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ABSTRACT
Low-light environments will introduce high-intensity noise into im-
ages. Containing fine details with reduced noise, near-infrared/flash
images can serve as guidance to facilitate noise removal. However,
existing fusion-based methods fail to effectively suppress artifacts
caused by inconsistency between guidance/noisy image pairs and
do not fully excavate the useful information contained in guid-
ance images. In this paper, we propose a robust and flexible fu-
sion network (RFFNet) for low-light image denoising. Specifically,
we present a multi-scale inconsistency calibration module to ad-
dress inconsistency before fusion by first mapping the guidance
features to multi-scale spaces and calibrating them with the aid of
pre-denoising features in a coarse-to-fine manner. Furthermore, we
develop a dual-domain adaptive fusion module to adaptively extract
useful high-/low-frequency signals from the guidance features and
then highlight the informative frequencies. Extensive experimental
results demonstrate that our method achieves state-of-the-art per-
formance on NIR-guided RGB image denoising and flash-guided
no-flash image denoising.

CCS CONCEPTS
• Computing methodologies → Computer vision; Image ma-
nipulation.
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1 INTRODUCTION
Images captured in low-light environments typically contain dis-
tracting noise. Low-light image denoising aims to eliminate un-
desired noise, playing essential roles in all-day surveillance, self-
driving techniques, and photography. Image denoisers taking a
single image as input often results in insufficient denoising or over-
smoothing when dealing with these heavily degraded noisy images.

Guided image restoration [11, 18, 22, 32, 34, 36] provides a new
solution for image denoising. With low noise, clear structure, and
rich details, near-infrared (NIR) images and flash images can serve
as guidance for low-light image denoising. Nonetheless, there exists
inconsistency between target and guidance image pairs, such as the
presence of highlights on objects and hard shadows behind objects
under NIR or flash illumination. As illustrated in the bottom part of
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Fig. 1 (b), the shadows present in the NIR image do not exist in the
RGB image. As a result, directly fusing cross-domain information
tends to introduce artifacts, which makes low-light guided denois-
ing a complex problem, as it requires not only removing strong
noise and restoring details but also suppressing artifacts.

Recently, several works have achieved impressive performance
in NIR-guided [21, 35] and flash-guided [11, 31, 39] image denoising
based on elaborately designed fusion methods. Nevertheless, they
still struggle to eliminate the inconsistency issues. For example,
CUNet [11] learns the common and unique features between the
noisy image and the guidance image but fails under strong noise,
leading to insufficient denoising and the production of artifacts, as
illustrated in Fig. 1 (d). SANet [35] guides denoising by aggregating
structural signals from the guidance image, but introduces incon-
sistent structures, resulting in artifacts in the output (see Fig. 1 (e)).
Moreover, kernel prediction-based methods [31, 39] are highly sus-
ceptible to noise, failing to effectively suppress the artifacts in the
presence of strong noise.

Additionally, existing methods do not fully excavate the useful
information contained in the guidance images in terms of frequency.
For instance, DVN [21] leverages an additional branch to incor-
porate only the structure of guidance images, disregarding the
potential beneficial information in low-frequency, such as smooth
transition. SANet aggregates structure without considering the
roles of individual frequency components, causing low-frequency
colors to be equally integrated into the structure map, resulting
in unexpected color deviations. We posit that high-frequency in-
formation can guide the restoration of texture details, while low-
frequency signals are useful for noise removal by prompting spatial
smoothness in flat areas.

To alleviate the above-mentioned issues, this paper proposes a
Multi-Scale Inconsistency Calibration Module (MICM) to handle
the inconsistency between the input image pairs. Specifically, we
downsample the features from the input image pair into different
scales to decouple noise and structure, and then modulate the cross-
spectral features with the aid of pre-denoised features from the
noisy input using spatial attention. As a result, the inconsistency
can be handled in a coarse-to-fine manner. Furthermore, we develop
a Dual-Domain Adaptive Fusion Module (DAFM) to flexibly inject
the modulated guidance features into the main path of the net-
work by considering different roles of low-/high-frequency signals.
More concretely, we employ multi-kernel depthwise convolutions
and average pooling techniques to extract high-frequency and low-
frequency components of cross-modal images. Then, squeeze-and-
excitation techniques are utilized to extract relevant local contexts
from the high-frequencies of the guidance image, while useful
global contexts in low-frequencies of the guidance image are cap-
tured through channel-wise cross-attention.

As illustrated in Fig. 1, our RFFNet strikes a better balance in
noise removal, details recovery, and artifact suppression based on
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(a) Noisy (b) NIR (c) NAFNet [6]

(d) CUNet [11] (e) SANet [35] (f) Ours
(i) Visual comparisons (ii) PSNR vs. Computation overhead

Figure 1: Superiority of our method. (a) Visual comparisons on a challenging noisy RGB-NIR image pair. Our method produces
a better denoising result with clear details and fewer artifacts. (b) PSNR vs. Computation overhead on FAID [39]. Our method
achieves the superior performance while maintaining efficiency.

robust and flexible fusion, while maintaining efficiency. Overall,
the main contributions of this study are as follows:

• We propose a Multi-Scale Inconsistency Calibration Module
that decouples noise and structure by transforming cross-
modal features into multi-scale scales, pursuing a coarse-
to-fine manner to address the local inconsistency between
noisy and guidance features.

• We develop a Dual-Domain Adaptive Fusion Module, which
selectively extracts the high-frequency and low-frequency
components from the guidance features and restores the
salient structure and flat areas differentially.

• We propose a general guided image denoising formulation in
a calibration-before-fusionmanner by integratingMICM and
DAFM into a two-stage backbone. The proposed algorithm
achieves state-of-the-art performance in bothNIR/flash-guided
image denoising in low-light environments.

2 RELATEDWORKS
2.1 Single-Image Denoising
Traditional single image denoising algorithms mainly include filter-
ing [3, 10], sparse-coding [14, 41] and low-rank factorization [13,
17], which often rely on handcrafted filters or prior knowledge and
lack flexibility in handling complex noise distributions.

In recent years, learning-basedmethods have outperformed tradi-
tional methods. For example, DnCNN [45] uses batch normalization
and residual learning for denoising. RIDNet [2] introduces feature
attention in the residual structure to remove real noise. SADNet [4]
employs deformable convolutions for spatially adaptive denoising.
NBNet [7] removes noise by learning a set of reconstruction bases
in the feature space. MPRNet [44] builds a multi-stage network
for progressive restoration. NAFNet [6] designs a novel attention
block to build a hierarchical network. Transformer-based denoising
networks, such as Uformer [38] and Restormer [43], are developed

to better use local contexts and long-range dependencies. However,
single-image denoising approaches tend to over-smooth texture
details, especially at high noise levels.

2.2 Guided Image Restoration
Several early works on guided image restoration [15, 25, 33] utilize
flash images to reduce noise and blurring artifacts in non-flash
images. Afterwards, He et al. [18] propose guided filters to han-
dle various low-level tasks, including flash-guided no-flash image
denoising. Yan et al. [42] generate a scale map to capture smooth
transitions and usable edges in guidance images.

Recently, deep learning methods have been applied to guided
image restoration. DJFR [28] constructs a general deep fusion net-
work for multiple image processing tasks, including image denois-
ing. SVLRM [32] proposes a spatially variant linear representation
model with learnable coefficients. Subsequently, CUNet [11] uses
sparse encoding to separate the common and unique information
of cross-modal images, which can perform both guided restoration
and guided fusion. DKN [22] learns explicitly sparse and spatially
variant kernels to guide filtering. DeepFnF [39] and RIDFnF [31]
predict the kernel to combine the pixel colors of flash/no-flash im-
ages. DVN [21] addresses the issue of structure inconsistency in NIR
images by using deep inconsistency prior. SANet [35] aggregates
structure from the guidance image to estimate a clean structure
map for guided denoising. However, when dealing with dense noise
in low-light environments, most existing guided denoising methods
fail to strike a balance between detail preservation, noise removal,
and artifact suppression.

2.3 Frequency-Relevant Image Restoration
Frequency analyses are widely adopted in image restoration [8].
Traditional algorithms for denoising [10, 20] or deblurring [26, 27]
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design adaptive filters in the frequency domain. Many learning-
based image restoration methods are approached from a frequency
perspective [8]. MWCNN [29] replaces the conventional pooling
operation with the wavelet transform for a better tradeoff between
receptive field sizes and efficiency. In [16], stochastic frequency
masking is proposed to address overfitting issues in blind super-
resolution and blind denoising. SDWNet [47] designs a wavelet
transformation module to recover clear high-frequency texture de-
tails. FADN [40] decouples input images into multiple components
using discrete cosine transform for individual processing, enabling
differential super-resolution. SFNet [9] proposes a decoupling and
modulation module that can adaptively separate frequency infor-
mation and selectively aggregate them. This paper emphasizes the
diverse roles of frequencies in guidance images and strives to adap-
tively aggregate useful frequencies.

3 METHOD
3.1 Model Formulation
A noise model is given by 𝑌 = 𝑋 + 𝑁 , where 𝑌 , 𝑋 , and 𝑁 (∈
R𝐻×𝑊 ) denote a noisy image, a clean image, and the additive noise
component, respectively. The channel dimension is omitted for
brevity. Let 𝐺 ∈ R𝐻×𝑊 represent a clean guidance image, due
to the high structure similarity between 𝐺 and 𝑋 , we can use 𝐺
to help remove the noise and compensate for the missing details.
However, directly fusing𝐺 and 𝑌 will introduce undesired artifacts
due to inconsistency. Therefore, we perform calibration on the cross-
spectral features before fusion. For the 𝑘-th channel of guidance
features, 𝑔𝑘 , we first obtain a weight matrix by a transformation
𝐴𝑘 (·, ·), which establishes the correlation between 𝑦𝑘 and 𝑔𝑘 to
eliminate inconsistency by:

𝑔𝑘 = 𝐴𝑘 (𝑔𝑘 , 𝑦𝑘 ) · 𝑔𝑘 , (1)

where 𝑔𝑘 and 𝑦𝑘 represent the 𝑘-th channel of calibrated guidance
features and noisy features, respectively. We can obtain the cali-
brated noisy features 𝑦𝑘 by applying the same operation. Then, the
predicted clean image 𝑌 ∈ R𝐻×𝑊 can be produced by:

𝑌 =
∑︁
𝑘

(𝐵𝑘 (𝑦𝑘 , 𝑔𝑘 ) · 𝑦𝑘 ) ∗ 𝑓𝑘 , (2)

where 𝐵𝑘 (·, ·) is another transformation which establishes the cor-
relation between 𝑦𝑘 and 𝑔𝑘 , focusing on compensating for missing
texture details and smoothing the flat areas. The symbol * denotes
the convolutional operation, and {𝑓𝑘 }𝐾𝑘=1 ∈ R𝐻×𝑊 ×𝐾 is the feature
filters.

Considering the different roles of high-frequency edges and low-
frequency smoothing areas in guided denoising, we decouple 𝐵𝑘
into 𝐵ℎ

𝑘
and 𝐵𝑙

𝑘
to selectively capture useful high-/low-frequency

signals from the guidance features and highlight the informative
frequency components. As a result, Eq. 2 can be rewritten as:

𝑌 =
∑︁
𝑘

((𝐵ℎ
𝑘
(𝑦𝑘 , 𝑔𝑘 ) + 𝐵𝑙𝑘 (𝑦𝑘 , 𝑔𝑘 )) · 𝑦𝑘 ) ∗ 𝑓𝑘 , (3)

where𝐵ℎ
𝑘
and𝐵𝑙

𝑘
are transformations responsible for high-frequency

correlation and low-frequency correlation, respectively. Overall, our
model is built based on Eq. 1 and Eq. 3, where𝐴, 𝐵 are implemented
by our Multi-Scale Inconsistency Calibration Module (MICM) and
Dual-Domain Adaptive Fusion Module (DAFM), respectively.

In addition, we introduce a pre-denoising stage before the above
operations to reduce the impact of noise on the calibration and
fusion processes.

3.2 Model Architecture
As illustrated in Fig. 2, our RFFNet is an end-to-end two-stage net-
work for progressively restoring noise-free and detail-rich images.
The first stage performs pre-denoising to not only facilitate noise
removal in the fusion stage but also provide the general outline for
easily identifying inconsistency. The guidance features are involved
in the network based on our MICM and DAFM in the second stage.
A Supervised Attention Module (SAM) [44] is used to bridge the
features from the first stage to the second one for further processing.

Both stages comprise an encoder-decoder architecture with two
downsampling layers and two upsampling layers. A skip connection
followed by a 3x3 convolution is employed between the encoder
and decoder features. A ResBlock consists of two 3x3 convolution
layers, each followed by a PReLU [19].

3.3 Multi-Scale Inconsistency Calibration
Module

Our MICM addresses inconsistency by progressively calibrating the
cross-spectral features in a coarse-to-fine manner. As illustrated in
Fig. 2, given the guidance feature 𝐺 ∈ R𝐶×𝐻×𝑊 and pre-denoised
feature 𝑁 ∈ R𝐶×𝐻×𝑊 , we leverage average pooling (AP) with dif-
ferent downsampling rates to transform them into different spaces.
Here, AP can serve as a low-pass filter, which significantly reduces
the impact of noise at lower scales, and achieves effective receptive
fields for large-scale inconsistency.

In the three branches of the downsampling part, we apply a spa-
tial attention module (SA) to the cross-modal features to calibrate
the inconsistency. To be specific, SA leverages a simple convolu-
tional layer to fuse the cross features and distributes them to distinct
convolutional layers for generating attention weights adaptively.
The process of SA is expressed as:

𝑍 = ReLU (𝐶𝑜𝑛𝑣 ( [𝑁,𝐺])) ,
𝐺 = 𝐺 · S(𝐶𝑜𝑛𝑣𝐺 (𝑍 )), �̂� = 𝑁 · S(𝐶𝑜𝑛𝑣𝑁 (𝑍 )),

(4)

[·, ·] denotes the concatenation operation, S is the sigmoid op-
eration. Through SA, we can obtain the reweighted features for
mitigating the inconsistency.

Then, the calibrated features are upsampled to the original size
and aggregated with the initial features through skip connections,
followed by a convolutional layer for summarizing. The calibration
process is applied to both noisy features and guidance features. For
brevity, we provide a concise description of the calibration process
for the guidance features:

𝐺𝑖 = SA(AP24−𝑖 (𝐺) +𝐺𝑖−1 ↑2, AP24−𝑖 (𝑁 ) + �̂�𝑖−1 ↑2),

𝐺 = 𝐶𝑜𝑛𝑣 (
∑︁
𝑖

(𝐺𝑖 ↑24−𝑖 ) +𝐺),
(5)

where, 𝑖 ∈ {1, 2, 3}, 𝐺0 = 0, AP24−𝑖 represents the average pooling
operation with a downsampling rate as 24−𝑖 , and ↑2 denotes the
bilinear interpolation operation with an upsampling rate as 2. The
calibrated noise features �̃� yield through another branch of the
same structure. Next, �̃� and �̃� are injected into the main path.
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Figure 2: Overall architecture of the proposed RFFNet. The first stage performs pre-denoising and the second stage executes
fusion. Multi-Scale Inconsistency CalibrationModule (MICM) calibrates the cross-spectral features before fusion. Each encoding
layer of the fusion stage ends with a Dual-Domain Adaptive Fusion Module (DAFM), which selectively captures different
informative frequencies for high-quality denoising.

3.4 Dual-Domain Adaptive Fusion Module
To extract different frequencies of the features, a straightforward
way is to utilize wavelet transform or Fourier transform. However,
it is difficult for these tools to distinguish the frequency components
to be enhanced or suppressed and they require additional computa-
tional overhead to transform features back to the spatial domain [9].
Instead, we use adaptive frequency filters [12] to yield high/low in-
put frequencies. For high-frequency extraction, we divide features
into several groups and apply depthwise convolutions with differ-
ent kernel sizes to each group to simulate the cutoff frequencies in
different high-pass filters. For low-frequency extraction, we use av-
erage pooling as low-pass filters. We apply the frequency extraction
above to both noisy features and guidance features. Then, high/low
frequencies are fed into the local and global branches respectively
to accentuate the informative signals.

High-frequency local branch. Adaptive high-pass filters with
different kernel sizes possess distinct receptive fields, enabling
the differential extraction of high-frequency components and the
provision of varied local information. We employ dynamic high-
pass filters on both 𝑁 and 𝐺 . For the 𝑖-th group of 𝑁 , 𝑁𝑖 , we can

obtain the corresponding high frequencies 𝑁ℎ
𝑖
via

𝑁ℎ𝑖 = H𝑘 (𝑁𝑖 ), (6)

Here,H𝑘 represents the depth-wise convolution with kernel size
𝑘 × 𝑘 , 𝑘 ∈ {3, 5, 7}. The high-frequency features 𝑁ℎ and 𝐺ℎ are
yielded by concatenating all groups. Then we multiply 𝑁ℎ and 𝐺ℎ
and fed the result into a modified squeeze-and-excitation block to
obtain a local attention map as

𝐴 = Tahn(𝑊2 (ReLU(𝑊1 (𝑁ℎ ∗𝐺ℎ))), (7)

Where𝑊1 and𝑊2 denote parameters of the fully connected lay-
ers. We utilize the Tanh function instead of the sigmoid function,
since Tanh projects attention weights into (−1, 1), the negative
weights can help suppress the detrimental frequencies. The result-
ing attention map is subsequently multiplied with the initial high
frequencies 𝐺ℎ . Then we can obtain the high-frequency output.

Low-frequency global branch. We use channel-wise cross
attention to capture the useful global low frequencies, where the
queries (𝑄) come from the noise branch and the keys (𝐾 ) and values
(𝑉 ) come from the guidance branch. The attention map is generated
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Table 1: The average PSNR, SSIM, and LPIPS on the DVD [21] test set with noise level 𝜎 ∈ {2, 4, 6}. The best and second-best
results are highlighted in boldface and underlined, respectively.

Methods 𝜎=2 𝜎=4 𝜎=6
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIDNet [2] 30.31 0.937 0.083 28.16 0.908 0.118 26.60 0.884 0.143
SADNet [4] 30.69 0.936 0.082 28.87 0.924 0.101 27.24 0.903 0.126
NBNet [7] 31.38 0.948 0.073 29.14 0.926 0.100 27.27 0.906 0.124
MPRNet [44] 31.79 0.950 0.068 29.37 0.928 0.099 27.68 0.908 0.123
Restormer [43] 31.42 0.950 0.067 29.11 0.927 0.099 27.69 0.909 0.121
NAFNet [6] 31.51 0.949 0.065 29.28 0.928 0.098 27.49 0.908 0.122
DKN [22] 27.22 0.890 0.115 24.34 0.843 0.139 22.78 0.807 0.157
SVLRM [32] 27.70 0.900 0.098 25.29 0.857 0.129 23.43 0.823 0.149
CUNet [11] 28.92 0.924 0.090 27.24 0.901 0.111 26.01 0.878 0.127
SANet [35] 30.04 0.938 0.0750 27.83 0.917 0.098 26.41 0.901 0.111
DVN [21] 31.50 0.955 0.058 29.62 0.940 0.079 28.26 0.927 0.095
RFFNet 32.22 0.962 0.053 30.20 0.949 0.075 28.69 0.937 0.090

by multiplying𝑄 and𝐾 . Our low-frequency filters with a downsam-
pling rate are applied to 𝑄 and 𝐾 , to learn global representations
in the low-frequency space and reduce computational complexity
simultaneously. The resulting channel-wise attention map is then
multiplied with 𝑉 . We can obtain the low-frequency output via

𝐹𝑙 = Softmax
(
P(𝑄𝑁 )P(𝐾𝐺 )𝑇 /

√︁
𝑑𝑘

)
𝑉𝐺 , (8)

where𝑄𝑁 ∈ R𝐶×𝐻𝑊 , 𝐾𝐺 ∈ R𝐶×𝐻𝑊 is generated by applying 1×1
convolutions to the 𝑁 and 𝐺 respectively, while 𝑉𝐺 ∈ R𝐶×𝐻𝑊 is
produced from 𝐺 with 1 × 1 convolution. P denotes the average
pooling operation with a downsampling rate of 2. The channel-wise
CA can also provide lower complexity than the spatial version. In
addition, we deploy the multi-head mechanism [37] to further save
the complexity and enhance the diversity of feature spaces.

Finally, we integrate the initial noisy features with the outputs
of the two branches, then feed the result into the DFFN [24] for
further frequency refinement.

3.5 Loss Function
We adopt the Charbonnier loss [5] in both spatial and frequency
domains to facilitate dual-domain learning:

L𝑠 = L𝑐ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 (𝑋1, 𝑌 ) + L𝑐ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 (𝑋2, 𝑌 ), (9)

L𝑓 = L𝑐ℎ𝑎𝑟𝑏𝑜𝑛𝑛𝑖𝑒𝑟 (F (𝑋1), F (𝑌 )), (10)

where 𝑋1 and 𝑋2 are the outputs of the pre-denoising sub-network
and the whole network, respectively; 𝑌 is the reference; and F
is the fast Fourier transform. The final loss function is given by
L = L𝑠 + 𝜆L𝑓 , where 𝜆 is set as 0.1.

4 EXPERIMENTS
In this section, we introduce the implementation details of training
RFFNet and present experimental results on NIR-guided RGB image
denoising and flash-guided no-flash image denoising to illustrate
the effectiveness of our model.

4.1 Experimental settings
Datasets and Metrics. NIR-guided RGB image denoising is eval-

uated on the DVD [21]. It consists of 307 high-resolution 10-bit
raw data, which are converted to 5k RGB-NIR image pairs of size
3 × 256 × 256 used for training, and 1k image pairs (3 × 256 × 256)
used for testing. Flash-guided no-flash image denoising is evaluated
on the FAID [1], which includes 2775 flash/no-flash aligned pairs
categorized into six classes: people, shelves, plants, toys, rooms, and
objects. Following [31], we randomly select 256 pairs for validation
and 256 pairs for testing and use the rest for training. In terms of
evaluation metrics, PSNR, SSIM, and LPIPS [46] are used.

Training Details. The proposed network is trained on 128 × 128
patches using the Adam optimizer [23] (𝛽1 = 0.9, 𝛽2 = 0.999)
with a batch size of 16. The augmentation strategy follows that
of [44], including random flipping and rotating. The initial learning
rate is set to 2𝑒−4, which is gradually reduced to 1𝑒−6 with cosine
annealing [30]. For NIR-guided RGB image denoising, we follow the
settings in [21], where we randomly reduce the average value of raw
images to simulate low-light condition and then add the Gaussian-
Poisson mixed noise with 𝜎 ranging from 1 to 16 to the pseudo-dark
raw images. The model is trained for 80 epochs. For flash-guided
no-flash image denoising, we randomly add Gaussian noise with
noise levels ranging from 10 to 100 to the reference image. The
training process takes 1500 epochs. All models are implemented on
an NVIDIA Tesla A100 GPU using PyTorch.

4.2 Experimental Results
NIR-guided RGB image denoising. We evaluate RFFNet on
the DVD [21] test set under Gaussian-Poisson mixed noise with
𝜎 ∈ {2, 4, 6}. We compare our results with state-of-the-art guided
image denoising approaches, including DKN [22], SVLRM [32],
CUNet [11], SANet [35] and DVN [21]. Additionally, we also con-
sider single-image denoising methods, such as RIDNet [2], SAD-
Net [4], NBNet [7], MPRNet [44], Restormer [43], and NAFNet [6].
All compared methods are trained on the same training set as ours.
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Noisy (𝜎=2) Flash NAFNet SVLRM CUNet DVN Ours Reference

Noisy (𝜎=4) Flash NAFNet SVLRM CUNet DVN Ours Reference

Noisy (𝜎=6) Flash NAFNet SVLRM CUNet DVN Ours Reference

Figure 3: The qualitative comparison among our RFFNet and the state-of-the-art methods on the noisy RGB-NIR pairs from
DVD [21] with different noise levels. Images are brightened for display.

Table 2: The average PSNR, SSIM, and LPIPS on the FAID [1] test set with noise level 𝜎 ∈ {25, 50, 75}. The best and second-best
results are highlighted in boldface and underlined, respectively.

Methods 𝜎=25 𝜎=50 𝜎=75
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

RIDNet [2] 35.86 0.966 0.286 33.06 0.942 0.345 31.31 0.922 0.374
SADNet [4] 36.32 0.969 0.269 33.79 0.950 0.330 32.19 0.934 0.364
NBNet [7] 36.31 0.969 0.277 33.67 0.949 0.336 32.04 0.932 0.371
MPRNet [44] 36.65 0.970 0.275 34.07 0.952 0.331 32.46 0.937 0.364
Restormer [43] 36.68 0.970 0.272 34.15 0.952 0.326 32.56 0.937 0.358
NAFNet [6] 36.74 0.971 0.263 34.24 0.953 0.315 32.69 0.939 0.346
DKN [22] 34.94 0.958 0.271 32.46 0.941 0.298 30.82 0.924 0.330
SVLRM [32] 35.22 0.962 0.268 32.97 0.945 0.294 31.34 0.930 0.325
CUNet [11] 36.21 0.970 0.241 34.14 0.956 0.277 32.72 0.945 0.294
SANet [35] 36.07 0.969 0.262 34.07 0.955 0.285 32.81 0.946 0.297
DeepFnF [39] 36.83 0.973 0.238 35.01 0.963 0.264 33.84 0.956 0.277
RIDFnF [31] 36.98 0.974 0.237 35.19 0.964 0.263 33.95 0.957 0.276
RFFNet-s 37.42 0.975 0.236 35.61 0.967 0.261 34.43 0.960 0.276
RFFNet 37.84 0.977 0.230 36.06 0.969 0.256 34.93 0.963 0.267

Tab. 1 shows that our method achieves the best results across three
noise levels.

The qualitative comparisons in Fig. 3 clearly illustrate the sig-
nificant advantages of our method over other state-of-the-art ap-
proaches on noise removal, artifact suppression, and detail recovery.
For single-image denoisers like NAFNet, have achieved satisfactory
results on weak-noise datasets. However, as the synthetic noise
intensity increases, NAFNet has to sacrifice a large amount of edges
and details. For the guided denoising methods, SVLRM and CUNet
inevitably yield partially denoised results when confronted with

strong noise. Moreover, they fail to handle the inconsistency be-
tween RGB and NIR image pairs, resulting in severe artifacts. DVN
effectively removes noise but fails to estimate the complete struc-
ture of the target image, consequently, the details of the NIR image
cannot be fully integrated into the RGB image.

By contrast, our RFFNet exhibits strong denoising capabilities
and effectively suppresses artifacts. Furthermore, we extract useful
frequencies from the NIR image and selectively aggregate edges
and textures, yielding results with rich details.
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Noisy (𝜎=25) Flash Restormer CUNet DeepFnF RIDFnF Ours Reference

Noisy (𝜎=50) Flash Restormer CUNet DeepFnF RIDFnF Ours Reference

Noisy (𝜎=75) Flash Restormer CUNet DeepFnF RIDFnF Ours Reference

Figure 4: The qualitative comparison among our RFFNet and the state-of-the-art methods on the flash/no-flash image pairs
from FAID [39] with different noise levels.

Noisy Misaligned flash SVLRM CUNet DeepFnF Ours

Figure 5: Visual comparisons on a misaligned flash/no-flash image pair. Our method results in fewer artifacts and better details.

Flash-guided no-flash image denoising. We perform val-
idation on the test set of FAID [1] under Gaussian noise with
𝜎 ∈ {25, 50, 75}. For this task, in addition to the methods mentioned
above, we compare our RFFNet with DeepFnF [39] and RIDFnF [31],
which are elaborately designed for flash-guided denoising. To fur-
ther demonstrate the superiority of our method, we additionally
provide the flash-guided denoising results of a small version (-s) by
changing the channel count of three scales from {64, 96, 128} to {32,
44, 56}, which has only 0.99 M parameters. Tab. 2 shows that our
RFFNet, even RFFNet-s, outperforms all comparative methods in
terms of PSNR, SSIM, and LPIPS under different noise levels.

Fig. 4 shows that Restormer over-smooth the details. Guided de-
noising methods, including CUNet, DeepFnF, and RIDFnF, produce
ghosting artifacts in the bottom two images due to the shadows in
the flash image. By contrast, RFFNet completely removes noise and
preserves fine structures faithful to the ground truth. Moreover, as
shown in Fig. 5, our method yields fewer artifacts and better details
compared to other fusion-based methods in the misaligned case.

Besides, as listed in Tab. 3, both RFFNet and RFFNet-s demon-
strate computational efficiency and possess a smaller model size
compared to the state-of-the-art denoisers.

Real-world low-light image denoising. We conduct quali-
tative experiments on RGB-NIR pairs captured in real low-light
environments. As shown in Fig. 6, the details of the RGB image
(brightened for display) are obscured by dense noise, and the NIR
image exhibits significant highlights and shadows. Restormer intro-
duces a large amount of artifacts. Both CUNet and DVN struggle to
address artifact suppression and denoising. Our method effectively
eliminates inconsistency and introduces richer details.

4.3 Ablation Studies
We conduct ablation studies with RFFNet on the FAID dataset [1]
under 𝜎 = 75 to investigate the influences of our proposed compo-
nents. The results of the MICM and DAFM are presented in Tab. 4.

Influence of each component. For the network design, we
compare the 2-stage architecture, MICM, DAFM, the frequency loss,
and the full model with the baseline model. Specifically, for the base-
line, we utilize a single U-Net to be the backbone and apply addition
operation for fusion in multi-level encoders. By deploying MICM,
the model receives a performance gain of 0.29 dB (Tab. 4 (b)). A
pre-denoising stage is added to the model for progressive denoising
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Real noisy image NIR image Restormer CUNet DVN Ours

Figure 6: Visual comparisons on real-world RGB/NIR image pairs. Our method results in fewer artifacts and better details.

Table 3: Comparisons of computation overhead. Compared to state-of-the-art methods based on patches of size 128 × 128,
RFFNet and RFFNet-s achieve superior efficiency and possess smaller model sizes.

Method Restormer NAFNet DVN CUNet SANet DeepFnF RIDFnF RFFNet RFFNet-s[43] [6] [21] [11] [35] [39] [31]
Params/M 26.10 115.86 6.96 0.69 4.64 78.47 1.84 4.57 0.99
FLOPs/G 35.25 15.83 57.78 10.1 26.47 14.01 60.32 22.62 5.84
Time/ms 37.4 25.2 12.4 4.81 40.98 11.7 16.4 11.4 9.8
PSNR/dB 36.68 36.74 - 36.21 36.07 36.83 36.98 37.84 37.42

Table 4: Ablation study of various components of ourmethod
on FAID [1] (𝜎=75).

Baseline 2-stage MICM DAFM L𝑓 PSNR SSIM LPIPS

(a) ✓ 33.97 0.956 0.280
(b) ✓ ✓ 34.26 0.958 0.280
(c) ✓ ✓ ✓ 34.53 0.960 0.275
(d) ✓ ✓ ✓ ✓ 34.82 0.962 0.271
(e) ✓ ✓ ✓ ✓ ✓ 34.93 0.963 0.267

Table 5: Ablation on the
branches of MICM.

Branch PSNR Params FLOPs

↓2 34.79 4.13 22.34
↓2,4 34.87 4.35 22.56
↓2,4,8 34,93 4.57 22.62

Table 6: Ablation on differ-
ent fusion strategies.

Method PSNR Params FLOPs

W-MCA 31.81 4.46 22.37
C-MCA 34.80 4.46 22.36
DAFM 34.93 4.57 22.62

and facilitating the calibration process, leading to a 0.27 dB improve-
ment (Tab. 4 (c)). Then, we apply DAFM instead of addition, the
model improves by 0.29 dB (Tab. 4 (d)). To facilitate the frequency
learning, we introduce the frequency loss L𝑓 and obtain a gain
of 0.09 dB (Tab. 4 (e)). Finally, all our contributions together yield
a substantial improvement of 0.94 dB in PSNR over the baseline,
setting the new state-of-the-art in low-light image denoising.

The Effectiveness of MICM.As shown in the example of Fig. 7,
the full model with MICM handles the inconsistent regions bet-
ter. To further demonstrate the effectiveness of the coarse-to-fine
manner, we do experiments by progressively adding downsampling
branches of MICM, leading to higher scores (Tab. 5).

Noisy image Flash image w/o MICM Full model

Figure 7: Visual comparison on a flash/no-flash image pair
existing inconsistency.

Compare with other fusion strategies.We compare DAFM
with typical fusion methods such as window multi-head cross at-
tention (W-MCA) and channel-wise multi-head cross attention
(C-MCA). DAFM achieves a minimum improvement of 0.12 dB
while increasing the parameters by only 2.5% (+0.11 M).

5 CONCLUSION
In this paper, we propose a two-stage framework, dubbed RFFNet,
for low-light image denoising based on a robust and flexible fusion
strategy. Specifically, our Multi-Scale Inconsistency Calibration
Module transfers cross-modal features into multi-scale spaces and
applies spatial attention in each branch to calibrate inconsistency
in a coarse-to-fine manner, ensuring the robustness of the fusion
process. Moreover, we develop a Dual-Domain Adaptive Fusion
Module to excavate more information from the guidance image by
extracting high/low frequencies from the cross-spectral features
and adaptively emphasizing the informative frequency components.
Extensive experiments on NIR-guided RGB image denoising and
flash-guided no-flash image denoising demonstrate that our method
outperforms state-of-the-art algorithms in terms of noise removal,
artifact suppression, and detail recovery.
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