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ABSTRACT
Exemplar-based image translation has garnered significant inter-

est from researchers due to its broad applications in multime-

dia/multimodal processing. Existing methods primarily employ

Euclidean-based losses to implicitly establish cross-domain corre-

spondences between exemplar and conditional images, aiming to

produce high-fidelity images. However, these methods often suffer

from two challenges: 1) Insufficient excavation of domain-invariant

features leads to low-quality cross-domain correspondences, and

2) Inaccurate correspondences result in errors propagated during

the translation process due to a lack of reliable prior guidance.

To tackle these issues, we propose a novel prior-guided diffusion
model with global-local contrastive learning (PROMOTE), which

is trained in a self-supervised manner. Technically, global-local

contrastive learning is designed to align two cross-domain images

within hyperbolic space and reduce the gap between their seman-

tic correlation distributions using the Fisher-Rao metric, allowing

the visual encoders to extract domain-invariant features more ef-

fectively. Moreover, a prior-guided diffusion model is developed

that propagates the structural prior to all timesteps in the diffusion

process. It is optimized by a novel prior denoising loss, mathemat-

ically derived from the transitions modified by prior information

in a self-supervised manner, successfully alleviating the impact

of inaccurate correspondences on image translation. Extensive ex-

periments conducted across seven datasets demonstrate that our

proposed PROMOTE significantly exceeds state-of-the-art perfor-

mance in diverse exemplar-based image translation tasks.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Computer vision representations;

KEYWORDS
Prior, Diffusion Model, Contrastive Learning, Exemplar-based Im-

gae Translation

1 INTRODUCTION
Exemplar-based image translation aims to translate a user-provided

conditional image, e.g. pose keypoints, edge maps, or strokes, into

a realistic image with styles similar to those of an exemplar image

[13, 43]. Compared to traditional image-to-image translation [12,
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44, 48], this task has increasingly attracted the attention of both

academic and industrial communities due to its high controllability

and flexibility [36]. Meanwhile, it finds applications in various fields

including makeup transfer, social media, and the metaverse [24].

Early pioneeringworks [11, 30] primarily adopt generative adver-

sarial networks (GANs) [6] for exemplar-based image translation,

enabling global style control of the generated images. However,

these methods ignore spatial correlations between a conditional

image and an exemplar, which potentially leads to a lack of faithful

details. Consequently, subsequent works [47] attempt to establish

cross-domain correspondences between exemplars and conditional

images to enhance local style control. They utilize contrastive losses

[10, 42] or design adaptive networks [13], generating a warped ex-

emplar to guide subsequent image synthesis by a generator. More

recently, benefiting from the advancements of diffusion models for

image generation, Seo et al. [36] first introduced the diffusion model

to this task. This approach interleaves cross-domain matching with

the diffusion step, iteratively refining a warped image to gradually

reduce errors.

Overall, existing methods [36, 43, 47] for exemplar-based image

translation generally follow a GAN/Diffusion-based matching-then-

generation pipeline: two cross-domain images are first matched via

a correspondence network to generate a warped image, and then a

realistic image is translated by a generator optimized with several

trivial Euclidean-based losses, as illustrated in Fig. 1 (a). Despite

the remarkable success, these methods still suffer from two chal-

lenges: 1) Insufficient excavation of domain-invariant features. The
Euclidean distance often fails to accurately measure the similarities

between exemplars and conditional images due to the inherent do-

main gap. Relying solely on naive contrastive loss makes it difficult

to effectively excavate domain-invariant features, potentially lead-

ing to sub-optimal correspondence. 2) Lack of reliable prior guidance
in the translation process. Existing methods adopt progressive re-

finement that ignores reliable prior information from the target

structure. Thus low-quality cross-domain correspondences will in-

evitably produce errors propagated throughout the generation step,

significantly reducing the fidelity of the generated image.

Motivated by these issues, we propose a novel “Prior-guided Dif-
fusionModel with Global-Local Contrastive Learning" (PROMOTE)

for exemplar-based image translation. The simplified framework of

PROMOTE is depicted in Fig. 1 (b). In contrast to previous methods,

our PROMOTE mainly designs global-local contrastive learning

to effectively learn domain-invariant features within the hyper-

bolic space [18] and a prior-guided diffusion model that involves a

self-supervised training scheme to generate realistic images. Specif-

ically, to tackle the first challenge, we construct a hyperbolic space

using exponential mapping [1] to facilitate the global alignment

of representations between two cross-domain images. Compared

to Euclidean space, hyperbolic geometry accounts for properties

like curvature and nonlinearity, allowing it better to capture the

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Comparison of simplified frameworks between existing methods and our proposed PROMOTE. (a) Existing methods
adopt GAN/Diffusion-based matching-then-generation pipelines optimized by Euclidean-based losses. (b) Our PROMOTE
is a prior-guided diffusion model trained by reliable guidance that effectively extracts domain-invariant features through
contrastive learning in hyperbolic space.

consistent and discriminative features of cross-domain images and

accurately measure their representation similarity. As an exten-

sion, a local contrastive loss defined by Fisher-Rao information

[3, 31] is further designed to alleviate the domain gap by aligning

their semantic correlation distributions, enabling exemplar and

conditional encoders to more effectively capture domain-invariant

features for subsequent translation. To address the second chal-

lenge, we leverage the structural information from the target, i.e.
a conditional image, to modify the diffusion transition to gener-

ate prior noisy samples. We then mathematically derive a novel

prior denoising loss to emphasize the preservation of the translated

image’s structure from the prior input. Notably, we employ sev-

eral data augmentation strategies to construct ground truth and

train our prior-guided diffusion model in a self-supervised man-

ner, which results in more realistic images under reliable guidance.

Extensive experiments conducted on seven datasets demonstrate

that our PROMOTE achieves high-fidelity image translation and

significantly outperforms state-of-the-art (SOTA) methods on all

benchmarks. Our contributions are listed as follows:

• We propose global-local contrastive learning to effectively

align two cross-domain images in hyperbolic space and re-

duce the representation gap between their semantic correla-

tion distributions using the Fisher-Rao metric, thereby better

extracting domain-invariant features.

• We propose a prior-guided diffusion model that leverages

the structural prior from a target to modify the diffusion

transitions. A novel prior denoising loss is mathematically

derived by aligning the posterior and transition distributions,

generating more realistic images.

• We are the first to construct reliable guidance in the diffusion

model for this unsupervised task. Extensive experiments

demonstrate that our PROMOTE significantly outperforms

SOTA methods.

2 RELATEDWORK
Exemplar-based Image Translation. Recently, exemplar-based

image translation has attracted widespread attention [11, 26, 47].

Early works made use of global styles of exemplars to guide im-

age generation. For instance, Park et al. [30] trained an encoder to

transform an exemplar into a global style vector, which is then used

to guide the image translation process. While this global control

strategy ensures overall style coherence, it falls short in generating

intricate details. Recently, numerous approaches [13, 24, 42] have

arisen to build dense correspondences to control local detailed styles.

Zhang et al. [43] established correspondences on a position-wise ba-

sis by using cosine attention to warp an exemplar accordingly, and

then the warped image is fed to an image generation process in a

manner of SPADE [30]. To explore more accurate correspondences,

Zhan et al. [42] employed a marginal contrastive loss to explicitly

explore domain-invariant features, and Jiang et al. [13] devised a

masked adaptive transformer to suppress unreliable spatial match-

ing and emphasize features of interest. Benefiting from the advance

of diffusion models, Seo et al. [36] first introduced a diffusion model

in this task, which interleaves the cross-domain matching and the

diffusion step to iteratively refine warped images. Compared with

these methods, we align cross-domain images in hyperbolic space

instead of Euclidean space to learn better domain-invariant features.

What’s more, we implement image translation in a self-supervised

manner by designing a prior-guided diffusion model, emphasiz-

ing the modification of diffusion and reverse transitions through

reliable prior information from the target structure.

Denoising Diffusion Probabilistic Model. Arguing against
the training instability and mode collapse of GANs [4, 11, 30], the

denoising diffusion probabilistic model (DDPM) [9] generates high-

quality samples by reversing the noising process. Notably, Nichol et

al. [27] considered quality and speed, additionally predicting vari-

ance during the denoising process to improve the sampling process,

while Song et al. [39] ensured fast and deterministic sampling by

introducing a non-Markovian diffusion process. Rombach et al. [34]

adopted an encoder-decoder network [7] to encode the input in a

latent space and then trained the diffusionmodel to reduce computa-

tional complexity. Recently, some components containing external

knowledge, e.g. classifiers [20, 37] and CLIP [19, 28], have been

incorporated into the diffusion model to control the network for

performance boosting. Besides revising network structure, Lee et

al. [22] normalized the diffusion variables according to the timestep

by leveraging fixed statistical information of conditional prior to

improve the performance of speech synthesis. Differently, we ex-

ploit the target structure as instance-level prior to adaptively adjust
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the mean and variance of diffusion distribution at each timestep.

Besides, a novel prior denoising loss is mathematically derived to

emphasize structure preservation in image translation.

3 METHOD
Given a conditional image 𝑥𝐴 from domain A and an exemplar

image 𝑦𝐵 from domain B, the exemplar-based image translation

task aims to generate a target image 𝑥𝐵 that preserves the semantic

structure of 𝑥𝐴 but adopts the style of 𝑦𝐵 . The overall architecture

of our proposed PROMOTE is illustrated in Fig. 2, which mainly

consists of two components: the visual encoders with global-local

contrastive learning for extracting robust domain-invariant features

and a prior-guided diffusion model for producing high-fidelity im-

ages. Notably, the positive image𝑦𝐴 from domainA is derived from

𝑦𝐵 for global-local contrastive learning. Unlike previous methods

where 𝑥𝐴 and 𝑥𝐵 are irrelevant with𝑦𝐴 and𝑦𝐵 , our pipeline applies

the same data augmentation techniques to 𝑦𝐴 and 𝑦𝐵 , generating

credible 𝑥𝐴 and 𝑥𝐵 to train our diffusion model in a self-supervised

manner.

3.1 Global-Local Contrastive Learning for
Robust Cross-domain Correspondence

Given 𝑥𝐴 and𝑦𝐵 , the visual domain-invariant representationsX𝐴 ∈
R𝐶×𝐻×𝑊

and Y𝐵 ∈ R𝐶×𝐻×𝑊
are extracted by the conditional and

exemplar encoders 𝜀𝐴 and 𝜀𝐵 , respectively, with 𝐶 dimensions,

height𝐻 and width𝑊 following [13]. To effectively build the cross-

domain correspondence between two images, X𝐴 and Y𝐵 are ex-

pected to contain accurate and sufficient domain-invariant features

[42]. Previous methods mainly apply Euclidean-based contrastive

loss [13, 42] to minimize the global similarity between Y𝐵 and its

structurally identical conjugate representation Y𝐴 to alleviate the

domain shift. However, Euclidean space is very sensitive to the

overall content and semantics of images, which means that even

if two images with different styles have similar structures, their

Euclidean distance is still very large, resulting in ineffective repre-

sentations of images from different domains. Therefore, we propose

a novel global-local contrastive learning framework for explicitly

excavating domain-invariant features.

Global Contrastive Learning in Hyperbolic Geometry. In-
spired by the success of hyperbolic embedding in image retrieval

[1, 18], we motivate learning the contrastive and discriminant

properties of cross-domain images in hyperbolic geometry. Un-

like Euclidean space R𝑛 , hyperbolic space D𝑛 , as a Riemannian

manifold [41] with constant negative curvature, derives some geo-

metric properties such as curvature, symmetry, and nonlinearity

[18], which can better capture the domain-invariant features and

improve the consistency of cross-domain visual representations

[14]. Given a Euclidean vector v, the exponential bijective map-

ping [18] exp𝑝 : 𝑇𝑝R
𝑛 → D𝑛 of the Poincaré ball model [29]

D𝑛 :=
{
v ∈ R𝑛 | 𝑐 ∥v∥2 < 1, 𝑐 ≥ 1

}
with the curvature 𝑐 projects v

into hyperbolic space, denoted as:

exp𝑝 (v) := 𝑝 ⊕
(
tanh

(√
𝑐
𝜆𝑝 ∥v∥

2

)
v

√
𝑐 ∥v∥

)
, (1)

where ⊕ is the differentiable Möbius addition, 𝑝 ∈ D𝑛 is the ref-

erence point empirically set to 0 for simplified computation, and

𝜆𝑝 = 2

1−𝑐 ∥v∥
2

denotes the conformal factor that scales the local

distance. Specifically, we follow Eq. (1) to obtain the hyperbolic rep-

resentations Y𝐴 and Y𝐵 by applying the exponential mapping to Y𝐴
and Y𝐵 before performing the contrastive operation as illustrated

in Fig. 2.

The hyperbolic geometry is globally differential to the Euclidean

and provides the closed-form distance equation between two points

in the hyperbolic space [5]:

𝑑
hs
(𝑎, 𝑏) = 2

√
𝑐

arctan(
√
𝑐 ∥ − 𝑎 ⊕ 𝑏∥) . (2)

Then we replace cosine similarity [8, 33] with the distance of Eq.

(2) to calculate the global contrastive loss of the cross-domain rep-

resentations Y𝐴 , Y𝐵 in the hyperbolic space:

L
global

= − log

exp(𝑑
hs
(Y𝐴,Y𝐵))

exp(𝑑
hs
(Y𝐴,Y𝐵)) +

∑
𝑛 exp(𝑑

hs
(Y−
𝑛 ,Y𝐵))

, (3)

where Y
−
𝑛 (𝑛 = 𝐴, 𝐵) are randomly selected negative samples from

the same training batch, half of which come from domain A and

half from domain B.

Patch-level Contrastive Learning with Semantic Correla-
tionAlignment.Aligning cross-domain images solely at the image

level is insufficient as it fails to address the challenges associated

with exploring the semantic correlation of appearance attributes,

which are crucial for exemplar-based image translation. Thus we

design a novel patch-level contrastive learning approach to capture

domain-invariant features in a fine-grained manner, as depicted in

Fig. 3. Intuitively, semantic correlations among attributes (e.g. the
relative positions of the eyes, nose, and mouth) within an image can

be described by the similarity distribution [15]. Given two cross-

domain images 𝑦𝐴 and 𝑦𝐵 with consistent structures, we propose

to bridge their semantic correlation distributions via the shortest

path in probability space, which is expected to be sufficiently small.

Practically, we first randomly select𝐾 patches in𝑦𝐴 and calculate

the semantic correlation distribution D𝑘
𝐴
for the 𝑘-th patch 𝑦𝑘

𝐴
in

relation to other patches within the hyperbolic space:

D𝑘𝐴 = [𝑑
hs
(Y𝑘𝐴,Y

1

𝐴), 𝑑hs (Y
𝑘
𝐴,Y

2

𝐴), ..., 𝑑hs (Y
𝑘
𝐴,Y

𝐾
𝐴 )]T, (4)

Similarly, we extract𝐾 patches at the same location of𝑦𝐵 and obtain

its similarity distribution D𝑘
𝐵
:

D𝑘𝐵 = [𝑑
hs
(Y𝑘𝐵,Y

1

𝐵), 𝑑hs (Y
𝑘
𝐵,Y

2

𝐴), ..., 𝑑hs (Y
𝑘
𝐵,Y

𝐾
𝐵 )]T . (5)

To align the semantic correlation distributions between the two im-

ages from different domains, we impose the consistency constrain

on D𝑘
𝐴
and D𝑘

𝐵
for all 𝐾 sampled patches by utilizing the shortest

path, which can be given in closed-form 𝑝FR under the Fisher-Rao

information metric and Gaussian assumption, as illustrated in The-

orem 3.1:

L
local

=

𝐾∑︁
𝑘=1

𝑝FR (D𝑘𝐴,D
𝑘
𝐵) . (6)

Theorem 3.1. Consider two independent Gaussian distributions:
𝑔1 with mean 𝜇1 and standard deviation 𝜎1, and 𝑔2 with mean 𝜇2 and
standard deviation 𝜎2. Given the Riemannian metric defined by the
Fisher-Rao information [3], the closed-form expression for the shortest
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Figure 2: The framework of our proposed method consists of conditional and exemplar encoders with global-local contrastive
learning, a correspondence transformer, and a self-supervised prior-guided diffusion model. For encoders, 𝑥𝐴, 𝑦𝐵 , and 𝑦𝐴 denote
the conditional image, the exemplar image, and the positive image, respectively. For the diffusion model, 𝑥𝐵 , 𝑧𝑡 , and 𝑥𝐵 denote
the self-supervised ground truth, the prior-guided noise sample at timestep 𝑡 and the denoising sample, respectively.

Similarity Distribution

Similarity Distribution

Alignment

Figure 3: The illustration of semantic correlation alignment
in our proposed patch-level contrastive learning.

path between these two Gaussian distributions is given by:

𝑝FR (𝑔1, 𝑔2) = 2

√
2 arctan

©«
√︄

(𝜇1 − 𝜇2)2 + 2(𝜎1 − 𝜎2)2

(𝜇1 − 𝜇2)2 + 2(𝜎1 + 𝜎2)2

ª®¬ . (7)

The proof is provided in Supplementary Material A. Notably,

a balancing weight 𝛾 is employed to control the global and local

alignment, and the total contrastive loss L
cl
is:

L
cl
= L

global
+ 𝛾L

local
. (8)

Benefiting from the global-local contrastive learning in the hy-

perbolic feature space, visual encoders can more accurately ex-

cavate domain-invariant features. Then, X𝐴 is mapped to query

Q ∈ R𝐻𝑊 ×𝐶
, Y𝐵 is mapped to key K ∈ R𝐻𝑊 ×𝐶

and value V ∈
R𝐻𝑊 ×𝐶

. These are fed into the correspondence transformer Tcorr,
which produces the warping estimation Ã ∈ R𝐻𝑊 ×𝐻𝑊

and the

correspondence feature map X𝑐𝑜𝑟𝑟 ∈ R𝐻𝑊 ×𝐶
following [13]. Since

our approach effectively bridges the domain gap between the do-

main 𝐴 and 𝐵 to extract domain-invariant features of X𝐴 and Y𝐵 ,
it facilitates the accurate feature mapping by the correspondence

transformer, thereby providing enhanced visual features for the

subsequent image reconstruction.

3.2 Prior-guided Diffusion Model
In this section, we propose a novel prior-guided diffusion model

trained in a self-supervised manner for exemplar-based image trans-

lation.

Self-supervised Training. Due to the lack of ground truth as

a reference in exemplar-based image translation, most previous

methods employ the learned correspondences to warp exemplars

and implicitly constrain the structure and content of the generated

images using several trivial losses. Inspired by [40], we train our dif-

fusion model in a self-supervised manner by applying several data

augmentation techniques (including horizontal flipping, rotation,

and elastic deformation) to𝑦𝐵 and𝑦𝐴 . This generates a ground truth

sample 𝑥𝐵 and its conjugate image 𝑥𝐴 , which are incorporated into

the training scheme. Benefiting from the deterministic guidance

of ground truth, the adverse impact of low-quality cross-domain

correspondence during image translation is alleviated, which could

avoid reliance on several trivial losses typically used by previous

methods. Besides, we believe that this self-supervised training com-

pels the network to comprehend the complex nonlinear mapping

between cross-domain correspondence Xcorr and translated image

𝑥𝐵 , thereby producing high-fidelity images.

Prior-guided Forward Process. Aiming to produce an image

𝑥𝐵 that matches the style of 𝑦𝐵 and maintains the structure of

𝑥𝐴 , the prior-guided forward process leverages 𝑥𝐴 to modify the
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forward prior and generates a new Markov diffusion chain 𝑞 to cor-

rode 𝑥𝐵 (denoted as 𝑧0:𝑇 for brevity) into a non-standard Gaussian

distribution N(𝑟, 𝜂2I):

𝑞(𝑧𝑡 |𝑧𝑡−1) := N(𝑧𝑡 ;
√
𝛼𝑡𝑧𝑡−1 + (1 − √

𝛼𝑡 )𝑟, 𝛽𝑡𝜂2I), (9)

where {𝛽𝑡 }𝑇𝑡=1
denotes the variance schedule provided in DDPM [9],

𝛼𝑡 = 1−𝛽𝑡 , 𝑟 = (1−𝜂)𝑥𝐴 , and 𝜂 is coefficient schedule that controls

the prior intensity. Compared with regular Markov transitions, Eq.

(9) can adaptively adjust the mean and variance of the distribution

of diffusion target 𝑧𝑡 at each timestep 𝑡 based on the structural

prior 𝑟 . We also admit sampling 𝑧𝑡 given by 𝑧0 for any timestep 𝑡

in closed-form:

𝑞(𝑧𝑡 |𝑧0) = N(𝑧𝑡 ;
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝑟, (1 − 𝛼𝑡 )𝜂2I). (10)

where 𝛼𝑡 =
∏𝑡
𝑖=1

𝛼𝑖 . At timestep 𝑇 , 𝑧𝑇 =
√
𝛼𝑇 𝑧0 +

√
1 − 𝛼𝑇𝜂𝜖 +√

1 − 𝛼𝑇 𝑟 = 𝜂𝜖 + 𝑟 ∼ N(𝑟, 𝜂2I), where 𝜖 ∼ N(0, I). Unlike conven-
tional diffusion trajectories, the diffusion distribution at the end step

evolves into a non-standard Gaussian distribution N(𝑟, 𝜂2I). No-
tably, we set 𝜂 =

√
𝛼𝑡 (1−

√
𝛼𝑡 ) as a quadratic schedule to encourage

random noise to corrupt the overall style and texture in early phases

of the diffusion process, and then emphasize the structural prior

in later steps, allowing our diffusion model to effectively preserve

target semantic information during the generation process.

Denoising Loss for Reverse Process. The reverse process

of the diffusion model essentially involves aligning the means of

posterior and transition distributions [2]. Therefore, we combine Eq.

(9) and Eq. (10) to derive a tractable posterior (see Supplementary

Material B for detailed derivation):

𝑞(𝑧𝑡−1 |𝑧𝑡 , 𝑧0) =
𝑞(𝑧𝑡 |𝑧𝑡−1, 𝑧0) · 𝑞(𝑧𝑡−1 |𝑧0)

𝑞(𝑧𝑡 |𝑧0)
,

:=N(𝑧𝑡−1; �̃�𝑞 (𝑧𝑡 , 𝑧0), Σ̃𝑞 (𝑧𝑡 , 𝑧0)),

where �̃�𝑞 (𝑧𝑡 , 𝑧0) =
√
𝛼𝑡𝛿𝑡−1𝑧𝑡 +

√
𝛼𝑡−1𝛽𝑡𝑧0

𝛿𝑡

+
2𝛿𝑡−1𝛽𝑡 −

√
𝛼𝑡𝛿𝑡−1𝜂

𝛿𝑡
𝑟,

𝛿𝑡 = 1 − 𝛼𝑡 , and Σ̃𝑞 (𝑧𝑡 , 𝑧0) =
𝛿𝑡−1𝛽𝑡

𝛿𝑡
𝜂2 .

(11)

We next parameterize 𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) := N(𝑧𝑡−1; �̃�𝜃 (𝑧𝑡 ), Σ̃𝜃 (𝑧𝑡 )I) by
employing a network and leverage the KL-divergence to minimize

the difference between 𝑝𝜃 (𝑧𝑡−1 |𝑧𝑡 ) and the posterior distribution

𝑞(𝑧𝑡−1 |𝑧𝑡 , 𝑧0). Since Σ̃𝑞 (𝑧𝑡 , 𝑧0) and Σ̃𝜃 (𝑧𝑡 ) are variable-irrelevant
constant terms, by aligning �̃�𝑞 (𝑧𝑡 , 𝑧0) and �̃�𝜃 (𝑧𝑡 ), we can derive the

prior denoising lossL
diff

of our diffusionmodel (see Supplementary

Material C):

L
diff

=∥�̃�𝑞 (𝑧𝑡 , 𝑧0) − �̃�𝜃 (𝑧𝑡 )∥2

=∥𝜌𝑡𝑟 + 𝜖 − 𝜖𝜃 (
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜂𝜖 +

√
1 − 𝛼𝑡𝑟, 𝑡)∥2,

(12)

where 𝜌𝑡 =
2𝛿𝑡−1𝛽𝑡−

√
𝛼𝑡𝛿𝑡−1𝜂

𝛿𝑡
. The first two terms of our denoising

loss can be viewed as adaptive modifications to the noises during

the diffusion process based on prior, forcing our model to emphasize

the target structure and improve the sampling quality under the

prior guidance.

3.3 Loss Functions
In addition to the diffusion loss for denoising and the global-local

contrastive loss for learning domain-invariant features, two nec-

essary loss functions are incorporated to train our network in an

end-to-end way following [24].

Correspondence Loss. Intuitively, we use the reliable corre-
spondence Ã extracted by the correspondence transformer Tcorr to
warp the exemplar 𝑦𝐵 , expecting the resulting image should be as

close to the ground truth 𝑥𝐵 as possible. Therefore, the optimization

objective for the learned correspondence is denoted as:

Lcorr = ∥ÃT · DS(𝑦𝐵) − DS(𝑥𝐵)∥1, (13)

where DS(·) denotes the down-sampling operation used to resize

the images 𝑦𝐵 and 𝑥𝐵 .

Cycle-Consistency Loss. To ensure that visual information

is not discarded during the warping process, the warped exem-

plar is expected to be recovered to the original exemplar 𝑦𝐵 under

the guidance of the inverse correspondence, defined as the cycle-

consistency loss [48]:

Lcyc = ∥Ã · ÃT · DS(𝑦𝐵) − DS(𝑦𝐵)∥1 . (14)

Total Loss. Benefiting from the self-supervised training, our

approach constructs ground truth to explicitly guide the image

translation, compared to unsupervised schemes, which could pro-

duce more faithful images. The overall optimization objective is

expressed as:

L
total

= L
diff

+ 𝜆1Lcl
+ 𝜆2Lcorr + 𝜆3Lcyc, (15)

where 𝜆1, 𝜆2, and 𝜆3 are the balancing weights.

4 EXPERIMENT
4.1 Datasets
We mainly conduct experiments on the following seven datasets:

(1) CelebA-HQ [21] contains 30, 000 real face images, of which

24, 000 are selected for training and the remaining 6, 000 are used

for testing. (2) Metfaces [17] and (3) Meticulous consists of 1, 336

artistic facial avatars and 931 Chinese ink paintings, respectively,

which are randomly divided at a ratio of 8 : 2 for training and testing.

(4) Ukiyo-e [32] contains high-quality Ukiyo-e faces. We randomly

select 3, 000 for training and 1, 000 for testing [13]. (5) AAHQ [23]

consists of facial avatars. We randomly choose 1, 500 samples for

training and 1, 000 for testing following [13]. (6)DeepFashion [25]

consists of 80, 000 fashion images, which are trained and tested

according to the official settings. (7) ADE-20k [46] contains 20, 210

training images and 2, 000 testing images, which are associated

with a 150-class segmentation mask. It is a challenging dataset for

most existing methods due to its large diversity.

4.2 Implementation Details
Experimental Settings. All the experiments are deployed on

NVIDIA RTX A6000 GPUs and we use 4 GPUs for training and 1

GPU for inference. In all translation tasks, we specify the size of the

input and output images as 256 × 256. We build and initialize the

visual encoders and correspondence network following [13]. The

relevant settings of our diffusion scheduler refer to [9, 45], with

diffusion steps 𝑇 = 1000, a linear noise schedule, and a U-Net noise
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Table 1: Quantitative results on the CelebA-HQ, Metfaces, Meticulous, Ukiyo-e, AAHQ, DeepFashion, and ADE-2Ok datasets,
where FID and SWD are the main metrics for evaluating the perceptual quality of generated images, supplemented by Texture,
Color and Semantic metrics.

CelebA-HQ Metfaces Meticulous Ukiyo-e AAHQ DeepFashion
FID ↓ SWD ↓ Texture ↑ Color ↑ Semantic↑ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓ FID ↓ SWD ↓

SPADE [30] 31.5 26.9 0.927 0.955 0.922 45.6 26.9 / / 45.6 26.9 79.4 32.1 36.2 27.8

CoCosNet [43] 14.3 15.2 0.958 0.977 0.949 25.6 24.3 / / 38.3 13.9 62.6 21.9 14.4 17.2

CoCosNet-v2 [47] 13.2 14.0 0.954 0.975 0.948 23.3 22.4 34.5 24.7 32.1 11.0 62.4 22.8 13.0 16.7

MCL-Net [42] 12.8 14.2 0.951 0.976 0.953 23.8 24.5 / / 32.4 12.4 64.4 22.2 12.9 16.2

DynaST [24] 12.0 12.4 0.959 0.978 0.952 29.2 28.6 30.1 23.4 38.9 14.2 67.2 24.0 8.4 11.8

Midms [36] 15.6 12.3 0.962 0.982 0.915 28.3 23.0 32.9 23.6 31.8 13.4 59.4 21.6 10.8 10.1

MATEBIT [13] 11.5 13.2 0.966 0.986 0.949 26.0 19.1 30.3 21.8 30.3 11.5 56.0 19.5 8.2 10.0

PROMOTE (ours) 11.0 12.0 0.973 0.982 0.967 22.8 18.4 29.2 21.0 28.7 11.1 54.5 18.4 7.9 9.6

estimator. For the proposed global-local contrastive learning, we

set the curvature 𝑐 = 0.2 to project the data from Euclidian space

to hyperbolic space. The weights 𝛾 , 𝜆1, 𝜆2, and 𝜆3 are set to 0.2,

0.5, 10.0, and 1.0, respectively. We set the batch size to 16 to train

our model on DeepFashion for 200 epochs and on the remaining

datasets for 100 epochs using the Adam optimizer with the learning

rate 1𝑒 − 4.

Metrics. To evaluate the translation results comprehensively, we

adopt several metrics: (1) Fréchet Inception Distance (FID) [35] and
Sliced Wasserstein Distance (SWD) [16] to evaluate the perceptual

quality of generated images. (2) color, texture, and semantic cosine
similarities based on VGG-19 [38] to evaluate style relevance and

semantic consistency of generated images [43].

4.3 Comparison with State-of-the-art
We compare the proposed PROMOTE with several SOTA methods,

including CoCosNet [43], CoCosNet-v2 [47], DynaST [24], Midms

[36] and MATEBIT [13] across seven datasets. All approaches are

replicated by adhering to the settings described in their respective

papers and source codes.

Quantitative Analysis. The quantitative comparison results are

illustrated in Table 1. Compared to existing methods, our proposed

PROMOTE achieves the best FID and SWD scores on almost all

datasets, indicating that the perceptual quality of images generated

by our method is superior and closest to real images. This superi-

ority stems from our robust feature extraction encoders and the

self-supervised training framework integrating prior information.

Furthermore, our method also achieves the best performance on

semantic and texture metrics tested on CelebA-HQ, with improve-

ments of 0.007 and 0.014, respectively. This demonstrates that the

structural prior and self-supervised guidance significantly benefits

our model in preserving semantics and achieving more consistent

styles. Comparatively, since the structural prior (conditional im-

ages) contains little color information, the improvement in color
metric is not as pronounced. The comparison results on the ADE-

20k dataset are presented in Table 2, where our method also shows

significant gains in challenging scenes with higher diversity and

complexity, improving FID and SWD by 0.6 and 0.5, respectively.

Qualitative Analysis. Fig. 4 showcases translated images gener-

ated by SOTA methods alongside their corresponding input images.

The images produced by previous methods exhibit significant flaws,

such as geometric distortions, unnatural textures, loss of style, and

Table 2: Quantitative results on the ADE-20k dataset, where
FID and SWD are the main metrics for evaluating the percep-
tual quality of generated images, supplemented by Texture,
Color, and Semantic metrics.

ADE-20k
FID ↓ SWD ↓ Texture ↑ Color ↑ Semantic↑

CoCosNet 26.4 10.5 0.941 0.962 0.862

CoCosNet-v2 25.2 9.9 0.948 0.970 0.877

MCL-Net 24.8 9.9 0.951 0.966 0.881

DynaST 24.6 10.1 0.960 0.967 0.875

MATEBIT 24.3 9.7 0.957 0.973 0.880

PROMOTE 23.7 9.2 0.966 0.978 0.893

semantic inconsistencies, marked respectively by blue, red, green,

and yellow boxes. Benefiting from the global-local contrastive learn-

ing and the prior-guided diffusion model, the appearance and de-

tailed style of images translated by our PROMOTE are closest to the

exemplars and most semantically consistent with the conditional

images, achieving the highest fidelity. Moreover, as illustrated in

Fig. 5, thanks to the structural prior of conditional images mathe-

matically modifying the diffusion target and transitions, PROMOTE

can generate local attributes (e.g. glasses and earrings) with appro-

priate style even if they are not provided in exemplar images. This

capability significantly enhances the practicality of our model.

4.4 Ablation Study
This experiment validates the effectiveness of the proposed global-

local contrastive learning (Glo. for the global part and Loc. for the
local part) and the prior-guided diffusion model (Pri.). Table 3 illus-
trates the comparison results, where we remove all the components

of Glo., Loc. and Pri. as our baseline model. From the results, we

can draw the following conclusions: First, the introduction of Glo.
decreases FID by 0.3 and 0.6 compared to the baseline model on

the CelebA-HQ and Metfaces datasets, respectively. This proves

the effectiveness of global cross-domain alignment between exem-

plars and conditional images in yielding robust domain-invariant

features that facilitate accurate cross-domain correspondence. Sec-

ond, the implementation of Loc. alleviates the domain gap at the

patch level, resulting in 0.2 and 0.3 FID improvements on the two

datasets, respectively. This confirms that Loc. aids in better ex-

tracting domain-invariant features by optimizing the shortest path
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Figure 4: Qualitative results on the CelebA-HQ, Metfaces, Meticulous, Ukiyo-e, AAHQ, DeepFashion, ADE-20k datasets. These
cases demonstrate some of the shortcomings of previous methods: geometric distortions, unnatural texture details, loss of style,
and semantic inconsistency, indicated respectively by blue, red, green, and yellow boxes. Notably, our PROMOTE achieves the
highest visual fidelity.
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Figure 5: Generated results for attributes not provided in
exemplar. Our PROMOTE can generate local attributes (e.g.
glasses and earrings) with appropriate style.

between the semantic correlation distributions of the two images.

Third, benefiting from the guidance of target structure prior in the

diffusion model, the proposed Pri. achieves 0.2 FID improvement

on each dataset. This enhancement underscores the value of in-

corporating structural prior into the diffusion process. Finally, by

integrating all three components, our approach reduces the average

FID and SWD by 0.75 and 0.7, respectively, which significantly

surpasses the baseline model.

4.5 Analysis of Global-Local Contrastive Loss
This experiment analyzes the impact of different balancing weight

values in Eq. (8) and distance measures on global-local contrastive

learning. We vary the values of 𝛾 to observe the performance

changes on CelebA-HQ and Metfaces datasets as presented in Table

4. When 𝛾 is set to 0, i.e. ignoring the optimization by the local
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Table 3: Evaluation results of ablation studies on CelebA-HQ
and Metfaces datasets.

Dataset Different Settings Metric
Glo. Loc. Pri. FID ↓ SWD ↓

CelebA-HQ

- - - 11.8 12.6

✓ - - 11.5 12.4

- ✓ - 11.6 12.4

- - ✓ 11.6 12.3

✓ ✓ - 11.3 12.2

✓ ✓ ✓ 11.0 12.0

Metfaces

- - - 22.5 19.2

✓ - - 21.9 18.8

- ✓ - 22.2 18.7

- - ✓ 22.3 19.1

✓ ✓ - 21.9 18.6

✓ ✓ ✓ 21.8 18.4

Table 4: Evaluation results of the global-local contrastive
loss with different weights 𝛾 and distance measurements on
CelebA-HQ and Metfaces datasets.

Dataset 𝛾 0 0.1 0.2 0.5 1 Euc.

CelebA-HQ FID ↓ 11.4 11.2 11.0 11.1 11.3 11.5

SWD ↓ 12.3 12.2 12.0 12.1 12.2 12.4

Metfaces FID ↓ 22.3 22.0 21.8 22.1 22.4 22.5

SWD ↓ 18.7 18.4 18.4 18.7 18.8 19.0

contrastive loss, the perceptual quality of the translated images

is notably the worst. As 𝛾 increases from 0 to 0.2, performance

consistently improves, which confirms the effectiveness of the local

contrastive learning since the semantic correlation distributions

between two cross-domain images are aligned by minimizing the

shortest path measured by Fisher-Rao information. This alignment

allows our model to better extract domain-invariant features. How-

ever, further increases in 𝛾 lead to a decline in performance, as an

excessively large value of 𝛾 weakens the global semantic alignment.

Additionally, we perform global-local contrastive learningwithin

the Euclidean distance-based feature space (denoted as Euc. in Table
4 and Fig. 6) with optimal hyperparameter settings instead of the

hyperbolic representation space. Compared with hyperbolic space,

using Euclidean space resulted in an average FID and SWD increase

of 0.6 and 0.5 across the two datasets. Moreover, images generated in

Euclidean spaces exhibit geometric distortion and unnatural texture

details (see Fig. 6). Both qualitative and quantitative results illustrate

that performance in Euclidean space is significantly inferior to that

in hyperbolic space. This proves that the inaccurate measurement

of two cross-domain visual representations by Euclidean distance

makes it challenging to explore domain-invariant features, resulting

in sub-optimal cross-domain correspondence.

4.6 Analysis of Training Manner
This experiment explores two training manners for the diffusion

model including unsupervised (“PROMOTE-un”) and self-supervised

learning. In the unsupervised deployment, necessary perceptual

C
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Exemplar Condition Promote-un PromoteEuc.

Figure 6: Comparison of generated images by different set-
tings of our method on CelebA-HQ and Metfaces datasets.

Table 5: Evaluation results of the proposed PROMOTE with
different training manners on CelebA-HQ and Metfaces.

Dataset Approach Metric Training Speed
FID ↓ SWD ↓ (hour/epoch)

CelebA-HQ PROMOTE-un 11.7 12.9 20.347

PROMOTE 11.0 12.0 0.252

Metfaces PROMOTE-un 24.3 21.2 1.023

PROMOTE 21.8 18.4 0.014

and contextual losses are incorporated into our PROMOTE and

optimized through iterative denoising, akin to Midms [36]. The

quantitative and qualitative comparison results are presented in Ta-

ble 5 and Fig. 6, respectively. Benefiting from the explicit guidance of

ground truth constructed by self-supervised training, our diffusion

model effectively addresses geometric distortion and style/semantic

inconsistency, bringing significant performance boosting with 0.7

and 2.5 FID improvements as well as 0.9 and 2.8 SWD improve-

ments on the two datasets, respectively. Moreover, images gen-

erated through self-supervised training more faithfully preserve

details and styles. Meanwhile, the self-supervised PROMOTE avoids

iterative refinement training and eliminates several trivial losses

commonly employed in unsupervised deployment for performance

enhancement, yielding faster training speed.

5 CONCLUSION
This work proposes a novel “Prior-guided Diffusion Model with

Global-Local Contrastive Learning" (PROMOTE) for exemplar-

based image translation. PROMOTE designs global-local contrastive

learning to effectively excavate domain-invariant features by align-

ing cross-domain representations between exemplars and condi-

tional images in hyperbolic space. Furthermore, it emphasizes the

target structure as prior information to modify the diffusion tran-

sitions and mathematically derives a prior denoising loss. Finally,

we tackle this task in a self-supervised manner, constructing de-

terministic ground truth to train our diffusion model. Our method

with theoretical derivations can be generalized to contrastive rep-

resentation learning and DDPM/DDIM for other generative tasks,

facilitating multimedia/multimodal applications. Extensive experi-

ments on seven datasets confirm the effectiveness of PROMOTE,

yielding significant performance improvement compared to state-

of-the-art methods.
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