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ABSTRACT

Reinforcement learning (RL) is rapidly reaching and surpassing human-level con-
trol capabilities. However, state-of-the-art RL algorithms often require timesteps
and reaction times significantly faster than human capabilities, which is imprac-
tical in real-world settings and typically necessitates specialized hardware. We
introduce Sequence Reinforcement Learning (SRL), an RL algorithm designed to
produce a sequence of actions for a given input state, enabling effective control
at lower decision frequencies. SRL addresses the challenges of learning action
sequences by employing both a model and an actor-critic architecture operating
at different temporal scales. We propose a ”temporal recall” mechanism, where
the critic uses the model to estimate intermediate states between primitive actions,
providing a learning signal for each individual action within the sequence. Once
training is complete, the actor can generate action sequences independently of the
model, achieving model-free control at a slower frequency. We evaluate SRL on
a suite of continuous control tasks, demonstrating that it achieves performance
comparable to state-of-the-art algorithms while significantly reducing actor sam-
ple complexity. To better assess performance across varying decision frequencies,
we introduce the Frequency-Averaged Score (FAS) metric. Our results show that
SRL significantly outperforms traditional RL algorithms in terms of FAS, mak-
ing it particularly suitable for applications requiring variable decision frequencies.
Furthermore, we compare SRL with model-based online planning, showing that
SRL achieves comparable FAS while leveraging the same model during training
that online planners use for planning.

1 INTRODUCTION

Biological and artificial agents must learn behaviors that maximize rewards to thrive in complex
environments. Reinforcement learning (RL), a class of algorithms inspired by animal behavior,
facilitates this learning process (Sutton & Barto, 2018). The connection between neuroscience and
RL is profound. The Temporal Difference (TD) error, a key concept in RL, effectively models the
firing patterns of dopamine neurons in the midbrain (Schultz et al., 1997; Schultz, 2015; Cohen
et al., 2012). Additionally, a longstanding goal of RL algorithms is to match and surpass human
performance in control tasks (OpenAI et al., 2019; Schrittwieser et al., 2020; Kaufmann et al., 2023b;
Wurman et al., 2022a; Vinyals et al., 2019; Mnih et al., 2015).

However, most of these successes are achieved by leveraging large amounts of data in simulated
environments and operating at speeds orders of magnitude faster than biological neurons. For exam-
ple, the default timestep for the Humanoid task in the MuJoCo environment (Todorov et al., 2012) in
OpenAI Gym (Towers et al., 2023) is 15 milliseconds. In contrast, human reaction times range from
150 milliseconds (Jain et al., 2015) to several seconds for complex tasks (Limpert, 2011). Table 1
shows the significant gap between AI and humans in terms of timestep and reaction times. When RL
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agents are constrained to human-like decision frequencies, even state-of-the-art algorithms struggle
to perform in simple environments (Dulac-Arnold et al. (2021), Figure 5 in Appendix).

Environment / Task Timestep / Reaction Time
Inverted Pendulum 40ms
Walker 2d 8ms
Hopper 8ms
Ant 50ms
Half Cheetah 50ms
Dota 2 1v1 (OpenAI et al., 2019) 67ms
Dota 2 5v5 (OpenAI et al., 2019) 80ms
GT Sophy (Wurman et al., 2022b) 23-30ms
Drone Racing (Kaufmann et al., 2023a) 10ms
Humans ≥ 150ms

Table 1: Timestep / reaction times for various benchmark environments and popular works that pit
humans vs. AI.

The primary reason for this difficulty is the implicit assumption in RL that the environment and
the agent operate at a constant timestep. Consequently, in embodied agents that implement RL
algorithms, all components: sensors, compute units, and actuators—are synchronized to the same
frequency at the algorithmic level. Typically, this frequency is limited by the speed of computation
in artificial agents (Katz et al., 2019). As a result, robots often require fast onboard computing
hardware (CPU or GPU) to achieve higher control frequencies (Margolis et al., 2024; Li et al., 2022;
Haarnoja et al., 2024).

To allow the RL agent to observe and react to changes in the environment quickly, RL algorithms
are forced to set a high frequency. Even in completely predictable environments, when the agent
learns to walk or move, a small timestep is required to account for the actuation frequency required
for the task, but it is not necessary to observe the environment as often or compute new actions as
frequently. RL algorithms suffer from catastrophic failure due to missing inputs (also referred to as
observational dropout). This behavior level gap between RL and humans can be bridged by bridging
the gap in the underlying process.

Towards that end, we propose Sequence Reinforcement Learning (SRL), a model for action se-
quence learning based on the role of the basal ganglia (BG) and the prefrontal cortex (PFC). Our
model learns open-loop control utilizing a low decision frequency. Additionally, the algorithm uti-
lizes a simultaneously learned model of the environment during its training but can act without it
for fast and cheap inference. We demonstrate the algorithm achieves competitive performance on
difficult continuous control tasks while utilizing a fraction of observations and calls to the policy.
To the best of our knowledge, SRL is the first to achieve this feat. To further quantify this result
and set a benchmark for control at slow frequencies, we introduce the Frequency Averaged Score
(FAS) and demonstrate that SRL achieves significantly higher FAS than Soft-Actor-Critic (SAC)
(Haarnoja et al., 2019) and Generative-Planning-Method (GPM) (Zhang et al., 2022). Additionally,
we demonstrate that on complex environments (with high state and action dimensions), SRL also
beats model-based online planning on FAS. Finally, in the appendix, we discuss the available evi-
dence in neuroscience that has inspired our algorithm and also present promising initial results in
the proposed future work of generative replay in latent space.

2 NECESSITY OF SEQUENCE LEARNING: FREQUENCY, DELAY AND
RESPONSE TIME

To perform any control task, the agent requires the following three components: Sensor, Proces-
sor/Computer, Actuator. In the traditional RL framework, all three components act at the same
frequency due to the common timestep. However, this is not the case in biological agents that have
different sensors of varying frequencies that are often faster than the compute frequency or the speed
at which the brain can process the information (Borghuis et al., 2019). Additionally, in order to af-
ford fast and precise control, the actuator frequency is also much faster than the compute frequency
(see Figure 9 in Appendix).
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Low-compute hardware faces two primary challenges for real-time control: delay and throughput.
The high inference times associated with low-compute devices result in a delay between receiving
observations and performing corresponding actions in the environment. Additionally, they lead to
low decision frequencies in sequential decision-making tasks.

While many prior works have focused on addressing delay by designing delay-aware algorithms
(Chen et al., 2020; 2021; Derman et al., 2021), mitigating delay alone does not resolve the perfor-
mance issues caused by low decision frequency. Adapting RL algorithms to operate effectively in
low-frequency compute settings remains an open challenge (Dulac-Arnold et al., 2021).

The Sequence Reinforcement Learning (SRL) algorithm offers a promising solution to these low-
decision frequency scenarios. To address the complete set of challenges posed by low-compute
environments, SRL can be integrated with delay-aware algorithms to simultaneously manage delays
while achieving higher action frequencies. Moreover, SRL inherently addresses delays by producing
sequences of actions that can bridge the gap caused by processing latency. For example, if output
arrives with a delay of n timesteps, the first n actions of the new sequence can be ignored, as
they were already executed as part of the previous sequence. This mechanism ensures smooth and
continuous action execution despite processing delays.

Why low-frequency compute?

Recent advancements in reinforcement learning (RL) algorithms, combined with high-speed com-
puting, have led to two common approaches for addressing the speed-accuracy trade-off:

1. Faster hardware: The use of GPUs has become standard for enabling rapid inference
in autonomous agents (Long et al., 2024; Csomay-Shanklin et al., 2024; Lazcano, 2024).
However, GPUs are often impractical in many real-world applications due to their high
cost, energy demands, and large physical size. As a result, recent research has also focused
on developing specialized embedded deep learning accelerators to address these challenges
(Akkad et al., 2023).

2. Software optimization: Techniques such as quantization (Jafarpourmarzouni et al., 2024),
multi-exit networks (Rahmath P et al., 2022), and model compression (Neill, 2020) are
commonly employed to reduce inference times without requiring additional hardware.

In essence, these approaches focus on either accelerating hardware or optimizing software. In this
work, we propose an alternative paradigm: enhancing accuracy at low operating frequencies in-
stead of striving for high frequencies. By advancing research in this direction, we aim to relax
the dependency on high-performance hardware, enabling RL algorithms to operate effectively on
low-compute devices while also making ultra-high-frequency control feasible on current hardware
platforms.

3 RELATED WORK

3.1 MODEL-BASED REINFORCEMENT LEARNING

Model-Based Reinforcement Learning (MBRL) algorithms leverage a model of the environment,
which can be either learned or known, to enhance RL performance (Moerland et al., 2023). Broadly,
MBRL algorithms have been utilized to:

1. Improve Data Efficiency: By augmenting real-world data with model-generated data,
MBRL can significantly enhance data efficiency (Yarats et al., 2021; Janner et al., 2019;
Wang et al., 2021).

2. Enhance Exploration: MBRL aids in exploration by using models to identify potential or
unexplored states (Pathak et al., 2017; Stadie et al., 2015; Savinov et al., 2019).

3. Boost Performance: Better learned representations from MBRL can lead to improved
asymptotic performance (Silver et al., 2017; Levine & Koltun, 2013).

4. Transfer Learning: MBRL supports transfer learning, enabling knowledge transfer across
different tasks or environments (Zhang et al., 2018; Sasso et al., 2023).
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5. Online Planning: Models can be used for online planning with a single-step policy
(Fickinger et al., 2021). However, this approach increases model complexity, as each on-
line planning step necessitates an additional call to the model. This makes it unsuitable for
applications with limited computational budgets and strict requirements for fast inference.

Compared to online planning, our algorithm maintains a model complexity of zero after training,
eliminating the need for any model calls post-training for generating a sequence of actions. This
significantly reduces the computational and energy requirements, making it more suitable for prac-
tical applications in constrained environments. Additionally, model-based online planning is less
biologically plausible than SRL. Wiestler & Diedrichsen (2013) demonstrated that the activations in
the motor cortex reduce after skill learning, suggesting that the brain gets more efficient at perform-
ing the task after learning. In contrast, model-based online planning does not reduce in the compute
and model complexity, but rather might increase in complexity as we perform longer sequences.
SRL, on the other hand, has a model complexity of zero after training and thus is biologically plau-
sible based on this observed phenomenon.

3.2 MODEL PREDICTIVE CONTROL

Similar to model-based reinforcement learning, Model Predictive Control (MPC) utilizes a model of
the system to predict and optimize future behavior. In the context of modern robotics, MPC has been
effectively applied to trajectory planning and real-time control for both ground and aerial vehicles.
MPC has been applied to problems like autonomous driving (Gray et al., 2013) and bipedal control
(Galliker et al., 2022). Similar to online planning, MPC often requires access to a model of the
system after training.

Additionally, similar to current RL, MPC requires very fast operational timesteps for practical appli-
cations. For example, Galliker et al. (2022) implemented a walker at 10 ms, Farshidian et al. (2017)
implemented a four-legged robot at 4 ms, and Di Carlo et al. (2018) implemented the MIT Cheetah
3 at 33.33 ms.

3.3 MACRO-ACTIONS, ACTION REPETITION, AND FRAME-SKIPPING

Reinforcement Learning (RL) algorithms that utilize macro-actions demonstrate many benefits, in-
cluding improved exploration and faster learning (McGovern et al., 1997). However, identifying
effective macro-actions is a challenging problem due to the curse of dimensionality, which arises
from large action spaces. To address this issue, some approaches have employed genetic algorithms
(Chang et al., 2022) or relied on expert demonstrations to extract macro-actions (Kim et al., 2020).
However, these methods are not scalable and lack biological plausibility. In contrast, our approach
learns macro-actions using the principles of RL, thus requiring little overhead while combining the
flexibility of primitive actions with the efficiency of macro-actions.

To overcome the curse of dimensionality while gaining the benefits of macro-actions, many ap-
proaches utilize frame-skipping and action repetition, where macro-actions are restricted to a single
primitive action that is repeated. Frame-skipping and action repetition serve as a form of partial
open-loop control, where the agent selects a sequence of actions to be executed without considering
the intermediate states. Consequently, the number of actions is linear in the number of time steps
(Kalyanakrishnan et al., 2021; Srinivas et al., 2017; Biedenkapp et al., 2021; Sharma et al., 2017;
Yu et al., 2021).

For instance, FiGaR (Sharma et al., 2017) shifts the problem of macro-action learning to predicting
the number of steps that the outputted action can be repeated. TempoRL (Biedenkapp et al., 2021)
improved upon FiGaR by conditioning the number of repetitions on the selected actions. However,
none of these algorithms can scale to continuous control tasks with multiple action dimensions, as
action repetition forces all actuators and joints to be synchronized in their repetitions, leading to
poor performance for longer action sequences.

TLA (Patel et al., 2024) has recently shown an enhancement of TempoRL through the implemen-
tation of two hierarchical policies functioning at varying timesteps, coordinated by a third policy.
Although TLA exhibits commendable results in environments characterized by a single action di-
mension, its advantages are constrained in multi-dimensional environments. This limitation arises as
extended timesteps necessitate synchronization across all degrees of freedom, thereby diminishing
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performance during prolonged timesteps. In contrast, SRL is capable of executing distinct actions
at each timestep without an increase in decision count.

3.4 TEMPORALLY CORRELATED EXPLORATION

Recent advancements in reinforcement learning have extended the concepts of macro-actions and
action-repetition to improve exploration by incorporating temporally correlated exploration, where
successive actions during exploration exhibit temporal dependencies. For instance, Dabney et al.
(2021) proposed temporally extended ϵ-greedy exploration, which involves repeating actions for
random durations during exploration. Building on this foundation, subsequent works have investi-
gated approaches such as state-dependent exploration Raffin et al. (2022), episodic reinforcement
learning Li et al. (2024), and temporally correlated latent noise Chiappa et al. (2024) to enhance ex-
ploration efficiency and improve the smoothness of resulting policies. However, these methods are
limited in their adaptability to challenges such as observational dropout, low decision or observa-
tional frequency, as the trained policy requires state input at each timestep. To address long-horizon
temporally correlated exploration, Zhang et al. (2022) introduced the Generative Planning Method
(GPM), which employs a recurrent actor network similar to the architecture used in SRL to generate
sequences of actions from a single state. We provide an empirical comparison to GPM in Section 5.

4 SEQUENCE REINFORCEMENT LEARNING

Figure 1: The Sequence Reinforcement Learning (SRL) model. The SRL takes inspiration from
the function of the basal ganglia (BG) (Top/Blue) and the prefrontal cortex (PFC) (Bottom/Yellow).
We train an actor with a gated recurrent unit that can produce sequences of arbitrary lengths given a
single state. This is achieved by utilizing a critic and a model that acts at a finer temporal resolution
during training/replay to provide an error signal to each primitive action of the action sequence.

We introduce a novel reinforcement learning model capable of learning sequences of actions (macro-
actions) by replaying memories at a finer temporal resolution than the action generation, utilizing
a model of the environment during training. We provide the neural basis for our algorithm in the
Appendix (A.9)

COMPONENTS

The Sequence Reinforcement Learning (SRL) algorithm learns to plan ”in-the-mind” using a model
during training, allowing the learned action-sequences to be executed without the need for model-
based online planning. This is achieved using an actor-critic setting where the actor and critic op-
erate at different frequencies, representing the observation/computation and actuation frequencies,
respectively. Essentially, the critic is only used during training/replay and can operate at any tempo-
ral resolution, while the actor is constrained to the temporal resolution of the slowest component in
the sensing-compute-actuation loop. Denoting the actor’s timestep as t′ and the critic’s timestep as
t, our algorithm includes three components:

Model : st+1 = mϕ(st, at)

Critic : qt = qψ(st, at)
Actor : mt′:t′+J−1 = at′ , at′+t, at′+2t.. ∼ πω(st′)

(1)

We denote individual actions in the action sequence generated by the actor using the notation
πω(st′)t
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We denote individual actions in the action sequence mt′:t′+J−1 = at′ , at′+t, at′+2t.. generated by
the actor using the notation πω(st′)t to represent the action at′+t.

1. Model: Learns the dynamics of the environment, predicting the next state st+1 given the
current state st and primitive action at.

2. Critic: Takes the same input as the model but predicts the Q-value of the state-action pair.
3. Actor: Produces a sequence of actions given an observation at time t′. Observations from

the environment can occur at any timestep t or t′, where we assume t′ > t. Specifically, in
our algorithm, t′ = Jt where J > 1; J ∈ Z.

Each component of our algorithm is trained in parallel, demonstrating competitive learning speeds.

We follow the Soft-Actor-Critic (SAC) algorithm (Haarnoja et al., 2019) for learning the actor-critic.
Exploration and uncertainty are critical factors heavily influenced by timestep size and planning
horizon. Many model-free algorithms like DDPG (Lillicrap et al., 2019) and TD3 (Fujimoto et al.,
2018) explore by adding random noise to each action during training. However, planning a sequence
of actions over a longer timestep can result in additive noise, leading to poor performance during
training and exploration if the noise parameter is not tuned properly. The SAC algorithm addresses
this by automatically maximizing the entropy while also maximizing the expected return, allowing
our algorithm to automatically tune its exploration based on the selected sequence length parameter
(J).

LEARNING THE MODEL

The model is trained to minimize the Mean Squared Error of the predicted states. For a tra-
jectory τ = (st, at, st+1) drawn from the replay buffer D, the predicted state is taken from
s̃t+1 ∼ mϕ(st, at). The loss function is:

Lϕ = Eτ∼D(s̃t+1 − st+1)
2 (2)

For this work, the model is a feed-forward neural network with two hidden layers. In addition to the
current model mϕ, we also maintain a target model mϕ− that is the exponential moving average of
the current model.

LEARNING THE CRITIC

The critic is trained to predict the Q-value of a given state-action pair q̃t = qψ(st, at) using the
target value from the modified Bellman equation:

q̂t = rt + γEat+1∼πω(st+1)0 [qψ−(st+1, at+1)− α log πω(at+1|st+1)] (3)

Here, qψ− is the target critic, which is the exponential moving average of the critic and α is the
temperature parameter that controls the relative importance of the entropy term. Following the SAC
algorithm, we train two critics and use the minimum of the two qψ− values to train the current
critics. The loss function is:

Lψ = Eτ∼D[(q̃tk − q̂t)2]∀k ∈ 1, 2 (4)

Both critics are feed-forward neural networks with two hidden layers. It should be noted that while
the actor utilizes the model during training, the critic does not train on any data generated by the
model, thus the critic training is model-free and grounded in the real environment states.

LEARNING THE POLICY

The SRL policy utilizes two hidden layers followed by a Gated-Recurrent-Unit (GRU) (Cho et al.,
2014) that takes as input the previous action in the action sequence, followed by two linear layers
that output the mean and standard deviation of the Gaussian distribution of the action. This design
allows the policy to produce action sequences of arbitrary length given a single state and the last
action.

A naive approach to training a sequence of actions would be to augment the action space to include
all possible actions of the sequence length. However, this quickly leads to the curse of dimensional-
ity, as each sequence is considered a unique action, dramatically increasing the policy’s complexity.
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Additionally, such an approach ignores the temporal information of the action sequence and faces
the difficult problem of credit assignment, with only a single scalar reward for the entire action
sequence.

To address these problems, we use different temporal scales for the actor and critic. The critic assigns
value to each primitive action of the action sequence, bypassing the credit assignment problem
caused by the single scalar reward. However, using collected state-action transitions to train the
action sequence is impractical, as changing the first action in the sequence would render all future
states inaccurate. Thus, the model populates intermediate states, which the critic then uses to assign
value to each primitive action in the sequence.

Therefore, given a trajectory τ = (at−1, st, at, st+1), we first produce the J-step action sequence
using the policy: m̃t:t+J−1 ∼ πω(st). We then iteratively apply the target model to get the interme-
diate states s̃t+1:t+J−1. Finally, we use the critic to calculate the loss for the actor as follows:

Lω = Eτ∼D

[
α log πω(ãt|st)− qψ(st, ãt) +

J−1∑
j=1

α log πω(ãt+j |s̃t+j)− qψ(s̃t+j , ãt+j)
]

(5)

5 EXPERIMENTS

OVERVIEW

We evaluate our SRL approach on 11 continuous control tasks, comparing it against SAC (Haarnoja
et al., 2019) and GPM (Zhang et al., 2022). We utilize the OpenAI Gym (Brockman et al., 2016)
implementation of the MuJoCo environments (Todorov et al., 2012).

EXPERIMENTAL SETUP

We train SRL with four different action sequence lengths (ASL), J = 2, 4, 8, 16, referred to as
SRL-J . During training, SRL is evaluated based on its J value, processing states only after every
J actions. All hyperparameters are identical between SRL and SAC, except for the actor update
frequency: SRL updates the actor every 4 steps, while SAC updates every step. Thus, SAC has
four more actor update steps compared to SRL. Additionally, SRL learns a model in parallel with
the actor and critic. Additionally, we also train SAC at different step sizes that correspond to SRL,
forming SAC-J where J = 1, 2, 4, 8, 16. Note that we do not provide SRL-1 since for sequences of
length 1, SRL is the same algorithm as SAC.

We present the learning curves of SRL and SAC across 11 continuous control tasks in the appendix.
We find that on all environments except Swimmer, SAC-1 demonstrates optimal performance and
often significantly outperforms the longer timesteps. Thus, the default environments are picked to
maximize performance under the standard RL setting where the observation, decision, and the action
frequency are the same. It should be noted that the learning curves presented for SRL-J and SAC-J
take in states every J steps.

FREQUENCY-AVERAGED SCORE

Transitioning from simulation to real-world implementation (Sim2Real) in control systems is chal-
lenging because deployment introduces computational stochasticity, leading to variable sensor sam-
pling rates (throughput) and inconsistent end-to-end delays from sensing to actuation (Sandha et al.,
2021). This gap is not captured by the mean reward or return that is the norm in current RL literature.
To address this, we introduce Frequency-Averaged Score (FAS) that is the normalized area under the
curve (AUC) of the performance vs. decision frequency plot. We provide plots for all environments
in the Appendix. We note that this experimental setup is similar to the challenge 7 introduced in by
Dulac-Arnold et al. (2021) and SRL addresses the challenge of low throughput that is introduced in
that work. The FAS captures the overall performance of the policy at different decision frequencies,
timesteps or macro-action lengths. A High FAS indicates that the policy performance generalizes
across decision frequencies, observation frequencies and timestep sizes.

Tables 2 and 3 present the Frequency Averaged Score (FAS) for SAC and SRL across vary-
ing action sequence lengths. Overall, SRL-16 demonstrates strong and consistent performance
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Environment SAC-1 SAC-2 SAC-4 SAC-8 SAC-16
Pendulum 0.44 ± 0.03 0.42 ± 0.03 0.50 ± 0.03 0.49 ± 0.04 0.33 ± 0.05
Lunar Lander 0.20 ± 0.02 0.23 ± 0.02 0.33 ± 0.02 0.45 ± 0.03 0.56 ± 0.09
Hopper 0.07 ± 0.01 0.09 ± 0.01 0.14 ± 0.03 0.14 ± 0.04 0.26 ± 0.08
Walker2d 0.07 ± 0.01 0.08 ± 0.03 0.14 ± 0.04 0.23 ± 0.07 0.15 ± 0.04
Ant -0.05 ± 0.04 0.11 ± 0.01 0.16 ± 0.02 0.16 ± 0.01 0.13 ± 0.01
HalfCheetah 0.01 ± 0.01 0.04 ± 0.01 0.03 ± 0.00 0.02 ± 0.01 0.01 ± 0.01
Humanoid 0.06 ± 0.01 0.06 ± 0.01 0.08 ± 0.03 0.17 ± 0.02 0.18 ± 0.04
InvertedPendulum 0.05 ± 0.02 0.07 ± 0.00 0.14 ± 0.00 0.31 ± 0.02 0.34 ± 0.20
InvertedDPendulum 0.02 ± 0.00 0.07 ± 0.00 0.09 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
Reacher 0.65 ± 0.07 0.78 ± 0.01 0.84 ± 0.03 0.86 ± 0.02 0.87 ± 0.02
Swimmer 0.08 ± 0.02 0.28 ± 0.04 0.46 ± 0.03 0.53 ± 0.03 0.54 ± 0.06

Table 2: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments
for SAC-J configurations (J = 1, 2, 4, 8, 16. J is the action sequence length during training). Each
value is averaged over 5 trials (rounded to two decimals, highest value highlighted).

Environment SRL-2 SRL-4 SRL-8 SRL-16
Pendulum 0.49 ± 0.04 0.68 ± 0.02 0.78 ± 0.04 0.88 ± 0.02
Lunar Lander 0.14 ± 0.06 0.52 ± 0.03 0.73 ± 0.04 0.84 ± 0.03
Hopper 0.10 ± 0.02 0.23 ± 0.03 0.42 ± 0.04 0.57 ± 0.02
Walker2d 0.12 ± 0.03 0.25 ± 0.06 0.28 ± 0.06 0.24 ± 0.11
Ant 0.04 ± 0.01 0.29 ± 0.09 0.45 ± 0.14 0.54 ± 0.13
HalfCheetah 0.06 ± 0.01 0.13 ± 0.02 0.22 ± 0.01 0.28 ± 0.01
Humanoid 0.07 ± 0.00 0.18 ± 0.02 0.37 ± 0.04 0.46 ± 0.04
InvertedPendulum 0.09 ± 0.03 0.16 ± 0.03 0.27 ± 0.02 0.44 ± 0.04
InvertedDPendulum 0.07 ± 0.00 0.13 ± 0.02 0.03 ± 0.02 0.02 ± 0.00
Reacher 0.90 ± 0.01 0.93 ± 0.00 0.95 ± 0.00 0.96 ± 0.00
Swimmer 0.32 ± 0.05 0.38 ± 0.17 0.31 ± 0.02 0.42 ± 0.15

Table 3: Mean Frequency-Averaged Score (FAS) and standard deviation for different environments
for SRL-J configurations (J = 2, 4, 8, 16. J is the action sequence length during training). Each
value is averaged over 5 trials (rounded to two decimals, highest value highlighted).

across most environments and a wide range of frequencies. However, in the Walker2d-v2 and
InvertedDoublePendulum-v2 environments, SRL faces challenges when learning longer action se-
quences. We hypothesize that these difficulties stem from higher modeling errors in these envi-
ronments. Future work aimed at improving environmental models could potentially address these
issues.

SAC, in contrast, performed poorly across all environments, highlighting the limitations of tradi-
tional RL methods in adapting to changes in frequency. Although training SAC with larger timesteps
(J) improves FAS, this approach compromises performance at shorter timesteps, ultimately reduc-
ing the overall score (see Appendix Fig. 5).

An exception to this trend is the Swimmer environment, where SAC benefits from improved explo-
ration due to extended actions. SRL, which does not use action repetition, does not perform as well
in this specific case. However, this limitation could be addressed by incorporating action repetition
or action correlation during exploration—an enhancement that lies beyond the scope of the current
work.

In order to further validate the utility of FAS, we test all the policies (SAC and SRL-J) in a stochastic
timestep environment. The timestep (time until next input) is randomly chosen from a uniform
distribution of integers in [1,16] after each decision. This is a more realistic setting as it tests the
performance of the policy when the frequency is not constant. Each policy is evaluated over 10
episodes with stochastic timesteps.

In all tested environments, except for the Inverted Double Pendulum, there is a strong Pearson
correlation coefficient (greater than or equal to 0.82) between FAS and performance in stochastic
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Figure 2: Comparison of SAC and SRL to GPM. Top: Learning curves. Bottom: Performance of
the trained policies at different action sequence lengths. The action sequences for SRL and GPM
are generated using the recurrent actor while SAC utilizes action repetition. GPM achieves FAS of
0.41, 0.04, 0.04, 0.04 on the environments from left to right respectively.

conditions. This high correlation confirms the effectiveness of FAS as a metric for measuring a
policy’s generalized performance across various timesteps and frequencies. The Inverted Double
Pendulum, however, presents a unique challenge due to its requirement for high precision at low
decision frequencies, leading to significantly lower FAS scores for all algorithms and thus it is an
outlier. Comprehensive plots for all nine environments are included in the appendix (Fig. 7).

COMPARISON TO GENERATIVE PLANNING METHOD

The Generative Planning Method (GPM) (Zhang et al., 2022) uses a recurrent actor, like SRL, to
generate actions for improved exploration. Originally designed for a different context and evaluated
in the standard RL setting, GPM optimizes plan actions to maximize Q-value, potentially exceeding
SAC in FAS score. We compare SRL and GPM in four environments to test this.

In the original work, GPM was trained with a plan length of 3, similar to the J parameter in our study.
Though shorter plans may restrict generalization to longer sequences, GPM is robust to plan length
variations. For fair comparison, we use the best-performing J values for SRL in each environment.

Figure 2 shows the learning curves and FAS evaluation plots for GPM compared to SAC and SRL.
While GPM generates a plan by optimizing a sequence of actions, it achieves optimal performance
only at sequence lengths of one. As a result, its FAS score is even lower than that of SAC-J .

Notably, on the InvertedDoublePendulum-v2 environment, both SAC and SRL exhibit high perfor-
mance at action sequence lengths (ASL) of 4, which aligns with their training at J = 4. However,
their performance decreases at shorter ASLs. In contrast, GPM shows a similar FAS profile to
SAC-1, indicating that its performance does not generalize well to longer action sequences.

COMPARISON TO MODEL-BASED ONLINE PLANNING

Model-based online planning is another approach that allows the RL agent to reduce its observa-
tional frequency. However, it often requires a highly accurate model of the environment and incurs
increased model complexity due to the use of the model during control.

Since SRL incorporates a model of the environment that is learned in parallel, we compare the
performance of the SRL actor utilizing the actor-generated action sequences against model-based
online planning, where the actor produces only a single action between each simulated state.

Table 4 compares the FAS score SRL to online planning using the same model in online plan-
ning versus the action sequences generated by the SRL policy. We see that SRL can learn action
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Environment SRL Online Planning State Space Action Space
Lunar Lander 0.84 ± 0.03 0.79 ± 0.08 8 2
Hopper 0.57 ± 0.02 0.59 ± 0.19 11 3
Walker2d 0.28 ± 0.06 0.20 ± 0.05 17 6
Ant 0.54 ± 0.13 0.34 ± 0.08 27 8
HalfCheetah 0.28 ± 0.01 0.19 ± 0.02 17 6
Humanoid 0.46 ± 0.04 0.18 ± 0.03 376 17
InvPendulum 0.44 ± 0.04 0.63 ± 0.10 4 1
InvDPendulum 0.13 ± 0.02 0.10 ± 0.07 11 1
Reacher 0.96 ± 0.00 0.95 ± 0.00 11 2
Swimmer 0.42 ± 0.15 0.43 ± 0.14 8 2

Table 4: Comparison of the FAS of SRL and corresponding model-based online planning policies
across different environments.

sequences and is competitive to model-based online planning. Notably, SRL performs better in en-
vironments with larger action and state space dimensions. Such environments are harder to model.
Thus, SRL can leverage inaccurate models to learn accurate action sequences, further reducing the
required computational complexity during training. We hypothesize that this superior performance
is due to the fact that the actor learns a J-step action sequence concurrently, while online planning
only produces one action at a time. Consequently, SRL is able to learn and produce long, coher-
ent action sequences, whereas single-step predictions tend to drift, similar to the ’hallucination’
phenomenon observed in transformer-based language models.

6 DISCUSSION AND FUTURE WORK

SRL bridges the gap between RL and real-world applications by enabling robust control at low de-
cision frequencies. Its ability to learn long action sequences expands the potential for deploying RL
in resource-constrained environments, such as robotics and autonomous systems. Additionally, it
shows promise for applications where obtaining observations is costly, such as in medical diagnos-
tics and treatment planning. Future work will explore hierarchical policies and biologically inspired
attention mechanisms.

The current RL framework encourages synchrony between the environment and the components of
the agent. However, the brain utilizes components that act at different frequencies and yet is capable
of robust and accurate control. SRL provides an approach to reconcile this difference between neu-
roscience and RL, while remaining competitive on current RL benchmarks. SRL offers substantial
benefits over traditional RL algorithms, particularly in the context of autonomous agents in con-
strained settings. By enabling operation at slower observational frequencies and providing a gradual
decay in performance with reduced input frequency, SRL addresses critical issues related to sen-
sor failure and occlusion, and energy consumption. Additionally, SRL generates long sequences of
actions from a single state, which can enhance the explainability of the policy and provide opportu-
nities to override the policy early in case of safety concerns. SRL also learns a latent representation
of the action sequence, which could be used in the future to interface with large language models
for multimodal explainability and even hierarchical reinforcement learning and transfer learning.

7 CONCLUSION

In this paper, we introduced Sequence Reinforcement Learning (SRL): a model-based action se-
quence learning algorithm for model-free control. We demonstrated the improvement of SRL over
the existing framework by testing it over various control frequencies. Furthermore, we introduce
the Frequency-Averaged-Score (FAS) metric to measure the robustness of a policy across different
frequencies. Our work is the first to achieve competitive results on continuous control environments
at low control frequencies and serves as a benchmark for future work in this direction. Finally, we
demonstrated directions for future work, including comparison to model-based planning, generative
replay, and connections to neuroscience.
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A.1 SRL ALGORITHM

Algorithm 1: Sequence Reinforcement Learning
Input: ϕ, ψ1, ψ2, ω. Initial parameters

1 ϕ̄← ϕ, ψ̄1 ← ψ1, ψ̄2 ← ψ2 ; // Initialize target network weights
2 D ← ∅ ; // Initialize an empty replay pool
3 for each iteration do
4 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
5 for each action at in the sequence do
6 st+1 ∼ p(st+1|st, at) ; // Sample transition from the environment
7 D ← D ∪ {(st, at, r(st, at), st+1)} ; // Store transition in the replay

pool
8 end
9 for each gradient step do

10 ϕ← ϕ− λm∇ϕLϕ ; // Update the model parameters
11 for i ∈ {1, 2} do
12 ψi ← ψi − λQ∇ψi

Lψi
; // Update the Q-function parameters

13 end
14 {at, at+1, . . . , at+J−1} ∼ πω({at, at+1, . . . , at+J−1}|st) ; // Sample action

sequence from the policy
15 if iteration mod actor update frequency == 0 then
16 for j ∈ {1, . . . , J} do
17 sj+1 ∼ mϕ̄(sj+1|sj , aj) ; // Sample transition from the

target model
18 end
19 ϕ← ω − λπ∇ωLω ; // Update policy weights
20 end
21 α← α− λ∇α̂L(α) ; // Adjust temperature
22 for i ∈ {1, 2} do
23 ψ̄i ← τψi + (1− τ)ψ̄i ; // Update target network weights
24 end
25 ϕ̄← τϕ+ (1− τ)ϕ̄ ; // Update target model weights
26 end
27 end

Output: ϕ, ψ1, ψ2, ω; // Optimized parameters
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A.2 HYPERPARAMETERS

The table below lists the hyperparameters that are common between every environment used for all
our experiments for the SAC and SRL algorithms:

Hyperparameter Value description
Hidden Layer Size 256 Size of the hidden layers in the feed forward

networks of Actor, Critic, Model and Encoder
networks

Updates per step 1 Number of learning updates per one step in the
environment

Target Update Interval 1 Inverval between each target update
γ 0.99 Discount Factor
τ 0.005 Update rate for the target networks (Critic and

Model)
Learning Rate 0.0003 Learning rate for all neural networks
Replay Buffer Size 106 Size of the replay buffer
Batch Size 256 Batch size for learning
Start Time-steps 10000 Initial number of steps where random policy is

followed

Table 5: List of Common hyperparameters

Environment max Timestep Eval frequency
LunarLanderContinuous-v2 500000 2500
Hopper-v2 1000000 5000
Walker2d-v2 1000000 5000
Ant-v2 5000000 5000
HalfCheetah-v2 5000000 5000
Humanoid-v2 10000000 5000

Table 6: List of environment-specific hyperparameters

A.3 IMPLEMENTATION DETAILS

Due to its added complexity during training, SRL requires longer wall clock time for training when
compared to SAC. We performed a minimal hyperparameter search over the actor update frequency
parameter on the Hopper environment (tested values: 1, 2, 4, 8, 16). All the other hyperparamters
were picked to be equal to the SAC implementation. We also did not perform a hyerparameter search
over the size of GRU for the actor. It was picked to have the same size as the hidden layers of the feed
forward network of the actor in SAC. The neural network for the model was also picked to have the
same architecture as the actor from SAC, thus it has two hidden layers with 256 neurons. Similarly
the encoder for the latent SRL implementation was also picked to have the same architecture. For
the latent SRL implementation we also add an additional replay buffer to store transitions of length
5, to implement the temporal consistency training for the model. This was done for simplicity of the
implementation, and it can be removed since it is redundant to save memory.

All experiments were performed on a GPU cluster the Nvidia 1080ti GPUs. Each run was performed
using a single GPU, utilizing 8 CPU cores of Intel(R) Xeon(R) Silver 4116 (24 core) and 16GB of
memory.

We utilize the pytorch implementation of SAC (https://github.com/denisyarats/
pytorch_sac) (Yarats & Kostrikov, 2020). The official github repository for SRL is: https:
//github.com/dee0512/Sequence-Reinforcement-Learning.
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A.4 PRACTICAL CONSIDERATIONS ON LOW-COMPUTE HARDWARE

In this work, we utilize a GRU for action generation. However, we did not test the performance
of other recurrent architectures or transformers. Depending on the hardware constraints and the
application, a more complicated or simple architecture could be utilized. Furthermore, we also
leave the exploration of actor complexity to generalization to larger action sequences to future work.

Autonomous agents often have observation processing before it is fed into the RL algorithm. It
should be noted that observation processing often forms a significant portion of the latency while the
recurrent portion of the actor for SRL governs the actuation frequency. Furthermore, as mentioned
before, SRL can also inherently handle delays by acting in a predictive manner where the sequence
of actions performed in anticipation of the next state that is being processed. Furthermore, in such
cases, where there is an overlap between two consecutive action sequences, additional MSE loss can
be utilize to align two action sequences. We also leave this exploration to future work.
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A.5 LEARNING CURVES

Figure 3: Learning curves for extended action Soft-Actor Critic (SAC-J) (Haarnoja et al., 2019)
over continuous control tasks. The default timestep J = 1 is the optimal for all environments except
the swimmer and lunar lander. Larger timesteps support better exploration but also result in worse
performance. These results demonstrate that on all environments except swimmer and lunar-lander,
the default timestep is picked to optimize for the sweet-spot between better exploration and better
performance.
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Figure 4: Learning curves of SRL-J (Haarnoja et al., 2019) over continuous control tasks. During
evaluation, SRL receives input after J primitive actions. All curves are averaged over 5 trials, with
shaded regions representing standard deviation.
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A.6 PLOTS FOR FREQUENCY AVERAGED SCORES

Figure 6 shows the plots for FAS. The ASL of 1 in the figure represents the performance of each
policy in the standard reinforcement learning setting. We can see that SRL is competitive with SAC
on ASL of 1 on all environments tested. Larger H results in better robustness at longer ASLs but it
often comes at the cost of lower performance at shorter ASLs.

Additionally, as the FAS reflects, SRL is also significantly more robust across different frequencies
than standard RL (SAC).
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Figure 5: Performance of SAC-J at different Action Sequence Lengths (ASL). SAC repeats the
same action for the duration. All policies were tested on ASL of 1, 2, 4, 8 ... 30. All markers are
averaged over 5 trials, with the error bars representing standard error.
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Figure 6: Performance of SRL-J at different Action Sequence Lengths (ASL). All policies were
tested on ASL of 1, 2, 4, 8 ... 30. All markers are averaged over 5 trials, with the error bars
representing standard error.
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A.7 PLOTS FOR FAS VS. PERFORMANCE FOR STOCHASTIC TIMESTEP

In Figure 7, we present the plots for FAS vs performance for all environments. For all environments
except InvertedDoublePendulum-v2, we see a high correlation. InvertedDoublePendulum-v2 is a
difficult problem at slow frequency and demonstrates poor performance of less than 200, thus it
does not correlate to FAS.

Figure 7: Performance vs. FAS of different policies (SAC, SRL-2, SRL-4, SRL-8, SRL-16). For
each algorithm, we test 5 policies over 10 episodes.

A.8 GENERATIVE REPLAY IN LATENT SPACE

Previous studies have shown that generative replay benefits greatly from latent representations
(Van de Ven et al., 2020). Recently, Simplified Temporal Consistency Reinforcement Learning
(TCRL) (Zhao et al., 2023) demonstrated that learning a latent state-space improves not only model-
based planning but also model-free RL algorithms. Building on this insight, we introduced an en-
coder to encode the observations in our algorithm.

Following the TCRL implementation, we use two encoders: an online encoder eθ and a target en-
coder eθ− , which is the exponential moving average of the online encoder:

Encoder : et = eθ(st) (6)
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Figure 8: Left: Learning curve of SRL with latent state-space on the Walker2d-v2 environment.
Right: Performance of latent SRL-16 on different ASL, compared to SAC and TempoRL. Utilizing
a latent representation for state space is especially beneficial for the Walker2d environment so that
it outperforms SAC even when training upto sequence lengths of J = 16.

Thus, the model predicts the next state in the latent space. Additionally, we introduce multi-step
model prediction for temporal consistency. Following the TCRL work, we use a cosine loss for
model prediction. The model itself predicts only a single step forward, but we enforce temporal
consistency by rolling out the model H-steps forward to predict ẽt+1:t+1+H .

Specifically, for an H-step trajectory τ = (zt, at, zt+1)t:t+H drawn from the replay buffer D, we
use the online encoder to get the first latent state et = eθ(ot). Then conditioning on the sequence of
actions at:t+H , the model is applied iteratively to predict the latent states ẽt+1 = mϕ(ẽt, at). Finally,
we use the target encoder to calculate the target latent states êt+1:t+H+1 = eθ−(ot+1:t+1+H). The
Loss function is defined as:

Lθ,ϕ = Eτ∼D

[ H∑
h=0

−γh
(

ẽt+h
||ẽt+h||2

)T(
êt+h
||êt+h||2

)]
(7)

We set H = 5 for our experiments. Both the encoder and the model are feed-forward neural net-
works with two hidden layers.

We provide preliminary results for the Walker environment. Utilizing the latent space for generative
replay significantly improved performance, making it competitive even at 16 steps (128ms) (Figure
8).

We also provide the TempoRL (Biedenkapp et al., 2021) algorithm as a benchmark as it is an al-
gorithm that successfully reduces the number of decisions per episodes. TempoRL is designed to
dynamically pick the best frameskip (for performance), therefore we report the avg. action sequence
length for TempoRL.

A.9 NEURAL BASIS FOR SEQUENCE LEARNING

Unlike artificial RL agents, learning in the brain does not stop once an optimal solution has been
found. During initial task learning, brain activity increases as expected, reflecting neural recruit-
ment. However, after training and repetition, activity decreases as the brain develops more effi-
cient representations of the action sequence, commonly referred to as muscle memory (Wiestler &
Diedrichsen, 2013). This phenomenon is further supported by findings that sequence-specific activ-
ity in motor regions evolves based on the amount of training, demonstrating skill-specific efficiency
and specialization over time (Wymbs & Grafton, 2015).

The neural basis for action sequence learning involves a sophisticated interconnection of different
brain regions, each making a distinct contribution:
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1. Basal ganglia (BG): Action chunking is a cognitive process by which individual actions are
grouped into larger, more manageable units or ”chunks,” facilitating more efficient storage,
retrieval, and execution with reduced cognitive load (Favila et al., 2024). Importantly,
this mechanism allows the brain to perform extremely fast and precise sequences of actions
that would be impossible if produced individually. The BG plays a crucial role in chunking,
encoding entire behavioral action sequences as a single action (Jin et al., 2014; Favila et al.,
2024; Jin & Costa, 2015; Berns & Sejnowski, 1996; 1998; Garr, 2019). Dysfunction in the
BG is associated with deficits in action sequences and chunking in both animals (Doupe
et al., 2005; Jin & Costa, 2010; Matamales et al., 2017) and humans (Phillips et al., 1995;
Boyd et al., 2009; Favila et al., 2024). However, the neural basis for the compression of
individual actions into sequences remains poorly understood.

2. Prefrontal cortex (PFC): The PFC is critical for the active unbinding and dismantling of
action sequences to ensure behavioral flexibility and adaptability (Geissler et al., 2021).
This suggests that action sequences are not merely learned through repetition; the PFC
modifies these sequences based on context and task requirements. Recent research indicates
that the PFC supports memory elaboration (Immink et al., 2021) and maintains temporal
context information (Shahnazian et al., 2022) in action sequences. The prefrontal cortex
receives inputs from the hippocampus.

3. Hippocampus (HC) replays neuronal activations of tasks during subsequent sleep at
speeds six to seven times faster. This memory replay may explain the compression of slow
actions into fast chunks. The replayed trajectories from the HC are consolidated into long-
term cortical memories (Zielinski et al., 2020; Malerba et al., 2018). This phenomenon
extends to the motor cortex, which replays motor patterns at accelerated speeds during
sleep (Rubin et al., 2022).
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A.10 CLARIFICATION FIGURE

Figure 9: Illustration of the control process in an RL agent, comprising three key components:
observation, computation, and actuation. In a standard RL framework, these components typically
operate at the same frequency, with each observation leading to a single action after a computation
pass. However, the sequence learner can achieve faster actuation by generating multiple primitive
actions per observation. It’s important to note that during training, the observation frequency must be
at least equal to the actuation frequency and, after training, must match the computation frequency.
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A.11 LEARNING CURVES BY J

Figure 10: Learning curve of SRL-2 and SAC-2.

Figure 11: Learning curve of SRL-4 and SAC-4.

Figure 12: Learning curve of SRL-8 and SAC-8.
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Figure 13: Learning curve of SRL-16 and SAC-16.

A.12 RANDOMIZED FRAME-SKIPPING

As shown, SAC trained on a constant timestep cannot adapt to different timesteps. For a fairer
comparison, we also present results on randomized frame-skipping implemented on SAC during
training.

Figure 14: Performance of SAC and randomized SAC (SAC-R).

Figure 14 compares the performance of randomized SAC (SAC-R) to SAC at J = 16. Surprisingly,
we find that randomized frame-skipping during training improves the performance at shorter action
sequence lengths (ASL) for simple environments like pendulum and lunar lander. However, for
Hopper, SAC-R performs worse than SAC. This is most probably due to the stochasticity introduced
due to the randomized frame-skipping. Even with randomized frame-skipping, SAC fails to achieve
performance similar to SRL on simple environments, thus further reinforcing the results presented
in this paper.

A.13 RESULTS FOR TEMPORL ALGORITHM

To further provide provide context for the contribution of this work in comparison to previous work,
we provide further comparison to TempoRL (Biedenkapp et al., 2021) and also discuss performance
compared to recent work on observational dropout.

TempoRL cannot be adapted to the FAS setting since after each action is picked, it further picks the
duration for the amount of time the action will be performed. Yet, since it promotes action repetiton,
it results in lower decision frequency and longer action sequence lengths than standard algorithms
like TD3 and SAC.

Table 7 demonstrates the results of training TempoRL algorithm on some of the benchmarks pre-
sented in this paper. We did a quick hyperparameter search over the max sequence length parameter
and pick the highest number over 3 that did not result in a significant drop in performance. We
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Environment Avg. Reward Avg. Sequence Length Max sequence Length
Pendulum -149.38 ±31.26 71.74ms 6
Hopper 2607.86 ±342.23 22.4ms 9
Walker2d 4581.69 ±561.95 25.54ms 7
Ant 3507.85 ±579.95 62.66ms 3
HalfCheetah 6627.73 ±2500.77 56.20ms 3
Inv Pendulum 984.21 ±47.37 73.92ms 10
InvD Pendulum 9352.61 ±2.2 58.76ms 5

Table 7: Results of running TempoRL on Mujoco Tasks. All results are averaged over 10 seeds.

find that while TempoRL achieve optimal performance on environments with single dimensions like
pendulums, it demonstrates significant drop in performance on environments with multiple dimen-
sions like Ant and HalfCheetah. Furthermore, on all environments, it maintains a relatively short
action sequence length and even though it is given the option of picking long action sequences, it
rarely does so. This result further demonstrates the contribution of SRL at maintaining performance
at really long sequence lengths in environments with high action dimensions.
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