
A Gridworld example where multi-step outperforms one-step

As explained in the main text, this section presents an example that is only a slight modification of
the one in Figure 4, but where a multi-step approach is clearly preferred over just one step. The
data-generating and learning processes are exactly the same (100 trajectories of length 100, discount
0.9, α = 0.1 for reverse KL regularization). The only difference is that rather than using a behavior
that is a mixture of optimal and uniform, we use a behavior that is a mixture of maximally suboptimal
and uniform. If we call the suboptimal policy π− (which always goes down and left in our gridworld),
then the behavior for the modified example is β = 0.2 · π− + 0.8 · u, where u is uniform. Results are
shown in Figure 7.

Figure 7: A gridworld example with modified behavior where multi-step is much better than one-step.

By being more likely to go to the noisy states, this behavior policy allows us to get lower variance
estimates of the rewards. Essentially, the coverage of the behavior policy in this example reduces
the magnitude of the evaluation errors. This allows for more aggressive planning using multi-step
methods. Moreover, since the behavior is less likely to go to the good state, the behavior Q function
does not propagate the signal from the rewarding state as far, harming the one-step method.

B Connection to policy improvement guarantees

The regularized or constrained one-step algorithm performs an update that directly inherits guarantees
from the literature on conservative policy improvement [Kakade and Langford, 2002, Schulman et al.,
2015, Achiam et al., 2017]. These original papers consider an online setting where more data is
collected at each step, but the guarantee at each step applies to our one-step offline algorithm.
The key idea of this line of work begins with the performance difference lemma of Kakade and
Langford [2002], and then lower bounds the amount of improvement over the behavior policy. Define
the discounted state visitation distribution for a policy π by dπ(s) := (1−γ)

∑∞
t=0 γ

tPρ,P,π(st = s).
We will also use the shorthand Q(s, π) to denote Ea∼π|s[Q(s, a)]. Then we have the performance
difference lemma as follows.
Lemma 1 (Performance difference, Kakade and Langford [2002]). For any two policies π and β,

J(π)− J(β) = 1

1− γ E
s∼dπ

[Qβ(s, π)−Qβ(s, β)]. (7)

Then, Corollary 1 from Achiam et al. [2017] (reproduced below) gives a guarantee for the one-step
algorithm. The key idea is that when π is sufficiently close to β, we can use Qβ as an approximation
to Qπ .
Lemma 2 (Conservative Policy Improvement, Achiam et al. [2017]). For any two policies π and β,
let ‖Aβπ‖∞ = sups |Qβ(s, π)−Qβ(s, β)|. Then,

J(π)− J(β) ≥ 1

1− γ E
s∼dβ

[(
Qβ(s, π)−Qβ(s, β)

)
− 2γ‖Aβπ‖∞

1− γ
DTV (π(·|s)‖β(·|s))

]
(8)

where DTV denotes the total variation distance.

15

Replacing Qβ with Q̂β and the TV distance by the KL (using Pinsker’s inequality), we get precisely
the objective that we optimize in the one-step algorithm. This shows that the one-step algorithm
indeed optimizes a lower bound on the performance difference. Of course, in practice we replace
the potentially large multiplier on the divergence term by a hyperparameter, but this theory at least
motivates the soundness of the approach.
We are not familiar with similar guarantees for the iterative or multi-step approaches that rely on
off-policy evaluation.

C Experimental setup

Code for our experimental setup can be found at https://github.com/davidbrandfonbrener/
onestep-rl.

C.1 Benchmark experiments (Tables 1 and 2, Figure 2)

Data. We use the datasets from the D4RL benchmark [Fu et al., 2020]. We use the latest versions,
which are v2 for the mujoco datasets and v1 for the adroit datasets.

Table 3: Hyperparameter sweeps for each algorithm.
Algorithm Hyperparameter set

Reverse KL (α) {0.03, 0.1, 0.3, 1.0, 3.0, 10.0}
Easy BCQ (M) {2, 5, 10, 20, 50, 100}
Exponentially weighted (τ) {0.1, 0.3, 1.0, 3.0, 10.0, 30.0}

Hyperparameter tuning. We fol-
low the practice of Fu et al. [2020]
and tune a small set of hyperparam-
eters by interacting with the simula-
tor to estimate the value of the poli-
cies learned under each hyperparam-
eter setting. The hyperparameter sets
for each algorithm can be seen in Ta-
ble 3. We tune hyperparameters using 3 seeds, but then evaluate the best hyperparameter by training
on an additional 7 seeds and then report results on the 10 total seeds.
This may initially seem like “cheating”, but can be a reasonable setup if we are considering applica-
tions like robotics where we can feasibly test a small number of trained policies on the real system.
Also, since prior work has used this setup, it makes it easiest to compare our results if we use it too.
While beyond the scope of this work, we do think that better offline model selection procedures will
be crucial to make offline RL more broadly applicable. A good primer on this topic can be found in
Paine et al. [2020].

Models. All of our Q functions and policies are simple MLPs with ReLU activations and 2 hidden
layers of width 1024. Our policies output a truncated normal distribution with diagonal covariance
where we can get reparameterized samples by sampling from a uniform distribution and computing
the differentiable inverse CDF [Burkhardt, 2014]. We found this to be more stable than the tanh of
normal used by e.g. Fu et al. [2020], but to achieve similar performance when both are stable. We
use these same models across all experiments.

One-step training procedure. For all of our one-step algorithms, we train our β̂ behavior estimate
by imitation learning for 500k gradient steps using Adam [Kingma and Ba, 2014] with learning rate
1e-4 and batch size 512. We train our Q̂β estimator by fitted Q evaluation with a target network for 2
million gradient steps using Adam with learning rate 1e-4 and batch size 512. The target is updated
softly at every step with parameter τ = 0.005. All policies are trained for 100k steps again with
Adam using learning rate 1e-4 and batch size 512.

Easy BCQ does not require training a policy network and just uses β̂ and Q̂β to define it’s policy. For
the exponentially weighted algorithm, we clip the weights at 100 to prevent numerical instability. To
estimate reverse KL at some state we use 10 samples from the current policy and the density defined
by our estimated β̂.
Each random seed retrains all three models (behavior, Q, policy) from different initializations. We
use three random seeds.

Multi-step training procedure. For multi-step algorithms we use all the same hyperparameters as
one-step. We initialize our policy and Q function from the same pre-trained β̂ and Q̂β as we use for

16

https://github.com/davidbrandfonbrener/onestep-rl
https://github.com/davidbrandfonbrener/onestep-rl

the one-step algorithm trained for 500k and 2 million steps respectively. Then we consider 5 policy
steps. To ensure that we use the same number of gradient updates on the policy, each step consists of
20k gradient steps on the policy followed by 200k gradient steps on the Q function. Thus, we take
the same 100k gradient steps on the policy network. Now the Q updates are off-policy so the next
action a′ is sampled from the current policy πi rather than from the dataset.

Iterative training procedure. For iterative algorithms we again use all the same hyperparameters
and initialize from the same β̂ and Q̂β . We again take the same 100k gradient steps on the policy
network. For each step on the policy network we take 2 off-policy gradient steps on the Q network.

Evaluation procedure. To evaluate each policy we run 100 trajectories in the environment and
compute the mean. We then report the mean and standard error over 10 training seeds.

C.2 MSE experiment (Figure 3)

Data. To get an independently sampled dataset of the same size as the training set, we use the
behavior cloned policy β̂ to sample 1000 trajectories. The checkpointed policies are taken at intervals
of 5000 gradient steps from each of the three training seeds.

Training procedure. The Q̂πi training procedure is the same as before so we use Adam with step
size 1e-4 and batch size 512 and a target network with soft updates with parameter 0.005. We train
for 1 million steps.

Evaluation procedure. To evaluate MSE, we sample 1000 state, action pairs from the original
training set and from each state, action pair we run 3 rollouts. We take the mean over the rollouts and
then compute squared error at each state, action pair and finally get MSE by taking the mean over
state, action pairs. The reported reverse KL is evaluated by samples during training. At each state in
a batch we take 10 samples to estimate the KL at that state and then take the mean over the batch.

C.3 Gridworld experiment (Figure 4)

Environment. The environment is a 15 x 15 gridworld with deterministic transitions. The rewards
are deterministically 1 for all actions taken from the state in the top right corner and stochastic with
distribution N (−0.5, 1) for all actions taken from states on the left or bottom walls. The initial state
is uniformly random. The discount is 0.9.

Data. We collect data from a behavior policy that is a mixture of the uniform policy (with probability
0.8) and an optimal policy (with probability 0.2). We collect 100 trajectories of length 100.

Training procedure. We give the agent access to the deterministic transitions. The only thing for
the agent to do is estimate the rewards from the data and then learn in the empirical MDP. We perform
tabular Q evaluation by dynamic programming. We initialize with the empirical rewards and do 100
steps of dynamic programming with discount 0.9. Regularized policy updates are solved for exactly
by setting πi(a|s) ∝ β(a|s) exp(1

α Q̂
πi−1(s, a)).

C.4 Overestimation experiment (Figure 5)

This experiment uses the same setup as the MSE experiment. The main difference is we also consider
the Q functions learned during training and demonstrate the overestimation relative to the Q functions
trained on the evaluation dataset as in the MSE experiment.

C.5 Mixed data experiment (Figure 6)

We construct datasets with pm = {0.0, 0.1, 0.2, 0.4, 0.6, 0.8, 1.0} by mixing the random and medium
datasets from D4RL and then run the same training procedure as we did for the benchmark experi-
ments. Each dataset has the same size, but a different proportion of trajectories from the medium
policy.

17

D Learning curves

In this section we reproduce the learning curves and hyperparameter plots across the one-step,
multi-step, and iterative algorithms with reverse KL regularization, as in Figure 2.

Figure 8: Learning curves on the medium datasets.

Figure 9: Learning curves on the medium-expert datasets.

18

Figure 10: Learning curves on the random datasets.

19

	Introduction
	Setting and notation
	Related work
	Defining the algorithms
	Algorithmic template
	Policy evaluation operator
	Policy improvement operators

	Benchmark Results
	What goes wrong for iterative algorithms?
	Learning curves and hyperparameter sensitivity
	Distribution shift
	Iterative error exploitation

	When are multiple steps useful?
	Discussion, limitations, and future work
	Gridworld example where multi-step outperforms one-step
	Connection to policy improvement guarantees
	Experimental setup
	Benchmark experiments (Tables 1 and 2, Figure 2)
	MSE experiment (Figure 3)
	Gridworld experiment (Figure 4)
	Overestimation experiment (Figure 5)
	Mixed data experiment (Figure 6)

	Learning curves

