# universitätfreiburg





# Label-Efficient LiDAR Scene Understanding with 2D-3D Vision Transformer Adapters

Julia Hindel\*, Rohit Mohan\*, Jelena Bratulic, Daniele Cattaneo, Thomas Brox, and Abhinav Valada \* Equal Contribution

# Motivation

Foundation models have advanced vision and language models, but LiDAR still lacks large-scale pretraining and robust foundation models.



### Results

### **Benchmark**

BALVIT consistently outperforms baseline models on the SemanticKITTI and nuScenes datasets under low-label settings.



Existing methods rely on paired camera-LiDAR data and still require training 3D encoders from scratch to leverage foundation models.

We propose BALVIT, a universal foundation model for LiDAR segmentation that leverages a **novel 2D-3D adapter** to enable efficient reuse of vision model features through structured 2D representations.

## Method

#### **BALViT** Architecture

Dual-View Encoding: LiDAR point clouds are encoded using

| Method                                                                            | <b>Seman</b><br>0.1%                                      | ticKITTI<br>1%                                            | <b>nuSo</b><br>0.1%                                       | cenes<br>1%                                               |                                       |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------|---------------------------------------|
| SR-Unet18<br>FRNet<br>SphereFormer<br>RangeViT                                    | -<br>30.09<br>29.21<br>28.74                              | 39.50<br>40.78<br>42.81<br>43.53                          | -<br>28.03<br>30.42<br>27.79                              | 30.30<br>48.98<br>50.06<br>52.88                          | Fully Supervis<br>Vision Distilla     |
| SLidR<br>ST-SLidR<br>SEAL<br>CLIP2Scene                                           | -                                                         | 44.60<br>44.72<br>46.63<br>42.60                          | -                                                         | 38.30<br>40.75<br>45.84<br>56.30                          | Parameter<br>Efficient<br>Fine-Tuning |
| Frozen ViT backbone<br>Bias tuning<br>LoRA<br>VPT<br>ViT Adapter<br>BALVIT (Ours) | 29.97<br>30.86<br>31.65<br>31.07<br>29.55<br><b>32.85</b> | 45.91<br>45.63<br>46.27<br>46.08<br>45.01<br><b>51.80</b> | 28.72<br>28.15<br>28.27<br>29.68<br>27.50<br><b>31.86</b> | 54.70<br>56.05<br>57.57<br>55.67<br>56.06<br><b>59.27</b> |                                       |

#### **Effects of Vision Backbone Initialization**

**54** 1

Cityscapes pretraining performs (1% SemanticKITTI), highlighting the value of domain-aligned vision backbones.

- Range View (RV) and Bird's-Eye View (BEV) branches.
- Vision Backbone on RV: A frozen vision transformer (ViT) backbone processes RV features with a learnable patch embedding, leveraging rich pre-trained visual representations.
- 2D-3D Adapter: Enables bidirectional injection of BEV and ViT-processed RV features via stacked parallel cross-attention for mutual refinement.
- 3D Positional Embeddings: Provide spatial alignment between RV and BEV, enabling seamless cross-view attention in the adapter.
- Parallel Decoding: RV and BEV use independent decoders to predict semantic labels.





### **Ablation Study on BALVIT Components**

The 2D-3D adapter and BEV decoder contribute most to gains over the frozen ViT baseline (1% SemanticKITTI).





### **Inference Fusion**

- The output is selected based on the highest logit confidence  $\hat{y}$  from RV and BEV predictions, using a fixed threshold s.
- This simple uncertainty-aware selection favors fine-grained RV when confident and falls back to BEV for globally consistent context.

$$Output = \begin{cases} \hat{y}_{\text{RV}}, & \text{if } \hat{y}_{\text{RV}} > s \\ \hat{y}_{\text{RV}} & \text{if } \hat{y}_{\text{RV}} \leq s \text{ and } \hat{y}_{\text{BEV}} < s , \\ \hat{y}_{\text{BEV}}, & \text{if } \hat{y}_{\text{RV}} \leq s \text{ and } \hat{y}_{\text{BEV}} > s \end{cases}$$

#### Qualitative



**Ground Truth** 



Semantic KITTI





