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ABSTRACT

Large language models (LLMs) have made significant advancements in vari-
ous natural language processing tasks, including question answering (QA) tasks.
While incorporating new information with the retrieval of relevant passages is a
promising way to improve QA with LLMs, the existing methods often require
additional fine-tuning which becomes infeasible with recent LLMs. Augmenting
retrieved passages via prompting has the potential to address this limitation, but
this direction has been limitedly explored. To this end, we design a simple yet
effective framework to enhance open-domain QA (ODQA) with LLMs, based on
the summarized retrieval (SURE). SURE helps LLMs predict more accurate an-
swers for a given question, which are well-supported by the summarized retrieval
that could be viewed as an explicit rationale extracted from the retrieved passages.
Specifically, SURE first constructs summaries of the retrieved passages for each
of the multiple answer candidates. Then, SURE confirms the most plausible an-
swer from the candidate set by evaluating the validity and ranking of the generated
summaries. Experimental results on diverse ODQA benchmarks demonstrate the
superiority of SURE, with improvements of up to 4.6% in exact match (EM) and
4.0% in F1 score over standard prompting approaches. SURE also can be inte-
grated with a broad range of retrieval methods and LLMs. Finally, the generated
summaries from SURE show additional advantages to measure the importance of
retrieved passages and serve as more preferred rationales by models and humans. !

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023b) have significantly accel-
erated progress in natural language processing (NLP) and have become a core technology in various
real-world applications used by millions of users, such as coding assistants (Chen et al., 2021),
search engines (Xuan-Quy et al., 2023), and chatbots (Kim et al., 2021; OpenAl, 2022). However,
LLMs often suffer from limitations, such as non-factual but seemingly plausible generation, referred
to as hallucinations (Welleck et al., 2020), and difficulty in integrating up-to-date knowledge, as their
learned knowledge is limited by the training corpus encoded in their parameters (Guu et al., 2020).
This problem is particularly critical for question answering (QA) (Kwiatkowski et al., 2019), one of
the most frequently encountered applications for LLMs.

Incorporating new information through the retrieval of relevant knowledge for a given query (e.g.,
a question from users) is widely explored to improve the accuracy of QA systems, called open-
domain QA (ODQA) (Karpukhin et al., 2020), and shows promise in addressing the aforementioned
limitations of LLMs (Mialon et al., 2023). Constructing these retrieval-augmented LLMs typically
involves additional fine-tuning (Borgeaud et al., 2022; Izacard et al., 2023), but it becomes infeasible
due to the increase in scale and the recent nature of black-box API (OpenAl, 2023). Consequently,
retrieval augmentation via prompting, i.e., giving specific instruction as the input to obtain the de-
sired outputs by LLM, becomes an attractive direction from its simplicity and efficiency (Shi et al.,
2023). However, naive prompting could be limited in fully exploiting the retrieved contexts, since
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LLMs are simply instructed to use the retrieved information, instead of being explicitly trained to
use it; for example, Liu et al. (2023b) recently observed that LLMs struggle to handle long input con-
texts when they are naively appended. Despite its importance, how to improve retrieval-augmented
LLMs via prompting has been under-explored. Therefore, to improve ODQA via LLMs, we aim
to develop a simple yet effective framework based on prompting, that could be easily applicable to
various LLMs and retrieval methods.

Contribution. We propose a framework based on Summarized Retrieval (SURE), to improve
ODQA performance of retrieval-augmented LLMs. At a high level, SURE helps LLMs predict
more grounded answers, which are well-supported by the summarization of retrieved passages that
could be viewed as an explicit rationale extracted from the retrieved passages. To be specific, SURE
first constructs the multiple summarizations of retrieved passages conditioned on each of a few pos-
sible answer candidates. It enables LLMs to focus on the specific contexts relevant to the given
candidate, and hence provides more discriminative viewpoints for the given question. Then, using
the generated summarizations, SURE confirms the most plausible answer among candidates by mea-
suring the corresponding summaries’ validity to support the given candidate and ranking of relative
informativeness to answer the question. Remarkably, all the procedures of SURE are conducted
via zero-shot prompting. Consequently, SURE is widely applicable when LL.Ms are only accessible
with black-box API, even without query-relevant few-shot examples.

Through the experiments on four different QA
datasets, we demonstrate the effectiveness of SURE
for improving the zero-shot ODQA performance of
retrieval-augmented LLMs. For example, we ob-
serve that the augmentation of 10 relevant passages
effectively improves QA accuracy (up to 8.2% with
Contriver (Izacard et al., 2022)) of ChatGPT (Ope-
nAl, 2022), and the gain is significantly enlarged
with SURE (up to 12.8%), as shown in Figure 1. ot
Overall, SURE with ChatGPT and BM25 (Robert-
son et al., 2009) exhibited 4.6%/4.0% exact match 100 Mgggl Par:;(r)getersA‘(OBo) 500
(EM)/F1 score improvements compared to the stan-

dard prompting in average on four ODQA datasets. Fjguyre 1: Zero-shot QA accuracy with
In addition, SURE is well generalized to differ- y,rious I.LMs on Natural Question
ent configurations of various retrieval methods and (K wiatkowski et al., 2019). The perfor-

LLMs. More interestingly, we observe that the mances of LLaMA-33B, GLaM-62B, and
generated summarization by SURE could be fur- pa1 M-540B are from the corresponding
ther utilized to evaluate the importance of the re- papers, respectively (Chowdhery et al.,
trieved passages, and also verify that it has a higher 5022 Dy et al., 2022; Touvron et al., 2023a).
model/human preference as a rationale for the given

prediction, compared to the generic summarization of retrieved passages. Overall, these results
highlight the effectiveness of SURE, to improve ODQA systems based on LLMs, not only in terms
of accuracy but also of additional advantages that can improve the user experience. We, therefore,
hope that the proposed framework could be beneficial in various real-world applications.
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2 RELATED WORK

Open-domain question answering. Open-domain question answering (ODQA) (Voorhees et al.,
1999) is a task that requires responding to factual questions using external knowledge sources (Zhu
et al., 2015; Nagel, 2016). Recently, there has been significant research interest in ODQA systems,
under a framework known as the retriever-and-read system (Chen et al., 2017). The role of re-
triever is to extract the relevant pieces of information from the given knowledge sources. For the
retriever, there are two different popular methods: one is a lexical-based retriever, e.g., TF-IDF or
BM25 (Robertson et al., 2009), and the other is a sentence embedding-based retriever such as DPR
(Karpukhin et al., 2020) or Contriver (Izacard et al., 2022). On the other hand, the reader is respon-
sible for aggregating and reasoning with the retrieved information to generate answers. Usually,
recent transformer-based language models (LMs) such as BERT (Kenton & Toutanova, 2019) or TS
(Raffel et al., 2020) are widely adopted for the reader after fine-tuning. In contrast, LLMs exhibit
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comparable performance or outperform in QA without fine-tuning (Kamalloo et al., 2023; Shi et al.,
2023), which indicates a potential to serve as a universal QA system (Xuan-Quy et al., 2023).

Retrieval-augmented language models. Similar to enhancing QA systems with retriever in ODQA,
augmenting LMs with relevant information retrieved from external knowledge sources has been
demonstrated as an effective way to improve the performance of LMs on various NLP tasks (Guu
et al., 2020; Lazaridou et al., 2022; Min et al., 2022; Liu et al., 2023a), by reducing hallucination
of LLMs and leveraging external knowledge which is not seen during pre-training. To construct
such retrieval-augmented LMs, the standard approach is conducting additional fine-tuning to learn
how to incorporate the retrieved information (Guu et al., 2020; Borgeaud et al., 2022; Izacard et al.,
2023). However, when considering the recent nature of LLMs with increasing scale and providing
black-box API only, such a direction becomes less attractive. One promising direction to address this
challenge is investigating a better prompting (Brown et al., 2020), which incorporates the retrieved
information as additional inputs in a sophisticated way. However, this direction has been only lim-
itedly explored. Appending the retrieval (Si et al., 2023; Trivedi et al., 2023) is a common practice
for prompting, but Liu et al. (2023b) recently revealed its limitation in utilizing the retrieved infor-
mation. Aggregating the predictions from each retrieved passage has been also explored (Lazaridou
et al., 2022; Shi et al., 2023), but LLMs can’t see a full context of retrieved information in this case.
More discussions about the summarization of retrieval in open-domain context are in Appendix G.

3  SUMMARIZED RETRIEVAL FOR QUESTION ANSWERING

3.1 OVERVIEW AND PROBLEM DESCRIPTION

Overview. In this section, we present our framework, coined Summarized Retrieval (SURE) to
enhance ODQA performance of LLMs, by proposing an improved way to incorporate retrieved pas-
sages for the prediction. Our main idea is to construct multiple summaries of the retrieved passages
conditioned with each of a few answer candidates, and predict the most plausible candidate as the
answer after evaluating the validity and relative informativeness of summaries. In Sections 3.2 and
3.3, we present the details to generate the summarizations and evaluate them. Figure 2 presents the
specific example of QA procedure via SURE.

Problem description. Open-domain question answering (ODQA) is an extension of QA tasks that
answer questions that require background knowledge by leveraging an external database. In order
to answer the given question ¢, the ODQA system typically follows retrieve-and-read framework
(Chen et al., 2017; Lee et al., 2019), where the retriever finds the informative passages C’]T, from the
whole corpus C', and the reader exploits the retrieved passages to decide the answer a, which can be
formulated as follows:

CY =Retriever(q,C,N) and @ = Reader(q,C}), (1
where N is the number of retrieved passages and @ is the predicted answer.

In this work, we focus on improving a prompting method for an LLM-based ODQA system. Specif-
ically, we adopt the existing retriever method, e.g., BM25 (Robertson et al., 2009) or Contriever
(Izacard et al., 2022), with the dataset-specific corpus. For the reader method, we use LLMs, de-
noted by M, such as ChatGPT (Sun et al., 2023) or LLaMA-2 (Touvron et al., 2023b), by incorpo-
rating the retrieved passages via prompting (Brown et al., 2020) without additional training. For ex-
ample, with a prompt p(q, C’R}) = “Reading passages C'J‘\';, answer to question ¢7,
the prediction @ is obtained from M, i.e., @ = M (p(q, C})).

3.2 CONDITIONAL SUMMARIZATION OF RETRIEVED PASSAGES

To better exploit the retrieved passages with LLMs, SURE first summarizes them conditioned on
each of a few potential answer candidates. This conditional summarization of retrieved passages
would include the specific contexts supporting a given answer candidate, compared to the generic
summarization focusing on the wide coverage for the retrieved passages. Specifically, SURE first
generates answer candidates and then conducts conditional summarization.

Candidates generation. Given a question ¢, retrieved passages C;, and LLM M, we first generate
K answer candidates y = [y1, . .., Yk using a prompt p.., designed for candidate generation from
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I

Query J

The concept of micro financing was developed by who in 19767

Retrieved Passages J

Title: Innovative financing, Text: Innovative financing Innovative financing refers to ... first mentioned and introduced at the International
Conference on Financing for Development in 2002.

— /L

(

Candidates: (a) Muhammad Yunus, (b) Grameen Bank
( Bl

L 2. Conditional Summarization J J

Title: ACORN International, Text: interns and volunteers that have come from George Brown College (Toronto), Carleton University ...
micro-finance since it has failed to reduce poverty.

( 1. Answer Candidates Generation )

Summarization for (a): Microfinance is a term used to describe financial services... In 1976, Muhammad Yunus, a Bangladeshi economist,
began experimenting... Therefore, it can be concluded that the concept of micro financing was developed by Muhammad Yunus in 1976.

Summarization for (b): ... Grameen Bank is one of the pioneers of microfinance, having been founded in Bangladesh in 1983 by Muhammad
Yunus. ... the concept of micro financing was not developed by Muhammad Yunus in 1976, but rather by the Grameen Bank in 1983.

( 3. Verification J

Validity of Summarization for (a): True, Validity of Summarization for (b): False, Relative informativeness: (a) > (b)

N N )

Prediction
Therefore, the answer is “Muhammad Yunus”

Figure 2: Example of QA with the proposed SURE framework. Given a query question and relevant
passages retrieved by an external method, e.g., BM25 (Robertson et al., 2009), a large language
model, e.g., ChatGPT, needs to predict the answer. To improve this, SURE first generates multiple
answer candidates via prompting, and then conditionally summarizes the retrieved passages to sup-
port each candidate. By comparing the validity and relative informativeness of summaries, SURE
selects the most plausible candidate as a final prediction.

q and C’ﬁ:

Y = M (pean(a, CF)) - 2
In Figure 2, one can observe the example of generated candidates. It is noticeable that the previous
works utilized stochastic decoding to generate multiple answer candidates (Lazaridou et al., 2022;

Weng et al., 2022). However, we empirically observe that explicitly prompting an LLM to generate
K potential candidates outputs more diverse and high-quality candidates.

Candidate-conditioned summarization. Next, we conditionally summarize the retrieved passages
OK, focusing on including the relevant contexts to validate each candidate 5, € y as an answer to q:

sk = M (psun(q, O, i) for k=1,... K 3)

0.

where pgyy is @ prompt to obtain the conditional summarization s & Condiate 1B Candidate 2
from g, C’j{,, and y;. We present some examples of the generated
summarizations in Figure 2, and more examples are in Appendix B.
Remarkably, the generated summarizations effectively reduce the
given passages by focusing on extracting the candidate-relevant
contexts (e.g., 1035 words of retrieved passages — 93 words of
summarization). Also, we verify that the contexts of the gener-
ated summarization are specialized on a given answer candidate; Summarization #1 - Summarization #2
when we measure TF-IDF (Chowdhury, 2010) based text similarity Figure 3: TF-IDF overlap be-
between two candidates and two conditional summarizations from tween candidates and condi-
each candidate (e.g., summarization #1 is generated to support an- tional summarizations.

swer candidate #1) on Natural Question dataset (Kwiatkowski et al., 2019) in Figure 3, the summa-
rization exhibits a higher similarity with the corresponding candidate than the other candidate.

o
@

TF-IDF Similarity
°

o
o
il

3.3 SELECTIVE PREDICTION VIA VERIFICATION OF SUMMARIZATIONS

Then, using the generated summarizations, SURE confirms the most plausible answer among the
candidate set for the prediction. Our key intuition is that the quality (e.g., factuality, logicality, and
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Algorithm 1 SuRE algorithm

Input: Large language model M, question g, N retrieved passages C};, candidate number K
Answer Candidate Generation: y = M (pcan(q,C%)), ¥ = [U1,-- ., K]

Conditional Summarization: s; = M (psum(q, C’j\}, yk)) for k=1,... K

: Instance-wise Validation: v(s;) + Eq. 4 with M (pya1(q, sk))

Pair-wise Ranking: 7(sy, Sk ), Tpair(Sk, i) < Eq. 5 With M (pran (¢, Sk, 5i))

Output: Prediction @ = yy~, k* = arg maxy, v(sx) + r(sk, Sk)

A b

readability) of the generated summarizations would vary depending on the plausibility of answer
candidates, so as more plausible the answer, the corresponding summarization also will be more
plausible. Then, LLMs can find the most plausible summarization among these multiple summa-
rizations if a proper evaluation way is given. To this end, we propose to evaluate the generated
summarizations with instance-wise validity and pair-wise ranking among them.

Instance-wise validity. First, we evaluate the validity of each summarization s; whether it is not a
degenerated case as the provided passages are not enough to support 3, or it properly supports the
given answer candidate g, rather than the other candidate y;, 7 # k.> To be specific, we measure a
validity v of each summarization s using a prompt py,1 designed for the validation:

v(sg) =1, when M (pya1(q, Yk, sx)) = True or wv(sg) =0, else. 4)
Pair-wise ranking. In addition, we evaluate how the given summarization sj, is relatively infor-

mative to answer the question ¢, among all summaries S = {sk}iil. To this end, we measure a
ranking 7, using a pair-wise ranking prompts (Qin et al., 2023; Sun et al., 2023):

K 1, M (pranx(q, Sk, 5:)) = s
T(Sk'7 SK) - Z Tpair(sk'7 Si)y Tpair(sk‘v SL) = 07 M (prank((I7 Sk, Sz)) =S; , (5)
itk 0.5, else

where ppani s @ prompt to determine which is relatively more informative one to answer the question
by comparing two summaries. To prevent the order bias of LLMs (Zhao et al., 2021), we query the
same pair of summaries twice by changing their order at the prompt prapk-

Finally, SURE makes a final prediction @ by incorporating both v(sy) and r(sg, Sk ):

a=7y, k" = arginaxv(sk) + (s, Sk), 6)

i.e., both validity and ranking scores are equally contributed. Algorithm | summarizes the formal
procedure of SURE. We also highlight that the common prompts are shared across different datasets
and LLMs, and the used prompts Pcan, Psun; Pvals Prank are presented in Appendix A.

4 EXPERIMENTS

In this section, we design our experiments to investigate the following questions:

o Does SURE improve the accuracy of LLMs on various ODQA datasets? (Table 1)
o Is SURE generalizable across various retrieval methods and LLMs? (Table 2)

o What is the effect of each component in SURE? (Table 3)

o Is SURE’s summarization a good rationale for the answer? (Table 4 & Figure 4)

4.1 SETUPS

Evaluation datasets. For all experiments, we measure zero-shot QA accuracy with the four different
ODQA datasets: (1) Natural Questions (NQ) (Kwiatkowski et al., 2019), (2) WebQuestions (WebQ)
(Berant et al., 2013), (3) 2WikiMulti-hopQA (2Wiki) (Ho et al., 2020), and (4) HotpotQA (Yang
et al., 2018). For NQ and WebQ, we use their original test splits and 21M English Wikipedia dump

>We present such failure cases in Appendix D.
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Table 1: EM / F1 for different QA methods with ChatGPT on four QA datasets. N = 10 most
relevant passages are retrieved using BM25, except no retrieval. The best and second best scores
are highlighted in bold and underline, respectively.

Methods / Datasets | NQ WebQ 2Wiki HotpotQA | Average
No retrieval ‘ 27.6/39.0 25.0/38.8 21.4/248 222/31.9 ‘ 24.1/33.6

Base | 28.4/38.8 19.6/32.5 27.4/32.8 30.8/40.3 | 26.6/36.1

Rerank | 24.8/33.9 18.8/30.6 23.0/284 27.8/37.4 | 23.6/32.6

RePlug | 26.0/353 18.8/31.5 23.6/28.5 28.0/379 | 24.1/33.3
Selection-inference | 24.3/32.8 17.3/28.6 22.6/29.5 30.8/39.6 | 23.8/32.6
Chain-of-thoughts | 22.3/31.4 152/27.8 19.6/22.5 25.6/31.8 | 20.7/28.4
Self-verification | 25.2/354 16.1/285 23.2/30.5 31.6/41.8 | 24.0/34.1

SURE (Ours) | 33.5/42.3 25.1/36.6 32.8/38.1 33.2/43.4 | 31.2/40.1

(Karpukhin et al., 2020) as the source passages for the retrieval. For 2Wiki and HotpotQA, we
use the subsampled splits released by Trivedi et al. (2023), along with the corresponding corpus
for each data. For the experiments with LLaMA2-chat (Table 2) and more analyses (Section 4.3),
we took 500 randomly subsampled examples of NQ and Web(Q datasets for efficient experiments
considering limited computing resources, and denoted these datasets NQ* and WebQ*, respectively.
As evaluation metrics, we calculate the exact match (EM) and F1 score. The EM accuracy is the ratio
of correct answers in the test dataset, where a given prediction is considered correct if it coincides
with one of the gold answers. The F1 score measures the overlap between bags of tokens in the
prediction and the gold answer. We normalize the predictions and answers (i.e., case-folded, and
punctuation) to compute the metrics, following the implementation of Rajpurkar et al. (2016).

Baselines. We compare SURE with the following baselines. (1) No retrieval answers the question
with LLMs without the retrieved passages (i.e., closed-book setup). (2) Base appends the retrieved
passages as additional inputs of LLMs via prompting. (3) Line of works for better exploitation of
retrieved passages with LLMs: Rerank (Lazaridou et al., 2022) and RePlug adopt an ensemble strat-
egy that makes predictions based on each passage and then aggregates them with specific voting
methods. Specifically, Rerank and RePlug utilize TF-IDF and sentence embedding from Contriever,
respectively. (4) Adapt the works that incorporate intermediate reasoning steps for improved reason-
ing with LLMs, as summarizing could be viewed as a specific type of reasoning: Selection-inference
(Creswell et al., 2023) measures the ranking of the passages, and conducts interactive answering by
adding the passages one by one starting from higher ranked ones. Chain-of-thoughts (Kojima et al.,
2022): we add zero-shot Chain-of-thoughts prompting (Wei et al., 2022) into the prompt of Base.
Self-verification (Weng et al., 2022) generates answer candidates based on random sampling, then
selects the most plausible one by verifying its reasoning with the question from conditional masking.

Implementation details. For the experiments, we use three recent state-of-the-art LLMs: Chat-
GPT (gpt-3.5-turbo-0301) (OpenAl, 2022), GPT-4 (gpt-4-0613) (OpenAl, 2023), and
LLaMA2-chat-70B (Touvron et al., 2023b). We use a temperature of 0.0 when calling the API or
greedy decoding for LLaMA, to remove the effect of random sampling (Sun et al., 2023). For the
retrieval methods, we use three different approaches: BM25 (Robertson et al., 2009), DPR-multi
(DPR) (Karpukhin et al., 2020), and Contriever (Izacard et al., 2022). We use the implementations
in Elasticsearch for BM25, and BEIR for DPR and Contriever, respectively.3 In the case of SURE,
we use the same prompts across the different datasets, and they are presented in Appendix A. Also,
we use a fixed value of K = 2 during the experiments since we observe that the improvements by
increasing K are limited, as shown in Appendix B. When there are multiple candidates with equal
plausibility (Eq. 6), then SURE selects the one generated earlier in Eq. 2.

4.2 MAIN RESULTS

Table 1 summarizes the experimental results on four different ODQA datasets, under ChatGPT with
N = 10 retrieved passages using BM25. First, augmenting the retrieved passages with prompting is
effective in improving ODQA accuracies of LLMs. For example, the average EM across four ODQA
datasets is increased from 24.1 to 26.6. Somewhat surprisingly, we observe that Base outperforms

Shttps://www.elastic.co/, https://github.com/beir-cellar/beir
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Table 2: EM with different configurations of LLMs and retrieval methods on four QA datasets.
N = 10 most relevant passages are commonly retrieved. F1 scores are reported in Table 5. For
LLaMAZ2-chat, we conducted experiments on NQ* and WebQ™* and the results are indicated by *.

\ ChatGPT \ GPT-4 | LLaMA2-chat

Datasets | BM25 +SURE DPR +SURE Contriever + SURE | BM25 + SURE | BM25 + SURE
NQ 28.4 33.5 36.1 41.0 35.8 40.4 30.2 324 18.6* 30.4*
WebQ 19.6 25.1 23.2 27.3 22.5 28.7 21.5 21.7 16.0* 24.0*
2Wiki 274 32.8 19.2 214 27.2 32.6 34.8 38.2 20.2 27.8
HotpotQA 30.8 33.2 25.6 274 322 33.6 34.8 40.6 24.0 28.0
Average ‘ 26.6 31.2 26.0 29.3 29.4 33.8 ‘ 30.3 33.2 ‘ 19.7 27.6

Table 3: Ablation and more analyses. EM / F1 with ChatGPT are compared on four QA datasets.
N = 10 most relevant passages are retrieved using BM25. The best scores are highlighted in bold.

Methods / Datasets | NQ* WebQ* 2Wiki HotpotQA | Average

Base 204/41.7 19.4/322 274/32.8 30.8/403 | 26.8/36.8
Conditional summarizations 30.4/40.9 20.8/33.5 29.2/345 33.0/43.4 | 28.4/38.1
+ Pair-wise ranking 30.6/41.2 21.6/34.8 31.0/36.0 30.6/40.7 | 28.5/38.2
+ Instance-wise validity (SURE) | 35.6/44.9 23.2/36.5 32.8/38.1 33.2/43.4 | 31.2/40.7
MCQ prompt 352/453 224/351 304/36.1 31.0/41.5 | 29.8/39.5
Sum-and-pred (Gen) 264/37.8 19.8/326 256/323 33.8/43.3 | 27.3/37.1

other sophisticated baselines overall; this inefficiency of previous methods might be a result of a
more challenging yet practical experimental setup. For example, we assume the zero-shot QA rather
than few-shot setups, and also consider general black-box APIs for LLMs which do not provide the
output probability. In contrast, one can observe that SURE successfully improves QA accuracy of
LLMs by effectively exploiting the retrieved passages. In particular, SURE exhibits 4.6%/4.0% ab-
solute EM/F1 improvements in the average, compared to naively appending the retrieved passages.

We further demonstrate the compatibility of SURE across various LLMs and retrieval methods.
Specifically, in addition to ChatGPT and BM25 considered in Table 1, we run experiments on three
different LLMs (GPT-4, and LLaMA2-chat) and two different retrieval methods (DPR and Con-
triever). In Table 2, we compare EM metric of SURE with the baseline that simply appends the
retrieved passages. Here, ODQA performance significantly depends on the retrieval methods and
types of LLMs; for example, using Contriever instead of BM25 makes 2.8% average EM improve-
ments, and using GPT-4 instead of ChatGPT makes 3.7% average EM improvements, respectively.
Overall, one can observe that SURE consistently improves ODQA accuracy regardless of types of
LLMs and retrieval methods, with 4.6% average EM improvements. More interestingly, SURE suc-
cessfully improves average EM scores of LLaMA2-chat as 7.9%, a state-of-the-art open-sourced
LLM, which further indicates the practical usefulness of SURE as a simple yet effective solution for
ODQA for the open source research community. The F1 results are presented in Appendix B.1.

4.3 ADDITIONAL ANALYSES

In this section, we conduct additional analyses of SURE. We conduct experiments using ChatGPT
as an LLM, BM2S5 as a retriever, NQ* and WebQ* as datasets.

Ablation and more analysis of SURE. First, we compare the following methods for the ablation
of SURE: (1) Base: appends the retrieved passages to inputs, (2) + Conditional summarizations:
additionally appends all the conditional summarizations, (3) + Pair-wise ranking: selects the sum-
marization with only ranking (Eq. 4), and (4) + Instance-wise validity: selects the summarization
with both ranking and validity, i.e., SURE. In addition, we consider two different methods to further
analyze where the effectiveness of SURE comes from. (5) MCQ prompt: composes Multiple Choice
Questions by generating the answer candidates via prompting (Eq. 2) and using them as possible
choices for prediction by appending them to input prompt (Robinson et al., 2023) (more details in
Appendix A.7), (6) Sum-and-pred (Gen): instead of conditional summarization, it generates generic
summarization and predicts the answer based on it. We present the results in Table 3.
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Table 4: Comparison as reranking method. EM / F1 with ChatGPT are compared on four QA
datasets. A single most relevant passage is selected among N = 10 passages retrieved by BM25.
The best scores are highlighted in bold.

Datasets / Methods | ~ NQ* WebQ* 2Wiki HotpotQA | Average

BM25 | 12.6/18.8 9.0/17.6 148/18.1 21.8/283 | 14.6/20.7
Sent-encoder (q) | 18.2/264 11.4/21.1 14.8/18.1 20.2/272 | 162/23.2
LLM-rerank | 20.0/28.4 14.2/244 18.2/213 26.0/344 | 19.6/27.1
Sent-encoder (Gen) | 21.2/31.7 13.6/253 17.8/21.1 27.0/34.3 | 19.9/28.1

Sent-encoder (SURE) | 23.2/32.5 15.4/28.0 18.0/21.5 28.8/36.7 | 21.4/29.7

40

SuRe's Summarization
B Generic Summarization

@
g

35

N
5

30

Exact Match (EM)
Win Rate (%)

N
8

s

GPT-4 Eval Win Rate (%)
w
g

L NQ": SuRe (Ours) WebQ": SuRe (Ours)
NQ": Base B WebQ": Base
NQ": No Retrieval WebQ": No Retrieval

o

5 10 20 50 NQ'  WebQ'  2Wiki HolpolQA  Average
Number of Retrievals (N) Datasets

Human
Evaluation Methods
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Figure 4: (a) EM with different numbers of retrieved passages (/V) under ChatGPT and BM25. (b)
Comparison between SURE’s summarization and generic summarization via GPT-4 evaluation (Liu
etal., 2023c). (c) Human preference between SURE’s summarization and generic summarization on
84 samples of NQ*, along with GPT-4 evaluation. More results are in Appendix C.

First, constructing conditional summarizations improves performance as they can extract special-
ized contexts for a given question and its answer candidates. Next, incorporating the evaluation
on the instance-wise validity of each summarization significantly improves the performance com-
pared to only considering the ranking among summarizations, as it enables more precise selection
by adding the assessment regarding the relevance and coherence of the summarization in relation to
the given question and prediction pair. Also, a simple aggregation of generated answer candidates
in the prompt shows improvement, which indicates the effectiveness of our generated candidates.
However, this method becomes inefficient when the given question requires more complex reason-
ing to answer. Lastly, using generic summarization is effective in improving ODQA with LLMs by
providing concentrated and brief contexts and addressing the difficulty from the long context (Liu
et al., 2023b). However, the gain is significantly limited compared to SURE, which demonstrates
that the key components of SURE are conditional summarization and comparison, rather than simply
providing compressed contexts.

Different number of retrieval. Next, we investigate the effect of the number of retrieved passages
(N). Increasing N is one of the most intuitive ways to improve the performance of retrieve-and-
read system by providing more extensive information (Karpukhin et al., 2020), and hence it is
natural to expect that similar positive results could be observed with retrieval-augmented LLMs.
However, on the other hand, its effectiveness could be limited as LLMs could fail to handle long
input contexts (Liu et al., 2023b). To verify the effect of different NV on retrieval-augmented LLMs
using prompting, we measure EM of ChatGPT and BM25 with varied N. In Figure 4(a), we present
the results of Base and SURE on NQ* and WebQ*. First, we observe that the accuracy of retrieval-
augmented LLMs significantly depends on /V; when a small number of retrieved passages is only
available, the performance of Base could be even behind the performance without retrieval, as it
restricts the prediction within the limited contexts. As N increases, its performance is increased and
takes benefit from the retrieval system. With SURE, the accuracy of LLMs could be improved even
with the small number of retrievals (/N = 5), and it achieves better accuracy with larger V.

Effectiveness for finding important passages. In previous experiments, we mainly focus on
demonstrating the effectiveness of SURE for improving QA accuracy. While the accurate answer
is the most important feature of the QA system, providing the proper rationale for the answer is
another important feature, especially in LLM-based systems for reliable usage by users such as
search engines. One of the standard approaches for this is explicitly enumerating the most relevant
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i
Question Answer
[ What's the movie called with Justin Timberlake and time? J In Time

/—( Generic Summarization %
_ However, there is one movie that stands out as a collaboration between Timberlake and the

concept of time: “In Time”. Released in 2011, the movie is set in a future where people stop aging at 25 and must work to buy themselves
more time. Timberlake plays the lead role of Will Salas, a man who is falsely accused of murder and must go on the run with a hostage,
played by Amanda Seyfried. The movie received mixed reviews but was praised for its unique concept and Timberlake’s performance.
Therefore, “In Time” is the movie that features Justin Timberlake and the concept of time.

N\ J

/—( Candidate-conditioned Summarization (Ours) %

Justin Timberlake starred in the 2011 science fiction action film “In Time” alongside Amanda Seyfried. T he film is setin a future where people
stop aging at 25 and must work to buy themselves more time, with time becoming the new currency. Timberlake plays Will Sales, a man
falsely accused of murder who goes on the run with a wealthy hostage, played by Seyfried. The two must navigate a dangerous world where
time is everything and corruption is rampant. The film received mixed reviews but was praised for its unique concept and stylish visuals.

S J

Figure 5: Qualitative comparison of candidate-conditioned summarization from SURE (Ours) com-
pared to generic summarization as a rationale for the answer. More examples are in Appendix B.

retrieved passages based on the specific scoring method, which is often called Re-ranking (Nguyen
et al., 2016; Izacard et al., 2023). To explore the advantages of SURE in this aspect, we measure
QA accuracy of ChatGPT augmented with the one passage considered to be most relevant with a
specific reranking method within N = 10 originally retrieved passages with BM25. To extract
such a reranking method for SURE, we use the cosine similarity between the sentence embeddings
(Reimers & Gurevych, 2019) of the generated summarization and the retrieved passages, denoted by
Sent-encoder (SURE). Then, we compare it with the following baselines for reranking: (1) BM25:
original retrieval score, i.e., no reranking, (2) Sent-encoder (q): sentence-encoder-based rerank-
ing using the similarity between retrieved passages and question (Nguyen et al., 2016), (3) LLM-
rerank: LLM-based reranking (Sun et al., 2023), and (4) Sent-encoder (Gen): sentence-encoder-
based reranking using the similarity between retrieved passages and generic summarization. The
results are presented in Table 4. Here, we observe that all the reranking methods are effective com-
pared to no reranking. In addition, LLM-based reranking shows a higher accuracy, while SURE’s
similarity-based reranking outperforms all the baselines, demonstrating the superiority of SURE.

Qualitative evaluation as rationale to answer. Lastly, we explore the additional benefits of SURE,
which offers rationales to support the prediction. Specifically, we compare the summarization from
SURE with the generic summarization, which is also generated by LLMs but with no constraint of
supporting specific answer candidates. To separately consider the quality as rationale with the ac-
curacy of prediction, we only compare the samples correctly predicted by both SURE and Generic
summarization used in Table 3; for example, it results in 84 remaining samples in the case of NQ*.
We first evaluate using GPT-4, which has been demonstrated to have a high correlation with humans
(Liu et al., 2023c). We present the results in Figure 4(b). Here, one can observe that the summa-
rization via SURE is more preferred by GPT-4; for example, Generic summarization wins 30.3%
while SURE wins 37.4% on average. It is also worth noting that the average length of both sum-
marizations is similar (Generic: 600 vs SURE’s: 570 average characters on NQ), therefore the bias
of GPT to prefer the longer response (Wang et al., 2023) might limitedly affect the result. Next,
we ask human evaluators which summarization is more informative and plausible to support the
given question-answer pair on 84 samples of NQ*. This result is presented in Figure 4(c). Here,
we also observe a higher preference for SURE’s summarization (Generic: 26.9% vs SURE: 43.4%).
Overall, these results reveal the potential of SURE toward a better ODQA system by providing a
high-quality rationale for the answer. Details on human evaluations are presented in Appendix C.

5 CONCLUSION

In this paper, we proposed SURE, a simple yet effective framework to improve ODQA accuracy of
LLMs. Our key idea is to ensure the correctness of predicted answers by constructing the summaries
of the retrieved passages for the potential answer candidates and evaluating their validity and rank-
ing. Our experiments demonstrate that SURE significantly improves ODQA performance of various
retrieval-augmented LLMs, and also has additional advantages for measuring the importance of pas-
sages and providing the rationale for prediction. From these advantages, we believe our framework
can contribute to various real-world applications and provide a better experience to users.
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ETHICS STATEMENT

We strongly believe that SURE can provide a strong positive impact in real-world applications re-
lated to QA, e.g., search engines or chatbots. Since SURE can provide the summarization that sup-
ports the corresponding prediction specifically, it can significantly improve the explainability (Mao
et al., 2022) and reliability (Whitehead et al., 2022) of QA systems which are more important when
they are constructed using black-box LLMs. Moreover, considering the success of LLMs in various
applications more than QA (Izacard et al., 2023; Nam et al., 2023), we expect the advantages of this
framework to better exploit the retrieved passages with LLMs will be beneficial to them.

In contrast, there also exists some potential negative impacts when developing a system with the
multiple usages of LLMs, as it could be costly (Chen et al., 2023) and generate sensitive (Santurkar
et al., 2023) and malicious (Deshpande et al., 2023) text outputs. Since the summarization from
SURE is constructed based on the provided passages, one should consider their quality to prevent
undesirable outputs. On the other hand, incorporating the additional filtering could be a strong
solution (Le Bras et al., 2020; Schick et al., 2021). To reduce the cost, substituting specific steps of
SURE, e.g., measuring validity, with trainable small LMs could be an effective way, similar to Yang
et al. (2020); Lewis et al. (2021); Li et al. (2023).

REPRODUCIBILITY STATEMENT

We provide implementation details (e.g., design of prompts, used APIs, and retrieval methods) and
experiment setups (e.g., datasets and metrics) in Section 4 and Appendix A. In addition, we will
release source codes near future.
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A DESIGNED PROMPTS FOR EXPERIMENTS
In this section, we present the specific prompts used for the experiments in Section 4.

A.1 ANSWER CANDIDATES GENERATION

In Listing 1, we present the prompt p.., which is used to generate K answer candidates y =
[U1,-..,YK] from the given question and N retrieved passages (Eq. 2). Here, we present the case
of K =2.

Listing 1 Prompt for answer candidates generation.

f LI I

Below are N passages related to the question at the end. After reading
— the passages, provide two correct candidates for the answer to the
— question at the end. Each answer should be in the form: (a) xx, (b)
— vy, and should not exceed 3 words for each candidate.

Passage #1 Title: {Passage El Title}
Passage #1 Text: {Passage El Text}

Passage #N Title: {Passage HN Title}
Passage #N Text: {Passage HN Text}

Question: {Question}

Answer:
T
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A.2 CONDITIONAL SUMMARIZATION

In Listing 2, we present the prompt pgy, Which is used to generate conditional summarization s of
retrieved passages to validate each candidate g, as an answer to the question (Eq. 3).

Listing 2 Prompt for conditional summarization.

fll'
Passage #1 Title: {Passage Hl Title}
Passage #1 Text: {Passage Hl Text}

Passage #N Title: {Passage EN Title}
Passage #N Text: {Passage HN Text}

Your job is to act as a professional writer. You will write a

— good-quality passage that can support the given prediction about the
< question only based on the information in the provided supporting

— Dpassages.

Now, let's start. After you write, please write [DONE] to indicate you
< are done. Do not write a prefix (e.g., "Response:") while writing a
— passage.

Question: {Question}

Choices: {(a) Choice 1 (b) Choice 2}
Prediction: {(a) Choice 1 (or (b) Choice 2)}
Passage:

v

A.3 INSTANCE-WISE VALIDATION

In Listing 3, we present the prompt p,,1 Which is used to evaluate the validity of each summarization
sk whether it is not a degenerated case as the provided passages are not enough to support ¥, or it
properly supports the given answer candidate yy, rather than the other candidate y;, i # k (Eq. 4).

Listing 3 Prompt for instance-wise validation.

fll'
Question: {Question}

Prediction: {Prediction}
Passage: {Passage}

Does the passage correctly support the prediction? Choices: [True,

— False]. Answer:
T
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A.4 PAIR-WISE RANKING

In Listing 4, we present the prompt p,anx Which is used to evaluate how the given summarization sy,
is relatively informative to answer the question ¢, among all summaries Sxg = {sk}ff:l (Eq. 5).

Listing 4 Prompt for pair-wise ranking.

f rtra
Question: Given the following passages, determine which one provides a
— more informative answer to the subsequent question.

Passage 1: {Passage 1}

Passage 2: {Passage 2}

Target Question: {Question}

Your Task:

Identify which passage (Passage 1 or Passage 2) is more relevant and
— informative to answer the question at hand. Choices: [Passage 1,

— Passage 2].

Answer:

18
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A.5 BASELINE PREDICTION

In Listing 5, we present the prompt that is used to append the retrieved passages of the question to
give it as inputs of LLMs. The result with this prompt is denoted by Base, in Section 4. The same
prompt is used for no retrieval by assuming N = 0, i.e., the only question is given to LLMs with
instruction.

Listing 5 Prompt for baseline prediction.

flll
Passage #1 Title: {Passage Hl Title}
Passage #1 Text: {Passage Hl Text}

Passage #N Title: {Passage ﬁN Title}
Passage #N Text: {Passage [N Text}

Task description: predict the answer to the following question. Do not
— exceed 3 words.

Question: {Question}

Answer:
LI B |

A.6 PROMPTS FOR GENERAL SUMMARIZATION

In Listing 6, we present the prompt that is used to construct generic summarization used in Section
4.3. One can observe that the conditioning part is removed, compared tO Pgyy.

Listing 6 Prompt for generic summarization.

fll'
Passage #1 Title: {Passage [l Title}
Passage #1 Text: {Passage ﬁl Text}

Passage #N Title: {Passage EN Title}
Passage #N Text: {Passage EN Text}

Your job is to act as a professional writer. You will write a

— good-quality passage that can support the prediction about the

— question only based on the information in the provided supporting
— passages.

Now, let's start. After you write, please write [DONE] to indicate you
— are done. Do not write a prefix (e.g., "Response:") while writing a
— Dpassage.

Question: {Question}
Passage:

[

A.7 PROMPTS FOR MCQ PROMPT

Recently, Robinson et al. (2023) demonstrated that multiple-choice prompts generally elicit much
more accurate responses than do cloze prompts, for LLMs with high multiple-choice symbol bind-
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ing ability like OpenAl Codex (Chen et al., 2021). Motivated by this, we consider MCQ prompt in
Listing 7 and use it in Table 3, to evaluate the effectiveness of selecting the answer from the con-
struction and verification of the conditional summarizations rather than direct prompting, under the
same answer candidates from Eq. 2. One can observe that the conditioning with multiple choices
part is added, compared to baseline prompting in Listing 5.

Listing 7 Prompt for MCQ prompt.

fY T
Passage #1 Title: {Passage 1 Title}
Passage #1 Text: {Passage [l Text}

Passage #N Title: {Passage [N Title}
Passage #N Text: {Passage [N Text}

Task description: predict the answer to the following question. Do not
— exceed 3 words.

Question: {Question}
Choices: {(a) Choice 1 (b) Choice 2}

Answer:
T

A.8 DESIGN PRINCIPLES FOR PROMPT

Before finalizing the prompts used in the experiments, we examined several prompt de-
signs and chose the best-performing one. Here, we’d like to share two key observations
from this process. First, precise and detailed instructions are crucial. ~As each compo-
nent of the proposed framework operates in a zero-shot manner, its output greatly relies on
the provided instruction. For example, in answer candidate generation (Eq. 2), the cur-
rent prompt, outlined in Listing 1, consistently outperforms the initially considered simple
prompt (Task description: give two candidates for the answer to the
following question (e.g., (a) xx, (b) yy)). Second, proper input arguments are
essential. For instance, along with the target candidate, providing all candidates as additional in-
put enhanced the quality of conditional summarization. This is because it further specifies which
contexts of retrieval should be the focus. However, including this information, or even the retrieval
passages, disrupted the verification step by interrupting the focus on the summarizations.

B ADDITIONAL QUANTITATIVE RESULTS

B.1 MORE RESULTS FOR SURE UNDER DIFFERENT CONFIGURATIONS

In Table 5, we present F1 scores with different configurations of various LLMs and retrieval meth-
ods. Similar to the result in Table 2, it is observed that SURE consistently improves ODQA accuracy
regardless of types of LLMs and retrieval methods, with 3.2% average F1 improvement on average.

B.2 LIMITED ACHIEVABLE IMPROVEMENT WITH MORE CANDIDATES

As we denoted in Section 4.1, we use a fixed value of K = 2 for all the experiments. This is due
to our initial observation that the room for improvement by increasing K is not large compared to
the additional costs. To investigate this, we first assume the method, denoted Oracle, which takes
the maximum of EM and F1 among the multiple candidates, e.g.,, if one candidate is true and the
other is wrong, then Oracle consider it as true. As one can see in Table 6, increasing K = 3 from
K = 2 limitedly improves the accuracy (e.g., 0.9% in EM), compared to the remaining room for
improvement by better selection with small K; for example, there is 9.0% gap between SURE and
Oracle, in terms of EM. Therefore, in this work, we keep K = 2 but we remark that SURE can be
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Table 5: F1 with different configurations of LLMs and retrieval methods on four QA datasets. N =
10 most relevant passages are commonly retrieved. For LLaMA?2-chat, we conducted experiments
on NQ* and WebQ* and the results are indicated by *.

\ ChatGPT | GPT4 | LLaMA2-chat

Datasets | BM25 +SURE DPR +SURE Contriever + SURE | BM25 + SURE | BM25 + SURE
NQ 38.8 42.3 47.4 50.8 47.6 50.4 40.9 424 36.4* 42.9*
WebQ 32.6 36.6 37.5 40.4 37.7 40.9 36.4 32.1 35.3* 40.5*
2Wiki 32.8 38.1 22.8 25.2 329 37.1 39.2 43.2 31.2 36.2
HotpotQA 40.3 43.4 34.6 35.5 42.9 43.5 44.4 50.4 39.6 38.4
Average ‘ 36.1 40.1 35.6 38.0 40.3 43.0 ‘ 40.2 42.0 ‘ 35.6 39.5

Table 6: EM / F1 with different K under ChatGPT. N = 10 most relevant passages are commonly
retrieved with BM25.

Datasets / Methods | ~ NQ* WebQ* 2Wiki HotpotQA | Average
No retrieval ‘ 26.4/379 204/36.7 21.4/248 23.2/34.8 ‘ 229/33.6

Base | 29.4/41.7 19.4/322 274/328 30.8/40.3 | 27.0/36.9
Oracle (K =2) | 43.0/53.9 29.0/439 47.6/544 41.2/527 | 40.2/51.2
Oracle (K = 3) | 452/56.0 29.8/472 484/562 41.0/54.0 | 41.1/534

extended with K > 2. Also, as there is remaining room for improvement, we hope that future work
could reduce such a gap.

B.3 ADDITIONAL EVALUATION WITH LLMSs

In Section 4, we considered EM/F1 scores as the common metrics for the considered ODQA
datasets, following the previous works (Chowdhery et al., 2022; Touvron et al., 2023a; Izacard et al.,
2023; Shi et al., 2023), to make it easy to notice the significance of our results. Nevertheless, other
factors like response coherence, relevance, and efficiency are important metrics to be considered.

To evaluate these aspects, we have conducted additional evaluations with LLMs approaches. Specif-
ically, we measured two additional metrics: (1) MAUVE (Pillutla et al., 2021) and (2) LLM-acc
(Kamalloo et al., 2023). MAUVE is a recently proposed metric to compare the two distributions of
the text generation model and human-written text using divergence frontiers. MAUVE (scale of 0 to
100, higher is better) is known for correlating highly with human judgments, and is frequently used
to evaluate LMs’ responses (Su et al., 2022b; Gao et al., 2023). LLM-acc assesses the accuracy (%)
of LLMs’ responses to questions, using the prompting of LLMs instead of term overlap like EM/F1.
We used the official code from the authors, only changing LLMs to ChatGPT. We measured this
metric on NQ*, WebQ*, 2Wiki, and HotpotQA datasets, and the results are presented in Table 7.

Here, it is observed that the proposed method also makes significant improvements compared to the
baseline under these two additional evaluations with LLMs approaches. Along with the results in
Section 4, this result further validates that our framework enables LLMs to provide better answers
to the given question.

B.4 EXPERIMENTS ON LONG-FORM QUESTION ANSWERING

While we mainly conduct the experiments with QA datasets that have short answers in Section 4,
our approach has the potential to be applicable beyond short-answer datasets. To verify this, we have
conducted additional experiments on long-form question answering tasks to validate our approach’s
applicability. Specifically, we used ASQA dataset (Stelmakh et al., 2022; Gao et al., 2023) which
consists of factoid questions and the corresponding long-form answers; for example, the answers
of ASQA dataset have an average length of 71.8 words, while the answers of NQ dataset have 2.6
words. Following the setups in Gao et al. (2023), we compared the base prompting method with
retrieval and name (ours) on 948 test examples, using ChatGPT (GPT-3.5-turbo-0301) with
5 retrieved passages via GTR (Ni et al., 2022) for the experiments. For the evaluation, we measure
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Table 7: MAUVE (Pillutla et al., 2021) and LLM-evaluated accuracy (Kamalloo et al., 2023). We
use ChatGPT and N = 10 most relevant passages are commonly retrieved with BM25.

MAUVE /LLM-acc | NQ* WebQ* 2Wiki HotpotQA | Average

Base | 81.3/53.2 61.3/48.8 35.1/36.2 624/51.6 | 60.0/47.5
SURE (Ours) | 95.9/56.2 75.77/51.4 52.2/482 89.6/52.4 | 78.3/52.1

Table 8: Evaluation on ASQA dataset (Stelmakh et al., 2022). We use ChatGPT and N = 5 most
relevant passages are commonly retrieved with GTR (Ni et al., 2022), following Gao et al. (2023).

Methods / Metrics \ ROUGE-L STR-EM MAUVE

Base 38.00 39.81 69.83
SURE (Ours) 39.83 42.63 70.33

ROUGE-L and String Exact Match (STR-EM) for correctness, and MAUVE (Pillutla et al., 2021)
for fluency and coherence, following the previous works (Stelmakh et al., 2022; Gao et al., 2023).

The results are presented in Table 8. One can observe that our proposed framework consistently
improves the performance of retrieval-augmented LLMs for long-form QA tasks. However, we
acknowledge that there is still room for improvement, particularly in finding better prompt designs,
given that our current designs are based on performance on short-answer datasets. We hope future
research will explore this direction, extending the benefits of our framework to broader QA scenarios
with LLMs.

B.5 EXPERIMENTAL WITH FEW-SHOT EXAMPLES

Here, we conduct additional experiments on NQ* and WebQ™, using 1-shot and 5-shot examples
from training datasets during prediction. We compare the average EM/F1 of base prompting with
retrieval and SURE, across four different random seeds used for sample selection. In Listing 8,
we present the prompt that is used to generate K answer candidates in the case where few-shot
examples are given. Here, we present the case of K = 2. Note that if few-shot examples are
provided, only the prompt for generating answer candidates is modified. Also, in Listing 9, we
present the prompt for the base prompting. Table 9 shows that adding few-shot examples improves
QA accuracy for both the baseline and name. Specifically, we observed that name’s gain primarily
results from generating more accurate answer candidates. These findings suggest that our proposed
method could be effective in scenarios beyond the zero-shot setup considered. Therefore, we believe
that our work could contribute to broader ODQA scenarios in the future.

C HuMAN EVALUATION OF GENERATED SUMMARIZATION

In this section, we provide details on the human preference evaluation of generated summarizations
in Figure 4(c). First, we generate summarizations with a generic method (Listing 6) and with our
proposed SURE (Listing 2). To separately consider the quality as rationale with the accuracy of pre-
diction, we only compare the samples correctly predicted by both SURE and generic summarization;
it results in 84 examples from the NQ*. Then, using the prompt in Listing 11, we conduct human
evaluation. Specifically, we hired seven NLP experts off-line for our human evaluation experiment.
Unlike asking GPT-4 with Listing 10, we ask human evaluators to answer as a tie if it is hard to
determine.
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Table 9: Few-shot experimental results. We use ChatGPT and N = 10 most relevant passages are
commonly retrieved with BM25.

EM/F1 | 0-shot 1-shot 5-shot
NQ*: Base | 29.4/41.7 30.1/39.3 31.9/42.0
NQ*: SURE (Ours) | 35.6/44.9 36.3/46.8 37.2/47.7
WebQ*: Base | 19.4/32.2 19.6/329 19.9/33.5

23.2/365 242/394 243/385

WebQ*: SURE (Ours)

Listing 8 Prompt for answer candidates generation with few-shot examples.

f’ T

Below are N passages related to the question at the end. We also provide
the answers for various questions. After reading the passages and
question-answer pairs, provide two correct candidates for the answer
to the question at the end. Each answer should be in the form: (a)
xx, (b) vy, and should not exceed 3 words for each candidate.

Ferl

Passage #1 Title: {Passage El Title}
Passage #1 Text: {Passage 1 Text}

Passage #N Title: {Passage N Title}
Passage #N Text: {Passage N Text}

Question: {Example question [fl1}
Answer: {Example answer l}

Question: {Example question shot}
Answer: {Example answer [fshot}

Question: {Query question}
Provide two correct candidates for the answer:

[

D ADDITIONAL QUALITATIVE RESULTS

In this section, we present more qualitative results with SURE. All the examples are from NQ*, and
ChatGPT with BM25 (N = 10) is commonly used.

D.1 MORE EXAMPLES OF QUALITATIVE COMPARISON BETWEEN SURE’S SUMMARIZATION
AND GENERIC SUMMARIZATION

In Figures 6, 7, and 8, we present more examples for qualitative comparison between the candidate-
conditioned summarization by SURE and generic summarization. Innecessary and tedious sentences
irrelevant to the answer are highlighted with red.

D.2 QUALITATIVE EXAMPLES OF VERIFICATION WITH INSTANCE-WISE VALIDITY

To qualitatively show which samples are considered as invalid by LLMs, we present the examples
that exhibit v(sg) = 0 as M (pya1(q, Yk, sk)) = False in Figure 9. Here, we highlight the sentences
with if they include the relevant context with the given candidate. In addition, we highlight
the sentences with red if they induce a different candidate as an answer or do not support the candi-
date. For example, in the second example with a question (Who is the actor that plays
Saul on ‘‘Grace and Frankie’’?), one can observe that the generated summarization
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Listing 9 Base prompt with few-shot examples.

f’lV
Passage #1 Title: {Passage El Title}
Passage #1 Text: {Passage Hl Text}

Passage #N Title: {Passage HN Title}
Passage #N Text: {Passage HN Text}

Task description: predict the answer to the following question. Do not
— exceed 3 words.

Question: {Example question Hl}
Answer: {Example answer [#1}

Question: {Example question EK shot}
Answer: {Example answer HK shot}

Question: {Query question}

Answer:
T

Listing 10 Prompt for GPT-based evaluation.

f LI I

Question: Given the following summaries for the target question,

— determine which one is more informative and plausible as rationale
— to support a given target question-answer pair.

Summary 1: {Summary 1}

Summary 2: {Summary 2}

Target Question: {Question}

Target Answer: {Answer}

Your Task:

Identify which summary (Summary 1 or Summary 2) is more informative and
— plausible as rationale to support a given answer at hand. Choices:

[ [Summary 1, Summary 2].

Answer:
T

concludes that the given candidate (Mark Saul) is incorrect; consequently, LLMs evaluates its
validity as supporting summarization for the given candidate as false.

D.3 QUALITATIVE EXAMPLES OF VERIFICATION WITH PAIR-WISE RANKING

In Figure 10, we present examples of verification by pair-wise ranking. Here, we highlight with
green for the summarization that gets a higher ranking. In contrast, we highlight with red for the
summarization that gets a lower ranking. We also highlight the relevant texts with the same colors,
respectively.
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Listing 11 Template for human evaluation.

f’lV

Given the following summaries for the target question, determine which
<« one 1is more informative and plausible as rationale to support a

— given target question-answer pair.

Target Question: {Question}

Target Answer: {Answer}

Summary 1: {Summary 1}

Summary 2: {Summary 2}

Choices: [Summary 1, Tie, Summary 2]

Your choice:

Table 10: Accuracy and cost ($) for each method. For the method in the last row, ChatGPT is used
for Eq 2 and 3, and LLaMA is used for Eq 4 and 5, respectively.

Exact Match (EM) | NQ* WebQ* | Average Cost for API
Base (10 passages, ChatGPT) 29.4 194 1.57%
Base (50 passages, ChatGPT) 33.8 21.8 7.67%
SURE (10 passages, ChatGPT) 35.6 23.2 6.05%
SURE (10 passages, ChatGPT + LLaMA) | 350  24.8 | 5.03$

E DISCUSSION ON COST AND QUALITY GAIN

While SURE significantly improves QA system of LLMs, one can be concerned about its cost as
it requires multiple inferences of LLMs. However, we note that the improvement of SURE is not
just a simple consequence of more cost. Compared to other cost-increasing methods for accuracy
improvement, SURE significantly outperforms them, i.e., SURE is an even more efficient way to
increase performance. For instance, increasing the number of retrieved passages is one of the most
straightforward methods for this goal. But, in this case, SURE with 10 passages outperforms the base
prompting with 50 passages, even with a lower total cost, as presented in Table 10. In addition, we
note that other baseline approaches such as chain-of-thought or self-verification (considered in Table
1) also require more cost than base prompting, but they fail to successfully improve the performance.

On the other hand, one can reduce the overall cost by using cheaper LLMs for specific components,
thanks to the modularity of SURE. Remarkably, SURE is compatible with the recent state-of-the-art
open LLMs (see Tables 2 and 5) and hence this advantage is more noticeable. To give an intuition,
we conduct the new experiments by using ChatGPT for the answer candidate generation and sum-
marization, and LLaMA for the succeeding verification steps. As shown in the 4th row of Table 10,
this hybrid approach of different LLMs with SURE successfully reduces the cost while keeping the
effectiveness for improving the accuracy; for WebQ*, this approach even outperforms the expensive
one. This result is from the effectiveness of LLaMA in WebQ* and indicates the potential of such a
hybrid method.

Lastly, we further remark that most of SURE’s cost is currently from re-reading retrieved passages
for conditional summarizations (e.g., 38% of the total cost for SURE with 10 passages). This is due
to current APIs not providing recycling options for previous inputs. If recycling becomes available,
SURE’s cost could be significantly reduced.
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F LIMITATION AND FUTURE WORK

In this work, we primarily focused on zero-shot setup for the experiments, which is a commonly
encountered scenario in the real world, e.g., search engine. But, similar to the previous works
(Chowdhery et al., 2022; Touvron et al., 2023a), incorporating data-specific few-shot examples is
also an interesting future direction to further improve QA accuracy of LLMs with SURE. Another
interesting direction is extending the applied task beyond QA, such as language modeling (Guu
et al., 2020) or language understanding tasks (Hendrycks et al., 2021).

G ADDITIONAL RELATED WORK

Summarization in open-domain. A summarization of retrieved passages has been considered in
open-domain context; for example, there are recent works that propose to learn a module to selec-
tively use the retrieved information in sentence- (Khattab et al., 2021; Su et al., 2022a) or passage-
level (Mao et al., 2021; Chuang et al., 2023). In addition, Su et al. (2022a); Giorgi et al. (2023)
form a new task that combines both passage retrieval and summarization for a given query, and Gao
et al. (2023) considers summarization of information for prompting. However, these works require
a large annotated dataset to extract the information specified to answer the question or construct the
generic summarization which focuses on preserving the retrieved information within reduced texts.

H EXPERIMENTAL RESULTS WITH CONFIDENCE INTERVAL

In this section, we present confidence intervals for our main tables (Tables 1 and 2). To achieve this,
we apply bootstrapping (Efron & Tibshirani, 1994), a popular technique for statistical inference that
involves random sampling with replacement. We report 95% confidence intervals obtained through
1,000 iterations of bootstrapping. The confidence intervals for the EM and F1 metrics of each main
table can be found in Tables 11, 12, 13, and 14.

The reliability of the results is reasonably robust, with the 95% confidence interval having only
about a 10% variance from the reported value. Specifically, in the EM metric of the NQ dataset, our
SuRe has the lowest confidence interval value at 32.0, compared to the maximum value of 29.1 for
the no retrieval baseline and 30.0 for the best competitor. This demonstrates that the advantage of
SuRe over prior works is statistically significant.
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Table 11: EM with different QA methods with ChatGPT on four QA datasets. The 95% confidence
intervals are calculated via bootstrapping by 1000 iterations, and presented below the corresponding
values. N = 10 most relevant passages are retrieved using BM25, except no retrieval. The best and
second best scores are highlighted in bold and underline, respectively.

Methods / Datasets | NQ WebQ 2Wiki HotpotQA

No retrieval 27.6 25.0 21.4 222
[26.2,29.1] [23.2,27.0] [17.6,25.2] [18.8, 25.8]

Base 28.4 19.6 274 30.8
[27.0,30.0] [17.9,21.3] [23.6,31.0] [26.6,35.2]

Rerank 24.8 18.8 23.0 27.8
[23.4,26.2] [17.2,20.6] [19.6, 26.8] [23.8, 32.0]

RePlug 26.0 18.8 23.6 28.0
[24.6,27.4] [17.1,20.6] [20.0, 27.2] [24.2, 32.0]

Selection-inference 24.3 17.3 22.6 30.8
[22.9,25.7] [15.7,18.8] [19.0,26.0] [26.8, 34.8]

Chain-of-thoughts 22.3 15.2 19.6 25.6
[20.8,23.6] [13.7,16.6] [16.0, 23.2] [21.6,29.4]

Self-verification 25.2 16.1 23.2 31.6
[23.7,26.6] [14.6,17.7] [19.6,27.6] [27.6, 35.8]

SURE (Ours) 33.5 25.1 32.8 33.2
[32.0,35.0] [23.1,27.0] [28.6,36.8] [29.0, 37.6]

Table 12: F1 with different QA methods with ChatGPT on four QA datasets. The 95% confidence
intervals are calculated via bootstrapping by 1000 iterations, and presented below the corresponding
values. N = 10 most relevant passages are retrieved using BM25, except no retrieval. The best and
second best scores are highlighted in bold and underline, respectively.

Methods / Datasets \ NQ WebQ 2Wiki HotpotQA

No retrieval 39.0 38.8 24.8 31.9
[37.7,40.5] [36.9,40.7] [21.1,28.5] [28.2,35.4]

Base 38.8 32.5 32.8 40.3
[37.3,40.4] [30.7,34.3] [28.9,36.3] [36.4,44.4]

Rerank 33.9 30.6 28.4 374
[32.5,35.3] [28.8,32.4] [25.1,32.1] [33.4,41.4]

RePlug 353 31.5 28.5 37.9
[33.9,36.8] [29.8,33.3] [24.7,32.1] [34.2,41.9]

Selection-inference 32.8 28.6 29.5 39.6
[31.5,34.3] [27.0,30.3] [26.2,33.2] [35.8,43.7]

Chain-of-thoughts 314 27.8 22.5 31.8
[30.1, 32.8] [26.1,29.4] [18.8,26.2] [27.8,35.7]

Self-verification 354 28.5 30.5 41.8
[33.9,36.9] [26.7,30.2] [27.1,34.9] [37.8,45.6]

SURE (Ours) 42.3 36.6 38.1 43.4
[40.8,43.7] [34.8,38.5] [34.0,42.0] [39.4,47.6]
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Table 13: EM with different configurations of LLMs and retrieval methods on four QA datasets. The
95% confidence intervals are calculated via bootstrapping by 1000 iterations, and presented below
the corresponding values. N = 10 most relevant passages are commonly retrieved. For LLaMA2-

chat, we conducted experiments on NQ* and WebQ* and the results are indicated by *.

| ChatGPT | GPT-4 | LLaMA2-chat
Datasets | BM25  +SURE DPR  +SURE Contriever +SURE | BM25  +SURE | BM25  +SURE

NQ | 284 335 36.1 41.0 35.8 404 30.2 324 18.6" 30.4°
[27.0,30.0] [32.0,35.0] [34.5,37.7] [39.4,42.6] [34.2,37.4] [38.8,42.0] | [28.8,31.7] [30.9,33.9] | [15.0,22.0] [26.4,34.4]

WebQ | 19.6 25.1 232 21.3 225 28.7 215 217 16.0° 24.0°
[17.8,21.4] [23.1,27.0] [21.4,25.1] [25.3,29.2] [20.5,24.3] [26.7,30.7] | [19.6,23.2] [19.8,23.4] | [13.0,19.2] [20.4,27.8]

2Wiki | 274 3238 19.2 214 27.2 326 34.8 38.2 202 27.8
[23.6,31.0] [28.6,36.8] [15.8,22.8] [17.8,24.8] [23.2,31.0] [28.4,36.8] | [30.6,38.8] [34.0,42.2] | [16.6,23.6] [23.6,32.0]

HotpotQA | 30.8 332 25.6 27.4 322 33.6 34.8 40.6 24.0 28.0
[26.6,35.2] [29.0,37.6] [21.8,29.4] [23.8,31.4] [28.2,36.6] [29.2,37.6] | [31.0,38.8] [36.2,44.6] | [20.2,27.6] [24.0,32.0]

Table 14: F1 with different configurations of LLMs and retrieval methods on four QA datasets. The
95% confidence intervals are calculated via bootstrapping by 1000 iterations, and presented below
the corresponding values. N = 10 most relevant passages are commonly retrieved. For LLaMA2-

chat, we conducted experiments on NQ* and WebQ* and the results are indicated by *.

| ChatGPT | GPT-4 | LLaMA2-chat
Datasets | BM25 + SURE DPR +SURE  Contriever  +SURE | BM25 +SURE | BM25 + SURE

NQ 38.8 42.3 474 50.8 47.6 50.4 40.9 42.4 36.4* 42.9*
[37.3,40.4] [40.8,43.7] [45.9,48.9] [49.3,524] [46.2,49.1] [48.8,51.8] | [39.5,42.4] [41.0,43.9] | [32.8,39.6] [38.9,46.8]

WebQ 32.5 36.6 375 40.4 37.7 40.9 36.4 32.1 35.3* 40.5*
[30.8,34.3] [34.8,38.5] [35.8,39.3] [38.5,42.3] [35.8,39.6] [39.1,42.7] | [34.5,38.2] [30.2,34.0] | [32.2,38.7] [36.7,43.9]

2Wiki 32.8 38.1 22.8 25.2 329 37.1 39.2 43.2 31.2 36.2
[28.9,36.3] [34.0,42.0] [19.4,26.3] [21.6,28.8] [29.3,36.9] [33.0,41.4] | [35.2,43.0] [39.3,47.2] | [27.7,349] [32.2,39.9]

HotpotQA 40.3 434 34.6 355 429 43.5 44.4 50.4 39.6 38.4
[36.4,44.4] [39.4,47.6] [30.8,38.1] [31.6,39.6] [36.6,47.2] [39.3,47.7] | [40.5,48.1] [46.3,54.3] | [35.9,43.2] [34.6,42.5]
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1
{ Question } Answer
[ Who was the first British team to win the European Cup? Celtic

Generic Summarization )\

Passage Title: British Teams in European Cup History

However, there is one team that stands out as the first British team to win the
prestigious tournament. That team is Celtic, who won the 1966-67 European Cup.

Celtic's victory in the final against Italian side Inter Milan was a historic moment for British football.
They became the first team from the United Kingdom to win the European Cup, and they did it in
style, coming back from agoal down to win 2-1 in Lisbon.

However, it was Celtic who

paved the way for British success in Europe, and their achievement will always be remembered as
a landmark moment in football history.

In conclusion, Celtic was the first British team to win the European Cup, paving the way for other
British teams to achieve success in the tournament. Their victory in the 1966-67 season will always
Kbe remembered as a historic moment in football history. j

(—( Candidate-conditioned Summarization (Ours) %

The answer tothe question of who was the first British team to win the European Cup can be found
in several of the provided passages. According to Passage #6, the first British team to win the
European Cup was Celtic, who achieved this feat in the 1966-67 season. They defeated
Internazional e in the final, becoming the first Scottish team to win the cup. T herefore, the prediction
that Celtic was the first British team to win the European Cup is supported by the information in the

passages.
- J
1
{ Question ',
[ Who did Puerto Rico belong to before the U.S.?

—~ Generic Summarization 1~

Passage Title: Puerto Rico's History Before U.S. Occupation

Puerto Rico's history before the U.S. occupation dates back to the era of the Taino, the indigenous

people of the Caribbean, who inhabited the island that they called "Boriken." _
eSS ERSRIEaIBREasa P uerto Rico was a Spanish colony until the end of the
Spanish-American War in 1898, when Spain ceded Puerto Rico, h

S SRS RENEERASMRERSN - ofor < the U.S. occupation, Puerto Ricowas

a Spanish territory and its people were Spanish subjects.

- )
(—( Candidate-conditioned Summarization (Ours) %

Puerto Rico was a Spanish colony before it was ceded to the United States under the terms of the
Treaty of Paris of 1898. The recorded history of womenin Puerto Rico can trace its roots back to the
era of the "Taino", the indigenous people of the Caribbean, who inhabited the island that they called
"Boriken" before the arrival of Spaniards. However, it was Spain who had control over Puerto Rico
before the United States. Therefore, the prediction that Puerto Rico belonged to Spain before the
U.S is supported by the information in the provided passages.

. J

Figure 6: Qualitative comparison of candidate-conditioned summarization from SURE (Ours) com-
pared to generic summarization as a rationale for the answer.
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1,
{ Question ',
[ Who is the sixth president of the United States? John Quincy Admas

/—( Generic Summarization h
Passage Title: John Quincy Adams

John Quincy Adams was the sixth President of the U nited States, serving from 1825 to 1829. He
was the eldest son of John Adams, who also served as President from 1797 to 1801. John Quincy
Adams had along diplom atic and political career, serving as an ambassador, United States Senator,

and member of the United States House of Representatives. He also served as the eighth United
States Secretary of State before becoming President. *

- J

/—( Candidate-conditioned Summarization (Ours) %

John Quincy Adams was the sixth President of the U nited States, serving from 1825 to 1829. He
was the eldest son of John Adams, who also served as President from 1797 to 1801. John Quincy
Adams had along diplom atic and political career, serving as an ambassador, United States Senator,
and member of the House of Representatives. He was also the eighth United States Secretary of
State before becoming President. Despite facing opposition from Andrew Jackson and his
supporters, Adams was able to secure his presidency through a controversial el ectionin the House
of Representatives.

g J
1
{ Question } Answer
[ In which country were two battles of EI Alamein fought? ] Egypt
(—( Generic Summarization h

The two battles of ElI Alamein were fought in Egypt during World War Il. The First Battle of El
Alamein w as fought betw een Axis forces (Germany and ltaly) and Allied forces (Britain, British India,
Australia, South Africa, and New Zealand) of the Eighth Army. The battle prevented a second
advance by the Axis forces into Egypt. The Second Battle of El Alamein was fought between the
same Axis and Allied forces, and it is considered a turning point in the Western Desert Campaign.
The Australian 9th Division fought in both battles, and the El Alamein Memorial Fountain in Sydney
commemorates their roles.

/—( Candidate-conditioned Summarization (Ours) %

The two battles of EI Alameinwere fought in Egypt, as mentioned in multiple passages. El Alamein
is a town in the northern M atrouh Governor ate of Egypt, located on the Mediterranean Sea, west of
Alexandria and northwest of Cairo. The First Battle of EI Alameinwas foughtin Egypt between Axis
forces (Germany and ltaly) and Allied forces (Britain, British India, Australia, South Africa, and New
Zealand) of the Eighth Army. The Second Battle of El Alameinwas also fought in Egypt, where the
Australian 9th Division fought alongside other Allied forces. Therefore, itis clear that the two battles
of El Alamein were fought in Egypt.

- J

Figure 7: Qualitative comparison of candidate-conditioned summarization from SURE (Ours) com-
pared to generic summarization as a rationale for the answer.
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Who says that which we call a rose? Juliet

[ 'l Question ',

/—( Generic Summarization %

Passage #1 Title: Romeo and Juliet

Passage #1 Text: In Shakespeare's play Romeo and Juliet, it is Juliet who says the famous line,
"that which we call a rose, by any other nam e would smell as sweet." This line is spoken during the
balcony scene, where Romeo and Juliet express their love for each other des pite their families' feud.

Uuliet is essentially saying that a name does not define the essence of a thing, and that even if|
\ Y,
/—( Candidate-conditioned Summarization (Ours) %

Passage #1, Juliet says "...that which we call arose, by any other name would smell as sweet".
Therefore, the prediction that Juliet says the line "that which we call arose" is supported by the
information in the provided passages. It is clear that Juliet is the one who utters this famous line.

(. J
1
{ Question ', Answer
[ Who sings the rap in baby by Justin Bieber? Ludacris

(—( Generic Summarization %

Passage #3 Title: All Around the World (Justin Bieber song)
Passage #3 Text: During the rap section, Ludacris references their previous collaboration on "Baby"
(2010), saying, "l

Prediction: Ludacris sings the rap in "Baby" by Justin Bieber.

Response: As mentioned in Passage #3, Ludacris sings the rap section in "Baby" by Justin Bieber.
He also references their previous collaboration on the song. Therefore, it can be concluded that
Ludacris is the one who sings the rap in "Baby" by Justin Bieber.

\§ J

(—( Candidate-conditioned Summarization (Ours) %

The answer to the question of who sings the rap in Justin Bieber's song "Baby" can be found in
Passage #1 and Passage #5. Both passages mention that rapper Ludacris is featured in the song
and performs the rap section. In Passage #1, Ludacris is credited as a co-writer of the song, whilein
Passage #5, his verse-rap is described as an anecdote of young love when he was thirteen.
Therefore, it can be predicted that Ludacris is the one who sings the rap in "Baby" by Justin Bieber.

- J

Figure 8: Qualitative comparison of candidate-conditioned summarization from SURE (Ours) com-
pared to generic summarization as a rationale for the answer.
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( ) :
{_Question | Candidate
Who played the king in [RCIICICOmMmMandments 2 ] [ Charlton Heston

'SR

Candidate-conditioned Summarization (Ours)

Passage #6 Title: (1923 film)
Passage #6 Text: " " is a 1923 American silent film directed by Cecil B.

DeMille. The film tells the story of Moses, from his adoption by the Egyptian princess, to his
deliverance of the Hebrews from slavery & the hands of the Egyptians, to his receiving of the Ten
Commandments from God on Mount Sinai. The role of Moses was played by Theodore Roberts.
However, in the 1956 remake of the fim, . Therefore, the
prediction that Charlton Heston played the king in "The Ten Commandments" is incorrect.

Real answer
Yul Brynner, Woodrow Strode
Question Candidate
[ Who is the actor that plays Saul BilGracelandiErankie) ? ] [ Mark Saul

Candidate-conditioned Summarization (Ours)

Mark Saul is the actor who played the role of Dr. Ryan on "Grey's Anatomy" and stamed in
commercial for Jack in the Box. He is also a talented artist and musician, creatmg art for his Etsy
shop and playing in the folk/rock band, The Flashcards. iEHENCHICICISIoINESntoNoHnmuBIEynG

Real answer
Sam Waterston

Candidate
Edin DZeko

Question
[ Premienieaguelplayersito score 5 goals in one game. ] [

/{ Candidate-conditioned Summarization (Ours) }\

Edin DZeko, a Bosnian professional footballer, is known for his impressive scoring record in the

. Inhis third BiSTierEeagueloame of the season, Dzeko scored four goals against

Tottenham Hotspur, breaking another record by becoming the first Manchester City player to score

. His tally of six league goals in three games won him the

Premier League Player of the Month award for August. DZzeko continued to grab important goa s

such as aheader against Wigan Athletic that sealeda 1-0 win for City and extended their lead over

title rivals Manchester United to three points. Although h his

impressive scoring record and ability to score multiple goals in a single game make him a strong
candidate for achieving this feat.

Real answer
Alan Shearer, Andy Cole, Dimitar Berbatov, Sergio Aglero, Jemain Defoe

Figure 9: Example summarizations that are evaluated as invalid by LLMs (Eq. 4).
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Question
Who is the CEO of Crate and Bamel? ]

~{_ Candidate-conditioned Summarization 1 (Ca I

, having assumed the role after Doug
Diemoz departed in April 2017. Montgomery brings a wealth of experience to the position, having
previously served as the Executive Board Member for Multi-Channel Retail at Otto Group, the parent
company of Crate & Bamel. Under her leadership, the company is expected to continue its
expansion into new markets, both domestically and internationally. Montgomery's focus on
innovation and customer experience is sure to drive growth and success for Crate & Banmel in the
years to come.

- J

~ H

. How ever,
due to poor performance during the 2013 holiday season and growing disenchantment from
employees, Bopp was removed from his position and terminated from the company. Since then,
there have been several other CEOs, including Doug Diemoz and currently Neela Montgomery.
However, based on the information provided, itcan be predicted that Sascha Bopp was the CEO of
Crate & Barrel at some point intime.

Real answer

Neela Montgomery

The concept of micro financing was developed by whoin 19767

Question ]

Microfinance is a term used to describe financial services, such as loans, savings, and insurance,
provided to low-income individuals orthose who do not have access to traditional banking se rvices.
The concept of microfinance has been around for decades, but it was not until the 1970s that it
gained widespread attention. In 1976, Muhammad Yunus, a Bangladeshi economist, began
experimenting with lending small amounts of money © poor women in rural areas. He founded the
Grameen Bank in 1983, which became the first microfinance institution to provide small loans to the
poor without requiring collateral. Yunus and the Grameen Bank were awarded the Nobel Peace
Prize in 2006 for their efforts to create economic and social development through microfinance.

Therefore, it can be concluded that the FBTGEPHONMICOMNENCINGMWaSIGeVeIopeaIBYINEmmEd
Yunus in 1976.
- J

A )~

Microfinance is a termthat has evolved over time, from micro-credit to micro-finance. It is a way to
promote economic development, e mployment, and growth through the support of micro-
entrepreneurs and small businesses. The Grameen Bank is one of the pioneers of microfinance,
having been founded in Bangladesh in 1983 by Muhammad Yunus. The bank's mission was to
provide small loans to poor people who did not have access to traditional banking services. The
bank's success in reducing poverty through microfinance has inspired similar initiatives around the
world. While microfinance has its ciitics, it has undoubtedly he ped many people lift themselves out
of poverty.

Muhammad Yunus in 1976, butrather by the Grameen Bank in 1983,
& J

Real answer

Muhammad Yunus

Figure 10: Example summarizations with pair-wise rank evaluation (Eq. 5).
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