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In this supplementary material, we provide the proof of all theoretical results stated in the paper.

1 Proof of Proposition 1

For any (deterministic) g ∈ G, we have

P [Z(g)Z(g)>] =M1(g)⊗M2,

where ⊗ denotes the Kronecker product,

M1(g) =

(
1 Eg(X)

Eg(X) Eg(X)2

)
, M2 =

(
1 p
p p

)
.

Therefore, any eigenvalue of P [Z(g)Z(g)>] is the product of one eigenvalue of M1(g) and one
eigenvalue of M2. It’s easy to verify from Assumption 1 that all eigenvalues of M1(g) and M2 are
nonnegative and bounded. Thus, we only need to show infg∈G λmin(M1(g)) > 0, λmin(M2) > 0.

Through some calculations, one can find out that

λmin(M1(g)) =
1

2

{
(Eg(X)2 + 1)−

√
(Eg(X)2 + 1)2 − 4V ar(g(X))

}
=

2V ar(g(X))

(Eg(X)2 + 1) +
√
(Eg(X)2 + 1)2 − 4V ar(g(X))

≥ V ar(g(X))

Eg(X)2 + 1
,
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which leads to

inf
g∈G

λmin(M1(g)) ≥
infg∈G V ar(g(X))

supg∈G Eg(X)2 + 1
> 0.

On the other hand, λmin(M2) > 0 can be deduced from p ∈ (0, 1). By combining the above two
inequalities, we conclude the proof.

2 Proof of Proposition 2

For compactness we may write the random variables Z(ĝk) as Ẑk and Z(g0) as Z. Similarly for
any observation i we write Zi(ĝk) as Ẑk,i and Zi(g0) as Zi. We are only interested in convergence
in probability, so we can assume that the inverse matrices in the definition of β̂({ĝk}Kk=1) and
β̂(g0) exist, as this happens with probability approaching 1 according to Lemma 2. We have
β̂({ĝk}Kk=1)− β({ĝk}Kk=1) = A+B, where

A =

[ 1

N

∑
k

∑
i∈Ik

Ẑk,iẐ
>
k,i

]−1
−

[
1

K

∑
k

P [ẐkẐ
>
k ]

]−1
︸ ︷︷ ︸

F0

·

[
1

N

∑
k

∑
i∈Ik

Ẑk,iYi

]
,

and

B =

[
1

K

∑
k

P [ẐkẐ
>
k ]

]−1 [
1

N

∑
k

∑
i∈Ik

[Ẑk,iYi − P [ẐkY ]]

]
︸ ︷︷ ︸

G0

.

Similarly, β̂(g0)− β(g0) = C +D, where

C =

[ 1

N

∑
i

ZiZ
>
i

]−1
−
[
P [ZZ>]

]−1
︸ ︷︷ ︸

F1

[
1

N

∑
i

ZiYi

]

and

D =
[
P [ZZ>]

]−1 [ 1

N

∑
i

[ZiYi − P [ZY ]]

]
︸ ︷︷ ︸

G1

.

We can write [β̂({ĝk}Kk=1) − β({ĝk}Kk=1)] − [β̂(g0) − β(g0)] = A − C + B − D. We show that√
N‖A − C‖ →p 0 and

√
N‖B −D‖ →p 0. From the definitions of F0 and F1 above, we have

A− C = [F0 − F1]
[

1
N

∑
k

∑
i∈Ik Ẑk,iYi

]
+ F1

[
1
N

∑
k

∑
i∈Ik(Ẑk,i − Zi)Yi

]
. If

1.
∥∥∥√N [F0 − F1]

∥∥∥ = op(1)

2.
∥∥∥ 1
N

∑
k

∑
i∈Ik Ẑk,iYi

∥∥∥ = Op(1)

3.
∥∥∥√NF1

∥∥∥ = Op(1)

4.
∥∥∥ 1
N

∑
k

∑
i∈Ik(Ẑk,i − Zi)Yi

∥∥∥ = op(1),

then
√
N ‖A− C‖ = op(1) as desired. Similarly we write B − D as B − D =[[

1
K

∑
k P [ẐkẐ

>
k ]
]−1
−
[
P [ZZ>]

]−1]
G0 +

[
P [ZZ>]

]−1
[G0 −G1] . If

5.
∥∥∥∥[ 1

K

∑
k P [ẐkẐ

>
k ]
]−1
−
[
P [ZZ>]

]−1∥∥∥∥ = op(1)
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6.
∥∥∥√NG0

∥∥∥ = Op(1)

7.
∥∥P [ZZ>]−1∥∥ = Op(1)

8.
∥∥∥√N [G0 −G1]

∥∥∥ = op(1)

then
√
N ‖B −D‖ = op(1) as desired. We complete the proof in 8 steps by showing statements 1 -

8 above.

Step 1. We apply Lemma 3 by letting M1n = 1
N

∑
k

∑
i∈Ik Ẑk,iẐ

>
k,i, Bn = M2n =

P [ZZ>], An = M3n = 1
K

∑
k P [ẐkẐ

>
k ],M4n = 1

N

∑
k

∑
i∈Ik ZiZ

>
i . Consequently, Step 1

amounts to verifying the conditions of Lemma 3. In fact, these conditions are guaranteed by Lemma
1 as well as the following fact: For each k = 1, . . . ,K,∥∥∥∥∥ 1√

n

∑
i∈Ik

[
Ẑk,iẐ

>
k,i − P [ẐkẐ>k ]− ZiZ>i + P [ZZ>]

]∥∥∥∥∥→p 0. (1)

We now prove (1). DefineWk,i = Ẑk,iẐ
>
k,i−P [ẐkẐ>k ]−ZiZ>i +P [ZZ>], and note that conditional

on the data in Ick, the function ĝk is non-random, and the Wk,i are mean zero matrices, uncorrelated
across observations in Ik. With slight abuse of notation, we use E[· | Ick] to denote expectations
conditional on the observations with indices belonging to the set Ick. For any k = 1, 2, . . . ,K,

E

∥∥∥∥∥ 1√
n

∑
i∈Ik

Wk,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ick
 =

1

n
E

tr

 ∑
i,j∈Ik

W>k,iWk,j

∣∣∣∣∣∣Ick
 (2)

=
1

n
E

[∑
i∈Ik

tr
(
W>k,iWk,i

)∣∣∣∣∣Ick
]

(3)

≤ 1

n
E

[∑
i∈Ik

∥∥∥(Ẑk,iẐ>k,i − ZiZ>i )∥∥∥2
∣∣∣∣∣Ick
]

(4)

= P

[∥∥∥ẐkẐ>k − ZZ>∥∥∥2] . (5)

If the RHS of (5) is op(1), we can use Lemma 6.1 of [1] to conclude that ‖ 1√
n

∑
i∈Ik Wk,i‖ is op(1)

as required. Some calculations give∥∥∥ẐkẐ>k − ZZ>∥∥∥2 ≤ 12[(ĝk(X)− g0(X))2 + (ĝk(X)2 − g0(X)2)2]. (6)

Then P
[
(ĝk − g0)2

]
≤
√
P [(ĝk − g0)4]→p 0. Also

P
[
(ĝ2k − g20)2

]
= P [(ĝk − g0)2(ĝk + g0)

2] (7)

≤
√
P [(ĝk − g0)4]

√
P [(ĝk + g0)4] (8)

≤
√
P [(ĝk − g0)4]

√
sup
g∈G

P [g4] (9)

→p 0, (10)
where the second-to-last line follows because ĝk + g0 ∈ G as G is a vector space. We conclude from
(6) that the RHS of (5) is op(1).

Step 2. By the Cauchy-Schwarz inequality,∥∥∥∥∥ 1

N

∑
k

∑
i∈Ik

Zi(ĝk)Yi

∥∥∥∥∥ ≤
√

1

N

∑
k

∑
i∈Ik

‖Zi(ĝk)‖2
√

1

N

∑
k

∑
i∈Ik

Y 2
i . (11)

As E[Y 2] < ∞, the second term on the RHS is Op(1) by Markov’s inequality. Also for i ∈ Ik,

E
[
‖Zi(ĝk)‖2

]
= E[1 + Ti + ĝk(Xi)

2 + Tiĝk(Xi)
2] ≤ supg∈G E[2[1 + g(Xi)

2]] < ∞, and by
Markov’s inequality the first term on the RHS is also Op(1).
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Step 3. By the central limit theorem,
√
N
[∑

i
ZiZ

>
i

N − P [ZZ>]
]

is asymptotically normal. By the

delta method and invertibility of P [ZZ>],
√
N

[[∑
i
ZiZ

>
i

N

]−1
− P [ZZ>]−1

]
is also, and hence

its norm is Op(1).

Step 4. We show that for any k, 1
n

∑
i∈Ik(ĝk(Xi) − g0(Xi))Yi = op(1), from which the result

follows. By Cauchy-Schwarz,

1

n

∑
i∈Ik

(ĝk(Xi)− g0(Xi))Yi ≤
√

1

n

∑
i∈Ik

(ĝk(Xi)− g0(Xi))2
√

1

n

∑
i∈Ik

Y 2
i .

As Y has finite second moment by assumption, it remains to show the first term on the RHS is op(1).
We have

1

n

∑
i ∈Ik

(ĝk(Xi)− g0(Xi))
2 =

1

n

∑
i∈Ik

[
(ĝk(Xi)− g0(Xi))

2 − P [(ĝk − g0)2]
]
+ P [(ĝk − g0)2].

(12)

From Lemma 6.1 in [1], the first term on the RHS in (12) is op(1) and by the convergence assumption
on ĝk, the second term is too.

Step 5. By the continuous mapping theorem it suffices to show that
‖ 1
K

∑
k

[
P [Z(ĝk)Z(ĝk)

>]− P [Z(g0)Z(g0)>]
]
‖ = op(1). From the argument in Step 1,

both P [[ĝk − g0]2] and P [[ĝ2k − g20 ]2] are op(1) for all k, and hence P [ĝk − g0] and P [ĝ2k − g20 ] are
both op(1) for all k. The other entries in the matrix are straightforwardly op(1).

Step 6. This follows from Step 8 and the fact that by Chebyshev’s inequality,
‖ 1√

N

∑
i [ZiYi − P [ZY ]] ‖= Op(1).

Step 7. P [ZZ>] is invertible by assumption.

Step 8. The reasoning here is similar to Step 1. For any k and i ∈ Ik, define Wk,i = Ẑk,iYi −
P [ẐkY ] − ZiYi + P [ZY ], and note that conditional on the data in Ick, the Wk,i are mean zero
matrices, uncorrelated across observations in Ik. Then

E

∥∥∥∥∥ 1√
n

∑
i∈Ik

Wk,i

∥∥∥∥∥
2
∣∣∣∣∣∣Ick
 ≤ 1

n
E

[∑
i∈Ik

∥∥∥(Ẑk,iYi − ZiYi)∥∥∥2
∣∣∣∣∣Ick
]
= P

[∥∥∥ẐkY − ZY ∥∥∥2] .
Because P [(ĝk(X)− g0(X))2Y 2] ≤

√
P [(ĝk − g0)4]

√
P [Y 4]→p 0, the RHS of (2) is op(1). We

use Lemma 6.1 of [1] to conclude that
∥∥∥ 1√

n

∑
i∈Ik Wk,i

∥∥∥ is also op(1), from which the result follows.

3 Proof of Theorem 1

We have

α̂1({ĝk}Kk=1)− α̂1(g0) =

[
α̂1({ĝk}Kk=1)− β1({ĝk}Kk=1)− β3({ĝk}Kk=1)

1

K

K∑
k=1

P ĝk

]
(13)

− [α̂1(g0)− β1(g0)− β3(g0)Pg0] (14)
= A+B, (15)

where

A = [β̂1({ĝk}Kk=1)− β1({ĝk}Kk=1)]− [β̂1(g0)− β1(g0)], (16)
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and

(17)

B =

[
β̂3({ĝk}Kk=1)

1

N

∑
i

ĝk(i)(Xi)− β3({ĝk}Kk=1)
1

K

K∑
k=1

P ĝk

]
︸ ︷︷ ︸

C

−

[
β̂3(g0)

1

N

∑
i

g0(Xi)− β3(g0)Pg0

]
︸ ︷︷ ︸

D

.

Proposition 1 has established that A = op(1/
√
N). Moreover

(18)C =
(
β̂3({ĝk}Kk=1)− β3({ĝk}Kk=1)

) 1

N

∑
i

ĝk(i)(Xi)︸ ︷︷ ︸
C1

+β3({ĝk}Kk=1)

(
1

N

∑
i

[
ĝk(i)(Xi)− P ĝk(i)

])
︸ ︷︷ ︸

C2

and

D =
(
β̂3(g0)− β3(g0)

) 1

N

∑
i

g0(Xi)︸ ︷︷ ︸
D1

+

(
β3(g0)

1

N

∑
i

[g0(Xi)− Pg0]

)
︸ ︷︷ ︸

D2

. (19)

We show C1 −D1 and C2 −D2 are op(1/
√
N) to conclude. In fact

C1 −D1 =
(
β̂3({ĝk}Kk=1)− β3({ĝk}Kk=1)− β̂3(g0) + β3(g0)

) 1

N

∑
i

ĝk(i)(Xi)

+
(
β̂3(g0)− β3(g0)

) 1

N

∑
i

[
ĝk(i)(Xi)− g0(Xi)

]
= op(1/

√
N). (20)

This is because

• β̂3({ĝk}Kk=1)− β3({ĝk}Kk=1)− β̂3(g0) + β3(g0) = op(1/
√
N) from Proposition 1;

• 1
N

∑
i ĝk(i)(Xi) =

1
N

∑
i g0(Xi) +

1
N

∑
i(ĝk(i)(Xi))− g0(Xi)) = Op(1) from the LLN

and the same logic bounding (12) above;

• β̂3(g0) − β3(g0) = Op(1/
√
N) from the CLT and the fact that P (Z(g0)Z(g0)>) has all

eigenvalues bounded away from 0;
• 1
N

∑
i(ĝk(i)(Xi)− g0(Xi)) = op(1) again from bounding argument applied to (12).

Similarly,

C2 −D2 = β3({ĝk}Kk=1)

(
1

N

∑
i

[[
ĝk(i)(Xi)− P ĝk(i)

]
− [g0(Xi)− Pg0]

])

+

((
β3({ĝk}Kk=1)− β3(g0)

) 1

N

∑
i

[g0(Xi)− Pg0]

)
= op(1/

√
N), (21)

which results from the following facts:

• β3({ĝk}Kk=1) = β3(g0) + (β3({ĝk}Kk=1)− β3(g0)) = Op(1);

• 1
N

∑
i

[[
ĝk(i)(Xi)− P ĝk(i)

]
− [g0(Xi)− Pg0]

]
= op(1/

√
N) from the same reasoning

applied to bound (1);
• β3({ĝk}Kk=1)− β3(g0) = op(1) due to convergence of ĝk to g0, continuity of β3(·), and the

continuous mapping theorem;

• 1
N

∑
i [g0(Xi)− Pg0] = Op(1/

√
N) from the CLT.

Combining the above arguments, we conclude that B = op(1/
√
N).

5



4 Proof of Proposition 4

We first show that V̂ ar(ĝk(i)(Xi))→p σ
2
g . We have

V̂ ar(ĝk(i)(Xi)) =
1

K

∑
k

1

n

∑
i∈Ik

ĝk(Xi)
2 −

[
1

K

∑
k

1

n

∑
i∈Ik

ĝk(Xi)

]2
. (22)

By the same logic as in Step 1 of the proof of Proposition 1, for each k = 1, 2, . . . ,K,

E

∥∥∥∥∥ 1n ∑
i∈Ik

[ĝk(Xi)
2 − P ĝ2k]

∥∥∥∥∥
2
∣∣∣∣∣∣Ick
→p 0,

and so 1
n

∑
i∈Ik ĝk(Xi)

2 − P ĝ2k →p 0. Since P ĝ2k →p Pg
2
0 , it follows that 1

n

∑
i∈Ik ĝk(Xi)

2 →p

Pg20 . Similarly 1
n

∑
i∈Ik ĝk(Xi)→p Pg0. Hence V̂ ar(ĝk(i)(Xi))→p σ

2
g . Also, by Proposition 1,∥∥∥β̂({ĝk}Kk=1)− β({ĝk}Kk=1)

∥∥∥→p 0 (23)

and by continuity of β(·) and the continuous mapping theorem,∥∥β({ĝk}Kk=1)− β(g0)
∥∥→p 0. (24)

Consequently
∥∥∥β̂({ĝk}Kk=1)− β(g0)

∥∥∥→p 0. By the continuous mapping theorem, we conclude that

σ̂2 →p σ
2.

5 Proof of auxiliary lemmas

Lemma 1. Given Assumption 1,∥∥∥∥ 1

N

∑
k

∑
j∈Ik

Ẑk,jẐ
>
k,j −

1

K

∑
k

P (ẐkẐ
>
k )

∥∥∥∥ = Op(1/
√
n).

Proof. Since the number of splits K is bounded, we only need to verify for any k ∈ {1, 2, . . . ,K},∥∥∥∥ 1n ∑
j∈Ik

Ẑk,jẐ
>
k,j − P (ẐkẐ>k )

∥∥∥∥ = Op(1/
√
n).

Below we’ll prove

1

n

∑
j∈Ik

T 2
j ĝ

2
k(Xj)− E[T 2

j ĝ
2
k(Xj)|Ick] = Op(1/

√
n). (25)

The other terms can be derived in the similar manner.

First, since P (ĝk − g0)4 →p 0 as n→∞, we know that for any subsequence {nl} of N, it further
has a subsequence {n′l}, such that P (ĝk − g0)4 → 0 a.s. as l→∞. Our next step is to prove

1√
n′l

∑
j∈Ik

T 2
j ĝ

2
k(Xj)− E[T 2

j ĝ
2
k(Xj)|Ick] = Op(1) (26)

as l→∞.

For notational simplicity, define Vk,j := T 2
j ĝ

2
k(Xj) − E[T 2

j ĝ
2
k(Xj)|Ick]. Since {Vk,j}j∈Ik are

independent conditioned on Ick, for any t ∈ R we have

E exp
(
it/
√
n′l ·

∑
j∈Ik

Vk,j

)
= EE

[
exp

(
it/
√
n′l ·

∑
j∈Ik

Vk,j

)∣∣∣Ick]
= E

{
E
[
exp

(
it/
√
n′l · Vk,j

)∣∣∣Ick]}n′
l

.

6



Furthermore,

lim
l→∞

E exp
(
it/
√
n′l ·

∑
j∈Ik

Vk,j

)
= lim
l→∞

E
{
E
[
exp

(
it/
√
n′l · Vk,j

)∣∣∣Ick]}n′
l

= E lim
l→∞

{
E
[
exp

(
it/
√
n′l · Vk,j

)∣∣∣Ick]}n′
l

. (27)

Our goal is now to derive the limit in the last term so that we can infer the limiting distribution of
1/
√
n′l ·

∑
j∈Ik Vk,j .

First, we conduct the Taylor expansion

exp
(
it/
√
n′l · Vk,j

)
= 1 + it.

√
n′l · Vk,j −

t2

2n′l
V 2
k,j +Rk,j .

Here

Rk,j = exp
(
it/
√
n′l · Vk,j

)
−
[
1 + it/

√
n′l · Vk,j −

t2

2n′l
V 2
k,j

]
.

Thus

E
[
exp

(
it/
√
n′l · Vk,j

)∣∣∣Ick] = 1 + it/
√
n′l · E[Vk,j |Ick]−

t2

2n′l
E[V 2

k,j |Ick] + E[Rk,j |Ick] = 1− t2

2n′l
E[V 2

k,j |Ick] + E[Rk,j |Ick] (28)

First, with probability 1,

lim
l→∞

E[V 2
k,j |Ick] = lim

l→∞

{
E[T 4

j ĝ
4
k(Xj)|Ick]− E[T 2

j ĝ
2
k(Xj)|Ick]2

}
= p · Pg40 − p2 · (Pg20)2. (29)

Next, we bound |E[Rk,j |Ick]|. In fact,

Rk,j ≤


2t3

n′
l
3/2V

3
k,j when |Vk,j |≤

√
n′
l

2t ,

2 + t√
n′
l

|Vk,j |+ t2

2n′
l
|Vk,j |2 otherwise.

This means
|E[Rk,j |Ick]|≤ E[R

(1)
k,j |I

c
k] + E[R

(2)
k,j |I

c
k],

where R(1)
k,j =

2t3

n′
l
3/2 |Vk,j |31{|Vk,j |≤

√
n′
l/(2t)}

,

R
(2)
k,j = (2 + t√

n′
l

|Vk,j |+ t2

2n′
l
|Vk,j |2)1{|Vk,j |>

√
n′
l/(2t)}

.

On the one hand,

E[R
(1)
k,j |I

c
k] ≤

2t3

n′l
3/2

E

[
|Vk,j |2+δ/2·

(√
n′l/2t

)1−δ/2∣∣∣∣Ick]
=

2δ/2t2+δ/2

n′l
1+δ/4

E
[
|T 2
j ĝ

2
k(Xj)− ET 2

j ĝ
2
k(Xj)|2+δ/2

∣∣∣Ick] ≤ 22+δt2+δ/2

n′l
1+δ/4

P |ĝk|4+δ.

On the other hand, by Markov’s inequality,

E[R
(2)
k,j |I

c
k] ≤ 2E

[(
2t/
√
n′l

)2+δ/2
|Vk,j |2+δ/2

∣∣∣Ick]+ t/
√
n′l·

E
[
|Vk,j |·

(
2t/
√
n′l

)1+δ/2
|Vk,j |1+δ/2

∣∣∣Ick]+ t2

2n′l
·

E
[
|Vk,j |2·

(
2t/
√
n′l

)δ/2
|Vk,j |δ/2

∣∣∣Ick] ≤ 26+δt2+δ/2

n′l
1+δ/4

P |ĝk|4+δ.
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Combining the above two bounds, we deduce that

|E[Rk,j |Ick]|≤
27+δt2+δ/2

n′l
1+δ/4

P |ĝk|4+δ.

Thus with probability 1, E[Rk,j |Ick] = o(1/n′l).

Combining the above bound, (28) and (29), we obtain that with probability 1,

lim
l→∞

n′l logE

[
exp

(
it/
√
n′l · Vk,j

)∣∣∣∣Ick]
= lim
l→∞

n′l log

(
1− t2

2n′l
E[V 2

k,j |Ick] + E[Rk,j |Ick]
)

=− t2

2n′l
[p · Pg40 − p2 · (Pg20)2].

Finally we plug the above into (27) and conclude that

lim
l→∞

E exp
(
it/
√
n′l ·

∑
j∈Ik

Vk,j

)
= exp

{
− t2

2n′l
[p · Pg40 − p2 · (Pg20)2]

}
.

This implies that 1√
n′
l

∑
j∈Ik Vk,j converges in distribution to a centered normal random variable

with variance p · Pg40 − p2 · (Pg20)2, and (26) follows.

Finally, since for any subsequence {nl} of N, it further has a subsequence {n′l} such that (26) holds,
it can only be the case that (25) is true.

Lemma 2. The following hold with probability tending to 1:

λmin

(
1

n

∑
i∈Ik

Ẑk,iẐ
>
k,i

)
≥ 1

2
inf
g∈G

λmin(P [Z(g)Z(g)
>]) ∀k ∈ {1, 2, . . . ,K}; (30)

λmin

(
1

N

N∑
i=1

ẐiẐ
>
i

)
≥ 1

2
inf
g∈G

λmin(P [Z(g)Z(g)
>]). (31)

Proof. According to Weyl’s inequality,

λmin

(
1

n

∑
i∈Ik

Ẑk,iẐ
>
k,i

)
≥ λmin(P (ẐkẐ

>
k ))−

∥∥∥∥ 1n ∑
j∈Ik

Ẑk,jẐ
>
k,j − P (ẐkẐ>k )

∥∥∥∥
≥ inf
g∈G

λmin(P [Z(g)Z(g)
>])−

∥∥∥∥ 1n ∑
j∈Ik

Ẑk,jẐ
>
k,j − P (ẐkẐ>k )

∥∥∥∥.
On the other hand, from the proof of Lemma 1 we know∥∥∥∥ 1n ∑

j∈Ik

Ẑk,jẐ
>
k,j − P (ẐkẐ>k )

∥∥∥∥ = Op(1/
√
n).

This implies that

lim
n→∞

P

(∥∥∥∥ 1n ∑
j∈Ik

Ẑk,jẐ
>
k,j − P (ẐkẐ>k )

∥∥∥∥ ≥ 1

2
inf
g∈G

λmin(P [Z(g)Z(g)
>])

)
= 0.

Combining the above, we obtain (30). (31) can be proved in a similar way.
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Lemma 3. Let {M1n}, {M2n}, {M3n}, {M4n}, {An}, {Bn} be sequences of random real symmet-
ric matrices of fixed dimension. Assume that with probability 1, λ0 := infn λmin(Bn) > 0, and
‖An −Bn‖= op(1). Moreover, assume that

‖M1n −An‖= Op(1/
√
n), ‖M3n −An‖= Op(1/

√
n),

‖M2n −Bn‖= Op(1/
√
n), ‖M4n −Bn‖= Op(1/

√
n).

If in addition, √
n‖M1n +M2n −M3n −M4n‖→p 0,

then √
n‖M−11n +M−12n −M

−1
3n −M

−1
4n ‖→p 0.

Proof. Define the event

En := {‖An −Bn‖≥ λ0/2} ∪ {max{‖M1n −An‖, ‖M3n −An‖} ≥ λ0/2}
∪ {max{‖M2n −Bn‖, ‖M4n −Bn‖} ≥ λ0/2} .

Then limn→∞ P (En) = 0. Now on Ecn, according to a Neumann series expansion,

M−11n = [An + (M1n −An)]−1

= A−1/2n [I −A−1/2n (M1n −An)A−1/2n +D1n]A
−1/2
n .

Here D1n =
∑
j≥2[−A

−1/2
n (M1n −An)A−1/2n ]j , and we have on Ecn

‖D1n‖ ≤
∑
j≥2

‖A−1/2n (M1n −An)A−1/2n ‖j

≤ ‖A−1n ‖2‖M1n −An‖2

1− ‖A−1n ‖‖M1n −An‖
≤ 8

λ20
‖M1n −An‖2. (32)

Here we use the fact that on Ecn

‖A−1/2n (M1n −An)A−1/2n ‖≤ ‖A−1/2n ‖2‖M1n −An‖<
2

λ0
· λ0
2

= 1.

Similar expansions hold for M2n, M3n and M4n, and we define D2n, D3n and D4n accordingly.
Using some simple algebra, we deduce that on Ecn,

M−11n +M−12n −M
−1
3n −M

−1
4n = J1n + J2n + J3n + J4n,

where

J1n = −A−1n [M1n +M2n −M3n −M4n]A
−1
n ,

J2n = −A−1n (M4n −M2n)A
−1
n +B−1n (M4n −M2n)B

−1
n ,

J3n = A−1/2n (D1n −D3n)A
−1/2
n ,

J4n = B−1/2n (D2n −D4n)B
−1/2
n .

For any ε > 0,

P (
√
n‖M−11n +M−12n −M

−1
3n −M

−1
4n ‖> ε) < P (En) +

4∑
`=1

P (Ecn ∩ {
√
n‖J`n‖> ε/4}). (33)

Combining the fact that limn→∞ P (En) = 0, we only need to prove that each of the rest of the terms
on the the RHS of (33) has limit 0.

First, limn→∞ P (Ecn ∩ {
√
n‖J1n‖> ε/4}) = 0 follows from our assumption. For J2n, observe that

J2n = J
(1)
2n + J

(2)
2n , where

J
(1)
2n = (B−1n −A−1n )(M4n −M2n)A

−1
n , J

(2)
2n = B−1n (M4n −M2n)(B

−1
n −A−1n ).

9



We bound the limit of ‖J (1)
2n ‖ as follows: For any δ > 0, there exists M > 0 such that ∀n,

P (
√
n‖M4n −M2n‖> M) < δ

2 . According to our assumption, there further exists N ∈ N such that

for all n > N , P (‖An −Bn‖> λ3
0ε

32M ) < δ
2 . Therefore for all n > N ,

P (Ecn ∩ {
√
n‖J (1)

2n ‖> ε/8})
≤P (Ecn ∩ {

√
n‖A−1n (An −Bn)B−1n (M4n −M2n)A

−1
n ‖> ε/8})

≤P (Ecn ∩ {‖An −Bn‖·
√
n‖M4n −M2n‖> λ30ε/32})

≤P (
√
n‖M4n −M2n‖> M) + P (‖An −Bn‖> λ30ε/(32M)) < δ.

The above argument implies that limn→+∞ P (Ecn ∩ {
√
n‖J (1)

2n ‖> ε/8}) = 0. Similarly we have
limn→+∞ P (Ecn ∩ {

√
n‖J (2)

2n ‖> ε/8}) = 0. Thus

lim
n→+∞

P (Ecn ∩ {
√
n‖J2n‖> ε/4})

≤ lim
n→+∞

P (Ecn ∩ {
√
n‖J (1)

2n ‖> ε/8}) + lim
n→+∞

P (Ecn ∩ {
√
n‖J (2)

2n ‖> ε/8}) = 0.

Now we proceed to bound the limit of ‖J3n‖. In fact we have

P (Ecn ∩ {
√
n‖J3n‖> ε/4}) ≤ P (Ecn ∩ {

√
n‖D1n −D3n‖> ελ0/8})

≤P (Ecn ∩ {
√
n‖D1n‖> ελ0/16}) + P (Ecn ∩ {

√
n‖D3n‖> ελ0/16})

≤P (
√
n‖M1n −An‖2> ελ30/128) + P (

√
n‖M3n −An‖2> ελ30/128).

In the last inequality we utilize (32). Combining our assumptions, we have

lim
n→∞

P (Ecn ∩ {
√
n‖J3n‖> ε/4}) = 0.

Similarly
lim
n→∞

P (Ecn ∩ {
√
n‖J4n‖> ε/4}) = 0.

We conclude our proof.
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