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ABSTRACT

In many science and engineering settings, system dynamics are characterized by
governing partial differential equations (PDEs), and a major challenge is to solve
inverse problems (IPs) where unknown PDE parameters are inferred based on
observational data gathered under limited budget. Due to the high costs of setting
up and running experiments, experimental design (ED) is often done with the
help of PDE simulations to optimize for the most informative design parameters
(e.g., sensor placements) to solve such IPs, prior to actual data collection. This
process of optimizing design parameters is especially critical when the budget
and other practical constraints make it infeasible to adjust the design parameters
between trials during the experiments. However, existing ED methods tend to
require sequential and frequent design parameter adjustments between trials. Fur-
thermore, they also have significant computational bottlenecks due to the need
for complex numerical simulations for PDEs, and do not exploit the advantages
provided by physics informed neural networks (PINNs) in solving IPs for PDE-
governed systems, such as its meshless solutions, differentiability, and amortized
training. This work presents Physics-Informed Experimental Design (PIED), the
first ED framework that makes use of PINNs in a fully differentiable architecture
to perform continuous optimization of design parameters for IPs for one-shot de-
ployments. PIED overcomes existing methods’ computational bottlenecks through
parallelized computation and meta-learning of PINN parameter initialization, and
proposes novel methods to effectively take into account PINN training dynamics
in optimizing the ED parameters. Through experiments based on noisy simulated
data and even real world experimental data, we empirically show that given limited
observation budget, PIED significantly outperforms existing ED methods in solving
IPs, including for challenging settings where the PDE parameters are unknown
functions rather than just finite-dimensional.

1 INTRODUCTION

The dynamics of many systems studied in science and engineering can be described via partial
differential equations (PDEs). Given the PDE governing the system and the properties of the system
(which we refer to as PDE parameters), we can perform forward simulations to predict how the
system behaves. However, in practice, the true PDE parameters are often unknown, and we are
instead interested in recovering the unknown PDE parameters based on observations of the system’s
behaviors. This problem of recovering the unknown PDE parameters is a type of inverse problem (IP)
(Vogel, 2002; Ghattas & Willcox, 2021), and have been studied in classical mechanics (Tanaka & Bui,
1993; Gazzola et al., 2018), quantum mechanics (Chadan et al., 1989) or geophysics (Smith et al.,
2021; Waheed et al., 2021), and more. It is challenging to directly solve IPs given observational data
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since PDE parameters can often affect the behavior of the PDE solution in complex ways. This is
further complicated in practice where data acquisition (e.g., making measurements from experiments
or field trials) is often costly and so only limited number of observations can be made, making the
choice of which observations to make given a limited budget also critical to solving IPs.

Experimental design (ED) methods aim to tackle the data scarcity problem by optimizing design
parameters, such as sensor placement locations, to yield the most informative measurements for
estimating the unknown inverse parameters (Razavy, 2020; Alexanderian, 2021). These methods
typically make use of forward simulations based on guesses of the true inverse parameter to find
the best design parameter for the measurements. However, these methods are less practical in many
PDE-informed IPs due to significant computational bottlenecks in forward simulations and solving
IPs, especially for systems with complex forward models and PDEs. In particular, simulators using
conventional PDE solvers often are costly to run, and return discretized (mesh-based) approximate
solutions which are often incompatible with efficient continuous gradient-based optimization methods.

Physics-Informed Neural Networks (PINNs) are neural networks that incorporate PDEs and their
initial/boundary conditions (IC/BCs) into the NN loss function (Raissi et al., 2019), and have been
successfully applied to various science problems (Chen et al., 2020; Cai et al., 2021; Jagtap et al.,
2022). PINNs are especially well-suited to tackle ED for IPs, as they (1) allow easy incorporation
of observational data into the inverse problem solver through the training loss function, (2) can be
used for both running forward simulations and directly solving IPs with the same model architecture,
(3) are continuous and differentiable w.r.t. the function inputs, and (4) have training whose costs can
be amortized, e.g., through transfer learning. However, to our knowledge, there has not been an ED
framework for IPs that fully utilizes these advantages from PINNs for ED problems.

In this paper, we present Physics-Informed Experimental Design (PIED), the first ED framework
that makes use of PINNs in a fully differentiable architecture to perform continuous optimization of
design parameters for IPs for one-shot deployment1. Our contributions are summarized as follows:

• We propose a novel ED framework that makes use of PINNs as both forward simulators and
inverse solvers in a fully differentiable architecture to perform continuous optimization of
design parameters for IPs for one-shot deployments (Sec. 3).

• We introduce the use of a learned initial NN parameter which are used for all PINNs in
PIED (Sec. 4.1), based on first-order meta-learning methods, allowing for more efficient
PINN training over multiple PDE parameters.

• We present various effective ED criteria based on novel techniques for quantifying the
training dynamics of PINNs (Sec. 4.2). These proposed criteria are differentiable w.r.t. the
design parameters, and therefore can be optimized efficiently via gradient-based methods.

• We empirically demonstrate that PIED is able to outperform other ED methods on in-
verse problems (Sec. 5), both in the case where the PDE parameters of interest are finite-
dimensional and when they are unknown functions.

2 BACKGROUND

In this section, we provide a formalism of the experimental design (ED) problem for PDE-based
inverse problems (IPs), and physics-informed neural networks (PINNs) which will be used in our
proposed framework. We also discuss existing works on ED and PINNs applied to solving IPs.

2.1 PROBLEM SETUP

Inverse problems. Consider a system described by a PDE2 of the form
D[u, β](x) = f(x) ∀x ∈ X and B[u, β](x′) = g(x′) ∀x′ ∈ ∂X (1)

where u : X → Rdout describes the observable function (solution of the PDE) over a coordinate
variable x ∈ X ⊂ Rdin (where time could be a subcomponent), and β ∈ Rdinv are PDE parameters3.

1The code for the project can be found at https://github.com/apivich-h/pied.
2Examples of PDEs, specifically those in our experiments, can be found in App. D.
3For simplicity we assume β is finite-dimensional. In our experiments, we demonstrate how our method can

also be extended to cases where β is a function of x.
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D is a PDE operator and B is an operator for the initial/boundary conditions (IC/BCs) at boundary
∂X ⊂ X . Different PDE parameters β results in different observable function u that satisfies (1),
which for convenience will be denoted by uβ .

For inverse problems (IPs), the operators D and B and functions f and g are known, and the task is to
estimate the unknown PDE parameter of interest, β0, that cannot be observed directly. Instead, we
can only make noisy measurements of the corresponding observable function uβ0 at M observation
inputs4 X = {xj}Mj=1 ⊂ X to get observation values Y = {uβ0

(xj) + εj}Mj=1, where we assume
Gaussian noise εj ∼ N (0, σ2). In general, X could possibly be constrained to a set of feasible
configurations S ⊆ XM . To solve the IP, we could use an inverse solver that finds the PDE parameter
β̂ that fits best with the observed data (X,Y ) where

β̂(X,Y ) ≈ argmin
β

∥uβ(X)− Y ∥2. (2)

Experimental design. Unfortunately, the observations Y are typically expensive to obtain due
to costly sensors or operations. In many settings, the observation inputs also have to be chosen in
a one-shot rather than in a sequential, adaptive manner due to the costs of reinstalling sensors and
inability to readjust the design parameters on-the-fly. Hence, the observation input X should be
carefully chosen before actual measurements are made. As we do not know the true PDE parameter
β0, a good observation input should maximize the average performance of the inverse solver over
its distribution p(β). In the experimental design (ED) problem, the goal is therefore to find the
observation input X ∈ S which minimizes

L(X) = Eβ,Y∼p(β)p(Y |β)

[∥∥β̂(X,Y )− β
∥∥2], (3)

or the expected error of the estimated PDE parameter w.r.t. the possible true PDE parameters.

ED methods can be deployed in the adaptive setting, where multiple rounds of observations are
allowed, and the design parameter can be adjusted between each rounds based on the observed data.
However, there are many practical scenarios where non-adaptive ED are desirable. For instance,
field scientists who incur significant cost in planning, deployment, and collection of results for each
iteration may strongly prefer to perform a single round of sensor placement and measurements
as opposed to sequentially making few measurements per round and frequently adjusting sensor
placement locations. Another example is when the phenomena being observed occurs in a single
time period, and all observations have to be decided beforehand. In these cases, it is more practical to
optimize for a single design parameter upfront and collect all observational data for the IP in one-shot.
Unlike past works, our work aims to optimize performance for one-shot deployment.

Physics-informed neural networks. To reduce the computational costs during the ED and IP
solving processes, we will use physics-informed neural networks (PINNs) (Raissi et al., 2019) to
simulate PDE solutions and solve IPs. PINNs are neural networks (NNs) ûθ with NN paramaters θ
that approximates the solution u to (1) by minimizing the composite loss5

L(θ, β;X,Y ) =

∥∥ûθ(X)− Y
∥∥2
2

2|X|︸ ︷︷ ︸
Lobs(θ;X,Y )

+

∥∥D[ûθ, β](Xp)− f(Xp)
∥∥2
2

2|Xp|
+

∥∥B[ûθ, β](Xb)− g(Xb)
∥∥2
2

2|Xb|︸ ︷︷ ︸
LPDE(θ,β)

,

(4)
where (X,Y ) are observational data, and Xp ⊂ X and Xb ⊂ ∂X are collocation points to enforce
PDE and IC/BC constraints respectively. PINNs can be used both as forward simulators when β
is known but no observational data is available (Lobs(θ;X,Y ) = 0), or as inverse solvers when
observational data is available but β is unknown and is learned jointly with θ during PINN training.

2.2 RELATED WORKS

Existing ED methods in the literature include those that adopts a Bayesian framework (Chaloner &
Verdinelli, 1995; Long et al., 2013; Belghazi et al., 2018; Foster et al., 2019) and those that aims to

4We abuse notations by allowing the set of X to be an argument for functions which takes in x ∈ X as well.
5For simplicity we consider one IC/BC, however the loss can be generalized to include multiple IC/BCs by

adding similar loss terms for each constraint.
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construct a policy for choosing the optimal experimental design (Ivanova et al., 2021; Lim et al., 2022).
Many of these ED methods utilize forward simulations that can be easily and efficiently queried from,
which is often unavailable in PDE-based IPs due to the need to numerically solve complex PDEs. ED
and IP solving methods that rely on numerical simulators (Ghattas & Willcox, 2021; Alexanderian,
2021; Alexanderian et al., 2024) are computationally expensive due to repeated forward simulations
required during optimization, and are usually restricted to some PDEs. Furthermore, numerical
solvers often require input discretization and cannot be easily differentiated, which restricts the
applicable optimization techniques.

Meanwhile, PINNs have been extensively used model systems and solve IPs across many scientific
domains (Chen et al., 2020; Cai et al., 2021; Waheed et al., 2021; Bandai & Ghezzehei, 2022; Jagtap
et al., 2022; Shadab et al., 2023), due to the simplicity in incorporating observational data with
existing PDE from the respective domains, and its ability to recover PDE parameters with one round
of PINN training. However, these works assume that the observational data to be used for IPs have
already been provided, and do not consider the process of observational data selection and how it
may affect the IP performance. Further material on related works are in App. C.

3 EXPERIMENTAL DESIGN LOOP

In this section, we first discuss how IPs can be solved with PINNs given a set of observational
data (X,Y ), and how the choice of observation inputs X matters especially when there is limited
observation budget. Thereafter, we present our proposed ED framework, PIED, which optimizes for
the observation input while fully utilizing the advantages provided by PINNs.

3.1 SOLVING INVERSE PROBLEMS WITH PINNS

The process of solving the IP with PINNs is summarized in Fig. 1a. As presented in Sec. 2, the goal is
to find the true PDE parameter β∗ of the system based on (2) by conducting experiments at a limited
number of observation input X to obtain observational data (X,Y ), where Y are noisy measurements
of the observable function uβ∗ . This can be directly solved using a PINN-based inverse solver that is
trained to minimize the composite loss in (4) to find the inferred β̂∗ of the system.

However, given limited observation budget, the choice of observation input X becomes important in
achieving a good estimate β̂∗ – some points are more informative than others, and allows the inverse
solver to achieve better estimates with lower variance. Intuitively, we could interpret the limited
observation as an information bottleneck, where the information on a system’s β would be compressed
from the entire observable function uβ into a relatively low-dimensional, noisy representation. The
better the choice of X , the better we could extract the value of β∗ via the inverse solver.

3.2 COMPONENTS OF THE ED DESIGN LOOP

To optimize for X , ED methods rely on several forward simulations of the system for different
reference β values before collecting any observational data from actual, costly experiments. Multiple
possible X would then need to be tested on all these sets of simulations, to assess the inverse solver’s
performance. However, existing methods that rely on conventional numerical integration methods
do not enable efficient parallel computation and differentiability for gradient-based optimization.
Instead, we propose to fully utilize the advantages provided by PINNs to tackle the ED problem.

To achieve this, we propose our ED framework PIED, which is visualized in Fig. 1b. We consider N
parallel threads, each representing different reference βi values. Similar to existing ED methods,
the range of β values could be informed by domain knowledge. Within each thread i, we have three
components: (1) a forward simulator that returns an observable function ũβi which approximates
the PDE solution uβi

, (2) a observation selector that generates observational data based on ũβi
(X)

at observation inputs X (consistent across all threads), and (3) an inverse solver that takes in the
observational data to produce estimates of the PDE parameter β̂i. Finally, we require (4) a criterion
that captures how good the estimates are across all threads on aggregate, and an input optimization
method to select the single best observation input according to the criterion.
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Figure 1: Comparison between observation selection and solving IPs in real life (Fig. 1a), versus the
proess as modelled in the PIED framework (Fig. 1b).
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PINN-based forward simulator (F). For the first component, PIED uses PINNs to simulate what
the observable function uβi

given a reference βi would be in each thread. Specifically, a forward
PINN is trained 6 with loss LPDE(θ, βi) from (4) with fixed βi to generate ũβi

over the input space X ,

βi
forward simulator F−−−−−−−−−−−−−−→ ũβi = ûθi ≈ uβi . (5)

Note that unlike classical simulators based on numerical integrators that require fixed discretization of
the input space X , the trained PINNs ũβi

represent learned functions that are meshless, and therefore
can be queried at and even differentiated w.r.t. any input x ∈ X . This is a major advantage for ED, as
it allows us to flexibly test a continuous range of X without having to re-run the forward simulators
many times for different discretization, and also enables efficient gradient-based optimization.

Our use of PINNs as forward simulators also offer significant computational advantages. First,
modern software and hardware allows for very efficient training of multiple NNs in parallel (for
example, using increasingly accessible and powerful GPUs and via the vmap function on JAX),
unlike classical simulators. Second, the various PINNs in different thread can all be initialized from a
common pre-trained base model (which we discuss in Sec. 4.1), speeding convergence of the PINN
during training. This will be even more advantageous if researchers start sharing open-sourced,
pre-trained models, similar to what is currently being done for large language models. Third, we can
reuse the trained forward PINNs to approximate the dynamics of the inverse PINNs and consequently
boost the effectiveness of the downstream ED process, as we will describe in Sec. 4.

Observation selector (OX ). Given the trained forward PINNs {ũβi
}Ni=1, the second component

applies a “sieve” that queries all forward PINNs with the same M observation input X = {xj}Mj=1 to
produce the respective sets of noisy predicted observations, i.e., for each i = 1, . . . , N ,

ũβi

observation selector OX−−−−−−−−−−−−−→
(
X, Ỹi

)
=
({

xj

}M
j=1

,
{
ũβi(xj) + εj

}M
j=1

)
(6)

6Note that no actual experimental data is required for the training of forward PINNs, as explained in Sec. 2.

5



Published as a conference paper at ICLR 2025

where εj ∼ N (0, σ2) are i.i.d. noise added to model the observational data generation process. The
observation input X applied here is the candidate design parameter7 to be optimized for in the ED
problem – different choices of X will yield different sets of observational data (X, Ỹi) that impacts
the quality of the PDE parameter estimate, as per (3).

PINN-based inverse solver (I). For each βi, the predicted observational data (X, Ỹi) from (6) will
then be used to train an inverse solver PINN (inverse PINN) with loss function L(θ, β;X, Ỹi) from
(4) to return an estimated PDE parameter β̂i, i.e., for each i = 1, . . . , N ,(

X, Ỹi

) inverse solver I−−−−−−−−−−−→ β̂i. (7)

Note that in our ED framework, both the forward simulators and inverse solvers are PINNs and
have the same architecture. This enables us to develop effective approximation techniques based on
predicting the dynamics of the inverse PINNs using its corresponding forward PINN, significantly
reducing computational cost for the ED process, and also the eventual IP process in Sec. 3.2 that also
uses the inverse PINN. We elaborate further on these techniques in Sec. 4.

Criterion and optimal observation input selection. Finally, we could compute the ED criterion
in (3) for a given X , which evaluates how well the estimates β̂i from the inverse solvers matches the
corresponding reference parameter values βi across all parallel threads i on average,

α(X) =
1

N

N∑
i=1

αi(X) =
1

N

N∑
i=1

[
−
∥∥β̂i(X, Ỹi)− βi

∥∥2]. (8)

We can then perform optimization using the observation selector and inverse solver components,
where we search for the observation input X that maximizes α(X). Note that the same forward
PINNs {ũβi

}Ni=1 could be re-used for all iterations and hence only need to be computed once. As
our PINN inverse solver is differentiable, we can back-propagate through α directly to compute
∇Xα(X). This allows α to be optimized using gradient-based optimization methods, instead of
methods such as Bayesian optimization which do not typically perform well on high-dimensional
problems, or require combinatorial optimization over discretized observation inputs.

4 EFFICIENT IMPLEMENTATION OF PIED

In this section, we introduce training and approximation methods which further boosts the efficiency
of PIED. We first propose a meta-learning approach to learn a PINN initialization for efficient
fine-tuning of all our forward and inverse PINNs across different threads (Sec. 4.1), before proposing
approximations of our criterion in (8) to effectively optimize for the observation inputs (Sec. 4.2).

4.1 SHARED META-LEARNED INITIALIZATION FOR ALL PINN-BASED COMPONENTS

In PIED, we could significantly reduce computational time and benefit from amortized training by
pre-training and using a shared initialization for all PINN components in our framework. We can
efficiently achieve this with REPTILE (Nichol et al., 2018; Liu et al., 2021), a first-order meta-
learning algorithm. To see this, note that all PINNs (forward and inverse) in PIED are modelling the
same system and may benefit from joint training, but have different PDE parameters βi leading to
different observable functions and hence could be interpreted as different tasks to be meta-learned.

Specifically, when implementing PIED, we first use REPTILE to learn a shared PINN initialization
θSI for the set of reference β, if we do not already have a pre-trained model for the system of interest8.
Given this, we can then (1) efficiently fine-tune θSI across different reference β with fewer training
steps to produce the forward PINNs {ũβi}Ni=1, (2) re-use θSI for the approximation of inverse PINNs
performance to optimize our ED criterion (elaborated in Sec. 4.2), and (3) re-use θSI for the final
inverse PINN applied to actual experimental data to find the true β̂∗ (Sec. 3.1). Once learnt, θSI can

7The observation input can either be freely chosen or constrained to certain configurations (see App. E).
8Note that no actual experimental data is needed for this pre-training phase, just like in the training of forward

PINNs. Rather, training is done based on LPDE(θ, β) in (4), enforced at collocation points.
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Figure 2: Results for meta-learning a shared NN initialization for PINNs trained on 1D damped
oscillator case. The shared initialization (blue line) in Fig. 2b exhibits similar structure to PDE
solutions uβ for different values of β (faint green lines), unlike the random initialization (blue line)
in Fig. 2a. In Figs. 2c and 2d, we show that this translates to better average train and test loss
performance of PINNs with shared initialization compared to random initialization w.r.t. different β.
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Figure 3: Results for learning a NN initialization for PINNs trained on Eikonal equation case. Fig. 3a
represents a randomly initialized PINN, while Fig. 3b represents the shared initialzation for the PINN.
Fig. 3c shows sample PDE solutions uβ for different random PDE parameters β.

also be re-used many times on different IP instances with the same PDE setting, further reducing
computational costs in practical applications.

To demonstrate the benefits of learning a shared NN initialization for PINNs, we visualize various
PDE solutions (green lines) for the 1D damped oscillator setting, along with the output of the PINN
with random initialization and shared initialization (blue lines), in Fig. 2a and Fig. 2b respectively.
Note how the PINN with the meta-learned, shared initialization share qualitatively similar structure
to the PDE solutions uβ for different values of β, e.g., replicating the damping effect observed in
the various solutions. In contrast, the random initialization in Fig. 2a is dissimilar to any of the PDE
solutions. This advantage can also be observed quantitatively in Figs. 2c and 2d, where we plot the
train and test loss for forward PINNs when initialized with θSI versus when initialized randomly. We
can see that PINNs initialized with the shared θSI initialization have faster training convergence with
lower train and test loss compared to those that are random initialized.

We also demonstrate this advantage for the 2D Eikonal equation setting, where the PDE parameters
are functions of the input space X . In Fig. 3, we visualize the shared parameters learned for the
Eikonal equation, which again shows that the qualitative structures and even the scaling of the PDE
solutions can be meta-learned beforehand in order to speed up the PINN training process. We provide
further empirical results in App. I.1, which demonstrates that this also applies for inverse PINNs and
forward PINNs trained for other PDEs.

4.2 APPROXIMATE CRITERIA FOR PERFORMANCE OF THE INVERSE SOLVER

We now present two methods to effectively optimize for the observation inputs by approximating the
inverse solver performance and criterion in (8).

Few-step Inverse Solver Training (FIST) Criterion. Our first method stems from the insight that
we do not need to fully solve for β̂i in PIED’s inverse solvers to find the observation input X that
maximizes (8). Drawing inspiration from Lau et al. (2024a) with results showing that informative
training points that lead to faster training convergence also result in lower PINN generalization error
bounds and better empirical performance, we propose to only partially train the inverse PINN for

7
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a few training steps to get an intermediate estimate of β̂i, and use this to perform gradient-based
optimization for X with (8) by back-propagating through the PINN inverse solver. To get more
informative gradient signals, this is done with inverse PINNs that are closer to convergence rather
than at early stages of training when most choices of X would result in good performance gains.

Hence, our method FIST first initializes the inverse PINNs for each thread i with perturbed NN
parameters from the corresponding converged forward PINN for βi, before partially training them
for r training steps to obtain the estimate β̂i, computing the criterion in (8), and performing gradient
descent optimization for X . We present the pseudocode for FIST in Alg. 1 of the Appendix.

Model Training Estimate (MoTE) Criterion. Our second method involves directly approximating
the inverse solver output β̂i at convergence while minimizing training. We do so by performing kernel
regression with the empirical Neural Tangent Kernel (eNTK) of the PINN (Jacot et al., 2018; Wang
et al., 2022; Lau et al., 2024a), given a set of observation input X . Specifically, under assumptions
that the PINN is in the linearized regime and trained via gradient descent with (4), the predicted PDE
parameter β̂i at convergence can be estimated by (IC/BC terms omitted for notational simplicity)

β̂i(X, Ỹ ) ≈ β(0) −
[

0
J⊤
p,β

] [
Jobs,θJ

⊤
obs,θ Jobs,θJ

⊤
p,θ

Jp,θJ
⊤
obs,θ Jp,θJ

⊤
p,θ + Jp,βJ

⊤
p,β

]−1 [
ûθ(0)(X)− Ỹ

D[ûθ(0) , β(0)](Xp)− f(Xp)

]
(9)

where (θ(0), β̂(0)) are the initialization parameters, Jobs,θ = ∇θûθ(0)(X), Jp,θ = ∇θD[ûθ(0) , β](Xp),
and Jp,β = ∇βD[ûθ(0) , β(0)](Xp) (note that∇β ûθ(0)(X) = 0). This estimate for β̂ in (9) is adapted
from Lee et al. (2018), and is verified in App. F.2.1, which includes further details on the assumptions
and derivation. Note that while the use of NTK in PINNs is not new (Wang et al., 2022; Lau et al.,
2024a), previous works have not utilized NTK to directly quantify the performance of PINNs in
solving inverse problems as we have done.

In practice, as noted by Lau et al. (2024a), finite-width PINNs have eNTKs that evolve over training
before they can better reconstruct the true PDE solution. Hence, for the MoTE criterion, we either
first do r steps of training on the θSI initialized inverse PINN before computing the eNTK and
performing kernel regression, or use a perturbed version of the forward PINN parameter to perform
kernel regression. We present the pseudocode for MoTE in Alg. 2 in the Appendix.

In App. F, we provide further discussion about the proposed criteria for approximating the in-
verse solver performances. In App. G, we summarize the full implementation process for PIED,
incorporating both approximation methods and the full ED loop from Sec. 3.

5 RESULTS

In this section, we present empirical results to demonstrate the performance of PIED on ED problems
for a range of scenarios based on different PDE systems, both from noisy simulations from real
physical experiments (details of the specific PDEs are in App. D). For scenarios using simulation
data, we injected noise and lowered data fidelity for the evaluation dataset to represent noisy limited
sensor capabilities. We compare PIED against various benchmarks, such as approximations of the
expected mutual information (Belghazi et al., 2018; Foster et al., 2019) and criterion from optimal
sensor placement literature (Krause et al., 2008), in addition to random and grid-based methods,
with details in App. H.4. In each scenario, the ED methods compute their optimal observation input,
which are then evaluated on multiple IP instances (i.e., different ground truth PDE parameters β). We
then report the mean error across the different PDE parameters in accordance to the loss term in (3).
Additional details on the experimental setup are listed in App. H. We present a subset of experimental
results in the main paper, and defer the remaining results to App. I. The code for the project can be
found at https://github.com/apivich-h/pied.

Finite-dimensional PDE parameters. We first present two ED problems on IPs where the PDE
parameters corresponds to multiple scalar terms representing certain physical properties of the system.
The first scenario is the 1D time-dependent wave equation with inhomogeneous wave speeds, where
we incorporated realistic elements such as restrictions in sensor placements. The second is the 2D
Navier-Stokes equation, which is a challenging setting relevant to many important scientific and
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Dataset Finite-dimensional Function-valued Real dataset
Wave (×10−1) Navier-Stokes (×10−2) Eikonal (×101) Groundwater (×101) Cell Growth (×100)

Random 5.23 (1.26) 6.19 (3.53) 1.82 (0.09) 3.44 (1.77) 3.63 (0.26)
Grid 8.90 (0.73) 4.51 (0.60) 1.56 (0.22) 2.27 (2.26) 3.19 (0.23)
MI 4.46 (0.92) 6.08 (2.10) 2.02 (0.01) 2.10 (0.32) 3.14 (0.59)

VBOED 4.63 (1.64) 4.33 (0.98) 1.82 (0.50) 2.29 (1.09) 2.82 (1.77)
FIST (ours) 3.87 (0.76) 2.10 (1.45) 0.74 (0.02) 1.93 (0.08) 2.62 (0.11)

MoTE (ours) 3.81 (2.34) 1.18 (0.11) 0.76 (0.02) 2.00 (0.60) 2.83 (0.04)

Table 1: Results of the ED methods for the various experimental scenarios. Each result reports
the median of the expected loss (i.e., in (3)) across trials, and the figure in bracket represents the
semi-interquartile range. The results of the best performing ED methods in each dataset are in bold.

industrial problems. The results are presented in Table 1. Compared to benchmarks, both FIST and
MoTE perform better in the scenarios, producing optimal X choices that have lower expected loss
when evaluated across datasets of multiple β values. The performance gap between our methods
and benchmarks is more significant for the 2D Navier-Stokes scenario, which is more challenging,
making the optimization of X more important in obtaining good estimates of the inverse problem.

PDE parameters that are functions of input space. We further demonstrate that PIED can be
applied to complex scenarios where the PDE parameter of interest β is a function defined over the
input space X . To estimate β in these cases, we parameterize it using a small NN, and learn it together
with the PINNs in our framework. The scenario we considered is the 2D Eikonal equation, which
is used in a wide range of applications such as seismology, robotics or image processing. In this
problem, the sensors can be placed freely in X , yielding a high-dimensional design parameter. The
results in Table 1 demonstrate that even in this complex scenario, our PIED methods are still able
to outperform the benchmarks and recover the correct function-valued PDE parameter. In addition,
our methods also produce consistently good results, as can be seen from the small semi-interquartile
range (SIQR) of our expected loss.
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Figure 4: Example of ED process involving the Eikonal
equation using different methods of observation selec-
tion. Top row: the true observation T (x, y) and its
approximation via PINNs. Middle row: the true un-
known function v(x, y) and the recovered estimations
based on observation inputs. Bottom row: the error of
the reconstructed v(x, y).

We can further analyze the performance of
PIED by visualizing the observation inputs
X chosen by FIST and the loss of the PDE
parameter (Fig. 4). Note that FIST automat-
ically adjusts the choice of X based on un-
derlying structure of the problem, allowing
it to choose X to more evenly minimize the
error of β. This provides it with advantages
over more heuristics-based approaches like
the space-filling Grid method.

Inverse problem on real-life dataset.
Simulation datasets may not be able to fully
represent the challenges of realistic scenar-
ios, due to the complexity of the real-life
noisy experimental data. Hence, to fur-
ther validate the advantages of PIED and
analyze its performance on more realistic
scenarios, we applied it to observation se-
lection problems on real data that are col-
lected from physical experiments in differ-
ent domains of natural science. Specifi-
cally, we consider the ED problem applied
to the groundwater flow dataset collated by
Shadab et al. (2023), and the scratch assay
cell population growth data collected by Jin et al. (2016), where the design parameters indicate the
location to make the observations at constrained, fixed time intervals. As can be seen in Table 1, our
PIED methods outperform benchmarks in both scenarios, despite the challenges posed by the datasets.
For example, we can see in Fig. 5a that the groundwater flow dataset no longer fits typical i.i.d. noise
assumptions that existing ED method work under, but FIST still performs well (selected observations
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(a) Groundwater flow
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Figure 5: Visualization of real-life experimental data used in our tests, along with demonstration of
observations selected by FIST. Fig. 5a: example of groundwater flow data from Shadab et al. (2023).
Gray points represent the collected data, while the blue points are the observations chosen by FIST.
The black line represents the prediction from the corresponding inverse PINN. Fig. 5b: example of
cell population growth data from Jin et al. (2016). The left figure shows the cell population data
which are collected at 12 hour intervals, while the right figure shows the population prediction from
the inverse PINN. In both figures, the blue points represent the observations chosen by FIST.

in blue, and IP prediction plotted as a dotted line). In Fig. 5b, we can see that the observations chosen
by FIST are spatially close to each other in order to better interpolate the effects from spatially-related
PDE parameters, resulting in its better performance compared to benchmarks.
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Figure 6: Results for various benchmarks using numeri-
cal simulators and PINNs. Fig. 6a: error of recovered
PDE parameters. The thick blue line represents the per-
formance of the Random method, while the dashed line
represents the best performance. Fig. 6b: time required
to run the ED algorithm and to run 50 rounds of infer-
ence to solve the inverse problem.

Advantages of PINNs over numerical
solvers in ED. In the results above, we
implemented the benchmark ED meth-
ods applied to PINNs as forward simula-
tors. This allowed the methods to ben-
efit from the advantages of PINNs. In
fact, existing benchmarks using classical
numerical solvers would produce signifi-
cantly worse results than those reflected
in Table 1. To see this, we consider the
2D Eikonal scenario, and use the Eikonal
equation solver as implemented by White
et al. (2020) which uses the fast march-
ing method (Sethian, 1996) as the numer-
ical simulator. Due to the lack of gradi-
ent information, optimization is done using
Bayesian optimization. Fig. 6a shows that
using PINNs allow the correct function to
be recovered much more accurately regard-
less of the ED method used. Furthermore,
we see in Fig. 6b that using PINNs allow
the overall ED and IP to be done more ef-
ficiently as well.

6 CONCLUSION

We have introduced PIED, the first ED framework that utilizes PINNs as both forward simulators and
inverse solvers in a fully differentiable architecture to perform continuous optimization of design
parameters for IPs. PIED selects optimal design parameters for one-shot deployment, and allows
exploitation of parallel computation unlike existing methods. We have also designed effective criteria
for the framework which are end-to-end differentiable and hence can be optimized through gradient-
based methods. Future work could include applying PIED to other differentiable physics-informed
architectures, such as operator learning methods.
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A REPRODUCIBILITY STATEMENT

The codes for our implementation, scripts for running experiments and the required dataset are
attached in the supplementary materials of the paper submission.

B NOTATIONS

Table 2: List of notations used throughout the paper
Symbol Meaning Example
D PDE operator (1)
B Boundary condition operator (1)
X Input domain (1)
∂X Boundary of input domain (1)
S Set of feasible observation inputs
β PDE parameter (1)
uβ Solution for (1) with PDE parameter β (2)
β̂ Estimate of PDE parameter from inverse solver (2)
θ NN parameter (4)
ûθ NN with parameters θ (4)
L PINN training loss (4)
Lobs Observation loss for PINN (4)
LPDE Collocation points loss for PINN (4)
F Forward simulator (5)
ũβi

PINN, with NN parameter θi, which estimates uβi
(5)

OX Observation selector with input X (6)
Ỹ Mock observation output from ũβi

(X) (6)
I Inverse solver (7)
α ED criterion without inverse ensemble approximation (8)
αi ED criterion computed based on outputs of thread i of framework (8)
γ Parameterization for observation input (23)
Xγ Observation input corresponding to parameter γ (23)
Sγ Set of valid observation input parameterization (23)
∇x Derivative or Jacobian w.r.t. x
∇2

x Hessian w.r.t. x
[a, b] Closed interval between a and b

C RELATED WORKS

Inverse problems. Inverse problem (IP) (Vogel, 2002; Ghattas & Willcox, 2021) is an commonly
studied class of problem in many science and engineering disciplines such as classical mechanics
(Tanaka & Bui, 1993; Gazzola et al., 2018), quantum mechanics (Chadan et al., 1989) or geophysics
(Smith et al., 2021; Waheed et al., 2021). Many methods of solving IPs have been proposed, often
involving minimizing the objective as stated in (2), possibly with addition of some regularization
terms. One such method is by using the Newton-conjugate gradient method (Biegler et al., 2003;
Ghattas & Willcox, 2021) to optimize the objective as stated in (2). However, the method relies
on finding the optimal β through gradient update steps, which requires computing the gradient and
Hessian of the objective function with respect to β. The computation of the gradient and Hessian is
often done by reformulating the IP (which can be viewed as a constrained optimization problem) to
instead be based on the Lagrangian, then using adjoint methods to compute the corresponding gradient
or Hessian (Ghattas & Willcox, 2021). This typically results in gradient and Hessian computations
requiring only some finite rounds of forward simulations instead. The computed Hessian can often
also be used in Laplace’s approximation in order to obtain a posterior distribution p(β|X,Y ) for
the inverse parameter (Long et al., 2013; Beck et al., 2018; Ghattas & Willcox, 2021). However,
this method is still restrictive since it may involve careful analysis of the PDE that is involved in
the IP in order to form the correct Lagrangian and compute the adjoint. Furthermore, one gradient
computation would require one forward simulation of the system, which is prohibitive if the forward
simulation step itself is expensive.
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Physics-informed neural networks. In recent years, physics-informed neural networks (PINNs)
have been proposed as another method used to both perform forward simulations of PDE-based
problems (Raissi et al., 2019) and for solving IPs (Raissi et al., 2019). PINNs solve PDEs by
parameterizing the PDE solution using a neural network (NN), then finding the NN parameter such
that the resulting NN obeys the specified PDE and the IC/BCs. This is done so via collocation
points, which are pseudo-training points for enforcing the PDE and IC/BC soft constraints. PINNs
are difficult to train in many PDE instances, such as when the solution is known to have higher
frequencies (Wang et al., 2022). As a result, many works have been proposed in improving the
trianing of PINNs by rescaling the loss functions of PDEs (Wang et al., 2022), or through more
careful selection of collocation points (Wu et al., 2023; Lau et al., 2024a).

Experimental design. Typically, in solving IPs, the observational data will not be available right
away, but instead has to be measured from some physical system. Due to the costs in making
measurements of data, it is important that the observations made are carefully chosen to maximize
the amount of information that can be obtained from the observations. Experimental design (ED)
is a problem which attempts to find out what the best data to observe in order to gather the most
information about the unknown quantity of interest (Rainforth et al., 2023). ED is closely related to
data selection, active learning (Nguyen et al., 2021; Hemachandra et al., 2023; Lau et al., 2024b; Xu
et al., 2023) and Bayesian optimization (Dai et al., 2023a;b; Chen et al., 2025), where the aim is to
select input data so that we are able to recover the unknown function or the optimum of the unknown
function.

A certain variant often considered in ED is Bayesian experimental design (BED). In the BED
framework, we assume a prior p(β) on the inverse parameter to compute. For a given design
parameter d, the system observes some output y.

p(β|d, y) = p(y|β, d) p(β)
Eβ∼p(β)

[
p(y|β, d)

] . (10)

Given the inference we can compute the expected information gain (EIG), which is sometimes also
known as the Bayesian D-optimal criterion. EIG criterion is defined as the expected Kullback-Leibler
divergence between the prior p(β) and the posterior p(β|d, y), averaged over the possible observations
y. More formally, this can be written as

EIG(d) = Ey∼p(y|d)
[
DKL

(
p(β|d, y)∥p(β)

)]
= H[p(β)]− Ey′∼p(y|d)

[
H[p(β|d, y = y′)]

]
(11)

where the posterior is defined in (10). A naive approximation technique is to perform a nested Monte
Carlo (NMC) approximation (Myung et al., 2013).

EIG(d) ≈ 1

N

N∑
i=1

log
p(yi|βi,0, d)

1
M

∑M
j=1 p(yi|βi,j , d)

(12)

where βi,0, βi,1, . . . , βi,j ∼ p(β) and yi ∼ p(y|βi,0, d). The estimate approaches the true EIG as
N,M →∞. In practice, however, using the NMC estimator results in a biased estimtor for finite N
and M , and results in slow convergence with N and M . To improve on the NMC estimator, various
schemes have been proposed mainly to remove the need to perform two nested MC rounds, including
variational methods (Foster et al., 2019) and Laplace approximation methods (Long et al., 2015; Beck
et al., 2018).

D EXAMPLES OF PDES CONSIDERED IN THIS PAPER

In this section, we provide an extensive list of PDEs which are considered in our experimental
setup, and the ED setup and dataset used in our experiments. We divide them into PDEs where our
experiments are based on simulation data (generated either from some closed-form solution or some
numerical simulators), and PDEs which are based on real data (collected from physical experiments).
The latter provides an interesting use case for PIED since it is able to demonstrate its performance on
realistic scenarios with real noisy data.
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D.1 PDES WITH SIMULATION DATA

Damped oscillator. The damped oscillator is one of the introductory second-order ordinary differ-
ential equation (ODE) in classical mechanics (Taylor, 2005). We consider the example due to the
existence of a closed-form solution and its nice interpretation under our ED framework.

Imagine a mass-spring system which is laid horizontally. The spring has spring constant k and
experiences a resistive force which is proportional to its current speed, where the constant of
proportionality is µ. We let the attached mass have a mass of M . We also assume the case where
there are no external driving forces on the system. By applying the relevant forces into Newton’s law
of motion, the displacement of the mass x(t) can be expressed by the differential equation

M
d2x

dt2
+ µ

dx

dt
+ kx = 0. (13)

Given the IC of x(0) = x0 and
dx

dt
(0) = v0, we can write the solution as (Taylor, 2005)

x(t) =


Ae−γt cos(

√
ω2
0 − γ2t+ ϕ) if γ < ω0,

(Bt+ C)e−ω0t if γ = ω0,

De−(γ+
√

γ2−ω2
0)t + Fe−(γ−

√
γ2−ω2

0)t if γ > ω0,

(14)

where γ = µ/2M , ω0 =
√
k/M , and A, ϕ,B,C,D, F are constants which depends on x0 and v0.

In our experiments, we assume we know the system follows the PDE as in (13), with some known
value of x0 ∈ [0, 1] and v0 ∈ [−1, 1]. We set M = 1, and would like to compute the values for
µ ∈ [0, 4] and k ∈ [0, 4]. In our IP, we are allowed to make three noisy observations at three timesteps
t1, t2, t3 ∈ [0, 20], which can be chosen arbitrarily. We note that while it is unrealistic for these
measurements to be made arbitrarily, we do so in order to be able to construct a simple toy example
which can be experimented with. The resulting true observation were computed using the closed
form solution in (14), and has added noise with variance 10−3.

Wave equation. For simplicity, we consider the 1D wave equation, which is given by

∂2u

∂t2
= v2

∂2u

∂x2
(15)

where v represents the speed of wave propagation, which may be a scalar or a function of x. In the
inevrse problem setup, one may be required to recover the wave velocity v given measurements of
u(x, t).

In our experiments, we assume we have a system which follows the wave equation given by (15) over
the domain x ∈ [0, 6] and t ∈ [0, 6]. We fix the IC u(x, 0), and assume the wave velocity in the form

v(x) =


0 if x = 0,

v1 if 0 < x < 4,

v2 if 4 ≤ x < 6,

0 if x = 6.

(16)

In this case, v1, v2 ∈ [0.5, 2] are the PDE parameters to be recovered in the IP. In the ED problem,
we restrict the points to be placed only at regular time intervals, i.e., following (25) where we restrict
γ1, γ2, γ3 ∈ [0, 6] and let t ∈ {0, 0.2, 0.4, . . . , 6}. The true observations are numerically generated
using code from Binder (2021), with outputs interpolated on continuous domain and truncated to
the nearest 6 decimal places to simulate cases where measurements can only be made up to a finite
precision. Examples of these possible solutions can be found in Fig. 7.

Navier-Stokes equation. Navier-Stokes equation is a well-studied PDE which describes the dy-
namics of a fluid. In our experiment, we consider the stream function of an incompressible 2D fluid,
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(a) v1 = 1.34, v2 = 1.43
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(b) v1 = 1.81, v2 = 1.12
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(c) v1 = 0.61, v2 = 1.45
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Figure 7: Examples of solutions for wave equation (15) with wavespeed in the form in (16). The blue
points are example of possible set of observations which are made at fixed timesteps.

which can be written as

∂u

∂t
+ ρ

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ µ

(
∂2u

∂x2
+

∂2u

∂y2

)
, (17)

∂v

∂t
+ ρ

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ µ

(
∂2v

∂x2
+

∂2v

∂y2

)
, (18)

∂u

∂x
+

∂v

∂y
= 0. (19)

In our IP, we consider the steady state flow inside a pipe, where we let ∂tu = ∂tv = 0. Then, the
velocities u(x, y), v(x, y) and the pressure p(x, y) are only dependent on the 2D spatial coordinates.
We assume the viscosity µ is given and the goal is to recover the density ρ. In the ED problem, we
are allowed to freely choose the spatial location to make measurements of u, v, p. The ground truth
data is simulated using ANSYS Fluent.

Eikonal equation. Consider the Eikonal problem setup, which is often use to reconstruct material
composition of some region based on how waves propagated through the medium reacts. Its equation
relates the wave speed v(x) at a point and the wave propagation time T (x) at a point with PDE given
by (Smith et al., 2021)

T (x) =
(
∇v(x)

)−1
with T (x0) = 0 (20)

where x0 is where the wave propagates from. The goal of the IP is to recover the true function v.
However, this involves conducting seismic activities at different set values of x0, and obtaining the
corresponding reading for T (x) at specified values of x.

In our experiments, we assume that we have a system which follows the equation specified in (20),
and the goal is to recover the values of v(x) for the entire domain. We fix x0, then for each IP
instance, we draw a random ground truth v(x) using a NN with a random initialization. For the
ED problem, the aim is to find 30 random observations from the 2D input domain [0, 5]× [0, 5] to
observe values of T (x). The observation inputs are only required to be within the input domain.
The true observations are generated using PYKONAL package (White et al., 2020), with outputs
interpolated on continuous domain and truncated to the nearest 3 decimal places to simulate cases
where measurements can only be made up to a finite precision

D.2 PDES WITH REAL DATA

We now describe some of the PDEs we have conducted experiments with where real-life data are
available for. Note that real-life experimental data is often scarce, and often the true PDE parameters
are not readily available. To obtain some ground-truth values for the inverse problem, we attempt to
use the reported values from the corresponding data source when we can. In the case where this is
not possible, we resort to numerically computing the PDE parameters using the whole training set.
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Groundwater flow. In our scenario, we consider the steady-state Dupuit-Boussinesq equation
(Boussinesq, 1904), which is given by

d

dx

(
Kh

dh

dx

)
= 0 (21)

where K is the hydraulic conductivity.

In our experiments, we use the data provided in (Shadab et al., 2023), which reports the flow profile
of some liquid at various flow rates across a cell filled with 2mm beads. In this dataset, we treat the
hydraulic conductivity K as an unknown quantity we would like to recover in our inverse problem.
In the ED problem, the algorithms have to choose values of x to make the observations h(x).

Cell growth. Scratch assay experiments can often be modelled via a reaction-diffusion PDE (Jin
et al., 2016), which can be written as

∂ρ

∂t
= c1

∂2ρ

∂x2
+ F [ρ] (22)

where F [ρ] is some function of ρ and c1 is an unknown constant.

In our experiments, we use the scratch assay data collected by Jin et al. (2016), whose dynamics have
also been studied in other subsequent papers Lagergren et al. (2020); Chen et al. (2021). Based on
Chen et al. (2021), we will let F [ρ] = c2ρ+ c3ρ

2 in our case, where c2 and c3 are unknown. The data
is collected at five timesteps every 12 hours for a total of 48 hours. We use the values obtained by
Chen et al. (2021) as the ground truth values for c1, c2, c3. In our ED problem, the IP with the initial
population values ρ(x, t = 0) are given, and the algorithms choose the values of x to query the cell
population at, where the corresponding values will be provided at each of the other four timesteps.

E PARAMETERIZATION OF INPUT POINTS

Due to operational constraints, the observation input X often cannot be set arbitrarily, but is instead
restricted to some feasible set S ⊂ XM . For example, the observations may be only be possible
at specific time intervals, or must be placed in certain spatial configurations like a regular grid.
Hence, unlike existing ED works, we allow for both freely-chosen observation inputs and constrained
configurations which can be parameterized by some design parameter γ ∈ Sγ ⊂ Rd where d ≤Mdin.
Specifically, we consider S of the form

S =
{
Xγ : γ ∈ Sγ

}
where Xγ =

{
xγ,j

}M
j=1

. (23)

In this form, finding the X which optimizes some criterion is then the same as performing optimization
on γ instead, which can be seen as a continuous optimization problem.

To better illustrate the input points parameterization method, we provide some examples of possible
methods to constrain the input points and how they be expressed in the appropriate forms. Fig. 8
graphically demonstrate what some of these observation input constraints may look like.

(a) Free point placement
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(b) Regular time intervals
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(c) Regular grid (1D)
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Figure 8: Examples of observation input placements.
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Points placed freely in input space. In this case, the points can be placed anywhere in X without
restriction. To parameterize this, we define d = Mdin, and define

Xγ =
{(

γ1 γ2 · · · γdin

)
,
(
γdin+1 γdin+2 · · · γ2din

)
, . . . ,

(
γMdin−din γMdin−din+1 · · · γMdin

)}
(24)

Points placed at regular time intervals. In this case, we assume the points are placed at chosen
spatial locations, and makes measurements at fixed time intervals t1, t2, . . . , tf . This is realistic in
the case where the PDE solution evolves over time, and so it makes sense to fix the location of the
sensor but allow it to make readings throughout the evolution of the system over time. In this case, γ
only needs to encode the spatial location where the sensors should be placed. Specifically, if there is
one spatial dimension, then the parameterization for the sensors can be chosen as

Xγ =
{
(x, t) : x ∈

{
γ1, γ2, . . . , γd

}
and t ∈

{
t1, t2, . . . , tf

}}
. (25)

Points placed in a regular grid. In this case, the points are placed in a regular grid at regular
intervals. This provides one way to add extra constraints for sensor configurations to reduce the
dimension of the problem. For demonstration, in 1D problems, if we want to allow placement of s
sensors in total, we can let d = 2 and parameterize the sensor placements as

Xγ =

{
γ1, γ1 +

γ2 − γ1
s− 2

, γ1 + 2 · γ2 − γ1
s− 2

, . . . , γ2

}
. (26)

F FURTHER DETAILS ABOUT THE EXPERIMENTAL DESIGN CRITERION

We describe the criteria used further. Note that we adjust the notations to incorporate the parameteri-
zation of input as discussed in App. E.

F.1 FEW-STEP INVERSE SOLVER TRAINING CRITERION

F.1.1 PSEUDOCODE FOR CRITERION COMPUTATION

Algorithm 1 Criterion estimation by Few-step Inverse Solver Training

1: function α̂FIST,i(Xγ)
2: // Perturbation of NN and estimated PDE parameters
3: θ̄ ← θi + εθ where εθ ∼ N (0, σ2)
4: β̄ ← βi + εβ where εβ ∼ N (0, σ2)

5: Ỹγ ← ũβi(Xγ)
6: // Partial training stage
7: Initialize (θ(0), β(0))
8: for j = 1, . . . , r do
9: // The training may be replaced with other gradient-based methods as well in practice

10: θ(j) ← θ(j−1) − η∇θL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

11: β̂(j) ← β̂(j−1) − η∇βL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

12: return −∥β̂(r) − βi∥2

Furthermore, a large value of r can also make the criterion not differentiable in practice due to the
need to perform back-propagation over the gradient descent update steps. Fortunately, we find that in
our experiments, using r ≤ 200 is usually sufficient given the correct perturbation noise level is set.

F.2 MODEL TRAINING ESTIMATE CRITERION

F.2.1 ASSUMPTIONS AND PROOF OF (9)

In this section, we describe the approximation of training dynamics used in Model Training Estimate,
which relies on approximation of NN training using NTKs (Jacot et al., 2018) and has been used
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extensively in various active learning and data valuation methods (Wu et al., 2022; Hemachandra
et al., 2023; Lau et al., 2024a).

We consider PINNs in the linearized regime to demonstrate the validity of the approximation given in
(9). The results will be an extension from that given in (Lee et al., 2019), and is an assumption that
has been used in past PINN works (Lau et al., 2024a). For convenience, we will drop the subscript
and write the learnable PDE parameter as β̂ and the NN parameters as θ.

We first recall the assumptions for the linearized regime of NNs. Following past works on the NTK
for NNs (Jacot et al., 2018; Lee et al., 2019) and PINNs (Lau et al., 2024a), we assume that

ûθ(x) ≈ ûθ(0)(x) + J
(0)
γ,θ(θ − θ(0)) (27)

and

D[ûθ, β̂](x) ≈ D[ûθ(0) , β̂(0)](x) +
[
J
(0)

p,β̂
J
(0)
p,θ

] [
β̂ − β̂(0)

θ − θ(0)

]
. (28)

We briefly discuss the consequences of this approximation. The linearized regime only holds when
the learned parameters are similar to the initial parameters, which based on past works will hold
when the NN is wide enough or when the NN is near convergence. This is unlikely to hold in the real
training of PINNs, except in the case where the initialized parameters are already close to the true
converged parameters anyway. Nonetheless, in our work, we do not use the assumptions to make
actual predictions on the PDE parameters in the IP, however only use it to predict the direction of
descent for γ, which would only use the local values anyway. Furthermore, we can also perform some
pre-training in order to get closer to the converged parameters first as well to make the assumptions
more valid.

Let β̂(t) and θ(t) be the learned PDE parameter and NN parameter respectively at step t of the
GD training. We will write J

(t)
γ,θ = ∇θûθ(t)(Xγ), J

(t)
p,θ = ∇θD[ûθ(t) , β̂(t)](Xp), and J

(t)

p,β̂
=

∇βD[ûθ(t) , β̂(t)](Xp) (note that∇β ûθ(t)(Xγ) = 0). We can then write the GD training step as

∂

∂t

[
β̂(t)

θ(t)

]
= −η

[
∇βL(θ(t), β̂(t);Xγ , Y )

∇θL(θ(t), β̂(t);Xγ , Y )

]
(29)

= −η

[
0 J

(t)
p,β

J
(t)
γ,θ J

(t)
p,θ

]
︸ ︷︷ ︸

J (t)
γ

[
ûθ(t)(Xγ)− Ỹγ

D[ûθ(t) , β̂(t)](Xp)− f(Xp)

]
. (30)

Under the linearized regime, we can see that, J (t)
γ,θ ≈ J

(0)
γ,θ , J (t)

p,β̂
≈ J

(0)

p,β̂
and J

(t)
p,θ ≈ J

(0)
p,θ . We can use

these approximations to obtain

∂

∂t

[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
=

∂

∂t

[
β̂(t)

θ(t)

]
(31)

≈ −ηJ (0)
γ J (0)

γ

⊤
[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
− ηJ (0)

γ

[
ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
(32)

which can be solved to give[
β̂(t) − β̂(0)

θ(t) − θ(0)

]
= −J (0)

γ

⊤
(J (0)

γ J (0)
γ

⊤
)−1
(
I − e−ηJ (0)

γ J (0)
γ

⊤
t
) [ ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
.

(33)
At convergence, i.e., when t→∞, we can reduce the results for β̂(∞) − β̂(0) as

β̂(∞) − β̂(0) ≈

[
0

J
(0)
p,β

⊤

]
(J (0)

γ J (0)
γ

⊤
)−1

[
ûθ(0)(Xγ)− Ỹγ

D[ûθ(0) , β̂(0)](Xp)− f(Xp)

]
(34)

as claimed in (9).
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F.2.2 PSEUDOCODE FOR CRITERION COMPUTATION

Algorithm 2 Criterion estimation by Model Training Estimate

1: function α̂MOTE,i(γ)
2: Ỹγ ← ũβi

(Xγ)
3: if reuse forward PINN parameters then
4: θ(j) ← perturbed version of forward PINN parameters
5: β̂(j) ← perturbed version of βi

6: else
7: Initialize (θ(0), β(0)) ▷ Can set θ(0) to θSI as well
8: for j = 1, . . . , r do
9: // The training may be replaced with other gradient-based methods as well in practice

10: θ(j) ← θ(j−1) − η∇θL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

11: β̂(j) ← β̂(j−1) − η∇βL(θ(j−1), β̂(j−1);Xγ , Ỹγ)

12: // To prevent backpropagation over the GD training
13: Set ∇γθ

(r) = 0 and∇γ β̂
(r) = 0

14: Perform estimation

β̂(∞) = β̂(r) −

[
0

J
(r)
p,β

⊤

]
(J (r)

γ J (r)
γ

⊤
)−1

[
ûθ(r)(Xγ)− Ỹγ

D[ûθ(r) , β̂(r)](Xp)− f(Xp)

]
(35)

15: return −∥β̂(∞) − βi∥2

Note that in Line 13 of Alg. 2, we set the gradients∇γθ
(r) and∇γ β̂

(r) to zero. This is done since
when implementing the function, it will be possible to write θ(r) and β̂(r) as explicit functions in
terms of θ, meaning that when performing back-propagation over the Model Training Estimate
criteria, it will also consider these derivatives as well. This can cause memory issues due to the
need of back-propagating over many GD steps. Therefore, by explicitly stating that the gradient is
zero, it avoids problems during the back-propagation phase. In practice, this can be done via the
stop_gradient function on JAX, for example.

A speedup that can be applied on MoTE is to instead of performing initial pretraining to obtain the
eNTK, we could reuse the NN parameters from the forward PINN in order to compute the eNTK
instead. We find that this trick is useful since it gives performance almost as good as performing
initial training in each criterion computation, while being more efficient since no additional training
needs to be done.

F.3 TOLERABLE INVERSE PARAMETER CRITERION

F.3.1 MOTIVATION

To demonstrate the flexibility of PIED, we present another possible method which aims to find the
optimal X in (8) without approximating β̂i, by taking the opposite approach of choosing X to query
noisy observations that would have the least harmful impact when training an inverse PINN already
initialized with the right β̂i. Intuitively, given an inverse PINN already trained to the correct PDE
parameter β̂i = βi, a bad choice of X would possibly cause the PDE parameter to drift to other
incorrect β̂′ with further training, while a good choice would retain the correct β̂i.

Specifically, during inverse PINN training, the observational data (X, Ỹi) influences the loss in (4)
explicitly through Lobs, though also implictly through LPDE. To see this, note that (X, Ỹi) changes
Lobs during training, which adjusts NN parameters θi via gradient descent optimization, including
potentially drifting β̂i to a nearby value β̂′. We could approximate how this shift from β̂i to β̂′

changes the NN parameters from θi to θ̃i as LPDE(θ̃i(β
′), β′) is minimized as

θ̃i(β
′) ≈ θi −

(
∇2

θLPDE(θi, βi)
)−1(∇θLPDE(θi, β

′)−∇θLPDE(θi, βi)
)
, (36)
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giving us an approximation of the overall impact of (X, Ỹi) on (4) via Lobs(θ̃i(β
′);X, Ỹi), given by

ℓX,i(β
′) ≜ Lobs

(
θ̃i(β

′);X, Ỹi

)
= ∥ûθ̃i(β′)(X)− Ỹi∥2. (37)

Given a choice of X and its observation values Ỹi, we could characterize how likely the inverse solver
would remain at βi or drift to a neighbouring β′ after training by considering the Hessian of ℓX,i(β) –
a “larger” Hessian means a lower chance that β̂i will change as the inverse solver undergoes training
to minimize loss, since it is harder for the gradient-based training to “leave” the narrow range of β.
Hence, to optimize for X we could maximize the criterion

α̂TIP,i(X) = log det∇2
β′ ℓX,i(βi). (38)

F.3.2 ASSUMPTIONS AND ROUGH PROOF OF (36)

We demonstrate the validity of (36), which is adapted from the proof in van der Vaart (2000). For
convenience, we will drop the subscript and consider the NN parameters θ and PDE parameters β.

Suppose we fix a β, and let θ = argminθ′ LPDE(θ
′, β). Since (θ, β) is a minima of LPDE, we can see

that∇θLPDE(θ, β) = 0.

Let θ̃(β′) = argminθ′ LPDE(θ
′, β′). Our goal is to approximate θ̃(β′) when β′ ≈ β.

Let ∆LPDE(θ
′, β′) = LPDE(θ

′, β′)−LPDE(θ
′, β′) and ∆θ̃(β′) = θ̃(β′)− θ̃(β) = θ̃(β′)− θ. We can

use this to write

∇θLPDE(θ̃(β
′), β′) = ∇θLPDE(θ +∆θ̃(β′), β′) (39)

≈ ∇θLPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (40)

= ∇θLPDE(θ, β) + ∆LPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (41)

= ∆LPDE(θ, β
′) +

(
∇2

θLPDE(θ, β
′)
)
∆θ̃(β′) (42)

where (40) arises from performing Taylor expansion on∇θLPDE(θ̃(β
′), β′) around θ.

Since (θ̃(β′), β′) is a minima of LPDE, we know that ∇θLPDE(θ̃(β
′), β′) = 0, and therefore we can

solve for ∆θ̃(β′) to obtain

∆θ̃(β′) ≈ −
(
∇2

θLPDE(θ, β
′)
)−1

∆LPDE(θ, β
′) (43)

which can be rewritten to match the form in (36).

Some readers may question whether (36) is valid for NNs where the learned NN parameter may not
be a global minima. We note that despite this, we are only interested in the curvature around a minima
anyway, and so we can still inspect the change of that minima as the loss function changes regardless.
Furthermore, this technique has been used for NNs in other applications as well, one notable instance
being the influence function (Koh & Liang, 2017) which aims to study how the test performance of
supervised learning tasks changes as certain training examples are upweighed. In the paper, they
are able to design a scoring function based on the same mathematical tool and successfully interpret
performances of NNs. In our work, we find that despite the assumptions on the global minima is not
met, we are still able to achieve good empirical results as well.

F.3.3 CHOICE OF LOSS FUNCTION USED IN (36)

Note that in (36), we compute the Hessian w.r.t. the forward PINN loss. Some readers may wonder
why the overall PINN loss from (4) is not used instead.

This choice is due to two main reasons. First, it is more computationally efficient. Notice that the
change in NN parameter in (36) depends on LPDE, and therefore are independent of the observations
and hence independent of the design parameters γ. This leads to the optimizing of the final criterion to
not require differentiating (36) with respect to γ, reducing the computational load during optimization.
We find that doing so does not cause significant effect in the obtained design parameter γ∗.

Second, this matches more closely to the inverse problem setup as described in Sec. 2. In the IP
as described, the objective (2) is usually to find the β whose output matches that of Y . In TIP, the
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tolerable parameters is the Hessian based on the objective (37), which can also be interpreted in a
similar way as (2). Furthermore, through this interpretation, TIP also exhibits a stronger connection
to Bayesian methods, as discussed in App. F.3.4.

F.3.4 BAYESIAN INTERPRETATION OF TIP

Interestingly, TIP can be seen as the application of the Laplace approximation on the posterior
distribution of β after observing data (Xγ , Y ), assuming a uniform prior and Gaussian observation
noise, and view the criterion score α̂TIP,i as the information gain of β̂i given observational data
(Xγ , Ỹγ,i). Assume that the observed data is generated from the true underlying function with added
Gaussian noise. Then, the likelihood function can be written as

p(Y |β,Xγ) = N (Y |uβ(Xγ), σ
2I) =

M∏
j=1

N (yj |uβ(xγ,j), σ
2). (44)

If we assume a uniform prior over B (i.e., assume p(β) = c for some constant c), then it is simple
to show that p(β|Xγ , Y ) = p(Y |β,Xγ)/p(Y |Xγ), where p(Y |Xγ) can be treated as a constant. In
this case, we can write the log posterior as

log p(β|Xγ , Y ) =

[
N∑
j=1

logN (yj |uβ(xγ,j), σ
2)

]
− log p(Y |Xγ) (45)

=

N∑
j=1

[
1

σ
√
2π
− (uβ(xγ,j)− yj)

2

2σ2

]
− log p(Y |Xγ) (46)

= −∥uβ(Xγ)− Y ∥2

2σ2
+ constant. (47)

To make (47) tractable, we can apply Laplace’s approximation on the posterior. To do so, we perform
a Taylor expansion on log p(β|Xγ , Y ) around the MAP of the distribution. In this case, we would

expect the MAP to be at the true PDE parameter β0, where
∂

∂β
log p(β|Xγ , Y ) = 0. Once expanded,

this would give

log p(β|Xγ , Y ) ≈ log p(β0|Xγ , Y ) + (β − β0)
⊤
[
∇2

β log p(β0|Xγ , Y )

]
(β − β0) (48)

= log p(β0|Xγ , Y )− 1

2σ2
(β − β0)

⊤
[
∇2

β

∥uβ0
(Xγ)− Y ∥2

2σ2

]
(β − β0). (49)

Note that this can also be written as

p(β|Xγ , Y ) ≈ p(β0|Xγ , Y ) exp

(
− (β − β0)

⊤
[
∇2

β

∥uβ0(Xγ)− Y ∥2

2σ2

]
(β − β0)

)
(50)

which confirms that the Taylor expansion approximates the posterior distribution as a Gaussian

distribution with mean µLaplace = β0 and covariance matrix ΣLaplace = ∇2
β

∥uβ0
(Xγ)− Y ∥2

2σ2
. Since

the posterior is approximated as a multivariate Gaussian distribution, it is simple to approximate the
entropy of β as distributed by p(β|Xγ , Y ) using the entropy of multivariate Gaussian distribution as

H[β|Xγ , Y ] ≈ 1

2
log detΣLaplace +

M

2
log 2πe (51)

=
1

2
log det∇2

β∥uβ0(Xγ)− Y ∥2 + constant. (52)

Finally, from (11), we can approximate the EIG as

EIG(γ) = −EY ′∼p(Y |Xγ)

[
H[β|Xγ , Y = Y ′]

]
(53)

= H[β]− Eβ0∼p(β),Y ′∼p(Y |β0,Xγ)

[
H[β|Xγ , Y = Y ′]

]
(54)

≈ H[β]− 1

2
Eβ0∼p(β),Y ′∼p(Y |β0,Xγ)

[
log det∇2

β∥uβ0
(Xγ)− Y ′∥2

]
+ constant (55)
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where (55) uses the approximation of entropy in (52). Note that H[β] is a constant independent of γ
and therefore can be ignored.

Note that in the derivation so far, we have assumed that we are able to compute the PDE solution uβ

and be able to compute how the solution output changes w.r.t. β. This, fortunately, is made possible
using PINNs. Specifically, in the likelihood distribution p(Y |β,Xγ) from (44) and as sampled from
in the expectation in (55), we can replace the uβ with a NN ûθ̃(β) with parameter θ̃(β) as defined
in (36). Similarly, inside the expectation term of (55), we can replace uβ0

(Xγ) with ûθ̃(β0)
, and Y ′

with a noisy reading of ûθ̃(β0)
. Ultimately, ignoring additive constants, this gives

EIG(γ) ≈ −1

2
Eβ0∼p(β),ε∼N (ε|0,σ2I)

[
log det∇2

β

[
∥ûθ̃(β)(Xγ)− ûθ̃(β0)

(Xγ) + ε∥2
]
β=β0

]
(56)

For simplicity, we can ignore the additive Gaussian noise in the approximation of Y , i.e., ignore the ε
term, and the term inside the expectation is the same as that in (38).

This analysis links TIP to some existing ED methods for IPs based on Laplace’s approximation
(Beck et al., 2018; Alexanderian et al., 2024). Despite these links, our method remains novel in that
through the use of PINNs, we can consider the Hessian of the PDE solution directly, allowing the
resulting criterion to be differentiable w.r.t. γ. This is unlike past works which often require more
careful analysis of the specific PDE involved, and relies on discretized simulations (and therefore are
not differentiable w.r.t. the input points). We note that while previous works have proposed the use
of the Hessian of the learned inverse posterior distribution (Beck et al., 2018; Alexanderian et al.,
2024), our method is novel in that it considers the Hessian (and hence the sensitivity) of the PDE
solution directly, rather than of a posterior distribution. This is due to the usage of PINNs and its
differentiability in the ED process directly, which has not been done in past works.

We comment about the assumptions required to arrive at the approximation in (56).

• We assume that the data is generated with random Gaussian noise. This is a standard
assumption as done in other IP and ED methods in the literature.

• We assume that the posterior distribution is unimodal. Note that this assumption does
not always hold. One example where this assumption does not hold would be in the case
where multiple values of β may represent the same PDE parameter (e.g., β represents NN
parameterization of an inverse function). In our experiments, we find that the performance of
the method remains good regardless. Furthermore, we believe that the issue can be mitigated
by considering the problem under some embedding space ϕ(β) where two embeddings are
similar when their parameterizations represent similar functions. This is likely possible by
adjusting our criterion to incorporate ϕ through Lagrange inversion theorem, however we
will defer this point to a future work.
Another case where this assumption may not hold is when there are some degeneracy in the
inverse problem solution. In this case, the problem cannot be alleviated anyway unless more
observations data are acquired (a simple way to think about this is when there is only one
observation reading is allowed, and therefore a good PDE parameter solution will not be
obtainable regardless of the ED method).

• We assume that the unimodal distribution is maximal at β0. Given that the distribution is
unimodal, this point would likely hold since the pseudo-observation from the NN is already
obtained from using PDE parameter of β0.

F.3.5 APPROXIMATION OF HESSIAN IN (36)

Instead of computing the Hessian ofLPDE directly, we can also employ a trick which avoids computing
the Hessian directly, but instead approximates the Hessian based on the first-order derivatives.

Suppose we define

R(θ, β) =

[
|Xp|−1/2

(
D[ûθ, β](Xp)− f(Xp)

)
|Xb|−1/2

(
B[ûθ, β](Xb)− g(Xb)

) ] . (57)

We can see that
LPDE(θ, β) =

1

2
R(θ, β)⊤R(θ, β). (58)
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We can then write

∇θLPDE(θ, β) = ∇θR(θ, β)⊤R(θ, β) (59)

and

∇2
θLPDE(θ, β) = ∇θR(θ, β)⊤∇θR(θ, β) +∇2

θR(θ, β)⊤R(θ, β). (60)

In the case that (θ, β) are obtained after PINN training has converged, we would have R(θ, β) ≈ 0,
which means we can write

∇2
θLPDE(θ, β) ≈ ∇θR(θ, β)⊤∇θR(θ, β). (61)

We therefore can approximate the Hessian as used in (36) using first-order derivatives instead.

F.3.6 COMPARISON WITH OTHER BENCHMARKS

Table 3 shows the results of TIP compared to our other methods. We see that while in some cases
we are able to get comparable results to FIST or MoTE, it often will perform worse than these other
methods. This is likely due to the stronger assumptions that are required for the method.

Table 3: Results for the inverse problems using TIP criterion compared to our other proposed criteria.
The table is interpreted similarly to Table 1.

Dataset Finite-dimensional Function-valued Real dataset
Wave (×10−1) Navier-Stokes (×10−2) Eikonal (×101) Groundwater (×101) Cell Growth (×100)

FIST 3.87 (0.76) 2.10 (1.45) 0.74 (0.02) 1.93 (0.08) 2.62 (0.11)
MoTE 3.81 (2.34) 1.18 (0.11) 0.76 (0.02) 2.00 (0.60) 2.83 (0.04)

TIP 5.11 (0.01) 9.04 (2.04) 0.75 (0.01) 2.25 (0.26) 2.94 (0.23)

G COMPLETE ALGORITHM FOR PIED

We summarize PIED via a pseudocode presented in Alg. 3. The ED procedure consists of three main
phases – learning of the shared PINN parameter initialization, the criterion generation phase which
consists of performing forward simulations and consequently defining the criteria, and the criterion
optimization phase which proceeds to perform constrained continuous optimization on the criterion.

Note that in our framework, the forward simulation only has to be ran once per ED loop, and can all
be ran in parallel using packages which allows for parallelization such as vmap on JAX. We also find
that the forward simulation can be used without explicitly injecting artificial noise, while still giving
observation inputs which work well for IPs involving noisy data.

In the criterion optimization phase, we use projected gradient descent to ensure the resulting design
parameter is in the bounded space. However, other constrained optimization algorithms could be
used as well, e.g., L-BFGS-B. We repeat the optimization loop over many runs due to the potential
non-convexity of the criteria, to obtain a better estimate of the optima.

H DETAILS ABOUT THE EXPERIMENTAL SETUP

H.1 GENERAL ED LOOP AND IP SETUP

Our experiment consists of two phases. In the first phase, we perform the ED loop using PIED or with
the other benchmarks. Here, we allow a fixed number of forward simulations using PINNs, which
the ED methods can query from as many times as it wants. Each ED methods have time restrictions,
where they are allowed to run either for a certain duration, or until they have completed some fixed
number of iterations.

After the ED methods have selected the optimal design parameters, the same design parameters are
used to test on multiple instances of the IP (we run at least 10 of such instances depending on how
much computation resources the specific problem requires). In each instance of the IP, we draw a
random ground-truth PDE parameter, and generate the observations according to the model and the
random ground-truth PDE parameter. The IP is solved using inverse PINNs to obtain a guess of the
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Algorithm 3 PIED

// Learning shared NN parameters
1: Randomly initialize θSI
2: for s rounds do
3: Randomly sample β′

1, . . . , β
′
k

4: for j = 1, . . . , k do
5: θ′j ← NN parameter after training θSI with training loss LPDE(θ, β

′
j)

6: θSI ← 1
k

∑k
j=1 θ

′
j ▷ Used as initialization for all proceeding forward and inverse PINNs

// Criterion generation phase
7: for i = 1, . . . ,M do
8: Randomize PDE parameter βi

9: ũβi ← F(βi) ▷ Forward simulation
10: if use FIST criterion then
11: Define α̂i to FIST criterion from Alg. 1
12: else if use MoTE criterion then
13: Define α̂i to MoTE criterion from Alg. 2
14: Define aggregated criterion α(Xγ) =

1
N

∑N
i=1 α̂i(Xγ)

// Criterion optimization phase
15: Initialize γbest ∈ Sγ randomly
16: repeat
17: Initialize γ′ ∈ Sγ randomly
18: for p training steps do ▷ Gradient-based optimization
19: γ̃′ ← γ′ + η∇γα(Xγ′) ▷ Gradient ascent since the criterion should be maximized
20: γ′ ← projSγ

(γ̃′) ▷ Perform projection s.t. γ′ ∈ Sγ
21: if α(Xγ′) > α(Xγbest) then
22: γbest ← γ′

23: until computational limit hit
24: return γbest

Table 4: Architectures of used NNs

Problem Depth Width Activation Output transformation
Damped oscillator 6 8 tanh None

1D wave 3 16 sin None
2D Navier-Stokes 6 16 sin None

2D Eikonal (modelling uβ) 6 8 tanh (x, y)→ y∥x− x0∥
2D Eikonal (modelling β) 1 16 sin (x, y)→ |y|+ 0.2

Groundwater flow 2 8 tanh None
Cell population 2 8 tanh None

PDE parameter. For each instance, we can obtain an error score, which measures how different the
PDE parameter estimate is from the ground-truth value.

For each problem, we repeat the ED and IP loop five times, where in each time we obtain multiple
values for the IP error. In our results, we report the distribution of all the error scores obtained through
the percentile values of the error (i.e., p percent of all IP instances using a certain ED methods have
errors of at most x), removing some of the extreme values (in the main paper, we remove the top
and bottom ten percent, while in the Appendix we show the distribution via a boxplot removing the
outliers). This is done since some PDE parameters result in IPs which are easier than others, and to
demonstrate the performance of each ED methods across all possible PDE parameters.

H.2 PINN AND PINN TRAINING HYPERPARAMETERS

The architectures of the PINNs and other NNs used are listed in Table 4. Note that we only use
multi-layer perceptrons in our experiments. The training process hyperparameters for the forward
and inverse PINNs are listed in Table 5.
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Table 5: Training hyperparameters

Problem Training steps # PDE Col. Pts. # IC/BC Col. Pts. Optimizer
Damped oscillator 30k 300 1 Adam (lr = 0.01)

1D wave 200k 15k 2k L-BFGS
2D Navier-Stokes 100k 2k 300 Adam (lr = 0.001)

2D Eikonal 50k 10k 1 Adam (lr = 0.001)
Groundwater flow 50k 500 1 L-BFGS

Cell population 50k 1k 100 Adam (lr = 0.001)

H.3 SCORING METRIC

To judge how well our ED methods perform, we will use the error L(β̂, β) of the PDE parameter β.
When β has finite dimensions (i.e., represented as a scalar value or as a vector value), then the loss is
simply the MSE loss, i.e.,

L(β̂, β) =
∥∥β̂ − β

∥∥2
2
. (62)

For the case where β is a function, we select some number of test points {xT,i}Ntest
i=1 and compute the

MSE loss of the estimated function on those test points, i.e.

L(β̂, β) =

Ntest∑
i=1

∥∥β̂(xT,i)− β(xT,i)
∥∥2
2
. (63)

H.4 BENCHMARKS FOR THE SCORING CRITERION

In this section we describe a few scoring criteria we use as a benchmark. We first describe the
benchmarks which are based on methods of estimating the expected information gain (EIG).

• Mutual Information Neural Estimator (MINE) (Belghazi et al., 2018). The estimator
utilizes Donsker-Varadhan representation of the KL Divergence to show that we can provide
a lower bound to the EIG as

EIG(Xγ) ≥ LDV(Xγ) (64)

≜ E(y,β)∼p(β)p(Y |β,Xγ)

[
Tϕ(Y, β|Xγ)

]
− logE(Y,β)∼p(β)p(y|Xγ)

[
eTϕ(Y,β|Xγ)

]
(65)

where Tϕ is a parametrized family of functions.
Note that while the estimator LDV(Xγ) relies on sampling p(Y |β,Xγ) and p(Y |Xγ) di-
rectly, this would require running many forward simulations for different β samples. Instead,
to sample from these two distributions, we draw M random samples of β and approximate
p(β) with a mixture of Dirac-delta distributions, i.e.,

p(β) ≈ p̂(β) ≜
1

M

M∑
i=1

δ(β − βi) where β1, . . . , βM ∼ p(β). (66)

In this case, the forward simulation only needs to be ran for M samples of β and the
distributions p(Y |β,Xγ) and p(Y |Xγ) can be efficiently approximated.

• Variational Bayesian Optimal ED (VBOED) estimator (Foster et al., 2019). The original
paper desicribes multiple estimators for the EIG, however we will use the variational
marginal estimator. The estimator utilizes the fact that we can provide an upper bound to the
EIG as

EIG(Xγ) ≤ Umarg(Xγ) ≜ E(Y,β)∼p(β)p(Y |β,Xγ)

[
log

p(Y |β,Xγ)

qϕ(Y |Xγ)

]
(67)

where qϕ is a variational family parametrized by ϕ. To compute the EIG, we find the ϕ which
minimizes Umarg(Xγ). Instead of computing the upper bound exactly, we use an empirical
estimation based on samples of (Y, β) generated from the PINNs with added noise. Similar
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Table 6: Hyperparameters used for different criteria in PIED. Note that for MoTE, the case when
r =∞ refers to when we use the forward PINN for the NTK regression step.

Dataset FIST MoTE
σ2
p r r

Damped oscillator 0.5 50 ∞
1D wave 0.5 200 0

2D Navier-Stokes 0.5 100 ∞
2D Eikonal 0.01 200 0

Groundwater flow 0.01 100 ∞
Cell population 0.1 100 1000

to MINE, we approximate p(β) with a mixture of Dirac-delta distributions (66) such that
only a limited number PINN forward simulations are required.
Note that while Foster et al. (2019) does propose a variational NMC (VNMC) estimator as
well, this requires computing p(Y, β|Xγ) = p(β)p(Y |β,Xγ) for a randomly sampled β. It
is not feasible to compute p(Y |β,Xγ) on the fly since this would require running a costly
forward simulation for the randomly sampled β, and therefore the method is not included
for this benchmark.

We also use other benchmarks which are not based on the EIG, listed as follows.

• Random. The design parameters are chosen randomly.
• Grid. The design parameters are chosen such that the sensor readings are placed regularly

in some fashion. For the 1D examples, the sensors are placed such that they all regularly
spaced out. For the 2D examples, the sensors are placed such that they are shaped in a
regular 2D grid with each sides having as equal number of sensors as possible. Note that no
optimization is done, but instead the observation input configuration is fixed per problem.

• Mutual information (MI) (Krause et al., 2008). The criterion considers the outputs YXγ

of the chosen observation input Xγ and the outputs YXt
of some test set Xt, and defines the

score to be the mutual information between YXγ
and YXt

, i.e.,

αMI(Xγ) = MI(YXt\Xγ
;YXγ

) = H[YXt
]−H[YXt\Xγ

|YXγ
]. (68)

In our experiments, we approximate the observation outputs via a Gaussian pro-
cess (GP) whose kernel is the covariance of the PDE solutions, i.e., K(x, x′) =
Covβ∼p(β)[uβ(x), uβ(x

′)], where we approximate the covariance using the forward
simulations. By approximating the output using a GP, the entropies H[YXt\Xγ

] and
H[YXt\Xγ

|YXγ
] can be written directly in terms of the approximate kernel function. Also,

since we do not perform discretization and treat the problem as a combinatorial optimization
one due to the additional point constraints, we chose to let Xt \Xγ = Xt for simplicity.

We also run the two criteria proposed as the benchmark, listed below.

• Few-step Inverse Solver Training (Alg. 1). For each of the trial, we note the value of
parameter perturbation σ2

p and training steps r used.
• Model Training Estimate (Alg. 2). For each trial, we note how many initial training steps
r are used, or if we just re-use the NN parameters from the forward PINN for the eNTK.

In Table 6, we show the hyperparameters for the criteria we use for the main results.

In the results, we add “+SI” suffix to indicate the benchmark where the shared NN initialization is
used for all of the forward and inverse PINNs involved during ED and IP phases. MINE, VBOED,
NMC and MI are optimized using Bayesian optimization (Frazier, 2018).

H.5 IMPLEMENTATION AND HARDWARE

All of the code were implemented based on the JAX library (Bradbury et al., 2018), which allows
for NN training and auto-differentiation of many mathematical modules within. Criteria which are
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optimized by Bayesian optimization are done so using BOTORCH (Balandat et al., 2020), while
criteria optimized using gradient-based methods are done so using JAXOPT (Blondel et al., 2021).

The damped oscillator, wave equation, Eikonal equation and groundwater experiments were conducted
on a machine with AMD EPYC 7713 64-Core Processor and NVIDIA A100-SXM4-40GB GPU,
while the remaining experiments were done on AMD EPYC 7763 64-Core Processor CPU and
NVIDIA L40 GPU.

I ADDITIONAL EXPERIMENTAL RESULTS

I.1 ADDITIONAL RESULTS FROM EXPERIMENTS ON LEARNED NN INITIALIZATION

In Fig. 9, we present examples of the learned NN initialization and also its performance for forward
PINNs for the 2D Eikonal equation example. We see that this shows similar trends to the examples
from before as shown in Fig. 2.

In Fig. 10, we show the test error for an individual forward PINN when performing forward simulation
for a value of β, when using and not using a learned NN initialization. We see that when using a
learned NN initialization, the test loss typically is already lower than that from random initialization
at the start, and also tends towards convergence much faster. Even when the test loss is higher at the
start, it is able to catch up to the performance of the randomly initialized PINN under much fewer
training steps.
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Figure 9: Results for learning a NN initialization for PINNs trained on 2D Eikonal equation case.
The interpretation is the same for that in Fig. 2.

(a) Damped Oscillator
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(b) 2D Eikonal Equation
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Figure 10: Examples of test error of forward PINNs for each problems for different values of β. Each
plot represents the PINN training for one random random value of β. The dotted blue lines represent
when the PINN is initialized with a random NN parameters, while the solid yellow lines represent
when the PINN is initialized form the learned initialization.

I.2 TEST ON DISTRIBUTION MISMATCH

In Fig. 11, we present the results for the damped oscillator experiments for when the prior distribution
during the ED process and for the tested IPs are different. In the distribution mismatch case, we
use PDE parameter range µ, k ∈ [0, 2] during the ED process, but use the values µ, k ∈ [0, 4] for
the true ground truth value in the IP process. From the results, we see that our benchmarks are still
able to retain good performances over the benchmarks even when the prior distribution of the PDE
parameters are misspecified.
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(b) Distribution mismatch
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Figure 11: Results for the 1D damped oscillator example for distribution match and mismatch. In
both cases, the thick blue line represents the performance of Random baseline, while the dashed line
represents the best performing benchmark.

J DISCUSSIONS ON GENERAL LIMITATIONS AND SOCIETAL IMPACTS

In our experiments, we have mostly conducted experiments based on vanilla PINN architectures. We
have not done verification of whether PIED works well for other more complex architectures such as
physics-informed deep operators. Future work on this area would be interesting.

The work also relies on the use of PINNs as the forward simulators and IP solvers, and are not
applicable to other forward simulators or IP solvers. While PINNs are well-suited for both tasks, they
also still pose practical problems such as difficulty in training for certain problems. The problem can
be mitigated through more careful selection of collocation points (Wu et al., 2023; Lau et al., 2024a),
which will be interesting to consider in future works to further boost the performance of PIED.

We believe the work has minimal negative and significant positive societal impacts, since they can be
used in many science and engineering applications where costs of data collection from experiments
can be prohibitive. This means that the cost barrier in performing effective scientific experiments can
be lowered allowing for further scientific discoveries. We note that our work could potentially be
applied for a range of scientific research, which may include unethical or harmful research done by
malicious actors. However, this risk applies to all tools that accelerate scientific progress, and we
believe that existing policies and measures guarding against these risks are sufficient.
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