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A FORECASTING MODEL FOR DETECTING ANOMALIES

In this section, we describe detailed a time-series forecasting model specialized for anomaly detec-
tion. For convenience of understanding, notations are defined as follows:
« Observed time-series T' € R(¢t®*N ig denoted by a set of time points {11, T, - ,Tn}.

* The observed value at time ¢, 7; € Rt contains ¢ continuous columns and d discrete
columns. It is expressed as T; = {C*, D'} at time ¢.

« C' € R¢is denoted by a set of columns with a continuous value {C7, Cs, - - -, C.}' at time
t.

e Dt € R? is denoted by a set of columns with a discrete value { D1, D, -+, Dg}! at time
t.

A.1 EXTRACT CONTINUOUS & DISCRETE FEATURES.

First, continuous and discrete features are separately extracted for prediction according to the data
characteristics. Therefore, we divide continuous and discrete values for observed values {T;}¥ | €
R(+ADXN a5 follows:

{1, ={C", D'},

2)
= {Ct}ivzla {Dt}zijZI .

Then, in time-series prediction, the model considering trend and seasonality shows simple but excel-
lent performance (Zeng et al., [2023)), so we decompose continuous values into trend and seasonality.
To extract the trend Cr from the continuous values, we use the moving average method, and the
seasonality Cg is taken as the remaining value after subtracting the trend from the continuous values.

{Cr}iL, = AvgPool (Padding({C'};L,)),
{CsHL, = {C'HL, — {Cr}l,,
where AvgPool means average pooling and Padding means pre-padding with the first value and
post-padding with the last value. Then, using each component as input to a linear layer, each hidden
vector is extracted as follows:
Gyt = Linearyena({Cr}ily),

AN+1
CS

3)

“4)

= Linearseasonality ({Cts }1{\;1 ) 5

where Linears,c,q and Linearscqsonality are linear layers that predict the next time point N + 1
with N observed time points. After the hidden vectors of each trend and seasonality are extracted,
reconstruct continuous features by adding each hidden vector.

CN+1 _ c¥+1 + ('jls\’-i-l7 (5)

where CN*1 e R€ is denoted by a set of {Cy,Cy, -+, C,INTL,

For discrete values, due to the difficulty in explaining trend and seasonality, they are converted into
one-hot vectors and used as inputs for a linear layer to extract hidden vectors. The process is as
follows:

{O0"}iL, = One-Hot({D'}{L,),

()N+1 = Lineardiscrate ({Ot}é\il )’

(6)

where One-Hot indicates a one-hot embedding, O! € R9%¢ is a set of one-hot vectors of discrete
columns, e is an embedding dimension and ON*1 € R%*¢ denotes a set of predicted one-hot vectors
of discrete columns {Ol, 027 S Od}N +1. Then, Ot € R° is a predicted one-hot vector of discrete
value. Linearj;screte 1S a linear layer that predicts the next time point NV + 1 with N observed time
points.
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A.2 ADAPTIVE GRAPH CONVOLUTION LAYER.

Second, we utilize an adaptive graph convolution (AGC) layer. The lack of learning dependencies
between features due to the separate handling of continuous and discrete values can be addressed
by using an adaptive adjacency matrix. The adaptive adjacency matrix is formed by multiplying
learnable embedding and is defined as follows:

A = I + softmax(ReLU(EE")), (7

where E € R(¢t9)*? jg a trainable node-embedding matrix with embedding dimension b, T €
R(etd)x(e+d) jg the identity matrix, and A € R(ctd)*(c+d) i the learned adjacent matrix of the
graph representing the proximity between time-series features.

We combine the adaptive adjacency matrix and graph convolution network. To utilize AGC,
the one-hot embedding of continuous features and discrete features are concatenated into X €
R(e+d)x(exN) = X js reshaped from the {C?, Ot} | € R(TIxexN where Ct = [C,0] €
R(e+d)xe s zero-padded continuous features. Let H € R(¢T4)*" ig the matrix of node features
with hidden dimension & transformed by Linear;yp,+. Then the AGC layer outputs Z through the
following mapping:

X = reshape({C*, O} ), 3)
H = Linear;,, ;.. (X), 9
Z = c(AHEW), (10)

where W € RY*%>¢ ig a trainable weight transformation matrix and o (-) is the activation function.
Z € Rctd)xe is the result of adaptive graph convolution and will be utilized in the prediction stage.

A.3 PREDICTION.

Finally, the dependencies between features are added to each extracted discrete and continuous
hidden vector. Through this, it is possible to make predictions considering the dependence between
the separately extracted hidden vectors.

CN+1 = CN+1 + Z:c,la

ON+L = ON+1 4 AN (1)
where Z.. ;1 € R¢is continuous columns and Z_g. . € R%*e€ is discrete columns in Z.
After that, continuous features are trained with the mean square error (MSE) loss as follows:
Lossc = 25:1(01‘]\“—1 — égv+l)2’ (12)

Cc

where CiN *1 is the i-th element of CN*1, ¢ is the number of continuous elements. For discrete
features, we need to train the model with cross-entropy (CE) loss for each discrete feature as follows:

d e N+1 AN+1
21:1 Zj:l _Oij log(Oij ) (13)
d )
where Of}f *1 is the j-th one-hot vector element in i-th one hot vector ON 1. ¢ is one-hot embedding
dimension and d is the number of discrete elements. The total loss of our prediction model is:

Lossp =

Losstotal = Lossc + Lossp. (14)

A.4 TRAINING ALGORITHM

We present the training process of the proposed time-series forecasting model in Algorithm [T} At
each iteration, we first divide the continuous and discrete values in the observed time-series T'¢,qin
Each of the continuous values and discrete values is passed through separate prediction models
to predict CN+1 and ONFL. In order to consider the dependency between values regardless of
continuous or discrete, Z is extracted by passing through the adaptive graph convolution (AGC)
layer with the observed time-series 73,4, as an input. Then add Z to CN+1 and ON+L, Finally,
the prediction model is trained with the mean squared error loss for continuous values and the cross
entropy loss for discrete values.



Under review as a workshop paper at ICLR 2025

Algorithm 1: How to train time-series forecasting model

Input: training time-series data Ty, [teration number of prediction model Kpyeq
Parameter: Prediction model Op.q
Output: Prediction model Op;eq

1: Initialize Opeq

2: k<0

3: while £ < Kpyq do

A

9:
10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:

{Ct 15\/:17 {Dt}zzfil — TTrain

{Ch L1, {Cts}ivzl < Decomp{C'}}L,
CY™ « Linear;,ena({CL 1Y)
CY ™!« Linearscasona({C51Y.1)
GV Gy e

ON*! < One-hot({D*}Y ;)

ON*1  Lineargiserere({O'}Y)
Z + AGC layer with Eq. 7 to Eq. 10
N+ — GN+L Z.c1

ON+1 _ f)N+1 + Z—d:,:

if Continuous value then

c N+1 AN+1
Lossc = (OO

end if

if Discrete value then Nt s
Zg=1 G=1 _Oij+ lOg(Oij+ )
d

c

Lossp =
end if
Losstoa < Lossc + Lossp
Update Opgeq with Losstora

22: end while
23: return Prediction model Op.eq

B EXPERIMENTAL ENVIRONMENTS

Our detailed software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON
3.9.12, CUDA 11.4, NVIDIA Driver 525.125.06 19 CPU, and GEFORCE RTX A5000 & A6000.

B.1

DATASET

We used four time-series datasets for our experiments. Summary of the datasets in Table [A of the
main manuscript.

* Mars Science Laboratory rover and Soil Moisture Active Passive satellite (Hundman et al.|
2018) datasets are from NASA. Mars Science Laboratory (MSL) rover contains 55 fea-
tures, consisting of 54 discrete features and 1 continuous feature. The anomaly proportion
in MSL testing data is approximately 10.5%. Soil Moisture Active Passive (SMAP) satel-
lite contains 25 features, consisting of 24 discrete features and 1 continuous feature. The
anomaly proportion in SMAP testing data is approximately 12.8%.

» Server Machine Dataset (Su et al., [2019) is collected by large internet company. Server
Machine Dataset (SMD) has 38 features, two of which are discrete and 36 of which are
continuous. The anomaly proportion in SMD testing data is around 4.16%.

* Pooled Server Metrics (Abdulaal et al.,2021) dataset is provided by eBay by capturing in-
ternally from application server nodes. Pooled Server Metrics (PSM) contains 25 features
with no discrete feature. Among the testing data, the proportion of anomalies is approxi-
mately 27.76%.
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Table A: Summary of the datasets. Ratio (%) represents the percentage of anomaly in the testing
dataset.

Dataset Train Validation Test #of Cont (¢) #of Disc (d) Ratio (%)

MSL 46,655 11,662 73,729 1 54 10.5
SMAP 108,148 27,035 427,617 1 24 12.8
SMD 566,725 141,680 708,420 36 2 4.16
PSM 103,289 26,495 87,841 25 0 27.76

B.2 BASELINES

To compare the performance of the proposed model, we utilized several prediction-based time-series
anomaly detection models and time-series forecasting models as baselines.

e LSTM-P (Malhotra et al., |2015) uses two-layer stacked LSTM network and a fully con-
nected layer for final forecasting.

* DeepAnT (Munir et al.| 2018)) uses a CNN-based prediction model with two 1D convolu-
tion layers and two max pooling, and a fully connected layer.

e TCN-S2S-P (He & Zhao,[2019) applies a temporal convolutional network (TCN) with 1D
dilated causal convolutions to time-series anomaly detection.

* MTAD-GAT (Zhao et al., 2020) learns complex dependencies in time-series using two
graph attention layers: temporal and feature dimensions.

* GDN (Deng & Hooi, |2021) is a graph-based model that has explainability for anomalies
with structure learning and attention weights.

* GTA (Chen et al., 2021) is a transformer-based model that learns a graph structure auto-
matically and takes into consideration the long-term temporal dependencies.

* NLinear and DLinear (Zeng et al.,|2023) are linear-based models that utilize temporal in-
formation with a linear layer. NLinear utilizes the normalization of time-series data, and
DLinear utilizes the decomposition of time-series data.

» TimesNet (Wu et al., 2022) is a Timesblock architecture based model, which incorporates
a 2D backbone. It transforms 1D time series into a 2D space and analyzes the resulting 2D
tensor using various 2D vision backbones. This allows it to effectively capture intra and
interperiodic variations within the time series.

e PatchTST (Nie et al., |2022) is a transformer-based model that uses subseries-level patches
of time series as input and has channel independence by processing multivariate time series
as a single time series.

B.3 THRESHOLD MODELS
We provide detailed information about GMM, ECOD, and DeepSVDD used as threshold models.

* GMM is a density-based model that learns the density of the data and identifies points that
do not fit well within that density as anomalies. The farther a data point deviates from the
distribution, the lower the score it receives through GMM. Consequently, the lowest score
value among the training data is used as the threshold.

* ECOD (Li et al.,2022) is a density-based model, which learns the density of the data and
considers points located in the both tail parts of the density distribution as anomalies. As
a data point gets closer to the tail of the distribution, its score through ECOD tends to be
higher. Hence, the threshold in ECOD-based anomaly detection is set to the highest score
value among the training data.

* DeepSVDD (Ruff et al.; 2018) is a boundary-based model to find the smallest hypersphere
that includes the normal data on the latent feature space. If a data point is far outside the
learned sphere, its score get higher and then that point will likely be classified to be an
anomaly.

10
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Table B: Components of our forecasting model.

Layer .D651gn Inputsize Output size Layer Design Inputsize  Output size
1 Linear,enq Sxec I xec i Linear . Sx (@x ] Tx([@xe)
2 Linearsr:asonality Sxec 1xec discrete

(a) Continuous model. (b) Discrete model.

Layer Design Input size Output size
1 Linear;,py¢ (c+d)xe hx(ct+d) xe
2 Linearoyiput h x (c+d) xe 1x(c+d)xe
3 squeeze 1x(c+d)xe (c+d) xe
(c) Adaptive Graph Convolution Model.

B.4 EVALUATION METRICS

To evaluate the time-series anomaly detection performance of our proposed model and baselines,
we consider three evaluation metrics as follows:

* F1-@K (Kim et al., |2022) first computes F1-score with the evaluation scheme in which
all observations are considered correctly detected if the proportion of correctly detected
anomalies in the consecutive anomaly segment exceeds the predefined criterion K. We use
the metric F1-@K as the area under the curve of Fl-score where K varies by 0.1 from
0 to 1 to mitigate the overestimation of point-adjusted F1-score (Xu et al., 2018) and the
underestimation of point-wise F1-score.

» F1-Composite (Garg et al., 2022) is calculated as the harmonic mean of point-wise preci-
sion and segment-wise recall for robust evaluation of segment-wise anomaly detection.

* F1-Range (Wagner et al., 2023) considers time-series precision and recall with a set of
actual anomaly segments and a set of predicted anomaly segments in order to overcome
the problem that point-wise F1-score fails to discriminate predictive patterns by ignoring
temporal dependencies.

C DETAILED SETTINGS OF EXPERIMENTS

We introduce the detailed setting of our experiments including model structure and the best hyperpa-
rameter. Here, we set the same sliding window size of 5 and prediction horizon length of 1 including
baseline models. Additionally, we use the Adam (Kingma & Ba,|2014) optimizer and set the learn-
ing rate to 0.005. Our forecasting models include continuous and discrete models, respectively, and
an adaptive graph convolution model that extracts dependencies between features. Where ¢ and d
are the number of continuous and discrete features, e is the one-hot embedding size of discrete fea-
tures and  is the hidden vector of the graph structure (cf. Table [B). Finally, we use X for balancing
between continuous features and discrete features in training loss. For each of the reported results,
we list the best hyperparameter as follows:

e ForMSL,c=1,d=54, h=256,e=2, A =1;
e For SMAP, c=1,d=24, h=256,e=2, \=1;
e For SMD, ¢=36,d=2,h=256,e=16, A=1;
e For PSM, ¢=25, e =3, h =256;

D EXPERIMENT RESULTS

In this section, we present the detailed results of our experiments in Table[E to[H.

D.1

FORECASTING PERFORMANCE

11
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Table D: Mean of evaluation metric and its standard deviation (std). Each value is represented as
mean * std. Ground Truth is the result of fitting the testing data to the trained data-driven model.

Bold is the most similar performance to Ground Truth.

Dataset-Data-driven Model MSL-GMM SMAP-ECOD PSM-DeepSVDD
Metric F1-@K F1-C FI-R F1-@K F1-C FI-R F1-@K F1-C F1-R

LSTM-P [0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000{0.2031 + 0.0146 0.1792 % 0.0124 0.1491 £ 0.0171{0.4571 £ 0.0031 0.4347 + 0.0024 0.4304 + 0.0024
Unsupervised DeepAnT |0.0451 +0.0026 0.2179 % 0.0323 0.0404 = 0.0284|0.1981 + 0.0276 0.2040 £ 0.0217 0.1669 + 0.0163|0.4572 + 0.0017 0.4358 +0.0012 0.4316 + 0.0014
Time-serics TCN-S2S-P |0.1906 + 0.0000 0.1906 % 0.0000 0.1905 + 0.0000|0.1284 + 0.0143 0.1464 £ 0.0060 0.0918 + 0.0128/0.4505 + 0.0033 0.4307 + 0.0043 0.4241 + 0.0049
Anomaly Model MTAD-GAT|0.1906 + 0.0000 0.1906 + 0.0000 0.1905 % 0.0000|0.1896 = 0.0070 0.1749 + 0.0050 0.1547 £ 0.0045|0.4560 + 0.0021 0.4308 +0.0041 0.4263 + 0.0037
GDN  |0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000{0.1351 % 0.0082 0.1413 +0.0012 0.0968 + 0.0058|0.4601 £ 0.0090 0.4341 + 0.0010 0.4262 + 0.0033
GTA 0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000/0.2348 + 0.0230 0.2020 + 0.0164 0.1731 + 0.0159]0.4631 + 0.0059 0.4428 + 0.0059 0.4357 + 0.0065

Time-series
Prediction Model

NLinear
DLinear
TimesNet
PatchTST

0.2451 £ 0.0000 0.1996 + 0.0000 0.1858 + 0.0000
0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000
0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000
0.1906 + 0.0000 0.1906 + 0.0000 0.1905 + 0.0000

0.0435 +0.0000 0.1989 +0.0001 0.0208 + 0.0000
0.0426 % 0.0004 0.1990 + 0.0055 0.0194 + 0.0008
0.3048 + 0.0525 0.2684 + 0.0484 0.2153 +0.0389
0.0423 +0.0006 0.2021 % 0.0047 0.0194 + 0.0009

OUR:!

0.0837 + 0.0014 0.1972 + 0.0001 0.0857 + 0.0004

0.4458 +0.0001 0.4332 +0.0001 0.4311 +0.0002
0.4459 +0.0000 0.4331 +0.0001 0.4312 +0.0002
0.4511+0.0021 0.4369 +0.0031 0.4337 +0.0028
0.4459 +0.0001 0.4346 + 0.0001 0.4326 + 0.0002

0.0210 * 0.0000 0.1650 + 0.0000 0.0014 + 0.0000

0.4460 + 0.0002 0.4350 +0.0001 0.4331 +0.0001

Ground Truth 0.0916 0.3428 0.0937 0.0290 0.2908 0.0046 0.4437 0.4347 0.4322

Table |C| shows the prediction perfor-
mance of forecasting models. Since
existing models consider discrete fea-

Table C: Results of forecasting performance on the four
benchmark datasets. Each value represents the mean of the
evaluation metric and its standard deviation (Std).

tures as continuous features, our
model also treats discrete features as . Dalsase‘ . MSL SMAP SMD PSM
. . ean Squarex
continuous features durmg the eval- Error (MSE) Mean * Std. Mean + Std. Mean * Std. Mean * Std.

: LSTM-P | 1.7052 £ 0.0348 | 0.0113 £ 0.0000 | 0.0016 £ 0.0000 | 0.0020 £ 0.0001
uation process and only uses mean DeepAnT | 1.2387+0.9148 | 0.0314 % 0.0105 | 0.0040 £ 0.0002 | 0.0014 + 0.0005
square error (MSE). TCN-S28-P | 1.0653 0.1072 | 0.0926 +0.0092 | 0.0233 £ 0.0026 | 0.0027 £ 0.0000

MTAD-GAT | 1.8407 +0.0081 | 0.0105 % 0.0005 | 0.0013 % 0.0000 | 0.0016 % 0.0002

: : GDN 20.824 £27.073 | 0.0230 % 0.0014 | 0.0061 £ 0.0024 | 0.0015 % 0.0003
Evaluating the model only with MSE GTA 1.8140 £ 0.0618 | 0.0370 +0.0062 | 0.0186 +0.0007 | 0.0042 + 00004
is disadvantageous to our model, NLinear | 0.0671 £ 0.0001 | 0.0188 £0.0000 | 0.0013 £ 0.0000 | 0.0001  0.0000
hich trained di f ith DLinear | 0.8747 +0.0934 | 0.0938 +0.0136 | 0.0013 +0.0000 | 0.0001  0.0000
which trained discrete teatures wit TimesNet | 0.0278 £ 0.0513 | 0.0044 + 0.0004 | 0.0014 = 0.0001 | 0.0010 £ 0.0003
cross-entropy (CE) loss. Nonethe- PatchTST | 0.0650 £ 0.0028 | 0.0124 +0.0002 | 0.0011 £ 0.0000 | 0.0001  0.0000
Ours 00289 £ 0.0016 | 0.0094=0.0001 | 0.0013 = 0.0000 | 0.0001 % 0.0000

less, our forecasting model shows
comparable or better performance than the latest time-series forecasting models. Additionally, we
will show that evaluating predictive performance using MSE does not guarantee the performance of
proactive anomaly detection in the next section.

D.2 ANOMALY DETECTION PERFORMANCE

Diff represents the difference between the Ground Truth and the result of using the predicted value
as an input to the threshold model. The closer to 0, the more similar the prediction to the ground truth
value. For models that did not predict well and judged all samples to be anomalies, the Diff value is
displayed as -. In some cases, there were models with a lower Diff than our forecasting model, but
those models had a much greater variance in forecasting performance than our forecasting model
(cf. Table[C). Therefore, we can find the anomaly in advance through accurate prediction.

For a detailed comparison, we reported a comprehensive analysis by presenting the mean and stan-
dard deviation derived from five repeated experiments in Table [D. The ground truth in the last row
of Table D is the evaluation of testing data by the data-driven model trained with training data. In
other words, if the predicted values of each model are similar to the testing data, they are identical
to the ground truth. Therefore, the goal of our experiment is for the evaluation scores of predicted
values, as determined by the data-driven model, to closely resemble those of the ground truth values.

When GMM is used as the data-driven model in the MSL dataset (MSL-GMM), our model shows
the best anomaly detection performance. In addition, all the models except for DeepAnT, NLinear,
and ours, predict all samples as anomalies, showing the same performance. In SMAP-ECOD, our
model also shows the best and the most consistent performance. These results also imply that the
prediction performance of our model has low variability, as shown in most of the results. In PSM-
DeepSVDD, our model does not show the best performance, but the performance difference with
the best model is very small, up to 0.0005.

In Table D] our model shows better performance in terms of F1-@K and F1-Range when evaluated
on MSL-GMM and SMAP-ECOD. However, it shows worse performance in the F1-Composite. To
analyze these differences, we visualize the evaluation of predicted values by a trained data-driven
model. Figure[A (left) reveals that there is a big difference between the ground truth and predicted
values of TimesNet. As a result, TimesNet identifies a majority of the samples as anomalies includ-

12
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ing normal samples within testing data, showing better performance than our model F1-Composite

in Table[D]

Although TimesNet shows better pre-
diction performance in terms of MSE
compared to our model, our model
shows more similar anomaly scores for
each time point than TimesNet. As vi-
sualized in the right panel of Figure [A]
TimesNet produces continuous values
for discrete features, while our model
predicts properly discrete values. As
a result, even though our model shows
worse forecasting performance in terms
of MSE, our model forecasts values
that are more closely aligned with the
ground truth compared to other models.

Table E: Results of anomaly detection
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Figure A: Visualization of comparison between ours and
TimeNet in the SMAP dataset. Left: Anomaly score by
the trained ECOD. Right: Predicted values for the cate-

gorical feature.

experiment on MSL dataset. When the

decides all samples to be abnormal, the F1 score is 0.1906.

data-driven model

D”;\;fgc“]’e" GMM ECOD DeepSVDD
Metrics FI-@K__Dif | FI.C__Dif | FIR __Dif |FI.@K__Dif | FI.c___Dif | FIR D | Fl.GK__Dif | FI.C___Dif | FIR DI

ISTMP [ 0.0906 - [ 00906 - | 01905 - [ 0.0906 - | 0.906 - [ 01905 - | 02026 0029 | 0.1982 0.051T | 0.1973 0.0562
Unsupervised | DSSPANT | 00451 0.0465 | 02179 0.1249 | 0.0404 00533 | 0.1906 0.1906 0.1905 01906 0.0176 | 0.1906 00435 | 0.1905 0.0494
Jpsupervised | TCN-S2SP | 01906 - | 01906 - | 01905 - | 01906 0.1906 0.1905 0.1908 0.0178 | 0.1908 0.0437 | 0.1907 0.049
Anomaty Model | MTAD-GAT | 0.1906 01906 01905 0.1906 0.1906 0.1905 02007 0.0277 | 0.1846  0.0375 | 0.1812  0.0401
GDN | 0.1906 0.1906 0.1905 0.1906 0.1906 0.1905 0.1970  0.0240 | 0.1958 0.0487 | 0.1953 0.0542
GTA | 0196 - | 0196 - | 0195 - | 01906 0.1906 0.1905 0.1913 0.0183 | 0.1910  0.0439 | 0.1908 _0.0497
Nlinear | 02451 01535 | 0.1996 0.1432 | 0.1858 0.0921 | 0.1906 0.1906 0.1905 02222 00492 | 02178 0.0707 | 02150 0.0759
Time-series DLincar | 0.1906 - | 01906 - | 01905 - | 0.1906 0.1906 0.1905 02213 0.0483 | 02169 0.0698 | 0.2142 0.0731
Prediction Model | TimesNet | 0.1906 0.1906 0.1905 0.1906 0.1906 0.1905 02043 0.0318 | 02013 0.0542 | 02002 0.0591
PachTST | 01906 - | 01906 - | 01905 - | 01906 - | 0196 - | 01905 - | 02014 00284 | 01996 00525 | 0.1987 00576
Ours 0.0837 00079 | 0.1972_0.1456 | 0.0853 _0.0084 | 0.2279 02136 | 0.1940 _0.04d0 | 0.1774__0.1750 | 0.1902__0.0172 | 0.1570_0.0399 | 0.1569 _0.0458

Ground Truth 0.0916 03428 00937 00143 0.1500 0.0024 0.1730 0.1471 01411

Table F: Results of anomaly detection experiment on SMAP dataset. When the data-driven model

decides all samples to be abnormal, the

F1 score is 0.2268.

Dadiven GMM ECOD DeepSVDD
Metrics FI@K _Diff [ FIC D | FIR _ Dif |Fi.@k _Dif | FI.C _Dif [ FIR _ Dif [FI@K Dif | FIC __ Diff | FIR__ Diff

TSTMP | 02260 0.1002 [ 02268 - | 02268 - [ 02031 0.074T [ 0.1792 O.0116 | 0.149T 0.1445 | 02501 00020 | 02393 00034 | 02332 0.0032
Unsupervised | DECPANT | 00001 00366 | 00059 03126 | 00 00078 | DISSI 01691 | 02040 00868 | 01669 01623 | 02268 0.0253 | 02268 00159 | 0.2268  0.00%
Jnsupervised | roN-sasp | 02268 - | 02268 - | 02268 - | 0128 00994 | 0464 0.1444 | 00918 00872 | 02528  0.0007 | 02438 00011 | 02374  0.0010
A el | MTAD-GAT | 02281 01914 | 02266 00919 | 02263 02185 | 0.1396 0.1606 | 0.1749 01159 | 0.I47 0.1501 | 02491 0.0030 | 02394 00033 | 02334 0,000
GDN 0.2268 - 0.2268 - 0.2268 - 0.1351  0.1061 | 0.1413  0.1495 | 0.0968 0.0922 | 0.2385 0.0136 | 0.2319 0.0108 | 0.2284  0.0080
GTA | 02277 01910 | 02268 - | 02269 02191 | 02348 02058 | 02020 00888 | 0.1731 01685 | 02717 00196 | 02540 00113 | 02444 0.0080
NCinear | 0.1373 0.1006 | 0.1402 0.1783 | 0.0970 0.0901 | 0.0435 00145 | 0.1989 00979 | 0.0208 00162 | 0.2315 0.0206 | 0.2258 00169 | 02229 0.0135
Time-series Dlinear | 02268 - | 02268 - | 02268 - | 00426 00136 | 0.1990 00918 | 00194 02222 | 02309 00212 | 02254 00173 | 02225 00139
Prediction Model | TimesNet | 02358 0.1991 | 02305 00880 | 02273 02195 | 03048 02758 | 02684 0.0224 | 02153 02107 | 02495 0.0026 | 02386 00041 | 02322 0.0042
PachTST | 02268 - | 02268 - | 02268 - | 0.0423 00133 | 02021 00887 | 00194 00148 | 02282 00239 | 02234 00193 | 02209 00155
Ouns 0.0185 _0.0182 | 02181 _0.1004 | 0.0026 _0.0052 | 0.0210 _0.0080 | 0.1650 _0.1258 | 0.0014 _0.0032 | 02416 _0.0105 | 0.2353 _0.0074 | 02314 _0.0050

Ground Trath 00367 03185 00078 00290 02908 00046 02521 02027 02361

Table G: Results of anomaly detection
decides all samples to be abnormal, the

experiment on SMD dataset. When the
F1 score is 0.0806.

data-driven model

D“;j:!;;}'e" GMM ECOD DeepSVDD
Metrics Fl-@K Diff FI-C Diff FI-R Diff Fl-@K Diff F1-C Diff FI-R Diff Fl-@K Diff FI-C Diff FI-R Diff

LSTM-P | 0.1280 0.0208 | 0.1077 0.0833 | 0.1050 0.0285 | 0.1468 0.1077 | 02125 0.1037 | 0.0636 0.0526 | 0.0020 0.0024 | 0.0763 0.0018 | 0.0757 0.0016
Unsupervised | DeSPANT | 01131 00313 | 00979 0.0931 | 0054 00211 | 0.0424  0.0033 | 00637 00451 | 00124 00014 | 0.0928 0.0016 | 00754 00027 | 0.0746  0.0027
Time-series TCN-S2S-P | 0.0832  0.0612 | 0.0811 0.1099 | 0.0809 0.0044 | 0.0203 0.0188 | 0.0612 0.0476 | 0.0033 0.0077 | 0.0924 0.0020 | 0.0766  0.0015 0756 0.0017
Anomais Model | MTAD-GAT | 02176 00732 | 0.1948 0.0038 | 0.1662 0087 | 0.1407  0.1016 | 02046 00958 | 0.0497 0.0387 | 00908 0.0036 | 00743 00038 | 0.0736  0.0037
GDN 0.1180  0.0264 | 0.1051 0.0859 | 0.1031 0.0266 | 0.1650  0.1259 | 0.2091 0.1003 | 0.0726  0.0616 | 0.0925 0.0019 | 0.0777  0.0004 | 0.0770  0.0003
GTA 01047 00397 | 0.0845 0.1065 | 0.0768  0.0003 | 0.0006 0.0385 | 0.0011 _0.1077 | 0.0001 0.0109 | 0.091 00043 | 0.0757 _0.0024 | 0.0749 _0.0024
Nlinear | 0.1148 0.0295 | 0.1208 0.0702 | 0.0580 0.0225 | 0.0427 0.0036 | 0.0807 0.028T | 0.0126 0.0016 | 0.09T8 _0.0026 | 0.0785 0.0004 | 0.0778 _0.0005
Time-series DLinear 0.0917  0.0527 | 0.1062 0.0848 | 0.0494  0.0271 0.0358  0.0033 | 0.0660 0.0428 | 0.0103 0.0007 | 0.0917 0.0027 | 0.0785 0.0004 | 0.0778  0.0005
Prediction Model | TimesNet | 01972 0.0528 | 0.1921 0.0011 | 0.1483 00718 | 0.1225 0.0834 | 0.2242 0.1154 | 00581 0.0471 | 0.0915 00029 | 00757 00024 | 00751 00022
PatchTST | 01190 0.0254 | 0.1489  0.0421 | 0.0699  0.0066 | 0.0410 0.0019 | 0.0757 0.0331 | 00121 0.0011 | 0.0910 0.0034 | 00773 _0.0008 | 0.0767 _0.0006
Ours 0.1996  0.0552 [ 0.2178 0.0268 | 0.1278 0.0513 | 0.0463  0.0072 | 0.0865 0.0223 | 0.0131 0.0021 | 0.0924 0.0020 | 0.0787 0.0006 | 0.0780  0.0007

Ground Truth 0.1444 0.1910 0.0765 0.0391 0.1088 0.0110 0.0944 0.0781 0.0773

D.3 ABLATION STUDIES

For more accurate prediction performance, our forecasting model consists of various factors. Among
them, the most important factors are graph structure and separate training processes of continu-
ous and discrete features. Therefore, we investigate the role and effectiveness of each component
through ablation studies of prediction performance using the SMD dataset.

D.3.1 GRAPH STRUCTURE.
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Table H: Results of anomaly detection experiment on PSM dataset. When the data-driven model
decides all samples to be abnormal, the F1 score is 0.4351.

Data-driven GMM ECOD DeepSVDD

Metrics F1-@K Diff FI-C Diff FI-R Diff FI-@K Diff FI-C Diff FI-R Diff FI-@K Diff F1-C Diff FI-R Diff
TSTM-P | 00034 0.0452 | 00160 0.1125 | 0.0007 00139 | 0.0016 0.0228 | 0.0219 0.058T | 0.0013 0.0059 | 04571 0013 [ 04347 0 | 04304 00018
Unsupervised | DeSPANT | DO 00486 | 00 01288 | 00 0OI46 | 0.0057 0OIS7 | 00590 00210 | 0.0057 DODIS | 04572 OIS | 043 00011 | 04316 0.0006
Jnsupervised | 1ONSpSp | 00 0048 | 00 01288 | 00 006 | 00 00244 | 00 00800 | 00 00072 | 0.4505 00068 | 0.4307 00040 | 0.4241 0.0081
Anomaly Model MTAD-GAT 0.0 0.0486 | 0.0055 0.1233 | 0.0006 0.0140 0.0090  0.0154 | 0.0434  0.0366 | 0.0025 0.0047 | 0.4560 0.0123 | 0.4308 0.0039 | 0.4263 0.0059
GDN | 00322 00164 | 00691 00397 | 0.0163 0.0017 | 00145 0009 | 00799 00001 | 0.0080 00008 | 04601 00164 | 0.4341 0.0006 | 04262 00060
GTA 00 00436 | 00 01288 | 00 00146 | 00005 00239 | 00055 00745 | 00002 00070 | 04631 00194 | 0.4428 0.0081 | 04357 00035
NDinear | 00250 0.0236 | 00539 00749 | 00015 00137 | 0.024T 0.0003 | 0.0800 — 0 | 0.007Z 0 | 04458 0.0021 | 0.4332 00015 | 04311 00011
Time-series DLinear 0.0181 0.0305 | 0.0540 0.0747 | 0.0010 0.0136 0.0239  0.0005 | 0.0800 0 0.0069  0.0003 | 0.4459 0.0022 | 0.4331 0.0016 | 0.4312 0.0010
Prediction Model | TimesNet | 00537 00051 | 0.0160 0.1128 | 00036 0011 | 0.017 00074 | 00642 00158 | 0003 00034 | 0.4511 00074 | 04369 00022 | 0.4337 00015
PaichTST | 00244 00242 | 00274 0.1014 | 00006 00140 | 0.0241 00003 | 00800 0 | 00070 0.0002 | 0.4459 0.0022 | 04346 00001 | 0.4326 _0.0004
Oun 00244 0.0242 | 00591 _0.0697 | 0.0020 _0.0126 | 0.0243 _0.0001 | 0.0800 0 | 0.0073 _0.0001 | 0.4960 _0.0025 | 04350 0.0003 | 04331 _0.0009

Ground Trth 0,096 0.128% 00146 0,024 00800 00072 04937 04397 04322

As mentioned in the proposed method,
the graph structure provides dependen-
cies between features in the prediction
process. As shown in Figure[B] anomaly
detection benchmark datasets have a
correlation between features. Therefore,
the graph structure allows our model 10 15 20 25 0 5 101520253035
to capture correlations for each feature Features

that might not be considered by sepa- Figure B: Visualization of correlation between each fea-
rate training, which leads to a decrease ture. It is closer to a positive (resp. negative) correlation
in overall error for features. Figure E when the color is brighter (resp. darker).

shows that our forecasting model with the graph structure showed lower errors than the model with-
out graph structure in both continuous and discrete features. In other words, it is evident that the
graph structure, considering the relationship between each feature, is imperative in anomaly detec-
tion datasets with correlations.
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D.3.2 SEPARATE TRAINING OF CONTINUOUS AND DISCRETE FEATURES.

We split the two groups of features to SMD

predict more accurately the time-series 0.8 All Features WC’,ontinuous Features 0lSDiscrete Features
datasets for anomaly detection, which 0.7 139 07

include both continuous and discrete 2: = g:

features. In this subsection, we in- §0ﬁ4 o 04

vestigated the model without separation 03 v 03

training to confirm the effectiveness of o I 12 i o I
separation training. In order to im- O;wgﬁphw'osep : 0o gty 0P "“-‘Swlo PR

plement the model without separation
training, discrete features which con-
sist of one-hot vectors (denoted O?) and
continuous features were concatenated
to be used as input to the continuous pre-
diction model using a graph structure. In addition, it was trained with the MSE loss.

Figure C: Ablation study results for graph structure and
separate training of continuous (MSE loss) and discrete
(CE loss) features.

As a result, Figure |C|shows that the model without separation training significantly increases the
cross-entropy loss compared to our model. In other words, it shows that separation training is
necessary for datasets with continuous and discrete features, particularly in multivariate time-series
anomaly detection.
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