (panels (a) and (c)), i.e. connected graphs, and
Algorithm 2 (panels (b) and (d)), i.e., k-component graphs, with cryptocurrencies data (panels (a)
and (b)) and foreign exchange data (panels (c) and (d)).

Then we have

λmax (L∗L) = sup
‖x‖=1

x>L∗Lx = sup
‖x‖=1

‖Lx‖2F = sup
‖x‖=1

2

p(p−1)/2∑
k=1

x2
k +

p∑
i=1

([Lx]ii)
2

= sup
‖x‖=1

4

p(p−1)/2∑
k=1

x2
k +

p∑
t=1

∑
i,j∈Ωt, i 6=j

xixj ≤ 4 + sup
‖x‖=1

1

2

p∑
t=1

∑
i,j∈Ωt, i 6=j

x2
i + x2

j

= (4 + 2(|Ωt| − 1)) sup
‖x‖=1

p(p−1)/2∑
k=1

x2
k = 2p,

with equality if and only if x1 = · · · = xp(p−1)/2 =
√

2
p(p−1)/2 or x1 = · · · = xp(p−1)/2 =

−
√

2
p(p−1)/2 . The last equality follows the fact that |Ωt| = p− 1.

Similarly, we can obtain

λmax (d∗d) = sup
‖x‖=1

x>d∗dx = sup
‖x‖=1

‖dx‖2 = sup
‖x‖=1

2

p(p−1)/2∑
k=1

x2
k +

p∑
t=1

∑
i,j∈Ωt, i 6=j

xixj

≤ 2 + sup
‖x‖=1

1

2

p∑
t=1

∑
i,j∈Ωt, i 6=j

x2
i + x2

j = (2 + 2(|Ωt| − 1)) sup
‖x‖=1

p(p−1)/2∑
k=1

x2
k = 2p− 2,

with equality if and only if x1 = · · · = xp(p−1)/2 =
√

2
p(p−1)/2 or x1 = · · · = xp(p−1)/2 =

−
√

2
p(p−1)/2 .

Finally, we have

λmax (L∗L+ d∗d) = sup
‖x‖=1

x> (L∗L+ d∗d)x

≤ sup
‖x‖=1

x> (L∗L)x+ sup
‖y‖=1

y> (d∗d)y

= 4p− 2.

(29)

Note that the equality in (29) can be achieved because the eigenvectors of L∗L and d∗d associated
with the maximum eigenvalue are the same. Therefore, we conclude that λmax (L∗L+ d∗d) = 4p−2,
completing the proof.

C.2 Proof of Theorem 3

Proof To prove Theorem 3, we first establish the boundedness of the sequence
{(

Θl,wl,Y l,yl
)}

generated by Algorithm 1 in Lemma 10, and the monotonicity of Lρ
(
Θl,wl,Y l,yl

)
in Lemma 11.
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Lemma 10 The sequence
{(

Θl,wl,Y l,yl
)}

generated by Algorithm 1 is bounded.

Proof Letw0, Y 0 and y0 be the initialization of the sequences
{
wl
}

,
{
Y l
}

and
{
yl
}

, respectively,
and

∥∥w0
∥∥,
∥∥Y 0

∥∥
F

and
∥∥y0

∥∥ are bounded. We prove the boundedness of the sequence by induction.

Recall that the sequence
{
Θl
}

is established by

Θl =
1

2ρ
U l−1

(
Γl−1 +

√
(Γl−1)

2
+ 4ρI

)
U l−1>, (30)

where Γl−1 contains the largest p − k eigenvalues of ρLwl−1 − Y l−1, and U l−1 contains the
corresponding eigenvectors. When l = 1,

∥∥Γ0
∥∥

F
is bounded since both

∥∥w0
∥∥ and

∥∥Y 0
∥∥

F
are

bounded. Therefore, we can conclude that
∥∥Θ1

∥∥
F

is bounded.

The sequence
{
wl
}

is established by solving the subproblems of the form

min
w≥0

ρ

2
w> (d∗d + L∗L)w −

〈
w,L∗

(
Y l−1 + ρΘl

)
− d∗

(
yl−1 − ρd

)〉
+
p+ ν

n

n∑
i=1

log

(
1 +

x>i Lwxi
ν

)
.

Let

gl(w) =
ρ

2
w> (d∗d + L∗L)w +

〈
w,al

〉
+
p+ ν

n

n∑
i=1

log

(
1 +

x>i Lwxi
ν

)
, (31)

where al = −L∗
(
Y l−1 + ρΘl

)
+ d∗

(
yl−1 − ρd

)
. Note that

∥∥a1
∥∥ is bounded because

∥∥Y 0
∥∥

F
,∥∥y0

∥∥, and
∥∥Θ1

∥∥
F

are bounded.

From Lemma 2, we known that L∗L is a positive definite matrix with minimum eigenvalue
λmin (L∗L) = 2. On the other hand, d∗d is a positive semi-definite matrix as follows,

λmin (d∗d) = sup
x6=0

x>d∗dx

x>x
= sup

x6=0

〈dx, dx〉
x>x

≥ 0. (32)

Since log

(
1 +

x>i Lwxi
ν

)
≥ 0 for any w ≥ 0, we have

lim
‖w‖→+∞

g1(w) ≥ lim
‖w‖→+∞

ρw>w + 〈w,a1〉 = +∞. (33)

Thus g1(w) is coercive. Recall that we solve the optimization (31) by the MM framework. Hence,
the objective function value is monotonically decreasing as a function of the iterations, and wl is a
stationary point of (31). Then the coercivity of g1(w) yields the boundedness of

∥∥w1
∥∥.

According to the dual variable updates, we obtain

Y 1 = Y 0 + ρ
(
Θ1 − Lw1

)
, (34)

and
y1 = y0 + ρ

(
dw1 − d

)
. (35)

It is obvious that both
∥∥Y 1

∥∥
F

and
∥∥y1

∥∥ are bounded. Therefore, it holds for l = 1 that{(
Θl,wl,Y l,yl

)}
is bounded.

Now we assume that
{(

Θl−1,wl−1,Y l−1,yl−1
)}

is bounded for some l ≥ 1, and check the
boundedness of

{(
Θl,wl,Y l,yl

)}
. Similar to the proof in (30), we can prove that

∥∥Θl
∥∥

F
is

bounded. By (31), we can also obtain the boundedness of
∥∥wl

∥∥. We can also obtain that
∥∥Y l

∥∥
and ‖y‖l are bounded according to the boundedness of

∥∥Θl
∥∥

F
,
∥∥wl

∥∥,
∥∥Y l−1

∥∥ and
∥∥yl−1

∥∥. Thus,{(
Θl,wl,Y l,yl

)}
is bounded, completing the induction. Therefore, we establish the boundedness

of the sequence
{(

Θl,wl,Y l,yl
)}

.
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Lemma 11 The sequence Lρ
(
Θl,wl,Y l,yl

)
generated by Algorithm 1 is lower bounded, and

Lρ
(
Θl+1,wl+1,Y l+1,yl+1

)
≤ Lρ

(
Θl,wl,Y l,yl

)
, ∀ l ∈ N+, (36)

holds for any sufficiently large ρ.

Proof According to Problem (1) in the manuscript, we have

Lρ(Θ
l,wl,Y l,yl) =

p+ ν

n

n∑
i=1

log

(
1 +

x>i Lwlxi
ν

)
− log det

(
Θl + J

)
+
〈
yl, dwl − d

〉
+
ρ

2

∥∥dwl − d
∥∥2

2
+
〈
Y l,Θl − Lwl

〉
+
ρ

2

∥∥Θl − Lwl
∥∥2

F
. (37)

We can see that the lower boundedness of the sequence Lρ
(
Θl,wl,Y l,yl

)
can be established by

the boundedness of
{(

Θl,wl,Y l,yl
)}

in Lemma 10.

We first establish that
Lρ
(
Θl+1,wl,Y l,yl

)
≤ Lρ

(
Θl,wl,Y l,yl

)
, ∀ l ∈ N+. (38)

One has
Lρ(Θ

l+1,wl,Y l,yl)− Lρ(Θl+1,wl+1,Y l+1,yl+1)

=
〈
yl, dwl − d

〉
−
〈
yl+1, dwl+1 − d

〉︸ ︷︷ ︸
I1

+
〈
Y l,Θl+1 − Lwl

〉
−
〈
Y l+1,Θl+1 − Lwl+1

〉︸ ︷︷ ︸
I2

+ r
(
Lwl

)
− r

(
Lwl+1

)
+
ρ

2

∥∥dwl − d
∥∥2

2
− ρ

2

∥∥dwl+1 − d
∥∥2

2

+
ρ

2

∥∥Θl+1 − Lwl
∥∥2

F
− ρ

2

∥∥Θl+1 − Lwl+1
∥∥2

F
, (39)

where r(L) =
p+ ν

n

∑n
i=1 log

(
1 +

x>i Lxi
ν

)
.

From the dual variables updates, it is easy to see that

I1 + I2 =
〈
d∗yl − L∗Y l,wl −wl+1

〉
− ρ

∥∥dwl+1 − d
∥∥2

2
− ρ

∥∥Θl+1 − Lwl+1
∥∥2

F
. (40)

According to the convergence result of the majorization-minimization framework [35, 36],wl+1 is a
stationary point of the following problem

minimize
w≥0

r(Lw) +
ρ

2
w> (d∗d + L∗L)w −

〈
w,L∗

(
Y l + ρΘl+1

)
− d∗

(
yl − ρd

)〉
. (41)

The set of the stationary points for the optimization (41) is defined by

X =
{
w|∇gl(w)>(z −w) ≥ 0, ∀z ≥ 0

}
, (42)

where gl(w) is the objective function in (41). The existence of the limit point can be guaranteed by
the the coercivity of gl(w), which has been established in the proof of Lemma 10. By taking z = wl

and w = wl+1 in (42), we obtain(
L∗
(
∇r
(
Lwl+1

))
+ ρ (d∗d + L∗L)wl+1 − L∗

(
Y l + ρΘl+1

)
+ d∗

(
yl − ρd

))> (
wl −wl+1

)
≥ 0.

Thus, we have〈
d∗yl − L∗Y l,wl −wl+1

〉
≥ −

〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
+ ρ

〈
− (d∗d + L∗L)wl+1 + L∗Θl+1 + d∗d,wl −wl+1

〉
,

(43)

Plugging (40) and (43) into (39), we obtain

Lρ(Θ
l+1,wl,Y l,yl)− Lρ(Θl+1,wl+1,Y l+1,yl+1)

≥ρ
2

∥∥dwl+1 − dwl
∥∥2

2
+
ρ

2

∥∥Lwl+1 − Lwl
∥∥2

2
− ρ

∥∥dwl+1 − d
∥∥2

2
− ρ

∥∥Lwl+1 −Θl+1
∥∥2

F

+ r
(
Lwl

)
− r

(
Lwl+1

)
−
〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
≥ρ

2

∥∥dwl+1 − dwl
∥∥2

2
+
ρ− Lr

2

∥∥Lwl+1 − Lwl
∥∥2

F
− 1

ρ

∥∥yl+1 − yl
∥∥2

2
− 1

ρ

∥∥Y l+1 − Y l
∥∥2

F
,

(44)
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where the last inequality is due to the fact that r(L) is a concave function and has Lr-Lipschitz
continuous gradient, in which Lr > 0 is a constant, thus we have

r
(
Lwl

)
− r

(
Lwl+1

)
−
〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
≥ −Lr

2

∥∥Lwl+1 − Lwl
∥∥2

F
. (45)

By calculation, we obtain that if ρ is sufficiently large such that

ρ ≥ max

2Lr, max
l

C
(∥∥Y l+1 − Y l

∥∥2

F
+
∥∥yl+1 − yl

∥∥2

2

) 1
2

(
‖Lwl+1 − Lwl‖2F + ‖dwl+1 − dwl‖22

) 1
2

 , (46)

holds with some constant C > 2, then, together with (38), we conclude that

Lρ(Θ
l,wl,Y l,yl) ≥ Lρ(Θl+1,wl,Y l,yl) ≥ Lρ(Θl+1,wl+1,Y l+1,yl+1), (47)

for any l ∈ N+.

Now we are ready to prove Theorem 3. By Lemma 10, the sequence
{(

Θl,wl,Y l,yl
)}

generated by Algorithm 1 is bounded. Therefore, there exists at least one convergent
subsequence

{(
Θls ,wls ,Y ls ,yls

)}
s∈N

, which converges to the limit point denoted by{(
Θl∞ ,wl∞ ,Y l∞ ,yl∞

)}
. By Lemma 11, we obtain that the sequence Lρ

(
Θl,wl,Y l,yl

)
de-

fined in (37) is monotonically decreasing and lower bounded, implying that Lρ
(
Θl,wl,Y l,yl

)
is

convergent.

We can then obtain liml→+∞ Lρ
(
Θl,wl,Y l,yl

)
= Lρ

(
Θl∞ ,wl∞ ,Y l∞ ,yl∞

)
. Then, (44), (46),

and (47) together yield

Lρ(Θ
l,wl,Y l,yl)− Lρ(Θl+1,wl+1,Y l+1,yl+1)

≥ C2 − 4

4
ρ
(∥∥Lwl+1 −Θl+1

∥∥2

F
+
∥∥dwl+1 − d

∥∥2

2

)
.

(48)

The convergence of Lρ
(
Θl,wl,Y l,yl

)
yields

lim
l→+∞

∥∥Lwl −Θl
∥∥

F
= 0, and lim

l→+∞

∥∥dwl − d
∥∥

2
= 0. (49)

By the updating of Y l+1 and yl+1, we can get

lim
l→+∞

∥∥Y l+1 − Y l
∥∥

F
= 0, and lim

l→+∞

∥∥yl+1 − yl
∥∥

2
= 0. (50)

Together with (44), we obtain

lim
l→+∞

∥∥dwl+1 − dwl
∥∥

2
= 0 and lim

l→+∞

∥∥Lwl+1 − Lwl
∥∥

F
= 0. (51)

For the limit point
{(

Θl∞ ,wl∞ ,Y l∞ ,yl∞
)}

of any subsequence
{(

Θls ,wls ,Y ls ,yls
)}
s∈N

, Θl∞

minimizes the following subproblem

Θl∞ = arg min
Θ�0

− log det(Θ + J) +
〈
Θ,Y l∞−1

〉
+
ρ

2

∥∥Θ− Lwl∞−1
∥∥2

F

= arg min
Θ�0

− log det(Θ + J) +
〈
Θ,Y l∞

〉
+
ρ

2

∥∥Θ− Lwl∞
∥∥2

F

−
〈
Θ,Y l∞ − Y l∞−1

〉
+ ρ

〈
Θ,Lwl∞ − Lwl∞−1

〉
.

By (50) and (51), we conclude that Θl∞ satisfies the condition of stationary point of
Lρ(Θ,w,V ,Y ,y) with respect to Θ. Similarly, from the convergence results of the MM framework,
we know that wl∞ is a stationary point of the subproblem

minimize
w≥0

ρ

2
w> (d∗d + L∗L)w +

〈
w, d∗

(
yl∞ − ρd

)〉
−
〈
w,L∗

(
Y l∞ + ρΘl∞

)〉
+
〈
Lw,Y l∞ − Y l∞−1

〉
+
〈
dw,yl∞−1 − yl∞

〉
+ r(Lw).
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By (50) and (51), wl∞ satisfies the condition of stationary point of Lρ(Θ,w,Y ,y) with respect to
w.

To sum up, we can conclude that any limit point
{(

Θl∞ ,wl∞ ,Y l∞ ,yl∞
)}

of the sequence
generated by Algorithm 1 is a stationary point of Lρ(Θ,w,Y ,y).

C.3 Proof of Theorem 4

Proof Similarly to the proof conducted for Theorem 3, to prove Theorem 4, we first establish the
boundedness of the sequence

{(
Θl,wl,V l,Y l,yl

)}
generated by Algorithm 2 in Lemma 12, and

the monotonicity of Lρ
(
Θl,wl,V l,Y l,yl

)
in Lemma 13.

Lemma 12 The sequence
{(

Θl,wl,V l,Y l,yl
)}

generated by Algorithm 2 is bounded.

Proof Let w0, V 0, Y 0 and y0 be the initialization of the sequences
{
wl
}

,
{
V l
}

,
{
Y l
}

and
{
yl
}

,
respectively, and

∥∥w0
∥∥,
∥∥V 0

∥∥
F

,
∥∥Y 0

∥∥
F

and
∥∥y0

∥∥ are bounded.

We prove the lemma by induction. Recall that the sequence
{
Θl
}

is established by

Θl =
1

2ρ
U l−1

(
Γl−1 +

√
(Γl−1)

2
+ 4ρI

)
U l−1>, (52)

where Γl−1 contains the largest p − k eigenvalues of ρLwl−1 − Y l−1, and U l−1 contains the
corresponding eigenvectors. When l = 1,

∥∥Γ0
∥∥

F
is bounded since both

∥∥w0
∥∥ and

∥∥Y 0
∥∥

F
are

bounded. Therefore, we can conclude that
∥∥Θ1

∥∥
F

is bounded.

The sequence
{
wl
}

is established by solving the subproblems that tantamount to (31) except for
the additional linear term η〈w,L∗

(
V lV l>)〉. Hence, g1(w) + η〈w,L∗

(
V 1V 1>)〉 is still coercive,

which implies that
∥∥w1

∥∥ is bounded.

The feasible set of V is the set of ordered orthonormal k-frames in Rp, thus
∥∥V l

∥∥
F

is bounded for
any l ≥ 1.

From the updates of Y and y, it is obvious that both
∥∥Y 1

∥∥
F

and
∥∥y1

∥∥ are bounded. Therefore, it
holds for l = 1 that

{(
Θl,wl,V l,Y l,yl

)}
is bounded.

Assume that
{(

Θl−1,wl−1,V l−1,Y l−1,yl−1
)}

is bounded for some l ≥ 1, i.e., each term in{(
Θl−1,wl−1,V l−1,Y l−1,yl−1

)}
is bounded under `2-norm or Frobenius norm. Following (52),

we can obtain that
∥∥Θl

∥∥
F

is bounded.

Due to the coercivity of gl(w) + η〈w,L∗
(
V lV l>)〉, we can get that

∥∥wl
∥∥ is bounded. It is also

obvious that
∥∥Y l

∥∥ and ‖y‖l are bounded, because of the boundedness of
∥∥Θl

∥∥
F

,
∥∥wl

∥∥,
∥∥Y l−1

∥∥
and

∥∥yl−1
∥∥. Thus,

{(
Θl,wl,V l,Y l,yl

)}
is bounded, completing the induction. Therefore, we

can conclude that the sequence
{(

Θl,wl,V l,Y l,yl
)}

is bounded.

Lemma 13 The sequence Lρ
(
Θl,wl,V l,Y l,yl

)
generated by Algorithm 2 is lower bounded, and

Lρ
(
Θl+1,wl+1,V l+1,Y l+1,yl+1

)
≤ Lρ

(
Θl,wl,V l,Y l,yl

)
, ∀ l ∈ N+, (53)

holds for any sufficiently large ρ.

Proof According to Problem (16) in the manuscript, we have

Lρ(Θ
l,wl,V l,Y l,yl) =

p+ ν

n

n∑
i=1

log

(
1 +

x>i Lwlxi
ν

)
+ tr

(
Lwl

(
ηV l

(
V l
)>))

− log det∗
(
Θl
)

+
〈
yl, dwl − d

〉
+
ρ

2

∥∥dwl − d
∥∥2

2

+
〈
Y l,Θl − Lwl

〉
+
ρ

2

∥∥Θl − Lwl
∥∥2

F
. (54)
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We can see that the lower boundedness of the sequence Lρ
(
Θl,wl,V l,Y l,yl

)
can be established

by the boundedness of
{(

Θl,wl,V l,Y l,yl
)}

in Lemma 12.

We first establish that

Lρ
(
Θl+1,wl,V l,Y l,yl

)
≤ Lρ

(
Θl,wl,V l,Y l,yl

)
, ∀ l ∈ N+. (55)

We have

Lρ(Θ
l+1,wl,V l,Y l,yl) =

p+ ν

n

n∑
i=1

log

(
1 +

x>i Lwlxi
ν

)
+ tr

(
Lwl

(
ηV l

(
V l
)>))

− log det∗
(
Θl+1

)
+
〈
yl, dwl − d

〉
+
ρ

2

∥∥dwl − d
∥∥2

2

+
〈
Y l,Θl+1 − Lwl

〉
+
ρ

2

∥∥Θl+1 − Lwl
∥∥2

F
.

Then we obtain

Lρ(Θ
l+1,wl,V l,Y l,yl)− Lρ(Θl,wl,V l,Y l,yl) = − log det∗

(
Θl+1

)
+
〈
Y l,Θl+1

〉
+
ρ

2

∥∥Θl+1 − Lwl
∥∥2

F
−
(
− log det∗

(
Θl
)

+
〈
Y l,Θl

〉
+
ρ

2

∥∥Θl − Lwl
∥∥2

F

)
.

Note that Θl+1 minimizes the objective function

Θl+1 = arg min
rank(Θ)=p−k

Θ�0

− log det∗(Θ) + 〈Θ,Y l〉+
ρ

2

∥∥Θ− Lwl
∥∥2

F
. (56)

Therefore
Lρ(Θ

l+1,wl,V l,Y l,yl)− Lρ(Θl,wl,V l,Y l,yl) ≤ 0 (57)
holds for any l ∈ N+.

One has

Lρ(Θ
l+1,wl,V l,Y l,yl)− Lρ(Θl+1,wl+1,V l+1,Y l+1,yl+1)

=r(Lwl)− r(Lwl+1) + tr
(
ηLwl

(
V l
(
V l
)>))− tr

(
ηLwl+1

(
V l+1

(
V l+1

)>))︸ ︷︷ ︸
I1

+
〈
yl, dwl − d

〉
−
〈
yl+1, dwl+1 − d

〉︸ ︷︷ ︸
I2

+
〈
Y l,Θl+1 − Lwl

〉
−
〈
Y l+1,Θl+1 − Lwl+1

〉︸ ︷︷ ︸
I3

+
ρ

2

∥∥Θl+1 − Lwl
∥∥2

F
− ρ

2

∥∥Θl+1 − Lwl+1
∥∥2

F
+
ρ

2

∥∥dwl − d
∥∥2

2
− ρ

2

∥∥dwl+1 − d
∥∥2

2
, (58)

where r(L) =
p+ ν

n

∑n
i=1 log

(
1 +

x>i Lxi
ν

)
. The term I1 can be written as

I1 = tr
(
ηLwl

(
V l
(
V l
)>))− tr

(
ηLwl+1

(
V l
(
V l
)>))

+ tr
(
ηLwl+1

(
V l
(
V l
)>))− tr

(
ηLwl+1

(
V l+1

(
V l+1

)>))︸ ︷︷ ︸
I1a

.

Note that V l+1 is the optimal solution of the problem

min
V ∈Rp×k

tr
(
V >Lwl+1V

)
, subject to V >V = I. (59)

Thus the term I1a ≥ 0, and we can obtain

I1 ≥ tr
(
ηLwl

(
V l
(
V l
)>))− tr

(
ηLwl+1

(
V l
(
V l
)>))

. (60)

For the term I2, we have

I2 =
〈
yl, dwl − d

〉
−
〈
yl, dwl+1 − d

〉
− ρ

〈
dwl+1 − d, dwl+1 − d

〉
=
〈
d∗yl,wl −wl+1

〉
− ρ

∥∥dwl+1 − d
∥∥2

2
,

(61)
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where the first equality is due to the updating of yl+1 as below

yl+1 = yl + ρ
(
dwl+1 − d

)
. (62)

For the term I3, similarly, we have

I3 =
〈
Y l,Θl+1 − Lwl

〉
−
〈
Y l,Θl+1 − Lwl+1

〉
− ρ

〈
Θl+1 − Lwl+1,Θl+1 − Lwl+1

〉
=
〈
L∗Y l,wl+1 −wl

〉
− ρ

∥∥Θl+1 − Lwl+1
∥∥2

F
,

(63)

where the first equality follows from

Y l+1 = Y l + ρ
(
Θl+1 − Lwl+1

)
. (64)

Therefore, we can obtain

I2 + I3 =
〈
d∗yl − L∗Y l,wl −wl+1

〉
− ρ

∥∥dwl+1 − d
∥∥2

2
− ρ

∥∥Θl+1 − Lwl+1
∥∥2

F
. (65)

Recall that wl+1 is a stationary point of the problem

minimize
w≥0

r(Lw) +
ρ

2
w> (d∗d + L∗L)w

−
〈
w,L∗

(
Y l + ρΘl+1 − ηV lV l>)− d∗

(
yl − ρd

)〉
. (66)

The set of the stationary points for the optimization (66) is defined by

X =
{
w|∇ql(w)>(z −w) ≥ 0, ∀z ≥ 0

}
, (67)

where ql(w) is the objective function in (66). By taking z = wl and w = wl+1 in (67), we obtain〈
d∗yl − L∗Y l,wl −wl+1

〉
≥ −

〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
+ ρ

〈
− (d∗d + L∗L)wl+1 + L∗Θl+1 + d∗d− η

ρ
V lV l>,wl −wl+1

〉
,

(68)

Substituting (65) and (68) into (58), we obtain

Lρ(Θ
l+1,wl,V l,Y l,yl)− Lρ(Θl+1,wl+1,V l+1,Y l+1,yl+1)

≥ρ
2

∥∥dwl+1 − dwl
∥∥2

2
+
ρ

2

∥∥Lwl+1 − Lwl
∥∥2

2
− ρ

∥∥dwl+1 − d
∥∥2

2
− ρ

∥∥Lwl+1 −Θl+1
∥∥2

F

+ r
(
Lwl

)
− r

(
Lwl+1

)
−
〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
≥ρ

2

∥∥dwl+1 − dwl
∥∥2

2
+
ρ− Lr

2

∥∥Lwl+1 − Lwl
∥∥2

F
− 1

ρ

∥∥yl+1 − yl
∥∥2

2
− 1

ρ

∥∥Y l+1 − Y l
∥∥2

F
,

(69)

where the last inequality is due to the fact that r(L) is a concave function and has Lr-Lipschitz
continuous gradient where Lr > 0 is a constant, and thus we obtain

r
(
Lwl

)
− r

(
Lwl+1

)
−
〈
∇r
(
Lwl+1

)
,Lwl − Lwl+1

〉
≥ −Lr

2

∥∥Lwl+1 − Lwl
∥∥2

F
. (70)

By calculation, we obtain that if ρ is sufficiently large such that

ρ ≥ max

2Lr, max
l

C
(∥∥Y l+1 − Y l

∥∥2

F
+
∥∥yl+1 − yl

∥∥2

2

) 1
2

(
‖Lwl+1 − Lwl‖2F + ‖dwl+1 − dwl‖22

) 1
2

 , (71)

holds with some constant C > 2, then, together with (57), we obtain that

Lρ(Θ
l,wl,V l,Y l,yl) ≥ Lρ(Θl+1,wl,V l,Y l,yl) ≥ Lρ(Θl+1,wl+1,V l+1,Y l+1,yl+1),

(72)
for any l ∈ N+.
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Now we are ready to prove Theorem 4. By Lemma 12, the sequence{(
Θl,wl,V l,Y l,yl

)}
is bounded. Therefore, there exists at least one convergent sub-

sequence
{(

Θls ,wls ,V ls ,Y ls ,yls
)}
s∈N

, which converges to a limit point denoted by{(
Θl∞ ,wl∞ ,V l∞ ,Y l∞ ,yl∞

)}
. By Lemma 13, we obtain that Lρ

(
Θl,wl,V l,Y l,yl

)
is

monotonically decreasing and lower bounded, and thus is convergent. Note that the function
log det∗(Θ) is continuous over the set S =

{
Θ ∈ Sp+|rank(Θ) = p− k

}
.

We can then obtain

lim
l→+∞

Lρ
(
Θl,wl,V l,Y l,yl

)
= Lρ (Θ∞,w∞,V ∞,Y ∞,y∞) = Lρ

(
Θl∞ ,wl∞ ,V l∞ ,Y l∞ ,yl∞

)
.

Then, (69), (71) and (72) together yields

Lρ(Θ
l,wl,V l,Y l,yl)− Lρ(Θl+1,wl+1,V l+1,Y l+1,yl+1)

≥ C2 − 4

4
ρ
(∥∥Lwl+1 −Θl+1

∥∥2

F
+
∥∥dwl+1 − d

∥∥2

2

)
.

(73)

Thus, we obtain

lim
l→+∞

∥∥Lwl −Θl
∥∥

F
= 0, and lim

l→+∞

∥∥dwl − d
∥∥

2
= 0. (74)

Obviously,
∥∥Lwls −Θls

∥∥
F
→ 0 and

∥∥dwls − d
∥∥

2
→ 0 also hold for any subsequence as s→ +∞,

which implies that Y l∞ and yl∞ satisfy the condition of stationary point of Lρ(Θ,w,V ,Y ,y) with
respect to Y and y, respectively. By (64) and (62), we also have

lim
l→+∞

∥∥Y l+1 − Y l
∥∥

F
= 0, and lim

l→+∞

∥∥yl+1 − yl
∥∥

2
= 0. (75)

Together with (69), we obtain

lim
l→+∞

∥∥dwl+1 − dwl
∥∥

2
= 0 and lim

l→+∞

∥∥Lwl+1 − Lwl
∥∥

F
= 0. (76)

Recall that V l contains the k eigenvectors associated with the k smallest eigenvalues of Lwl, and
thus we can check that

lim
l→+∞

∥∥V l+1 − V l
∥∥

F
= 0. (77)

For the limit point
{(

Θl∞ ,wl∞ ,V l∞ ,Y l∞ ,yl∞
)}

of any subsequence{(
Θls ,wls ,V ls ,Y ls ,yls

)}
s∈N

, Θl∞ minimizes the following subproblem

Θl∞ = arg min
rank(Θ)=p−k

Θ�0

− log det∗(Θ) +
〈
Θ,Y l∞−1

〉
+
ρ

2

∥∥Θ− Lwl∞−1
∥∥2

F

= arg min
rank(Θ)=p−k

Θ�0

− log det∗(Θ) +
〈
Θ,Y l∞

〉
+
ρ

2

∥∥Θ− Lwl∞
∥∥2

F

−
〈
Θ,Y l∞ − Y l∞−1

〉
+ ρ

〈
Θ,Lwl∞ − Lwl∞−1

〉
.

By (75) and (76), we conclude that Θl∞ satisfies the condition of stationary point of
Lρ(Θ,w,V ,Y ,y) with respect to Θ. Similarly, wl∞ minimizes the subproblem

wl∞ = arg min
w≥0

r(Lw) +
ρ

2
w> (d∗d + L∗L)w +

〈
w, d∗

(
yl∞−1 − ρd

)〉
+
〈
w,L∗

(
ηV l∞−1

(
V l∞−1

)> − Y l∞−1 − ρΘl∞
)〉

= arg min
w≥0

r(Lw) +
ρ

2
w> (d∗d + L∗L)w +

〈
w, d∗

(
yl∞ − ρd

)〉
+
〈
w,L∗

(
ηV l∞

(
V l∞

)> − Y l∞ − ρΘl∞
)〉

+
〈
Lw,Y l∞ − Y l∞−1

〉
+
〈
dw,yl∞−1 − yl∞

〉
+ η

〈
Lw,V l∞−1

(
V l∞−1

)> − V l∞
(
V l∞

)>〉
.
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By (75), (76) and (77), wl∞ satisfies the condition of stationary point of Lρ(Θ,w,V ,Y ,y) with
respect to w. V ∞ minimizes the subproblem

V l∞ = arg min
V ∈Rp×k

tr
(
V >Lwl∞V

)
, subject to V >V = I,

which implies that V l∞ satisfies the condition of stationary point of Lρ(Θ,w,V ,Y ,y) with respect
to V . To sum up, we can conclude that any limit point

{(
Θl∞ ,wl∞ ,V l∞ ,Y l∞ ,yl∞

)}
of the

sequence generated by Algorithm 2 is a stationary point of Lρ(Θ,w,V ,Y ,y).
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