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Abstract
Gait recognition has attracted increasing attention from academia
and industry as a human recognition technology from a distance
in non-intrusive ways without requiring cooperation. Although
advanced methods have achieved impressive success in lab sce-
narios, most of them perform poorly in the wild. Recently, some
Convolution Neural Networks (ConvNets) based methods have
been proposed to address the issue of gait recognition in the wild.
However, the temporal receptive field obtained by convolution op-
erations is limited for long gait sequences. If directly replacing
convolution blocks with visual transformer blocks, the model may
not enhance a local temporal receptive field, which is important
for covering a complete gait cycle. To address this issue, we de-
sign a Global-Local Temporal Receptive Field Network (GLGait).
GLGait employs a Global-Local Temporal Module (GLTM) to estab-
lish a global-local temporal receptive field, which mainly consists
of a Pseudo Global Temporal Self-Attention (PGTA) and a tem-
poral convolution operation. Specifically, PGTA is used to obtain
a pseudo global temporal receptive field with less memory and
computation complexity compared with a multi-head self-attention
(MHSA). The temporal convolution operation is used to enhance
the local temporal receptive field. Besides, it can also aggregate
pseudo global temporal receptive field to a true holistic temporal
receptive field. Furthermore, we also propose a Center-Augmented
Triplet Loss (CTL) in GLGait to reduce the intra-class distance and
expand the positive samples in the training stage. Extensive exper-
iments show that our method obtains state-of-the-art results on
in-the-wild datasets, 𝑖 .𝑒 ., Gait3D and GREW. The code is available
at https://github.com/bgdpgz/GLGait.

∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0686-8/24/10
https://doi.org/10.1145/3664647.3680812

CCS Concepts
• Computing methodologies→ Biometrics.

Keywords
Gait Recognition, In the Wild, Global-Local Temporal Receptive
Field, Gait Silhouette Sequence, Neural Network

ACM Reference Format:
Guozhen Peng, Yunhong Wang, Yuwei Zhao, Shaoxiong Zhang, and Annan
Li. 2024. GLGait: A Global-Local Temporal Receptive Field Network for
Gait Recognition in the Wild. In Proceedings of the 32nd ACM International
Conference on Multimedia (MM ’24), October 28–November 1, 2024, Melbourne,
VIC, Australia. ACM, New York, NY, USA, 10 pages. https://doi.org/10.1145/
3664647.3680812

1 Introduction
Gait recognition is a technique that identifies pedestrians by analyz-
ing their walking patterns. Unlike other biometric characteristics
such as the face and iris, gait can be captured from a distance with-
out pedestrian cooperation, thus attracting increasing attention.

Many advanced appearance-based methods [4, 12, 20, 28] using
silhouette sequences as input have obtained successful performance
on in-the-lab datasets such as CASIA-B [51] and OU-MVLP [40].
However, the performance of these methods drops dramatically on
in-the-wild datasets, 𝑖 .𝑒 ., Gait3D [52] and GREW [54]. The primary
reason lies in that the scenario of existing in-the-lab datasets differs
greatly from in-the-wild ones. In wild scenarios, pedestrians may
walk at varying velocities or follow a non-straight routine, and
even can be occluded by other pedestrians or objects. These noisy
factors are challenging formethods designed according to in-the-lab
datasets, resulting in performance degradation.

To address the aforementioned issue, we first compare silhou-
ette sequences between CASIA-B [51] and Gait3D [52] datasets. As
shown in Figure 1 (a), multiple and evenly distributed gait circles
can be clearly observed from in-the-lab sequences (see pedestrian
#1). Thus, appropriate local temporal receptive field can facilitate
the model in learning the pattern of a complete gait circle. While in
wild scenarios, (see pedestrian #2) such ideal temporal segments are
no longer available, since the variations of pace and walking direc-
tions have a great influence on the appearance. Therefore, a global
temporal receptive field is necessary for aligning gait patterns.
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Figure 1: Comparison of local and global temporal receptive
field. (a) Gait cycles are evenly distributed in laboratory sce-
narios (Pedestrian #1), thus proper-sized local receptive field
can capture a complete cycle. While in the wild (Pedestrian
#2) the distribution is sparse and random, which implies a
larger receptive field is necessary. Corresponding sequences
are sampled fromCASIA-B [51] and Gait3D [52], respectively.
(b) Sequence length andTRF statistics inCASIA-B andGait3D,
where TRF is the temporal receptive field.

Recently, some methods [10, 11, 46] have been proposed to ad-
dress the issue of gait recognition in the wild. These methods
are mainly centered around Convolutional Neural Networks (Con-
vNets). Compared with methods designed according to in-the-lab
datasets, they often incorporate more convolutional operations to
exhibit a larger receptive field. Given that gait silhouettes are typi-
cally quite small, such as 64× 64 pixels, the spatial receptive field of
these methods is already sufficient. However, the temporal recep-
tive field obtained through convolutional operations is significantly
insufficient. As shown in Figure 1 (b), the temporal receptive field
usually can only cover around 50 silhouettes in a sequence, which
is quite limited in contrast to typical frame number of in-the-wild
gait sequences. The limited local temporal receptive field strug-
gles to capture adequate information about pedestrian body shape
changes, thus a global temporal receptive field is essential.

Some works [2] use visual transformer block [7] to obtain a
global temporal receptive field. However, directly replacing convo-
lution blocks with transformer blocks cannot necessarily enhance a
local temporal receptive field. Considering that a transformer block
usually applies multi-head self-attention [44] (MHSA) to obtain a
global receptive field, adding MHSA before temporal convolution
operation in ConvNets is a possible resolution to obtain a global-
local temporal receptive field. However, due to using the output of
ConvNets as input to MHSA, dimension explosion occurs in token
size with large channels in ConvNets, such as 512, resulting in high
memory consumption and computation cost. To address the issue,
we propose Pseudo Global Temporal Self-Attention (PGTA). Com-
pared with MHSA, PGTA reduces complexity in two aspects. First,

considering the receptive field issue in the temporal dimension,
we separate the spatial dimension, only calculating the patch size
from the temporal dimension. Secondly, we separate the patch size
from tokens in PGTA inspired by [33], obtaining a pseudo temporal
receptive field of each element in tokens. With the same temporal
convolution kernel size and patch size, these pseudo global tem-
poral receptive fields are naturally aggregated to a truly global
one. We name the combination of PGTA and temporal convolution
operation as Global-Local Temporal Module (GLTM).

Based on GLTM, we design a Global-Local Temporal Receptive
Field Network, named GLGait. The backbone of GLGait consists of
a vision encoder and Global-Local 3D (GL-3D) Blocks. In the vision
encoder, GLGait encodes a preliminary pedestrian representation.
For GL-3D block, in the temporal dimension, GLTM is used to
effectively obtain a global-local temporal receptive field. While in
the spatial dimension, we use 2D convolution operations, the reason
is straightforward: the spatial receptive field is already sufficient
by convolution operations.

Furthermore, inspired by center loss [17, 48], we also propose a
simple yet effective loss function, named Center-Augmented Triplet
Loss (CTL) to assist in model training as a component in GLGait.
Based on conventional triplet loss [18], CTL additionally considers
the class center as a positive sample for each input. This operation
has two advantages: reducing the intra-class distance and expand-
ing the positive samples in the training stage.

The main contributions are summarized as follows:
1) We design a Global-Local Temporal Receptive Field Network

(GLGait) to obtain a global-local temporal receptive field for
gait recognition in the wild.

2) We propose Pseudo Global Temporal Self-Attention (PGTA)
to reduce the high memory and computation complexity of
multi-head self-attention [44] (MHSA).

3) We propose a Center-Augmented Triplet Loss (CTL) to assist
in model training. CTL can reduce the intra-class distance
and expand the positive samples in the training stage.

4) Extensive experiments demonstrate that our approach ob-
tains the state-of-the-art performance on in-the-wild datasets,
𝑖 .𝑒 ., Gait3D [52] and GREW [54].

2 Related Works
2.1 Model-based Gait Recognition
Model-based methods [1, 13, 25–27, 35, 41, 42, 49] consider the
physical structure of the human body and utilize pose information
as input, such as 2D skeletons, 3D joints, and point clouds. For
instance, PoseGait [27] utilizes the human body pose information
to extract temporal-spatial features and employs ConvNets to ex-
tract high-level temporal-spatial features. GaitGraph [42] proposes
a pose estimator to extract pose features and adopts graph con-
volutional neural networks [39] for gait recognition. GPGait [13]
uses a unified pose representation as input. Then a part-aware
graph convolutional network is proposed to enable efficient graph
partition and local-global spatial feature extraction. LidarGait [38]
leverages LiDAR to generate gait point clouds for gait recognition.
Model-based methods are robust in some scenarios, such as clothes
changed [5, 37]. However, pose information is not easy to calculate,
thus these methods may be difficult to apply in a new scenario.
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Figure 2: Pipeline of the proposed GLGait. The backbone mainly consists of the vision encoder and GL-3D blocks. Specifically,
we use Pseudo Global Temporal Self-Attention (PGTA) to extract global temporal information and a temporal convolution
operation to enhance the local temporal information extraction in Global-Local Temporal Module (GLTM). TP denotes the
Temporal Max Pooling operation, HP is the Horizontal Pooling operation [11, 14], FC is the separate fully connected layers [4],
and BNN is BNNeck [32]. The final loss function is composed of a center-augmented triplet loss (CTL) and a cross-entropy loss.

2.2 Appearance-based Gait Recognition
Appearance-based methods are employed to learn the body appear-
ance without achieving explicit structures. Most methods [3, 4, 8–
10, 12, 19, 23, 28, 45, 46, 50] use silhouette sequences as inputs
and use deep neural networks to extract feature [16, 22, 36, 43].
Then, by comparing similarities with other silhouette sequences,
the recognition is implemented. Some methods [47, 53] also utilize
semantic parsing of pedestrians as the input, obtaining satisfactory
performance.

Previous works [4, 6, 12, 28] focus on in-the-lab scenarios, obtain-
ing successful performance. However, with the recent development
of in-the-wild datasets, 𝑖 .𝑒 ., Gait3D [52] and GREW [54], these meth-
ods are facing new challenges. To employ precise gait recognition
in wild scenarios, some methods are proposed. GaitGCI [9] utilizes
counterfactual intervention learning to eliminate the impact of con-
founder, focusing on the discriminative and interpretable regions
effectively. DyGait [46] focuses on the extraction of dynamic fea-
tures and proposes a dynamic augmentation module to learn part
features automatically. Fan et al. [11] proposes a simple yet effective
ResNet-like [16] framework, which is referred as GaitBase. Based
on GaitBase, DGaitV2 [10] obtains higher accuracy by increasing
the number of stacked blocks.

Compared to pose information, appearance cues are relatively
easy to obtain in a new scenario, exhibiting broader adaptability.
However, appearance information is susceptible to the influence of
pedestrian appearance, exhibiting low robustness in certain specific
scenarios such as clothes change [5, 37]. Our GLGait belongs to
the appearance-based category, using gait silhouette sequences as
input and establishing a global-local temporal receptive field.

2.3 Gait Transformers
Vision transformer [7] has achieved successful performance in
many fields, such as classification [7], objective detection [29], and
semantic segmentation [21]. Some works introduce transformer
blocks into the gait recognition framework. TransGait [24] proposes

a set transformer model with a temporal aggregation operation for
obtaining set-level spatio-temporal features. SwinGait [10] utilizes
convolutional blocks to extract silhouette feature and feed it to
swinformer [30, 31] blocks. However, the former cannot enhance
the local temporal receptive field, while the latter only obtains a
window-global temporal receptive field. Differently, our GLGait
employs Global-Local Temporal Module (GLTM) to both maintain
global-local temporal receptive fields.

3 Method
In this section, we first introduce the pipeline of GLGait. Then, we
detail the vision encoder, Global-Local 3D (GL-3D) block, and center-
augmented triplet loss (CTL), respectively. Finally, we explain the
optimization.

3.1 Pipeline
The pipeline of the proposed GLGait is shown in Figure 2 (a). A
simple 2D convolution operation first initializes the silhouette se-
quences. Then we utilize the vision encoder to obtain a preliminary
representation. After that, GL-3D blocks are used to extract both
spatial information and global-local temporal information. Tem-
poral Max Pooling operation (TP) and Horizontal Pooling oper-
ation [11, 14] are employed to aggregate the features. Finally, a
combined loss function consisting of center-augmented triplet loss
and cross-entropy loss is used to supervise the learning process.

3.2 Vision Encoder
Since gait silhouette is binary, containing limited information [10],
we use a vision encoder to encode a preliminary pedestrian repre-
sentation. Specifically, we use the conventional Pseudo 3D (P3D)
blocks [16, 36] as the components. P3D block uses two 2D con-
volutions in the spatial dimension and a 1D convolution in the
temporal dimension. Using x𝑖𝑛 ∈ R𝐶×𝑇×𝐻×𝑊 as input, where 𝐶 is
the channels,𝑇 is frame number, 𝐻 and𝑊 are the silhouette height
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Figure 3: Pseudo Global Temporal Self-Attention (PGTA) with a temporal convolution operation (T-Conv).

and width, respectively. The process can be formulated as

x1 = R(C2𝑑 (x𝑖𝑛)), (1)
x2 = C1𝑑 (x1), (2)
x3 = C2𝑑 (R(x1 + x2)), (3)
x𝑜𝑢𝑡 = R(x𝑖𝑛 + x3), (4)

where x𝑜𝑢𝑡 ∈ R𝐶×𝑇×𝐻×𝑊 is the output, C1𝑑 (·) is the temporal
convolution operation, C2𝑑 (·) is the spatial convolution operation,
R is the ReLU activation function.

3.3 GL-3D Block
Operation. As shown in Figure 2 (b), GL-3D block consists of
two 2D convolutions for spatial information and a Global-Local
Temporal Modul (GLTM) for the temporal feature. Specifically,
GLTM mainly contains Pseudo Global Temporal Self-Attention
(PGTA) and temporal convolution operation as shown in Figure 2
(c). Different from normal multi-head self-attention [44] (MHSA),
PGTA places its focus on the temporal dimension, reducing the
memory and computation complexity in two aspects. 1) PGTA
separates the spatial dimension from the patch size, which means
it is only 1D rather than 3D. 2) PGTA separates the patch size from
the token inspired by [33]. We exhibit the structure of PGTA in
Figure 3, where we only consider one head for simplicity.

Given x𝑖𝑛 ∈ R𝐿×𝑇×𝐶 as input, where 𝐿 is 𝐻 ×𝑊 , the formula of
PGTA is as follows:

𝑅𝑒𝑠ℎ𝑎𝑝𝑖𝑛𝑔 x𝑖𝑛, R𝐿×𝑇×𝐶 → R𝐿×𝑃×𝑇
𝑃
×𝐶 (5)

[q𝑖 ,k𝑖 , v𝑖 ] = x𝑖𝑛U𝑖
𝑞𝑘𝑣

, U𝑖
𝑞𝑘𝑣

∈ R𝐶×3𝐷 (6)

A𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (q𝑖k𝑇𝑖 /
√
𝐷), A𝑖 ∈ R𝐿×𝑃×𝑇

𝑃
×𝑇

𝑃 (7)

x𝑖 = A𝑖v𝑖 , x𝑖 ∈ R𝐿×𝑃×𝑇
𝑃
×𝐷 (8)

x𝑔 = [x1;x2; ...;x𝑘 ]U𝑚𝑠𝑎, U𝑚𝑠𝑎 ∈ R𝑘 ·𝐷×𝐶 (9)

𝑅𝑒𝑠ℎ𝑎𝑝𝑖𝑛𝑔 x𝑔, R𝐿×𝑃×𝑇
𝑃
×𝐶 → R𝐿×𝑇×𝐶 (10)

where 𝑖 ∈ {1, 2, ..., 𝑘}, 𝑘 is the number of multi-heads in PGTA, 𝑃
is patch size, A is attention matrix, U𝑞𝑘𝑣 and U𝑚𝑠𝑎 are parameter
matrices in PGTA. After PGTA, a temporal convolution operation is
used to enhance the local temporal receptive field. Inspired by [15],
we also add skip connections and 1D convolution operationwith the
kernel size of one as linear layer after PGTA to obtain a sub-update
for each element in tokens. The process is formulated as

x𝑙 = R(C1𝑑 (x𝑔 + x𝑖𝑛)), x𝑙 ∈ R𝐿×𝑇×𝐷𝑚𝑖𝑑 (11)

x𝑜𝑢𝑡 = x𝑙U𝑚𝑙𝑝 + x𝑔, U𝑚𝑙𝑝 ∈ R𝐷𝑚𝑖𝑑×𝐶 (12)

where x𝑜𝑢𝑡 ∈ R𝐿×𝑇×𝐶 is the output of GLTM, R and C1𝑑 (·) are
same as operations in Equation (1) and Equation (2), 𝐷𝑚𝑖𝑑 is the
channels of hidden layer, U𝑚𝑙𝑝 is parameter matrix.
Discussion. In this subsection, we undertake a memory and com-
putation complexity analysis of PGTA compared with a normal
Spatio-Temporal MHSA [2, 44]. Specifically, we consider two kinds
of 𝐷 in Equation (6). One is that 𝐷 is the same as the token size.
Another is that𝐷 is a scalar less than𝐶 . The input is x𝑖𝑛 ∈ R𝐿×𝑇×𝐶 .
Given token size 𝑃 × 𝐶 , we observe that the token size does not
affect the computation complexity in Equation (6) and Equation (9)
as follows,

𝐶𝑐𝑜𝑚 = O( 𝐿𝑇
𝑃
𝑃𝐶𝐷) (13)

= O(𝐿𝑇𝐶𝐷) . (14)

Therefore, we only consider the computation complexity in Equa-
tion (7) and Equation (8). The formula of complexity in MHSA is
as

𝐶𝑀
𝑚𝑒𝑚 = O(𝑃𝐶𝐷), (15)

𝐶𝑀
𝑐𝑜𝑚 = O(𝑁 2𝐷), (16)

where 𝑁 is 𝐿𝑇
𝑃
, 𝐶𝑀

𝑚𝑒𝑚 is the memory complexity in MHSA, and
𝐶𝑀
𝑐𝑜𝑚 is the computation complexity in MHSA. The formula of

complexity in PGTA is as

𝐶𝑃
𝑚𝑒𝑚 = O(𝐶𝐷), (17)

𝐶𝑃
𝑐𝑜𝑚 = O(𝐿𝑃𝑇

2

𝑃2
𝐷) (18)

= O(𝐿𝑇𝑁𝐷), (19)

where 𝑁 is 𝑇
𝑃
,𝐶𝑃

𝑚𝑒𝑚 is the memory complexity in PGTA, and𝐶𝑃
𝑐𝑜𝑚

is the computation complexity in PGTA.
First, we assume that 𝐷 is the same as the token size, which

means information loss does not occur. For MHSA, given the token
size 𝑃𝑙 × 𝑃𝑡 ×𝐶 , where 𝑃𝑙 is spatial dimension size and 𝑃𝑡 is tempo-
ral dimension size, the memory complexity is O(𝑃2

𝑙
𝑃2𝑡𝐶

2) and the
computation complexity is O( 𝐿2𝑇 2

𝑃𝑙𝑃𝑡
𝐶). For PGTA, given the token

size 𝑃𝑡 ×𝐶 , the memory complexity is O(𝑃𝑡𝐶2) and the computa-
tion complexity is O(𝐿𝑇 2𝐶). Compared with MHSA, PGTA reduces
the memory complexity significantly, from O(𝑃2

𝑙
𝑃2𝑡𝐶

2) to O(𝑃𝑡𝐶2).
For computation complexity, the decrease lies in 𝐿 and 𝑃𝑙 × 𝑃𝑡 .
Specifically, we set 𝑃𝑡 as 3 and 𝑃𝑙 as 4 in our experiments. Given
𝐿 as 16 × 12 in GL-3D block, 𝐿 is 16 times than 𝑃𝑙 × 𝑃𝑡 , meaning
PGTA reduces the computation complexity to 1/16 of MHSA.

Secondly, we assume that 𝐷 is a scalar less than𝐶 , which means
information loss occurs, especially when the token size is large.
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Figure 4: Comparison of triplet loss [18] (a) and proposed
center-augmented triplet loss (b). w𝑖 is class center in BN-
Neck [32], x𝑖 is sample feature, dashed lines in the circle are
class boundaries,⇒ is the gradient of the feature.

For MHSA, given the token size 𝑃𝑙 × 𝑃𝑡 ×𝐶 , the memory complex-
ity is O(𝑃𝑙𝑃𝑡𝐶𝐷) and the computation complexity is O( 𝐿2𝑇 2

𝑃2
𝑙
𝑃2
𝑡

𝐷).
For PGTA, given the token size 𝑃𝑡 ×𝐶 , the memory complexity is
O(𝐶𝐷) and the computation complexity is O(𝐿𝑇 2

𝑃𝑡
𝐷). PGTA also

reduces the memory complexity significantly, from O(𝑃𝑙𝑃𝑡𝐶𝐷) to
O(𝐶𝐷). For computation complexity, the decrease lies in 𝐿 and
𝑃2
𝑙
× 𝑃𝑡 . Following the same set above, PGTA reduces the computa-

tion complexity to a quarter of MHSA. Furthermore, MHSA loses
much information. Assuming the feature dimension is a measure,
the information loss of PGTA is only O(𝐶 − 𝐷). For MHSA, the
information loss even reaches O(𝑃𝑙𝑃𝑡𝐶 − 𝐷).

Finally, considering the memory complexity, we set 𝐷 as a scalar
in all our experiments.

3.4 Center-Augmented Triplet Loss
Operation. In contrast to the conventional triplet loss [18], the
center-augmented triplet loss (CTL) additionally incorporates class
centers as positive instances for each sample, the formulation is
given as

L𝑐𝑡𝑙 (x) =
𝑄+1∑︁
𝑖=1

𝑁∑︁
𝑗=1

max(D(x, x𝑞
𝑖
) − D(x, x𝑛𝑗 ) +𝑚, 0), (20)

L𝑐𝑡𝑙 =
1
𝐵

𝐵∑︁
𝑘=1

L𝑐𝑡𝑙 (x𝑘 ), (21)

where x ∈ R𝐶 is input, x𝑞
𝑖
is the 𝑖-th positive sample of x, x𝑛

𝑗
is the

𝑗-th negative sample of x, D(·, ·) is distance function,𝑚 is margin,
𝑄 is the number of positive samples, 𝑁 is the number of negative
samples, 𝐵 is the batch size (𝐵 = 𝑄 + 𝑁 + 1). Specifically, x𝑞

𝑄+1 is
the class center of x, and Euclidean distance is used in D(·, ·).
Discussion. In this subsection, we discuss the mechanism of center-
augmented triplet loss (CTL). Apart from the common effects of
triplet loss [18], CTL has two advantages.

First, CTL reduces intra-class distance. As illustrated in Figure 4
(a), for sample x1, x2 is a positive sample, and x3 is a negative one.
When the distance between (x1, x2) exceeds that of (x1, x3), the
triplet loss computes the corresponding gradient represented as
solid-line arrows, encouraging (x1, x2) to move closer, and (x1, x3)
to move apart. However, as x2 moves closer to x1, it keeps away
the class center w1, thus increasing the intra-class distance. Con-
versely, as shown in Figure 4 (b), by treatingw1 as a positive sample
for x1 and w3 as one for x3, CTL calculates the respective gradi-
ents depicted as dashed-line arrows, driving x1 towards w1 and x3
towards w3. Due to the superposition of gradients from (x1, x2)
and (x1,w1), x1 moves closer tow1, indirectly preventing x2 away
from the class center w1, thus reducing the intra-class distance.

Secondly, CTL can directly increase the number of positive sam-
ples without expanding the batch size. In gait datasets such as
Gait3D [52], many pedestrian silhouette sequences are limited in
quantity, which means a lack of positive samples in a batch. CTL
utilizes class centers as positive samples, adding computational
complexity to the loss function without affecting the backbone
computations of the model in the training stage and model infer-
ence in the test stage, presenting a good cost-effective trade-off.

3.5 Optimization
In the training stage of GLGait, a combined loss function consisting
of center-augmented triplet loss (L𝑐𝑡𝑙 ) and cross-entropy loss (L𝑐𝑒 )
is calculated to supervise the learning process,

L = 𝛼L𝑐𝑡𝑙 + 𝛽L𝑐𝑒 , (22)

where 𝛼 and 𝛽 are hyper-parameters to balance the contributions
to the total loss L.

4 Experiments
In this section, we first introduce the datasets and implementation
details. Then, we compare our proposed GLGait with the latest
gait recognition methods and analyze the results. Finally, extensive
ablation experiments prove the effectiveness of each component in
GLGait.

4.1 Datasets and Implementation Details
The dataset information and implementation details in our experi-
ments are as follows.

Gait3D [52] is a large scale gait dataset. Within a supermarket,
39 cameras capture 1,090 hours of videos with 1,920×1,080 reso-
lution and 25 FPS. Through processing, a total of 4,000 subjects,
25,309 sequences, and 3,279,239 frame images are extracted. 3,000
subjects are compiled as the training set, while the remaining 1,000
subjects form the test set. For the testing phase, the probe comprises
one sequence from each subject, and the gallery consists of the rest
sequences.

GREW [54] is one of the largest gait datasets in the wild, includ-
ing Silhouettes, GEIs, and 2D/3D human poses data types. The raw
videos are collected from 882 cameras in large public areas. 7,533
video clips are used, containing nearly 3,500 hours of 1,920×1,080
streams. It has 26,345 subjects and 128,671 sequences, divided into
two parts with 20,000 and 6,000 subjects as training set and test set,
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Table 1: Comparisons of Rank-1, 5 and 10 accuracies, mean Average Precision (%), and Parameter size (M) on Gait3D [52] and
GREW [54] datasets.

Backbone
Components Method Source Gait3D GREW ParamsRank-1 Rank-5 mAP Rank-1 Rank-5 Rank-10

Convolution

GaitSet [4] AAAI 2019 36.7 58.3 30.0 46.3 63.6 70.3 2.56
GaitPart [12] CVPR 2020 28.2 47.6 21.6 44.0 60.7 67.3 1.46
GaitGL [28] ICCV 2021 29.7 48.5 22.3 47.3 63.6 69.3 2.49

SMPLGait [52] CVPR 2022 42.9 63.9 35.2 - - - -
DyGait [46] ICCV 2023 66.3 80.8 56.4 71.4 83.2 86.8 -
HSTL [45] ICCV 2023 61.3 76.3 55.5 62.7 76.6 81.3 4.05
GaitGCI [9] CVPR 2023 50.3 68.5 39.5 68.5 80.8 84.9 -
GaitBase [11] CVPR 2023 64.3 79.6 55.5 59.1 74.5 78.9 4.90

Convolution

DGaitV2-2D-B [10]

Arxiv 2023

64.5 81.7 56.5 62.3 76.4 81.5 2.35
DGaitV2-2D-L [10] 67.8 83.9 59.7 69.7 82.4 86.7 9.33
DGaitV2-P3D-B [10] 70.8 85.7 62.9 72.6 84.5 87.9 2.79
DGaitV2-P3D-L [10] 74.2 86.9 67.1 78.3 88.5 91.4 11.12
DGaitV2-P3D-H [10] 75.0 - - 81.0 - - 44.43
DGaitV2-3D-B [10] 71.0 85.0 62.3 73.1 84.9 88.4 6.92
DGaitV2-3D-L [10] 74.1 87.0 66.5 79.0 88.9 91.6 27.62
DGaitV2-3D-H [10] 75.8 - - 81.6 - - 110.44

Convolution
+

Transformer

SwinGait-3D [10] Arxiv 2023 75.0 86.7 67.2 79.3 88.9 91.8 13.1
GLGait-B

Ours
73.9 86.3 65.9 75.4 86.3 89.6 3.58

GLGait-L 77.6 88.4 69.6 80.0 89.4 92.2 14.28
GLGait-H 77.7 88.9 70.6 82.8 91.1 93.5 57.04

respectively. Each subject in the test set has four sequences, two
for probe and two for gallery.

Implementation Details. Our experiments are implemented
using PyTorch [34]. We design the network capacity referring to the
baselines [10, 11] as shown in Table 2. In Equation 22, 𝛼 and 𝛽 are
both set to 1. The kernel size of all convolution operations is 3. In
Equation 8, 𝑃 is set to 3, and 𝐷 is the same as𝐶 in Stage-1. In Equa-
tion 11, 𝐷𝑚𝑖𝑑 is the same as𝐶 in all stages. For parameters, we only
consider the backbone without FC [4] and BNN [32] layers for all
experiments. Similar to DGaitV2 [10], we also partition the model
size into three segments: GLGait-Base (GLGait-B), GLGait-Large
(GLGait-L), and GLGait-Huge (GLGait-H) to exhibit an appropri-
ate compromise between accuracy and cost. They share identical
architectures, except for the variation in the number of channels
at each stage, which are (32, 64, 128, 256), (64, 128, 256, 512), and
(128, 256, 512, 1024), respectively. During training, the input size of
silhouettes is 64×44, and silhouettes are ordered in a sequence with
a length of 30. The optimizer is the Stochastic Gradient Descent
(SGD). The weight decay is 0.0005 and the momentum is 0.9. We
adjust the learning rate, batch size, and the number of iterations
to fit different dataset scales. 1) On Gait3D, we train the model for
120k iterations with a batch size of 32 × 4 (32 pedestrians, each
containing 4 sequences). The learning rate starts at 0.1 and is sub-
sequently decreased by a factor of 0.1 at iterations (40k, 80k, 100k).
2) On GREW, the model is trained for 180k iterations with a batch
size of 32 × 4. The learning rate starts at 0.05 and is subsequently
decreased by a factor of 0.2 at iterations (60k, 120k, 150k).

Specifically, we train themodels in GaitBase [11] andDGaitV2 [10]
by ourselves. As shown in Table 1, the results on the left side of
the parentheses represent our results, while the results inside the
parentheses originate from the original paper [10, 11].

4.2 Performance Comparison

We compare our approach with other recent appearance-based
methods using silhouette sequence as input on in-the-wild datasets
as shown in Table 1. Specifically, the input to SMPLGait [52] is ex-
clusively comprised of the silhouette. These methods can be divided
into two categories based on the network backbone components:
one category backbone predominantly consists of convolutional
operations, while another category backbone is constituted of both
convolutional operations and transformers.

For the first category, the receptive field plays an essential role.
For the spatial receptive field, as illustrated in Table 1, despite
DGaitV2-2D-B [10] having half the parameters of GaitBase [11],
its spatial receptive field substantially exceeds that of GaitBase,
ultimately surpassing GaitBase in accuracy on Gait3D [52] and
GREW [54] by 0.2% and 3.2%, respectively. The second considera-
tion is the temporal receptive field. Under equivalent spatial recep-
tive field conditions, DGaitV2-P3D-B outperforms DGaitV2-2D-B
by 6.3% and 10.3% Rank-1 accuracy on Gait3D and GREWwith only
0.44 MegaBytes parameters increase; a similar trend is observed
with DGaitV2-P3D-L and DGaitV2-2D-L. However, no matter for
DGaitV2-P3D or DGaitV2-3D, in comparison to sequences extend-
ing hundreds of silhouettes, their temporal receptive fields are
significantly insufficient, merely extracting limited local temporal
information.

For the second category, we consider that a global-local tempo-
ral receptive field shall be important. As depicted in Figure 1 (a),
gait exhibits a certain cyclical pattern, and this cycle represents a
local silhouette sequence within gait sequences. SwinGait-3D [10]
utilizes a 3D residual block to encode a preliminary pedestrian
representation, which is then fed into a 3D Swinformer [30, 31]
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Table 2: Network backbone of the GLGait.

Layer Name Output Size Structure
[𝑘 × 𝑘 × 𝑘, 𝑐] × 𝑏

Conv2D (𝑇 , 𝐶 , 64, 44) [1 × 3 × 3,𝐶] × 1

Stage-1
Vision Encoder (𝑇 , 𝐶 , 64, 44)

[
1 × 3 × 3,𝐶
3 × 1 × 1,𝐶
1 × 3 × 3,𝐶

]
× 1

Stage-2
Vision Encoder (𝑇 , 2𝐶 , 32, 22)

[
1 × 3 × 3, 2𝐶
3 × 1 × 1, 2𝐶
1 × 3 × 3, 2𝐶

]
× 4

Stage-3
GL-3D Block (𝑇 , 4𝐶 , 16, 11)

[
1 × 3 × 3, 4𝐶
𝐺𝐿𝑇𝑀, 4𝐶
1 × 3 × 3, 4𝐶

]
× 4

Stage-4
GL-3D Block (𝑇 , 8𝐶 , 16, 11)

[
1 × 3 × 3, 8𝐶
𝐺𝐿𝑇𝑀, 8𝐶
1 × 3 × 3, 8𝐶

]
× 1

Table 3: Extended experiment of sequence length on Gait3D
with Rank-1 accuracy (%).

Method Sequence Length
1-100 101-200 201-300 301-400 401-500 1-500

DGaitV2-P3D-L 68.8 84.1 75.3 83.0 75.0 74.2

GLGait-L 71.7 84.1 76.4 88.1 85.7 76.6

block, achieving a window-global temporal receptive field. How-
ever, within these blocks, SwinGait-3D cannot obtain a true global
one. In contrast, GLGait utilizes GLTM to exhibit a global-local tem-
poral receptive field, thereby more effectively learning the cyclical
motions of gait. With similar parameter counts, GLGait surpasses
SwinGait-3D in Rank-1 accuracy both on Gait3D and GREW by
1.6% and 0.4%.

Moreover, we conduct an extended experiment to further ex-
plore the performance of GLGait across varying sequence lengths.
The results are shown in Table 3, where the length distribution is
illustrated in Figure 1 (b). GLGait-L outperforms DGaitV2-P3D-L
5.1% and 10.7% Rank-1 accuracy at lengths 301 to 400 and 401 to
500, respectively. This demonstrates that GLGait is effective in long
sequences. Besides, we also observe that GLGait improves 2.9%
Rank-1 accuracy at lengths 1 to 100, indicating that GLGait is even
effective in short sequences rather than only in long sequences.

Finally, with the incorporation of CTL, GLGait-H achieves state-
of-the-art performance on both Gait3D and GREW, obtaining Rank-
1 accuracy of 77.7% and 82.8%, respectively.

Effectiveness of Center-Augmented Triplet Loss. To ver-
ify the effectiveness of CTL, we conduct ablation experiments on
DGaitV2-P3D [10] and GLGait. As shown in Table 4, CTL improves
both DGaitV2-P3D and GLGait compared with conventional triplet
loss [18] on Gait3D [52] and GREW [54], demonstrating its general-
izability and effectiveness. Meanwhile, we also compare CTL with
center loss [48] (CL) and triplet center loss [17] (TCL) as shown
in Table 5. CTL outperforms them in GLGait-B and GLGait-L. The
reason lies in that CL and TCL only focus on the connection be-
tween samples and class centers, ignoring the pair of samples to
samples. In contrast, CTL considers the pair of both samples to
samples and samples to class centers, reducing intra-class distance

Table 4: Performance gain from applying CTL on Gait3D [52]
and GREW [54] with Rank-1 accuracy (%).

Method Gait3D GREW

DGaitV2-P3D-B [10] 70.8→ 72.1 72.6→ 74.3
DGaitV2-P3D-L [10] 74.2→ 75.4 78.3→ 79.6

GLGait-B 73.3→ 73.9 74.2→ 75.4
GLGait-L 76.6→ 77.6 79.7→ 80.0

Table 5: Compared center-augmented triplet loss (CTL) with
other loss function on Gait3D [52] with Rank-1 accuracy (%),
where TL is triplet loss [18], CT is center loss [48], TCL is
triplet center loss [17].

Method TL CL TCL CTL Rank-1

GLGait-B

√
- - - 73.3

-
√

- - 72.8
- -

√
- 73.3

- - -
√

73.9

GLGait-L

√
- - - 76.6

-
√

- - 76.1
- -

√
- 76.2

- - -
√

77.6

and expanding positive samples. CTL can seamlessly substitute
conventional triplet loss [18], and we substitute it with CTL in
subsequent experiments.

4.3 Ablation Experiments
We exhibit ablation experiments in GLGait to prove the effective-
ness of each component.

Vision Encoder Size. To explore an appropriate vision encoder
size, we conduct ablation studies within a controlled network,
where the number of channels and blocks in per stage are fixed.
Specifically, we employed the P3D block [16, 36] as the component
of the vision encoder. As shown in Table 6, the model demonstrates
optimal performance when S-1 and S-2 are both employed as the
vision encoder, at which point the vision encoder is capable of learn-
ing an effective preliminary representation of pedestrians. Utilizing
only S-1 as the vision encoder fails to obtain a satisfactory prelimi-
nary pedestrian representation, diminishing the model’s learning
efficiency within the GL-3D block. Conversely, incorporating S-1,
S-2, and S-3 as the vision encoder does not afford additional space
for the GL-3D block, impeding the model’s ability to learn an ef-
fective global temporal receptive field and consequently degrading
model performance. Finally, we employ S-1 and S-2 as the vision
encoder.

Vision Encoder Component.We also exhibit the component
ablation experiments on the vision encoder in Table 7. When em-
ploying P3D block [16, 36] as the component, GLGait obtains a bet-
ter result with fewer parameters compared with 3D block [16, 36].
The possible reason lies in that our GL-3D block also separates the
spatial and temporal dimensions, which is similar to P3D block.
Maintaining such a similar structure assists inmodel training. Mean-
while, for 2D block [16], although it has fewer parameters, it is
unable to process temporal information, which is essential in pedes-
trian representation, thus the performance significantly drops out.
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Figure 5: Silhouette score in Temporal Max Pooling phase, where the sequence contains 474 silhouettes from Gait3D.

Table 6: Ablation study of vision encoder size on Gait3D [52]
with Rank-1 accuracy (%) and Params (M), where S-i is Stage-i,
and checkmark (

√
) indicates that the stage is utilized as a

part of the vision encoder.

Method S-1 S-2 S-3 S-4 Rank-1 Params

GLGait-B

√
- - - 73.5 3.76√ √

- - 73.9 3.58√ √ √
- 72.6 3.12

GLGait-L

√
- - - 76.6 15.00√ √

- - 77.6 14.28√ √ √
- 76.4 12.44

Table 7: Ablation study of vision encoder components on
Gait3D [52] with Rank-1 accuracy (%), and Params (M).

Method Components Rank-1 Params

GLGait-B
2D block [16] 72.4 3.52

3D block [16, 36] 73.1 4.12
P3D block [16, 36] 73.9 3.58

GLGait-L
2D block [16] 75.2 14.07

3D block [16, 36] 76.4 16.43
P3D block [16, 36] 77.6 14.28

Finally, we select P3D block as the component in the vision encoder
to obtain a good accuracy and cost trade-off.

Effectiveness of PGTA. To verify the effectiveness of Pseudo
Global Temporal Self-Attention (PGTA), we compare it with other
multi-head self-attention [44] methods, containing Spatio-Temporal
MHSA [2], Factorised self-attention [2] on temporal dimension,
and MobileViT [33] self-attention. Specifically, we set patch size to
3 × 4. The results are shown in Table 8. PGTA reduces half of the
parameters compared with Spatio-Temporal MHSA and Factorised
self-attention. Meanwhile, we observe that the Rank-1 accuracy
of Spatio-Temporal MHSA and Factorised self-attention greatly
drops out. The possible reason is that a large information loss
occurs between the 3,072 token size (patch size×channels) and 256
channels. Compared with MobileViT self-attention, PGTA improves
1.9% Rank-1 accuracy with fewer FLOPs. Due to the issue of the
receptive field lying in the temporal dimension, PGTA only focuses
on the temporal dimension and separates the spatial dimension
from tokens, thus effectively establishing a good solution.

Effectiveness of Temporal Convolution after PGTA. To
verify the effectiveness of temporal convolution after PGTA, we
compare it with a normal linear operation. As shown in Table 9, em-
ploying temporal convolution improves GLGait-B 1.6% and GLGait-
L 1.1% Rank-1 accuracy than a normal linear operation with few
parameters increase. Temporal convolution enhances the local re-
ceptive field, assisting the model in learning the motion process
of gait. Besides, temporal convolution can also aggregate pseudo

Table 8: Ablation study of memory and computation com-
plexity in self-attention [44] on Gait3D [52] with Rank-1
accuracy (%), Params (M), and FLOPs (G).

Method Module R-1 Params FLOPs

GLGait-B
Spatio-Temporal MHSA [2] 68.2 7.93 0.93
Factorised self-attention [2] 70.6 7.93 0.92
MobileViT self-attention [33] 72.0 3.58 0.94

PGTA 73.9 3.58 0.87

Table 9: Ablation study of temporal convolution after PGTA
on Gait3D [52] with Rank-1 accuracy (%), and Params (M).

Method Temporal Convolution Rank-1 Params

GLGait-B - 72.3 3.32√
73.9 3.58

GLGait-L - 76.5 13.23√
77.6 14.28

global temporal receptive fields generated by PGTA to a true holistic
temporal receptive field. Its effectiveness is well demonstrated.

4.4 Visualization
To verify the effectiveness of GLGait in long sequences, we conduct
visualization as illustrated in Figure 5, where the score is model
attention in temporal max pooling phase for each silhouette. GLGait
can detect dynamic sub-sequences and give them high scores; for
static sub-sequences, it selects representative silhouettes to give
high scores and assigns low scores to the rest. This demonstrates
that GLGait can align various gait patterns in long sequences, thus
validating the effectiveness of global-local temporal receptive field.

5 Conclusion
In this paper, to address the issue of temporal receptive field for
gait recognition in the wild, we add the multi-head self-attention
(MHSA) before temporal convolution operation in Convolutional
Neural Networks (ConvNets), designing a Global-Local Temporal
Receptive Field Network (GLGait) to obtain a global-local temporal
receptive field. Due to the dimension explosion in MHSA, we pro-
pose a Pseudo Global Temporal Self-Attention (PGTA) to reduce
the memory and computation complexity. Furthermore, a Center-
Augmented Triplet Loss (CTL) is proposed to reduce the intra-class
distance and expand the positive samples, seamlessly substituting
conventional triplet loss. GLGait can effectively recognize pedes-
trians with limited memory and computation complexity in wild
scenarios, thus this work can be applied to widespread surveil-
lance gait recognition systems. Extensive experiments have been
conducted on Gait3D and GREW. The results demonstrate that
our approach outperforms state-of-the-art methods on in-the-wild
datasets.
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