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A FORECASTING MODEL FOR DETECTING ANOMALIES

In this section, we describe detailed a time-series forecasting model specialized for anomaly detec-
tion. For convenience of understanding, notations are defined as follows:

• Observed time-series T → R(c+d)→N is denoted by a set of time points {T1, T2, · · · , TN}.

• The observed value at time t, Tt → Rc+d contains c continuous columns and d discrete
columns. It is expressed as Tt = {Ct

,Dt} at time t.

• Ct → Rc is denoted by a set of columns with a continuous value {C1, C2, · · · , Cc}t at time
t.

• Dt → Rd is denoted by a set of columns with a discrete value {D1, D2, · · · , Dd}t at time
t.

A.1 EXTRACT CONTINUOUS & DISCRETE FEATURES.

First, continuous and discrete features are separately extracted for prediction according to the data
characteristics. Therefore, we divide continuous and discrete values for observed values {Tt}Nt=1 →
R(c+d)→N as follows:

{Tt}Nt=1 = {Ct
,Dt}N

t=1,

= {Ct}N
t=1, {Dt}N

t=1.
(2)

Then, in time-series prediction, the model considering trend and seasonality shows simple but excel-
lent performance (Zeng et al., 2023), so we decompose continuous values into trend and seasonality.
To extract the trend CT from the continuous values, we use the moving average method, and the
seasonality CS is taken as the remaining value after subtracting the trend from the continuous values.

{Ct

T}Nt=1 = AvgPool(Padding({Ct}N
t=1)),

{Ct

S}Nt=1 = {Ct}N
t=1 ↑ {Ct

T}Nt=1,
(3)

where AvgPool means average pooling and Padding means pre-padding with the first value and
post-padding with the last value. Then, using each component as input to a linear layer, each hidden
vector is extracted as follows:

ĈN+1
T = Lineartrend({Ct

T}Nt=1),

ĈN+1
S = Linearseasonality({Ct

S}Nt=1),
(4)

where Lineartrend and Linearseasonality are linear layers that predict the next time point N + 1
with N observed time points. After the hidden vectors of each trend and seasonality are extracted,
reconstruct continuous features by adding each hidden vector.

ĈN+1 = ĈN+1
T + ĈN+1

S , (5)

where ĈN+1 → Rc is denoted by a set of {Ĉ1, Ĉ2, · · · , Ĉc}N+1.

For discrete values, due to the difficulty in explaining trend and seasonality, they are converted into
one-hot vectors and used as inputs for a linear layer to extract hidden vectors. The process is as
follows:

{Ot}N
t=1 = One-Hot({Dt}N

t=1),

ÔN+1 = Lineardiscrete({Ot}N
t=1),

(6)

where One-Hot indicates a one-hot embedding, Ot → Rd→e is a set of one-hot vectors of discrete
columns, e is an embedding dimension and ÔN+1 → Rd→e denotes a set of predicted one-hot vectors
of discrete columns {Ô1, Ô2, · · · , Ôd}N+1. Then, Ôt → Re is a predicted one-hot vector of discrete
value. Lineardiscrete is a linear layer that predicts the next time point N + 1 with N observed time
points.
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A.2 ADAPTIVE GRAPH CONVOLUTION LAYER.

Second, we utilize an adaptive graph convolution (AGC) layer. The lack of learning dependencies
between features due to the separate handling of continuous and discrete values can be addressed
by using an adaptive adjacency matrix. The adaptive adjacency matrix is formed by multiplying
learnable embedding and is defined as follows:

A = I+ softmax(ReLU(EET)), (7)

where E → R(c+d)→b is a trainable node-embedding matrix with embedding dimension b, I →
R(c+d)→(c+d) is the identity matrix, and A → R(c+d)→(c+d) is the learned adjacent matrix of the
graph representing the proximity between time-series features.

We combine the adaptive adjacency matrix and graph convolution network. To utilize AGC,
the one-hot embedding of continuous features and discrete features are concatenated into X →
R(c+d)→(e→N). X is reshaped from the {C̃t

,Ot}N
t=1 → R(c+d)→e→N , where C̃t = [Ct

,0] →
R(c+d)→e is zero-padded continuous features. Let H → R(c+d)→h is the matrix of node features
with hidden dimension h transformed by Linearinput. Then the AGC layer outputs Z through the
following mapping:

X = reshape({C̃t
,Ot}N

t=1), (8)
H = Linearinput(X), (9)
Z = ω(AHEW), (10)

where W → Rb→h→e is a trainable weight transformation matrix and ω(·) is the activation function.
Z → R(c+d)→e is the result of adaptive graph convolution and will be utilized in the prediction stage.

A.3 PREDICTION.

Finally, the dependencies between features are added to each extracted discrete and continuous
hidden vector. Through this, it is possible to make predictions considering the dependence between
the separately extracted hidden vectors.

ĈN+1 = ĈN+1 + Z:c,1,

ÔN+1 = ÔN+1 + Z↑d:,:,
(11)

where Z:c,1 → Rc is continuous columns and Z↑d:,: → Rd→e is discrete columns in Z.

After that, continuous features are trained with the mean square error (MSE) loss as follows:

LossC =

∑
c

i=1(C
N+1
i

↑ Ĉ
N+1
i

)2

c
, (12)

where C
N+1
i

is the i-th element of CN+1, c is the number of continuous elements. For discrete
features, we need to train the model with cross-entropy (CE) loss for each discrete feature as follows:

LossD =

∑
d

i=1

∑
e

j=1 ↑O
N+1
ij

log(ÔN+1
ij

)

d
, (13)

where ON+1
ij

is the j-th one-hot vector element in i-th one hot vector ON+1
i

. e is one-hot embedding
dimension and d is the number of discrete elements. The total loss of our prediction model is:

LossTotal = LossC + LossD. (14)

A.4 TRAINING ALGORITHM

We present the training process of the proposed time-series forecasting model in Algorithm 1. At
each iteration, we first divide the continuous and discrete values in the observed time-series Ttrain.
Each of the continuous values and discrete values is passed through separate prediction models
to predict ĈN+1 and ÔN+1. In order to consider the dependency between values regardless of
continuous or discrete, Z is extracted by passing through the adaptive graph convolution (AGC)
layer with the observed time-series Ttrain as an input. Then add Z to ĈN+1 and ÔN+1. Finally,
the prediction model is trained with the mean squared error loss for continuous values and the cross
entropy loss for discrete values.

8
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Algorithm 1: How to train time-series forecasting model
Input: training time-series data TTrain, Iteration number of prediction model KPred
Parameter: Prediction model ωPred
Output: Prediction model ωPred

1: Initialize ωPred
2: k ↓ 0
3: while k < KPred do

4: {Ct}N
t=1, {Dt}N

t=1 ↓ TTrain
5: {Ct

T}Nt=1, {Ct

S}Nt=1 ↓ Decomp{Ct}N
t=1

6: ĈN+1
T ↓ Lineartrend({Ct

T}Nt=1)

7: ĈN+1
S ↓ Linearseasonal({Ct

S}Nt=1)

8: ĈN+1 ↓ ĈN+1
T + ĈN+1

S

9: ON+1 ↓ One-hot({Dt}N
t=1)

10: ÔN+1 ↓ Lineardiscrete({Ot}N
t=1)

11: Z ↓ AGC layer with Eq. 7 to Eq. 10
12: ĈN+1 = ĈN+1 + Z:c,1

13: ÔN+1 = D̂N+1 + Z↑d:,:

14: if Continuous value then

15: LossC =
∑c

i=1(C
N+1
i ↑Ĉ

N+1
i )2

c

16: end if

17: if Discrete value then

18: LossD =
∑d

i=1

∑e
j=1 ↑O

N+1
ij log(ÔN+1

ij )

d

19: end if

20: LossTotal ↓ LossC + LossD

21: Update ωPred with LossTotal
22: end while

23: return Prediction model ωPred

B EXPERIMENTAL ENVIRONMENTS

Our detailed software and hardware environments are as follows: UBUNTU 18.04 LTS, PYTHON
3.9.12, CUDA 11.4, NVIDIA Driver 525.125.06 i9 CPU, and GEFORCE RTX A5000 & A6000.

B.1 DATASET

We used four time-series datasets for our experiments. Summary of the datasets in Table A of the
main manuscript.

• Mars Science Laboratory rover and Soil Moisture Active Passive satellite (Hundman et al.,
2018) datasets are from NASA. Mars Science Laboratory (MSL) rover contains 55 fea-
tures, consisting of 54 discrete features and 1 continuous feature. The anomaly proportion
in MSL testing data is approximately 10.5%. Soil Moisture Active Passive (SMAP) satel-
lite contains 25 features, consisting of 24 discrete features and 1 continuous feature. The
anomaly proportion in SMAP testing data is approximately 12.8%.

• Server Machine Dataset (Su et al., 2019) is collected by large internet company. Server
Machine Dataset (SMD) has 38 features, two of which are discrete and 36 of which are
continuous. The anomaly proportion in SMD testing data is around 4.16%.

• Pooled Server Metrics (Abdulaal et al., 2021) dataset is provided by eBay by capturing in-
ternally from application server nodes. Pooled Server Metrics (PSM) contains 25 features
with no discrete feature. Among the testing data, the proportion of anomalies is approxi-
mately 27.76%.
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Table A: Summary of the datasets. Ratio (%) represents the percentage of anomaly in the testing
dataset.

Dataset Train Validation Test # of Cont (c) # of Disc (d) Ratio (%)
MSL 46,655 11,662 73,729 1 54 10.5
SMAP 108,148 27,035 427,617 1 24 12.8
SMD 566,725 141,680 708,420 36 2 4.16
PSM 103,289 26,495 87,841 25 0 27.76

B.2 BASELINES

To compare the performance of the proposed model, we utilized several prediction-based time-series
anomaly detection models and time-series forecasting models as baselines.

• LSTM-P (Malhotra et al., 2015) uses two-layer stacked LSTM network and a fully con-
nected layer for final forecasting.

• DeepAnT (Munir et al., 2018) uses a CNN-based prediction model with two 1D convolu-
tion layers and two max pooling, and a fully connected layer.

• TCN-S2S-P (He & Zhao, 2019) applies a temporal convolutional network (TCN) with 1D
dilated causal convolutions to time-series anomaly detection.

• MTAD-GAT (Zhao et al., 2020) learns complex dependencies in time-series using two
graph attention layers: temporal and feature dimensions.

• GDN (Deng & Hooi, 2021) is a graph-based model that has explainability for anomalies
with structure learning and attention weights.

• GTA (Chen et al., 2021) is a transformer-based model that learns a graph structure auto-
matically and takes into consideration the long-term temporal dependencies.

• NLinear and DLinear (Zeng et al., 2023) are linear-based models that utilize temporal in-
formation with a linear layer. NLinear utilizes the normalization of time-series data, and
DLinear utilizes the decomposition of time-series data.

• TimesNet (Wu et al., 2022) is a Timesblock architecture based model, which incorporates
a 2D backbone. It transforms 1D time series into a 2D space and analyzes the resulting 2D
tensor using various 2D vision backbones. This allows it to effectively capture intra and
interperiodic variations within the time series.

• PatchTST (Nie et al., 2022) is a transformer-based model that uses subseries-level patches
of time series as input and has channel independence by processing multivariate time series
as a single time series.

B.3 THRESHOLD MODELS

We provide detailed information about GMM, ECOD, and DeepSVDD used as threshold models.

• GMM is a density-based model that learns the density of the data and identifies points that
do not fit well within that density as anomalies. The farther a data point deviates from the
distribution, the lower the score it receives through GMM. Consequently, the lowest score
value among the training data is used as the threshold.

• ECOD (Li et al., 2022) is a density-based model, which learns the density of the data and
considers points located in the both tail parts of the density distribution as anomalies. As
a data point gets closer to the tail of the distribution, its score through ECOD tends to be
higher. Hence, the threshold in ECOD-based anomaly detection is set to the highest score
value among the training data.

• DeepSVDD (Ruff et al., 2018) is a boundary-based model to find the smallest hypersphere
that includes the normal data on the latent feature space. If a data point is far outside the
learned sphere, its score get higher and then that point will likely be classified to be an
anomaly.

10
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Table B: Components of our forecasting model.

Layer Design Input size Output size
1 Lineartrend 5 ↔ c 1 ↔ c

2 Linearseasonality 5 ↔ c 1 ↔ c

(a) Continuous model.

Layer Design Input size Output size
1 Lineardiscrete 5 ↔ (d↔ e) 1 ↔ (d↔ e)

(b) Discrete model.

Layer Design Input size Output size
1 Linearinput (c+ d) ↔ e h ↔ (c+ d) ↔ e

2 Linearoutput h ↔ (c+ d) ↔ e 1 ↔ (c+ d) ↔ e

3 squeeze 1 ↔ (c+ d) ↔ e (c+ d) ↔ e

(c) Adaptive Graph Convolution Model.

B.4 EVALUATION METRICS

To evaluate the time-series anomaly detection performance of our proposed model and baselines,
we consider three evaluation metrics as follows:

• F1-@K (Kim et al., 2022) first computes F1-score with the evaluation scheme in which
all observations are considered correctly detected if the proportion of correctly detected
anomalies in the consecutive anomaly segment exceeds the predefined criterion K. We use
the metric F1-@K as the area under the curve of F1-score where K varies by 0.1 from
0 to 1 to mitigate the overestimation of point-adjusted F1-score (Xu et al., 2018) and the
underestimation of point-wise F1-score.

• F1-Composite (Garg et al., 2022) is calculated as the harmonic mean of point-wise preci-
sion and segment-wise recall for robust evaluation of segment-wise anomaly detection.

• F1-Range (Wagner et al., 2023) considers time-series precision and recall with a set of
actual anomaly segments and a set of predicted anomaly segments in order to overcome
the problem that point-wise F1-score fails to discriminate predictive patterns by ignoring
temporal dependencies.

C DETAILED SETTINGS OF EXPERIMENTS

We introduce the detailed setting of our experiments including model structure and the best hyperpa-
rameter. Here, we set the same sliding window size of 5 and prediction horizon length of 1 including
baseline models. Additionally, we use the Adam (Kingma & Ba, 2014) optimizer and set the learn-
ing rate to 0.005. Our forecasting models include continuous and discrete models, respectively, and
an adaptive graph convolution model that extracts dependencies between features. Where c and d

are the number of continuous and discrete features, e is the one-hot embedding size of discrete fea-
tures and h is the hidden vector of the graph structure (cf. Table B). Finally, we use ε for balancing
between continuous features and discrete features in training loss. For each of the reported results,
we list the best hyperparameter as follows:

• For MSL, c = 1, d = 54, h = 256, e = 2, ε = 1;
• For SMAP, c = 1, d = 24, h = 256, e = 2, ε = 1;
• For SMD, c = 36, d = 2, h = 256, e = 16, ε = 1;
• For PSM, c = 25, e = 3, h = 256;

D EXPERIMENT RESULTS

In this section, we present the detailed results of our experiments in Table E to H.

D.1 FORECASTING PERFORMANCE
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Table D: Mean of evaluation metric and its standard deviation (std). Each value is represented as
mean ± std. Ground Truth is the result of fitting the testing data to the trained data-driven model.
Bold is the most similar performance to Ground Truth.

Dataset-Data-driven Model MSL-GMM SMAP-ECOD PSM-DeepSVDD
Metric F1-@K F1-C F1-R F1-@K F1-C F1-R F1-@K F1-C F1-R

Unsupervised
Time-series

Anomaly Model

LSTM-P 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.2031 ± 0.0146 0.1792 ± 0.0124 0.1491 ± 0.0171 0.4571 ± 0.0031 0.4347 ± 0.0024 0.4304 ± 0.0024
DeepAnT 0.0451 ± 0.0026 0.2179 ± 0.0323 0.0404 ± 0.0284 0.1981 ± 0.0276 0.2040 ± 0.0217 0.1669 ± 0.0163 0.4572 ± 0.0017 0.4358 ± 0.0012 0.4316 ± 0.0014

TCN-S2S-P 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.1284 ± 0.0143 0.1464 ± 0.0060 0.0918 ± 0.0128 0.4505 ± 0.0033 0.4307 ± 0.0043 0.4241 ± 0.0049
MTAD-GAT 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.1896 ± 0.0070 0.1749 ± 0.0050 0.1547 ± 0.0045 0.4560 ± 0.0021 0.4308 ± 0.0041 0.4263 ± 0.0037

GDN 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.1351 ± 0.0082 0.1413 ± 0.0012 0.0968 ± 0.0058 0.4601 ± 0.0090 0.4341 ± 0.0010 0.4262 ± 0.0033
GTA 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.2348 ± 0.0230 0.2020 ± 0.0164 0.1731 ± 0.0159 0.4631 ± 0.0059 0.4428 ± 0.0059 0.4357 ± 0.0065

Time-series
Prediction Model

NLinear 0.2451 ± 0.0000 0.1996 ± 0.0000 0.1858 ± 0.0000 0.0435 ± 0.0000 0.1989 ± 0.0001 0.0208 ± 0.0000 0.4458 ± 0.0001 0.4332 ± 0.0001 0.4311 ± 0.0002
DLinear 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.0426 ± 0.0004 0.1990 ± 0.0055 0.0194 ± 0.0008 0.4459 ± 0.0000 0.4331 ± 0.0001 0.4312 ± 0.0002

TimesNet 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.3048 ± 0.0525 0.2684 ± 0.0484 0.2153 ± 0.0389 0.4511 ± 0.0021 0.4369 ± 0.0031 0.4337 ± 0.0028
PatchTST 0.1906 ± 0.0000 0.1906 ± 0.0000 0.1905 ± 0.0000 0.0423 ± 0.0006 0.2021 ± 0.0047 0.0194 ± 0.0009 0.4459 ± 0.0001 0.4346 ± 0.0001 0.4326 ± 0.0002

OURS 0.0837 ± 0.0014 0.1972 ± 0.0001 0.0857 ± 0.0004 0.0210 ± 0.0000 0.1650 ± 0.0000 0.0014 ± 0.0000 0.4460 ± 0.0002 0.4350 ± 0.0001 0.4331 ± 0.0001
Ground Truth 0.0916 0.3428 0.0937 0.0290 0.2908 0.0046 0.4437 0.4347 0.4322

Table C: Results of forecasting performance on the four
benchmark datasets. Each value represents the mean of the
evaluation metric and its standard deviation (Std).

Dataset MSL SMAP SMD PSM
Mean Squared
Error (MSE) Mean ± Std. Mean ± Std. Mean ± Std. Mean ± Std.

LSTM-P 1.7052 ± 0.0348 0.0113 ± 0.0000 0.0016 ± 0.0000 0.0020 ± 0.0001
DeepAnT 1.2387 ± 0.9148 0.0314 ± 0.0105 0.0040 ± 0.0002 0.0014 ± 0.0005

TCN-S2S-P 1.0653 ± 0.1072 0.0926 ± 0.0092 0.0233 ± 0.0026 0.0027 ± 0.0000
MTAD-GAT 1.8407 ± 0.0081 0.0105 ± 0.0005 0.0013 ± 0.0000 0.0016 ± 0.0002

GDN 20.824 ± 27.073 0.0230 ± 0.0014 0.0061 ± 0.0024 0.0015 ± 0.0003
GTA 1.8140 ± 0.0618 0.0370 ± 0.0062 0.0186 ± 0.0007 0.0042 ± 0.0004

NLinear 0.0671 ± 0.0001 0.0188 ± 0.0000 0.0013 ± 0.0000 0.0001 ± 0.0000

DLinear 0.8747 ± 0.0934 0.0938 ± 0.0136 0.0013 ± 0.0000 0.0001 ± 0.0000

TimesNet 0.0278 ± 0.0513 0.0044 ± 0.0004 0.0014 ± 0.0001 0.0010 ± 0.0003
PatchTST 0.0650 ± 0.0028 0.0124 ± 0.0002 0.0011 ± 0.0000 0.0001 ± 0.0000

Ours 0.0289 ± 0.0016 0.0094 ± 0.0001 0.0013 ± 0.0000 0.0001 ± 0.0000

Table C shows the prediction perfor-
mance of forecasting models. Since
existing models consider discrete fea-
tures as continuous features, our
model also treats discrete features as
continuous features during the eval-
uation process and only uses mean
square error (MSE).

Evaluating the model only with MSE
is disadvantageous to our model,
which trained discrete features with
cross-entropy (CE) loss. Nonethe-
less, our forecasting model shows
comparable or better performance than the latest time-series forecasting models. Additionally, we
will show that evaluating predictive performance using MSE does not guarantee the performance of
proactive anomaly detection in the next section.

D.2 ANOMALY DETECTION PERFORMANCE

Diff represents the difference between the Ground Truth and the result of using the predicted value
as an input to the threshold model. The closer to 0, the more similar the prediction to the ground truth
value. For models that did not predict well and judged all samples to be anomalies, the Diff value is
displayed as -. In some cases, there were models with a lower Diff than our forecasting model, but
those models had a much greater variance in forecasting performance than our forecasting model
(cf. Table C). Therefore, we can find the anomaly in advance through accurate prediction.

For a detailed comparison, we reported a comprehensive analysis by presenting the mean and stan-
dard deviation derived from five repeated experiments in Table D. The ground truth in the last row
of Table D is the evaluation of testing data by the data-driven model trained with training data. In
other words, if the predicted values of each model are similar to the testing data, they are identical
to the ground truth. Therefore, the goal of our experiment is for the evaluation scores of predicted
values, as determined by the data-driven model, to closely resemble those of the ground truth values.

When GMM is used as the data-driven model in the MSL dataset (MSL-GMM), our model shows
the best anomaly detection performance. In addition, all the models except for DeepAnT, NLinear,
and ours, predict all samples as anomalies, showing the same performance. In SMAP-ECOD, our
model also shows the best and the most consistent performance. These results also imply that the
prediction performance of our model has low variability, as shown in most of the results. In PSM-
DeepSVDD, our model does not show the best performance, but the performance difference with
the best model is very small, up to 0.0005.

In Table D, our model shows better performance in terms of F1-@K and F1-Range when evaluated
on MSL-GMM and SMAP-ECOD. However, it shows worse performance in the F1-Composite. To
analyze these differences, we visualize the evaluation of predicted values by a trained data-driven
model. Figure A (left) reveals that there is a big difference between the ground truth and predicted
values of TimesNet. As a result, TimesNet identifies a majority of the samples as anomalies includ-
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ing normal samples within testing data, showing better performance than our model F1-Composite
in Table D.
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Figure A: Visualization of comparison between ours and
TimeNet in the SMAP dataset. Left: Anomaly score by
the trained ECOD. Right: Predicted values for the cate-
gorical feature.

Although TimesNet shows better pre-
diction performance in terms of MSE
compared to our model, our model
shows more similar anomaly scores for
each time point than TimesNet. As vi-
sualized in the right panel of Figure A,
TimesNet produces continuous values
for discrete features, while our model
predicts properly discrete values. As
a result, even though our model shows
worse forecasting performance in terms
of MSE, our model forecasts values
that are more closely aligned with the
ground truth compared to other models.

Table E: Results of anomaly detection experiment on MSL dataset. When the data-driven model
decides all samples to be abnormal, the F1 score is 0.1906.

Data-driven
Model GMM ECOD DeepSVDD

Metrics F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff

Unsupervised
Time-series

Anomaly Model

LSTM-P 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.2026 0.0296 0.1982 0.0511 0.1973 0.0562
DeepAnT 0.0451 0.0465 0.2179 0.1249 0.0404 0.0533 0.1906 - 0.1906 - 0.1905 - 0.1906 0.0176 0.1906 0.0435 0.1905 0.0494

TCN-S2S-P 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.1908 0.0178 0.1908 0.0437 0.1907 0.0496
MTAD-GAT 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.2007 0.0277 0.1846 0.0375 0.1812 0.0401

GDN 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.1970 0.0240 0.1958 0.0487 0.1953 0.0542
GTA 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.1913 0.0183 0.1910 0.0439 0.1908 0.0497

Time-series
Prediction Model

NLinear 0.2451 0.1535 0.1996 0.1432 0.1858 0.0921 0.1906 - 0.1906 - 0.1905 - 0.2222 0.0492 0.2178 0.0707 0.2150 0.0739
DLinear 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.2213 0.0483 0.2169 0.0698 0.2142 0.0731

TimesNet 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.2048 0.0318 0.2013 0.0542 0.2002 0.0591
PatchTST 0.1906 - 0.1906 - 0.1905 - 0.1906 - 0.1906 - 0.1905 - 0.2014 0.0284 0.1996 0.0525 0.1987 0.0576

Ours 0.0837 0.0079 0.1972 0.1456 0.0853 0.0084 0.2279 0.2136 0.1940 0.0440 0.1774 0.1750 0.1902 0.0172 0.1870 0.0399 0.1869 0.0458
Ground Truth 0.0916 0.3428 0.0937 0.0143 0.1500 0.0024 0.1730 0.1471 0.1411

Table F: Results of anomaly detection experiment on SMAP dataset. When the data-driven model
decides all samples to be abnormal, the F1 score is 0.2268.

Data-driven
Model GMM ECOD DeepSVDD

Metrics F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff

Unsupervised
Time-series

Anomaly Model

LSTM-P 0.2269 0.1902 0.2268 - 0.2268 - 0.2031 0.1741 0.1792 0.1116 0.1491 0.1445 0.2501 0.0020 0.2393 0.0034 0.2332 0.0032
DeepAnT 0.0001 0.0366 0.0059 0.3126 0.0 0.0078 0.1981 0.1691 0.2040 0.0868 0.1669 0.1623 0.2268 0.0253 0.2268 0.0159 0.2268 0.0096

TCN-S2S-P 0.2268 - 0.2268 - 0.2268 - 0.1284 0.0994 0.1464 0.1444 0.0918 0.0872 0.2528 0.0007 0.2438 0.0011 0.2374 0.0010

MTAD-GAT 0.2281 0.1914 0.2266 0.0919 0.2263 0.2185 0.1896 0.1606 0.1749 0.1159 0.1547 0.1501 0.2491 0.0030 0.2394 0.0033 0.2334 0.0030
GDN 0.2268 - 0.2268 - 0.2268 - 0.1351 0.1061 0.1413 0.1495 0.0968 0.0922 0.2385 0.0136 0.2319 0.0108 0.2284 0.0080
GTA 0.2277 0.1910 0.2268 - 0.2269 0.2191 0.2348 0.2058 0.2020 0.0888 0.1731 0.1685 0.2717 0.0196 0.2540 0.0113 0.2444 0.0080

Time-series
Prediction Model

NLinear 0.1373 0.1006 0.1402 0.1783 0.0979 0.0901 0.0435 0.0145 0.1989 0.0919 0.0208 0.0162 0.2315 0.0206 0.2258 0.0169 0.2229 0.0135
DLinear 0.2268 - 0.2268 - 0.2268 - 0.0426 0.0136 0.1990 0.0918 0.0194 0.2222 0.2309 0.0212 0.2254 0.0173 0.2225 0.0139

TimesNet 0.2358 0.1991 0.2305 0.0880 0.2273 0.2195 0.3048 0.2758 0.2684 0.0224 0.2153 0.2107 0.2495 0.0026 0.2386 0.0041 0.2322 0.0042
PatchTST 0.2268 - 0.2268 - 0.2268 - 0.0423 0.0133 0.2021 0.0887 0.0194 0.0148 0.2282 0.0239 0.2234 0.0193 0.2209 0.0155

Ours 0.0185 0.0182 0.2181 0.1004 0.0026 0.0052 0.0210 0.0080 0.1650 0.1258 0.0014 0.0032 0.2416 0.0105 0.2353 0.0074 0.2314 0.0050
Ground Truth 0.0367 0.3185 0.0078 0.0290 0.2908 0.0046 0.2521 0.2427 0.2364

Table G: Results of anomaly detection experiment on SMD dataset. When the data-driven model
decides all samples to be abnormal, the F1 score is 0.0806.

Data-driven
Model GMM ECOD DeepSVDD

Metrics F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff

Unsupervised
Time-series

Anomaly Model

LSTM-P 0.1240 0.0204 0.1077 0.0833 0.1050 0.0285 0.1468 0.1077 0.2125 0.1037 0.0636 0.0526 0.0920 0.0024 0.0763 0.0018 0.0757 0.0016
DeepAnT 0.1131 0.0313 0.0979 0.0931 0.0554 0.0211 0.0424 0.0033 0.0637 0.0451 0.0124 0.0014 0.0928 0.0016 0.0754 0.0027 0.0746 0.0027

TCN-S2S-P 0.0832 0.0612 0.0811 0.1099 0.0809 0.0044 0.0203 0.0188 0.0612 0.0476 0.0033 0.0077 0.0924 0.0020 0.0766 0.0015 0756 0.0017
MTAD-GAT 0.2176 0.0732 0.1948 0.0038 0.1662 0.0897 0.1407 0.1016 0.2046 0.0958 0.0497 0.0387 0.0908 0.0036 0.0743 0.0038 0.0736 0.0037

GDN 0.1180 0.0264 0.1051 0.0859 0.1031 0.0266 0.1650 0.1259 0.2091 0.1003 0.0726 0.0616 0.0925 0.0019 0.0777 0.0004 0.0770 0.0003

GTA 0.1047 0.0397 0.0845 0.1065 0.0768 0.0003 0.0006 0.0385 0.0011 0.1077 0.0001 0.0109 0.0901 0.0043 0.0757 0.0024 0.0749 0.0024

Time-series
Prediction Model

NLinear 0.1148 0.0295 0.1208 0.0702 0.0540 0.0225 0.0427 0.0036 0.0807 0.0281 0.0126 0.0016 0.0918 0.0026 0.0785 0.0004 0.0778 0.0005
DLinear 0.0917 0.0527 0.1062 0.0848 0.0494 0.0271 0.0358 0.0033 0.0660 0.0428 0.0103 0.0007 0.0917 0.0027 0.0785 0.0004 0.0778 0.0005

TimesNet 0.1972 0.0528 0.1921 0.0011 0.1483 0.0718 0.1225 0.0834 0.2242 0.1154 0.0581 0.0471 0.0915 0.0029 0.0757 0.0024 0.0751 0.0022
PatchTST 0.1190 0.0254 0.1489 0.0421 0.0699 0.0066 0.0410 0.0019 0.0757 0.0331 0.0121 0.0011 0.0910 0.0034 0.0773 0.0008 0.0767 0.0006

Ours 0.1996 0.0552 0.2178 0.0268 0.1278 0.0513 0.0463 0.0072 0.0865 0.0223 0.0131 0.0021 0.0924 0.0020 0.0787 0.0006 0.0780 0.0007
Ground Truth 0.1444 0.1910 0.0765 0.0391 0.1088 0.0110 0.0944 0.0781 0.0773

D.3 ABLATION STUDIES

For more accurate prediction performance, our forecasting model consists of various factors. Among
them, the most important factors are graph structure and separate training processes of continu-
ous and discrete features. Therefore, we investigate the role and effectiveness of each component
through ablation studies of prediction performance using the SMD dataset.

D.3.1 GRAPH STRUCTURE.
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Table H: Results of anomaly detection experiment on PSM dataset. When the data-driven model
decides all samples to be abnormal, the F1 score is 0.4351.

Data-driven
Model GMM ECOD DeepSVDD

Metrics F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff F1-@K Diff F1-C Diff F1-R Diff

Unsupervised
Time-series

Anomaly Model

LSTM-P 0.0034 0.0452 0.0160 0.1128 0.0007 0.0139 0.0016 0.0228 0.0219 0.0581 0.0013 0.0059 0.4571 0.0134 0.4347 0 0.4304 0.0018
DeepAnT 0.0 0.0486 0.0 0.1288 0.0 0.0146 0.0087 0.0157 0.0590 0.0210 0.0057 0.0015 0.4572 0.0135 0.4358 0.0011 0.4316 0.0006

TCN-S2S-P 0.0 0.0486 0.0 0.1288 0.0 0.0146 0.0 0.0244 0.0 0.0800 0.0 0.0072 0.4505 0.0068 0.4307 0.0040 0.4241 0.0081
MTAD-GAT 0.0 0.0486 0.0055 0.1233 0.0006 0.0140 0.0090 0.0154 0.0434 0.0366 0.0025 0.0047 0.4560 0.0123 0.4308 0.0039 0.4263 0.0059

GDN 0.0322 0.0164 0.0691 0.0597 0.0163 0.0017 0.0145 0.0099 0.0799 0.0001 0.0080 0.0008 0.4601 0.0164 0.4341 0.0006 0.4262 0.0060
GTA 0.0 0.0486 0.0 0.1288 0.0 0.0146 0.0005 0.0239 0.0055 0.0745 0.0002 0.0070 0.4631 0.0194 0.4428 0.0081 0.4357 0.0035

Time-series
Prediction Model

NLinear 0.0250 0.0236 0.0539 0.0749 0.0015 0.0131 0.0241 0.0003 0.0800 0 0.0072 0 0.4458 0.0021 0.4332 0.0015 0.4311 0.0011
DLinear 0.0181 0.0305 0.0540 0.0747 0.0010 0.0136 0.0239 0.0005 0.0800 0 0.0069 0.0003 0.4459 0.0022 0.4331 0.0016 0.4312 0.0010

TimesNet 0.0537 0.0051 0.0160 0.1128 0.0036 0.011 0.017 0.0074 0.0642 0.0158 0.0038 0.0034 0.4511 0.0074 0.4369 0.0022 0.4337 0.0015
PatchTST 0.0244 0.0242 0.0274 0.1014 0.0006 0.0140 0.0241 0.0003 0.0800 0 0.0070 0.0002 0.4459 0.0022 0.4346 0.0001 0.4326 0.0004

Ours 0.0244 0.0242 0.0591 0.0697 0.0020 0.0126 0.0243 0.0001 0.0800 0 0.0073 0.0001 0.4460 0.0023 0.4350 0.0003 0.4331 0.0009
Ground Truth 0.0486 0.1288 0.0146 0.0244 0.0800 0.0072 0.4437 0.4347 0.4322
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Figure B: Visualization of correlation between each fea-
ture. It is closer to a positive (resp. negative) correlation
when the color is brighter (resp. darker).

As mentioned in the proposed method,
the graph structure provides dependen-
cies between features in the prediction
process. As shown in Figure B, anomaly
detection benchmark datasets have a
correlation between features. Therefore,
the graph structure allows our model
to capture correlations for each feature
that might not be considered by sepa-
rate training, which leads to a decrease
in overall error for features. Figure C
shows that our forecasting model with the graph structure showed lower errors than the model with-
out graph structure in both continuous and discrete features. In other words, it is evident that the
graph structure, considering the relationship between each feature, is imperative in anomaly detec-
tion datasets with correlations.

D.3.2 SEPARATE TRAINING OF CONTINUOUS AND DISCRETE FEATURES.
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Figure C: Ablation study results for graph structure and
separate training of continuous (MSE loss) and discrete
(CE loss) features.

We split the two groups of features to
predict more accurately the time-series
datasets for anomaly detection, which
include both continuous and discrete
features. In this subsection, we in-
vestigated the model without separation
training to confirm the effectiveness of
separation training. In order to im-
plement the model without separation
training, discrete features which con-
sist of one-hot vectors (denoted Ot) and
continuous features were concatenated
to be used as input to the continuous pre-
diction model using a graph structure. In addition, it was trained with the MSE loss.

As a result, Figure C shows that the model without separation training significantly increases the
cross-entropy loss compared to our model. In other words, it shows that separation training is
necessary for datasets with continuous and discrete features, particularly in multivariate time-series
anomaly detection.
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