
Published at the Deep RL Workshop, NeurIPS 2022

Supplementary Material

A COUNT MODELS

Our approach makes use of Locality Sensitive Hashing (LSH) to map high-dimensional, continuous
inputs to discrete hash codes. The idea behind LHS is to hash states according to a certain similarity
metrics. Our LHS algorithm of choice is a variation of SimHash Charikar (2002), which uses angular
distance between states as a similarity metrics. The mapping function first projects the input (dim: n)
to a lower dimensional space (dim: k):

�(s) =

$
Mg(s) + v

�

'

where g(s) is an optional preprocessing function, which in our case is equal to the identity mapping,
M 2 Rk,n is a matrix with entries drawn from an i.i.d. standard Gaussian N (0, 1) and v 2 Rk is
a random vector with uniform entries in the interval [0,�), where � is a task-dependent constant.
SimHash takes the sign of the random projection, while we round it up to the next integer as in (Datar
et al., 2004). This better reflects similarity under the Euclidean distance rather than angular distance
and the probability of a collision (two inputs having the same hash) depends on their Euclidean
distance.

Once we have computed the mapping �(·), we use it inside the Count-Min Sketch algorithm.
Count-Min Sketch is designed to support memory-efficient counting without introducing too many
over-counts. It maintains a separate count nj for each hash function �j defined as �j(s) =
�(s) % pj , where pj is a large prime number. Our implementation follows the one of Tang et al.
(2017) in the static hashing variant1. As in their paper, we consider j = 6 ‘buckets’ equal to
[999931, 999953, 999959, 999961, 999979, 999983], which we keep fixed for all the experiments.
The number of counts is then minj=[1,6] nj(�j(s)).

Algorithm 2: Count models update
Input :Dlast: replay buffer of most recently collected rollouts; n: input dimension, k: hashing

dimension; �: random vector interval range; I: training iterations
Output :single-state count model N(s, a), state-pair count model N(s, a, s0)

1 Initialize random matrix M 2 Rn,k with entries from the standard Gaussian distribution N (0, 1)
2 Initialize random vector v 2 Rk with entries from uniform distribution on the interval [0,�)
3 for i = 0 to I�1 // loop over training iterations
4 do
5 for (s,a) in Dlast // update N(s, a)
6 do
7 increase counts for (s, a)
8 for ⌧ in Dlast // update N(s, a, s0)
9 do

10 increase counts for all possible triples (si, ai, sj) 2 ⌧ , with j > i // O
�
len(⌧)2

�
triples

A.1 GRANULARITY

In fig. S7 we show the effect of the dimension k on the granularity of the state space counting. The
count model N(s, a) was previously updated with the (s, a) transitions from a set of 2000 trajectories
collected with Ours+HER policy, which amounts to 200k transitions.

1
https://github.com/openai/EPG/blob/master/epg/exploration.py

12

https://github.com/openai/EPG/blob/master/epg/exploration.py


Published at the Deep RL Workshop, NeurIPS 2022

k = 32 k = 64 k = 128 k = 256

Figure S7: Granularity of the single-state count model N(s, a) for the POINT MAZE environment
depending on the dimension of the hash key k. Every plot represents the number of estimated counts
of any input (s, a) where s = (x, y, vx = 0, vy = 0) and a = (0, 0), given that the count model
previously visited a dataset of 200k points (trajectories obtained with Ours + HER).

A.2 SENSITIVITY ANALYSIS

As we can see from Figure S8 (a), the performance on the Point Maze drops as we increase the
scale at which the uncertainty decays (exponent M). At iteration 0, when no point has been visited,
the count term is zero and the corresponding uncertainty is equal to its maximum value, which is
the value of C. Then, for a fixed C, the higher the exponent M is, the faster the uncertainty decays
with the counts and, consequently, the performance. This is because in the Point Maze environment
we observe the "wormhole" phenomenon, also documented in (Eysenbach et al., 2019), where the
distance estimates are overly optimistic and do not take into account the presence of obstacles. As a
result the agent thinks that it can go through them in order to reach a goal on the other side.

In this case, having a stronger uncertainty for the distance estimate is better, as confirmed in plot S9
(b), where we plot the success rate vs. the amount of counts necessary to have 1 unit of uncertainty.
The plot shows how the performance increases with the number of counts, suggesting that a very
pessimistic count model is a better choice for the Point Maze. The values we used for all of our
experiments are C = 400 and M = 2.

(a) Grouped by the numerator C. (b) Ordered by the count needed to have uncertainty
= 1 timestep

Figure S8: Sensitivity analysis of the parameters regulating the decay of the count-based uncertainty
U [·] = C

(1+N(·))M .

B FETCH PICK AND PLACE

In fig. S9 (b) we report the FETCH PICK AND PLACE performance without the additional goal for the
end effector which we used in the final experiments (fig. 3). The reported value is in line with the
results presented in the original HER paper (Andrychowicz et al., 2017). Augmenting the goal space
with an extra goal position for the end effector, equal to the one for the box, increases the sample
efficiency of a ⇠ 10x factor without introducing any explicit reward shaping.

13



Published at the Deep RL Workshop, NeurIPS 2022

(a) FETCH PICK AND PLACE (b) FETCH PICK AND PLACE WITHOUT EXTRA GOAL

Ours+HER Off-policy DDL+HER DDL+HER Sparse+HER

Figure S9: Performance comparison on the FETCH PICK AND PLACE task with and without additional
goal for the end effector. The dark green dotted line of the left plot is the same as the solid green line
of the right plot.

B.1 ADDITIONAL LOCAL MINIMUM: FETCH PICK AND PLACE WITH WALL

In this section we present the rates at which the hypotenuse gets penalized (merged into the catheti
sum) or regularized (decreased to a lower catheti sum), for the Fetch Pick and Place with Wall
(fig. S11). We also show two illustrative frames from Sparse+HER and Ours+HER, that show the
local minima where the baselines tend to get stuck (fig. S10).

Sparse+HER Ours+HER

Figure S10: Frames of trajectories produced by a goal-conditioned policy learned from Sparse+HER
vs Ours+HER. The additional wall introduces further exploration difficulties in the FETCH PICK AND
PLACE task.

C IMPLEMENTATION DETAILS

C.1 HYPERPARAMETERS

All the networks (Q-functions, policies, distances) use the Adam optimizer. All the task horizons
are equal to 50 time steps, apart from the 100 time steps used for the POINT MAZE task. Table S1
contains the parameters used for DDPG and SAC, together with the best k value for HER relabeling.
Differently from the other methods, the best k for Ours+HER is lower; in fact, only 20% of the data
(k = 0.25) gets relabeled with the achieved goal. We believe that this is due to the effect of the
triangular loss: the distance to the desired goal better reflects the true shortest path and it is more
informative than the distance to the achieved goal. In table S2 we report the architecture and training
parameters for the distance network, and the chosen hashing key k for every environment.

14



Published at the Deep RL Workshop, NeurIPS 2022

Parameter Value

Episode Length 50
Batch Size 256
Updates per Episode 100
Replay Buffer Size 5e105

Learning Rate 0.001
Discount Factor � 0.98
Polyak Averaging 0.95
Action Noise (DDPG) 0.2
Action L2 penalty (DDPG) 1
Random ✏-Exploration 0.3
Q-Target Clipping (Sparse+HER) [�50, 0]
Q-Target Clipping (others) [�1275, 0]
Policy Network 3⇥ 256
Q-Function Network 3⇥ 256
Activation Function ReLU
Weight Initialization Xavier Uniform
Normalize Input Yes
HER Replay Strategy Future
HER Replay-k see right table

Environment Method HER-k

POINT MAZE Ours+HER 0.25
DDL+HER 4
Off-Policy DDL+HER 4
Sparse+HER None

FETCH REACH Ours+HER 4
DDL+HER 4
Off-Policy DDL+HER 4
Sparse+HER 4

FETCH REACH Ours+HER 4
WITH WALL DDL+HER 4

Off-Policy DDL+HER 4
Sparse+HER 4

FETCH PICK Ours+HER 4
AND PLACE DDL+HER 4

Off-Policy DDL+HER 4
Sparse+HER 4

FETCH PICK Ours+HER 4
AND PLACE DDL+HER 8
WITH WALL Off-Policy DDL+HER 8

Sparse+HER 4

CLAW Ours+HER 0
DDL+HER 4
Off-Policy DDL+HER 4
Sparse+HER 4

Table S1: SAC & DDPG hyperparameters and best-k (HER) for each environment (grid search over
{0, 0.25, 1, 4, 8}).

15



Published at the Deep RL Workshop, NeurIPS 2022

Parameter Value

Distance Network 3⇥ 256
Distance Network (DDL) 2⇥ 256
Distance Network (DDL) 3⇥ 256 (Fetch Envs)
Batch Size 256
Updates per Episode 100
Replay Buffer Size 1e106

Replay Buffer Size (DDL) 1e105

Learning Rate 0.0003

Environment k for k for �

for N(s, a) for N(s, a, s0)

POINT MAZE 64 32 20

FETCH REACH 128 128 0.3
(WITH WALL)

FETCH PICK 32 64 0.3
AND PLACE

CLAW 32 64 0.3

Table S2: (left) Parameters for the distance network used in Ours+Her, DDL+HER, Off-Policy DDL
+ HER. (right) Chosen dimension of the hash state key for the presented environments. Left column
is for the single state count model used in the temporal loss, while the right column is for the double
state model used in the triangular loss.

16



Published at the Deep RL Workshop, NeurIPS 2022

Success rate Effect of triangular loss

Ours+HER Off-policy DDL+HER DDL+HER Sparse+HER

Figure S11: FETCH PICK AND PLACE WITH WALL task. Our learned distance helps the optimizer
to avoid the local minima created by the wall. On the right, we can see how the merging rate of the
hypotenuse into the catheti sum is the same as in the case without wall (fig. 5 (b)), namely, at most
30% of the training batch gets penalized. However, the rate at which the hypotenuse gets corrected -
the relaxations rate - is one order of magnitude higher.

C.2 DISTANCE LEARNING

The temporal loss in eq. 4a is trained on states belonging to the same trajectory. The rollouts are
chosen randomly from the buffer, then we use a very basic procedure to sample the tuples (si, ai, sj).
The index i is sampled uniformly from 0 to T � 1, while the index j is sampled uniformly from i+ 1
to T � 1.

17


	Introduction
	Shortest Paths and RL

	Related Work
	Background
	Hindsight Experience Replay
	Dynamical Distances

	Method
	Off-policy Temporal Regression
	Uncertainty with Counts
	Local Connectivity and Triangular Loss

	Algorithm Summary
	Experiments
	Local Optima
	Sample Efficiency

	Conclusions
	Acknowledgements
	Count Models
	Granularity
	Sensitivity analysis

	Fetch Pick and Place
	Additional Local Minimum: Fetch Pick and Place With Wall

	Implementation Details
	Hyperparameters
	Distance Learning


