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Abstract

Model-based reinforcement learning agents uti-
lizing transformers have shown improved sample
efficiency due to their ability to model extended
context, resulting in more accurate world models.
However, for complex reasoning and planning
tasks, these methods primarily rely on continuous
representations. This complicates modeling of dis-
crete properties of the real world such as disjoint
object classes between which interpolation is not
plausible. In this work, we introduce discrete ab-
stract representations for transformer-based learn-
ing (DART), a sample-efficient method utilizing
discrete representations for modeling both the
world and learning behavior. We incorporate
a transformer-decoder for auto-regressive world
modeling and a transformer-encoder for learning
behavior by attending to task-relevant cues in the
discrete representation of the world model. For
handling partial observability, we aggregate infor-
mation from past time steps as memory tokens.
DART outperforms previous state-of-the-art meth-
ods that do not use look-ahead search on the Atari
100k sample efficiency benchmark with a median
human-normalized score of 0.790 and beats hu-
mans in 9 out of 26 games. We release our code
at https://pranaval.github.io/DART/.

1. Introduction

A reinforcement learning (RL) algorithm usually takes mil-
lions of trajectories to master a task, and the training can
take days or even weeks, especially when using complex
simulators. This is where model-based reinforcement learn-
ing (MBRL) comes in handy (Sutton, 1991). With MBRL,
the agent learns the dynamics of the environment, under-
standing how the environment state changes when different
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actions are taken (Moerland et al., 2023a). This method is
more efficient because the agent can train in its imagination
without requiring direct interaction with an external simu-
lator or the real environment. (Ha & Schmidhuber, 2018).
Additionally, the learned model allows the agent for safe and
accurate decision-making by utilizing different look-ahead
search algorithms for planning its action (Hamrick et al.,
2020).

Most MBRL methods commonly follow a structured three-
step approach: 1) Representation Learning ¢ : S — R”, the
agents capture a simplified representation R™ of the high
dimensional environment state .S; 2) Dynamics and Reward
Learning f : Sx A — S, : 8 x Ax S’ — R, where the
agent learns the dynamics of the environment, predicting the
next state s’ given the current state s and action a, as well
as the reward associated with transitioning from s to s’; and
3) Policy Learning 7 : S — P(A), the agent determines
the optimal actions needed to achieve its goals. Dreamer is
a family of MBRL agents that follow a similar structured
three-step approach.

DreamerV1 (Hafner et al., 2020) employed a recurrent state
space model (RSSM) (Doerr et al., 2018) to learn the world
model. DreamerV?2 (Hafner et al., 2021), an improved ver-
sion of DreamerV 1, offers better sample efficiency and scal-
ability by incorporating a discrete latent space for modeling
the dynamics. Building on the advancements of DreamerV2,
DreamerV3 (Hafner et al., 2023) takes a similar approach
with additions involving the use of symlog predictions and
various regularisation techniques aimed at stabilizing learn-
ing across diverse environments. Notably, DreamerV3 sur-
passes the performance of past models across a wide range
of tasks, while using fixed hyperparameters.

Although Dreamer variants are among the most pop-
ular MBRL approaches, they suffer from sample-
inefficiency (Yin et al., 2022; Svidchenko & Shpilman,
2021). The training of Dreamer models can require an
impractical amount of gameplay time, ranging from months
to thousands of years, depending on the complexity of the
game (Micheli et al., 2023). This inefficiency can be pri-
marily attributed to inaccuracies in the learned world model,
which tend to propagate errors into the policy learning pro-
cess, resulting in compounding error problems (Xiao et al.,
2019). This challenge is largely associated with the use of
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convolutional neural networks (CNNs) and recurrent neural
networks (RNNs) (Deng et al., 2023) that, while effective
in many domains, face limitations in capturing complex
and long-range dependencies, which are common in RL
scenarios (Ni et al., 2024).

This motivates the need to use transformers (Vaswani et al.,
2017; Lin et al., 2022), which have proven highly effec-
tive in capturing long-range dependencies in various natural
language processing (NLP) tasks (Wolf et al., 2020) and
addressing complex visual reasoning challenges in com-
puter vision (CV) tasks (Khan et al., 2022). Considering
these advantages, recent works have adapted transformers
for modeling the dynamics in MBRL. Transdreamer (Chen
et al., 2022) first used a transformer-based world model by
replacing Dreamer’s RNN-based stochastic world model
with a transformer-based state space model. It outperformed
DreamerV2 in Hidden Order Discovery Tasks which re-
quires long-term dependency and complex-reasoning. In
order to stabilize the training, it utilizes gated transformer-
XL (GTrXL) (Parisotto et al., 2020) architecture.

Masked world model (MWM) (Seo et al., 2023) uti-
lizes a convolutional-autoencoder and vision transformer
(ViT) (Dosovitskiy et al., 2020) for learning a representa-
tion that models dynamics following the RSSM objective.
Their decoupling approach outperforms DreamerV?2 on dif-
ferent robotic manipulation tasks from Meta-world (Yu
et al., 2020) and RLBench (James et al., 2020). Simi-
larly, transformer-based world model (TWM) (Robine et al.,
2023a) use transformer-XL (TrXL) (Dai et al., 2019) for
modeling the world and use the predicted latent states for
policy learning. Their work demonstrates sample-efficient
performance on the Atari 100k benchmark.

Contrary to these approaches, imagination with auto-
regression over an inner speech (IRIS) (Micheli et al., 2023)
models dynamics learning as a sequence modeling problem,
utilizing discrete image tokens for modeling the world. It
then uses reconstructed images using the predicted tokens
for learning the policy using CNNs and long short-term
memorys (LSTMs), achieving improved sample efficiency
on the Atari 100k compared to past models. However, it still
faces difficulties in policy learning due to the use of recon-
structed images as input, resulting in reduced performance.

In this work, we introduce discrete abstract representation
for transformer-based learning (DART), a novel approach
that leverages transformers for learning both the world
model and policy. Unlike the previous work by Yoon et al.
(2023), which solely utilized a transformer for extracting
object-centric representation, our approach employs a trans-
former encoder to learn behavior through discrete represen-
tation (Mao et al., 2022), as predicted by the transformer-
decoder that models the world. This choice allows the model
to focus on fine-grained details, facilitating precise decision-

making. Specifically, we utilize a transformer-decoder archi-
tecture, akin to the generative pre-trained transformer (GPT)
framework (Radford et al., 2019), to model the world, while
adopting a transformer encoder, similar to the ViT archi-
tecture (Dosovitskiy et al., 2020), to learn the policy (as
illustrated in Figure 1).

Additionally, challenges related to partial observability ne-
cessitate memory modeling. Previous work (Didolkar et al.,
2022) modeled memory in transformers using a computa-
tionally intensive two-stream network. Inspired by (Bulatov
et al., 2022), we model memory as a distinct token, aggregat-
ing task-relevant information over time using a self-attention
mechanism.

The main contribution of our work includes a novel ap-
proach that utilizes transformers for both world and policy
modeling. Specifically, we utilize a transformer-decoder
(GPT) for world modeling and a transformer-encoder (ViT)
for policy learning. This represents an improvement com-
pared to IRIS, which relies on CNNs and LSTMs for policy
learning, potentially limiting its performance. We use dis-
crete representations for policy and world modeling. These
discrete representations capture abstract features, enabling
our transformer-based model to focus on task-specific fine-
grained details. Attending to these details improves decision-
making, as demonstrated by our results. To address the prob-
lem of partial observability, we introduce a novel mecha-
nism for modeling the memory that aggregates task-relevant
information from the previous time step to the next using a
self-attention mechanism. Our model showcases enhanced
interpretability and sample efficiency. It achieves state-of-
the-art results (no-look-ahead search methods) on the Atari
100k benchmark with a median score of 0.790 and superhu-
man performance in 9 out of 26 games.

2. Method

Our model, DART, is designed for mastering Atari games,
within the framework of a partially observable Markov deci-
sion process (POMDP) (Kaelbling et al., 1998) which is de-
fined as a tuple (O, A, p,,,d). Here, O is the observation
space with image observations z; C R"*%*3_ A represents
the action space, and ay is a discrete action taken at time
step t from the action space A, p (z1 | <¢, a<¢) is the tran-
sition dynamics, r is the reward function r, = r (x<¢, a<¢),
v € [0,1) is the discount factor and d € {0,1} indi-
cates episode termination. The goal is to find a policy 7
that maximizes the expected sum of discounted rewards
Ex >0y 7" 'r]. Adopting the training methodology
employed by IRIS, DART likewise consists of three main
steps: (1) Representation Learning, where vector quantized-
variational autoencoders (VQ-VAEs) (Van Den Oord et al.,
2017; Esser et al., 2021) are used for tokenizing the original
observations; (2) World-Model Learning, which involves
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Figure 1: Discrete abstract representation for transformer-based learning (DART): In this approach, the original observation
x, is encoded into discrete tokens z; using VQ-VAE. These tokenized observations, and predicted action, serve as inputs for
the world model. A Transformer decoder network is used for modeling the world. The predicted tokens, along with a CLS
and a MEM token are used as input by the policy. This policy is modeled using a transformer-encoder network. The CLS
token aggregates information from the observation tokens and the MEM token to learn a common representation, which is
then used for action and value predictions. This common representation also plays a role in modeling memory, acting as the

MEM token at the subsequent time step.

auto-regressive modeling of the dynamics of the environ-
ment using a GPT architecture; and (3) Policy Learning,
which is modeled using ViT for decision-making by at-
tending to task-relevant cues. We now describe our overall
approach in detail.

2.1. Representation Learning

Discrete symbols are essential in human communication, as
seen in natural languages (Cartuyvels et al., 2021). Like-
wise, in the context of RL, discrete representation is useful
for abstraction and reasoning, leveraging the inherent struc-
ture of human communication (Islam et al., 2022). This
motivates our approach to model the observation space as a
discrete set. In this work, we use VQ-VAE for discretizing
the observation space. It learns a discrete latent represen-
tation of the input data by quantizing the continuous latent
space into a finite number of discrete codes,

20 = q(5 04, 2). (1)

At time step ¢, the observation from the environment x; €
RI*Wx3 i encoded by the image encoder fy to a continu-
ous latent space 2F. This encoder is modeled using CNNs.
The quantization process ¢ maps the predicted continuous

latent space 2 to a discrete latent space Z4. This is done
by finding the closest embedding vector in the codebook Z
from a set of N codes (see Equation 1). The discrete latent
codes are passed to the decoder g4, which maps it back to
the input data Z;.

The training of this VQ-VAE comprises minimizing the re-
construction loss to ensure alignment between input and
reconstructed images. Simultaneously, the codebook is
learned by minimizing the codebook loss, encouraging the
embedding vector in the codebook to be close to the encoder
output. The commitment loss encourages the encoder output
to be close to the nearest codebook vector. Additionally
perceptual loss is computed to encourage the encoder to
capture high-level features. The total loss in VQ-VAE is a
weighted sum of these loss functions.

This approach enables the modeling of fine-grained, low-
level information within the input image as a set of discrete
latent codes.

2.2. World-model learning

The discrete latent representation forms the core of our
approach, enabling the learning of dynamics through an au-
toregressive next-token prediction approach (Qi et al., 2024).
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A transformer decoder based on the GPT architecture is used
for modeling this sequence prediction framework. First, an
aggregate sequence Z.; = fy(Z<¢, G<¢) is modeled by en-
coding past latent tokens and actions at each time step. The
aggregated sequence is used for estimating the distribution
of the next token, contributing to the modeling of future
states given as 28 ~ py(2F | Z). Simultaneously, it is
also used for estimating the reward 7, ~ pg(7; | Z.) and the
episode termination dy ~ pd(cft | 2c¢). This training occurs
in a self-supervised manner, with the next state predictor
and termination modules trained using cross-entropy loss,
while reward prediction uses mean squared error.

2.3. Policy-learning

The policy 7 is trained within the world model (also referred
as imagination) using a transformer encoder architecture
based on vision transformer (ViT). At each time step t,
the policy processes the current observation as K discrete
tokens received from the world model. These observation
tokens are extended with additional learnable embeddings,
including a CLS token placed at the beginning and a MEM
token appended to the end,

out = [CLS, £}

s K
) qtv"'7zqtaMEMt—1] +Epos- (2)

The CLS token helps in aggregating information from the K
observation tokens and the MEM token. Meanwhile, the MEM
token acts as a memory unit, accumulating information from
the previous time steps. Thus, at time step ¢ the input to the
policy can be represented as (CLS, 2;, R 25, MEM;_1),
where /¢ corresponds to the embedding of K" index token

from the codebook.

While these discrete tokens excel at capturing fine-grained
low-level details (Li & Qiu, 2021), they lack spatial in-
formation about various features or objects within the im-
age (Darcet et al., 2024). Transformers, known for their
permutational-equivariant nature, efficiently model global
representation (Xu et al., 2023; Yun et al., 2020). To incor-
porate local spatial information, we add learnable positional
encoding E; to the original input (see Equation 2). During
training, these embeddings converge into vector spaces that
represent the spatial location of different tokens.

Following this spatial encoding step, the output is first pro-
cessed with layer-normalization (LN) within the residual
block. This helps in enhancing gradient flow and elimi-
nates the need for an additional warm-up strategy as recom-
mended in Xiong et al. (2020). Subsequently, the output
undergoes processing via multi-head self-attention (MSA)
and a multi-layer perceptron (MLP) (see Equation 3). This
series of operations is repeated for a total of L blocks,

out = out + MSA(LN(out)),

out = out + MLP(LN(out)),

}xL 3)

Following L blocks of operations, the feature vector as-
sociated with the CLS token serves as the representation,
modeling both the current state and memory. This repre-
sentation h; is used by the policy to sample action a; ~

hi = out[0], MEM; = out[0].

Do (&t | flt) and by the critic to estimate the expected re-

turn, vg (izt) ~ E,, [ZT>t ’yT’tﬂ.] This is followed by
the reward prediction, episode end prediction, and the token
predictions of the next observation by the world model.

The feature vector h; now becomes the memory unit. This
is possible because the self-attention mechanism acts like
a gate, passing on information to the next time step as re-
quired by the task. This simple approach enables effective
memory modeling without relying on recurrent networks,
which can be challenging to train and struggle with long
context (Pascanu et al., 2013).

The imagination process unfolds for a duration of H steps,
stopping on episode-end prediction. To optimize the policy
we follow a similar objective function as IRIS and Dream-
erV2 approaches.

3. Experiments

We evaluated our model alongside existing baselines using
the Atari 100k benchmark (Lukasz Kaiser et al., 2020), a
commonly used testbed for assessing the sample-efficiency
of RL algorithms. It consists of 26 games from the Arcade
Learning Environment (Bellemare et al., 2013), each with
distinct settings requiring perception, planning, and control
skills.

We evaluated our model’s performance based on several
metrics, including the mean and median of the human-
normalized score, which measures how well the agent per-
forms compared to human and random players given as
S0ugen _3Omndon. We also used the super-human score to
SCOIChuman —SCOICrandom ~ X . P

quantify the number of games in which our model outper-
formed human players. We further evaluated our model’s
performance using the Interquartile Mean (IQM) score and
the Optimality Gap, following the evaluation guidelines

outlined in Agarwal et al. (2021).

We rely on the median score to evaluate overall model per-
formance, as it is less affected by outliers. The mean score
can be strongly influenced by a few games with exceptional
or poor performance. Additionally, the IQM score helps in
assessing both consistency and average performance across



Learning to Play Atari in a World of Tokens

Table 1: DART achieves a new state-of-art median score among no-look-ahead search methods. It attains the highest median
score, interquartile mean (IQM), and optimality gap score. Moreover, DART outperforms humans in 9 out of 26 games and
achieves a higher score than IRIS in 18 out of 26 games (underlined).

No look-ahead search
Transformer based
Game Random Human SPR DreamerV3 | TWM IRIS DART
Alien 227.8 7127.7 841.9 959 674.6 420.0 962.0
Amidar 5.8 1719.5 179.7 139 121.8 143.0 125.7
Assault 222.4 742.0 565.6 706 682.6 1524.4 1316.0
Asterix 210.0 8503.3 962.5 932 1116.6 853.6 956.2
BankHeist 14.2 753.1 3454 649 466.7 53.1 629.7
BattleZone 2360.0 37187.5 | 14834.1 12250 5068.0 13074.0  15325.0
Boxing 0.1 12.1 35.7 78 71.5 70.1 83.0
Breakout 1.7 30.5 19.6 31 20.0 83.7 41.9
ChopperCommand | 811.0 7387.8 946.3 420 1697.4 1565.0 1263.8
CrazyClimber 10780.5 35829.4 | 36700.5 97190 71820.4 593242 34070.6
DemonAttack 152.1 1971.0 517.6 303 350.2 2034.4 2452.3
Freeway 0.0 29.6 19.3 0 24.3 31.1 32.2
Frostbite 65.2 43347 1170.7 909 1475.6 259.1 346.8
Gopher 257.6 2412.5 660.6 3730 1674.8 2236.1 1980.5
Hero 1027.0 30826.4 | 5858.6 11161 7254.0 7037.4 4927.0
Jamesbond 29.0 302.8 366.5 445 362.4 462.7 353.1
Kangaroo 52.0 3035.0 3617.4 4098 1240.0 838.2 2380.0
Krull 1598.0 2665.5 3681.6 7782 6349.2 6616.4 7658.3
KungFuMaster 258.5 22736.3 | 14783.2 21420 24554.6 21759.8 23744.3
MsPacman 307.3 6951.6 1318.4 1327 1588.4 999.1 1132.7
Pong -20.7 14.6 54 18 18.8 14.6 17.2
PrivateEye 249 69571.3 | 86.0 882 86.6 100.0 765.7
Qbert 163.9 13455.0 | 866.3 3405 3330.8 745.7 750.9
RoadRunner 11.5 7845.0 12213.1 15565 9109.0 4046.2 7772.5
Seaquest 68.4 42054.7 | 558.1 618 774.4 661.3 895.8
UpNDown 5334 11693.2 | 10859.2 7667 15981.7 3546.2 3954.5
#Superhuman(T) 0 N/A 6 9 7 9 9
Mean(T) 0.000 1.000 0.616 1.120 0.956 1.046 1.022
Median(1) 0.000 1.000 0.396 0.466 0.505 0.289 0.790
1QM(?1) 0.000 1.000 0.337 0.490 - 0.501 0.575
Optimality Gap({) | 1.000 0.000 0.577 0.508 - 0.512 0.458
all games. 3.1. Results

Atari environments offer the model an RGB observation of
64 x 64 dimensions, featuring a discrete action space, and
the model is allowed to be trained using only 100k environ-
ment steps (equivalent to 400k frames due to a frameskip of
4), which translates to approximately 2 hours of real-time
gameplay.

The world model is trained with a GPT-style causal (de-
coder) transformer, while the policy is trained using a ViT-
style (encoder) transformer. This allows for parallel compu-
tation of multiple steps during world model training, making
it computationally much faster than previous methods like
the recurrent network-based DreamerV3. During policy
training, actions for each time step are computed using the
modeled CLS token, which then serves as a memory token
for the next step. Although this process is computed step by
step, it remains efficient compared to methods like IRIS, as
it doesn’t require additional networks like LSTM to retain
memory.

In Figure 2, we present the IQM and optimality gap scores,
as well as the mean and median scores. These scores per-
tain to various models assessed on Atari 100k. Figure 3a
visualizes the performance profile, while Figure 3b illus-
trates the probability of improvement, which quantifies
the likelihood of DART surpassing baseline models in any
Atari game. To perform these comparisons, we use results
from Micheli et al. (2023), which include scores of 100 runs
of CURL (Laskin et al., 2020), DrQ (Yarats et al., 2021),
SPR (Schwarzer et al., 2021), as well as data from 5 runs of
SimPLe (Lukasz Kaiser et al., 2020) and IRIS.

DART exhibits a similar mean performance as IRIS. How-
ever, the median and IQM scores show that DART outper-
forms other models consistently.

Table 1 presents DART’s score across all 26 games fea-
tured in the Atari 100k benchmark. We compare its perfor-
mance against other strong world models including Dream-
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erV3 (Hafner et al., 2023), as well as other transformer-
based world models, such as TWM (Robine et al., 2023a)
and IRIS (Micheli et al., 2023).

To assess DART’s overall performance, we calculate the
average score over 100 episodes post-training, utilizing five
different seeds to ensure robustness. DART outperforms
the previous best model, IRIS, in 18 out of 26 games. It
achieves a median score of 0.790 (an improvement of 61%
when compared to DreamerV3). Additionally, it reaches an
IQM of 0.575 reflecting a 15% advancement, and signifi-
cantly improves the OG score to 0.458, indicating a 10%
improvement when compared to IRIS. DART also achieves
a superhuman score of 9, outperforming humans in 9 out of
26 games.

3.2. Policy Analysis

In Figure 4, we present the attention maps for the 6 layers
of our transformer policy using a heat-map visualization.
These maps are generated by averaging the attention scores
from each multi-head attention mechanism across all layers.
The final visualization is obtained by further averaging these
attention maps over 20 randomly selected observation states
during an episode. This analysis provides insights into our
approach to information aggregation through self-attention.

The visualization in Figure 4 shows that the extent to which
information is aggregated from the past and the current state
to the next state depends on the specific task at hand. In
games featuring slowly moving objects where the current
observation provides complete information to the agent,
the memory token receives less attention (see Figure 4a).
Conversely, in environments with fast-moving objects like
balls and paddles, where the agent needs to model the past
trajectory of objects (e.g., Breakout and Private Eye), the
memory token is given more attention (see Figure 4b- 4d).
This observation highlights the adaptability of our approach
to varying task requirements.

On further analysis, we observe that DART performs bet-
ter in environments with many approaching enemies and
infraction, such as Alien (three enemies need to be tracked)
and Seaquest (keep track of divers and dodge enemy subs
and killer sharks). However, DreamerV3 does better in
games where global information is enough for planning ac-
tions. This is because DART uses discrete tokens to focus
on important task-related details with its attention mecha-
nism, while DreamerV3’s approach suits games with fewer
components. We saw a similar pattern in long, complex
tasks with multiple infractions in the game of Crafter (Sec-
tion A.1), where DART showed improved performance over
DreamerV3 in modeling long horizon tasks with multiple
components.

3.3. Ablation Studies

We further analyzed DARTSs performance across various
experimental settings, as detailed in Table 2 for five distinct
games. The original score of DART is presented in the
second column. The different scenarios include:

Without Positional Encoding (PE): The third column
demonstrates the performance of DART when learned po-
sitional encoding is excluded. We can observe that in envi-
ronments where agents need to closely interact with their
surroundings, such as in Boxing and KungFuMaster, the
omission of positional encoding significantly impacts per-
formance. However, in games where the enemy may not
be in close proximity to the agent, such as Amidar, there
is a slight drop in performance without positional encod-
ing. This is because transformers inherently model global
context, allowing the agent to plan its actions based on
knowledge of the overall environment state. However, pre-
cise decision-making requires positional information about
the local context. In our case, adding learnable positional en-
coding provides this, resulting in a significant performance
boost.

No Exploration (¢): The fourth column illustrates DARTS
performance when trained without random exploration, rely-
ing solely on agent-predicted actions for collecting trajecto-
ries for world modeling. However, like IRIS, our model also
faces the double-exploration challenge. This means that the
agent’s performance declines when new environment states
aren’t introduced through random exploration, which is cru-
cial for effectively modeling the dynamics of the world. It’s
worth noting that for environments with simpler dynamics
(e.g., Seaquest), the performance impact isn’t as substantial.

Masking Memory Tokens: In the fifth column, we explore
the impact of masking the memory token, thereby removing
past information. Proper modeling of memory is crucial in
RL to address the challenge of partial observability and pro-
vide information about various states (e.g., the approaching
trajectory of a ball, and the velocity of the surrounding ob-
jects) that are important for decision-making. Our method
of aggregating memory over time enhances DARTSs overall
performance. However, since Atari games exhibit diverse
dynamics, the effect of masking the memory tokens varies
accordingly.

In some games, decisions are solely based on information
from the current time step, making memory tokens unnec-
essary. However, in other games, such as Breakout, Private
eye, and Krull, tracking memory is crucial for optimal plan-
ning, like predicting the ball’s trajectory or following clues.
This is evident in the heatmap visualization in Figure 4,
where significant attention is given to memory tokens for
the aforementioned games. On the contrary, in games like
Boxing and Amidar, where long-term trajectory information
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(a) The performance profiles on the Atari 100k benchmark illus-
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in any game.

Figure 3: Comparison of different models using performance profiles and probabilities of improvement.

or extensive planning isn’t needed, relying solely on recent
state information is often sufficient for optimal decision-
making, and thus there is only a small impact on the final
performance with the masking of memory tokens.

It is interesting to observe improvement in the agent’s per-
formance with masked memory tokens in the case of Road-
Runner. This could be because the original state already
contains complete information, rendering the memory token
redundant, thereby impacting the final performance.

Random Observation Token Masking: The last set of
columns explores the consequences of randomly masking
observation tokens, which selectively removes low-level
information. Given that each token among the K tokens
model distinct low-level features of the observation, ran-
dom masking has a noticeable impact on the agent’s final
performance. When observation tokens are masked 100%,
the agent attends solely to the memory token, resulting in a
significant drop in overall performance.

4. Related Work

Sample Efficiency in RL. Enhancing sample efficiency (i.e.,
the amount of data required to reach a specific performance
level) constitutes a fundamental challenge in the field of
RL. This efficiency directly impacts the time and resources
needed for training an RL agent. Numerous approaches
aimed at accelerating the learning process of RL agents
have been proposed (Buckman et al., 2018; Mai et al., 2022;
Yu, 2018). Model-based RL is one such approach that helps
improve the sample efficiency. It reduces the number of
interactions an agent needs to have with the environment
to learn the policy (Moerland et al., 2023b; Polydoros &
Nalpantidis, 2017; Atkeson & Santamaria, 1997). This is
done by allowing the policy to learn the task in the imag-
ined world (Wang et al., 2021b; Mu et al., 2021; Okada
& Taniguchi, 2021; Zhu et al., 2020). This motivates the
need to have an accurate world model while providing the
agent with concise and meaningful task-relevant informa-
tion for faster learning. Considering this challenge Kurutach
et al. (2018) learns an ensemble of models to reduce the
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Figure 4: Comparison of Memory Requirements Across Atari Games: Atari games exhibit varying memory requirements,
depending on their specific dynamics. Games with relatively static or slow-moving objects, like Amidar, maintain complete
information at each time step and thus aggregate less information from the memory token. Conversely, games characterized
by rapidly changing environments, such as Breakout, Krull, and PrivateEye, require modeling the past trajectories of objects.
As a result, the policy for these games heavily relies on the memory token to aggregate information from past states into

future states.

Table 2: Evaluating DART’s performance through various techniques such as memory token masking, random observation
masking, and the removal of positional encoding and random exploration.

Masked
w/o Masked Observation Token
Game Original PE € Memory  25% 50% 75% 100%
Boxing 83.0 3.86 58.67 81.45 77.79 51.14 15.64 -11.91
Amidar 125.7 77.1 92.75 113.69 102.47 56.37 52.22 30.43
Road Runner 7772.5 1030.0 3597.1 8021.0 7354.0 2730.0 988.0 961.0
Seaquest 895.8 64.2 753.93 704.8 491.4 207.8 104.0 142.0
KungFuMaster 23744.3 1028.0 15464.7 20378.0 16436.0 9760.0 4676.2 1571.8

impact of model bias and variance. Uncertainty estima-
tion is another approach as shown in Plaat et al. (2023) to
improve model accuracy. It involves estimating the uncer-
tainty in the model’s prediction so that the agent focuses
its exploration in those areas. The other most common
approach for an accurate world model is using a complex
or higher-capacity model architecture that is better suited
to the task at hand (Wang et al., 2021a; Ji et al., 2022).
For example, using a transformer-based world model, as
in TransDreamer (Chen et al., 2022), TWM (Robine et al.,
2023a), and IRIS (Micheli et al., 2023).

Learning a low-dimensional representation of the environ-

ment can also help improve the sample efficiency of RL
agents. By reducing the dimensionality of the state, the
agent can learn an accurate policy with fewer interactions
with the environment (Mclnroe et al., 2021; Du et al., 2020).
Variational Autoencoders (VAEs) (Kingma et al., 2019) are
commonly used for learning low-dimensional representa-
tions in MBRL (Andersen et al., 2018). The VAEs capture
a compact and informative representation of the input data.
This allows the agent to learn the policy faster (Ke et al.,
2018; Corneil et al., 2018). However, VAEs learn a contin-
uous representation of the input data by forcing the latent
variable to be normally distributed. This poses a challenge
for RL agents, where agents need to focus on precise details
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for decision-making (Dunion et al., 2023). Lee et al. (2020)
show disentangling representations helps in modeling in-
terpretable policy and improves the learning speed of RL
agents on various manipulation tasks. Recent works (Robine
et al., 2023b; Zhang et al., 2022) have used VQ-VAE for
learning independent latent representations of different low-
level features present in the original observation. Their
clustering properties have enabled robust, interpretable, and
generalizable policy across a wide range of tasks.

5. Conclusion

In this work, we introduced DART, a model-based rein-
forcement learning agent that learns both the model and the
policy using discrete tokens. Through our experiments, we
demonstrated our approach helps in improving performance
and achieves a new state-of-the-art score on the Atari 100k
benchmarks for methods with no look-ahead search during
inference. Moreover, our approach for memory modeling
and the use of a transformer for policy modeling provide
additional benefits in terms of interpretability.

Limitations: As of now, our method is primarily designed
for environments with discrete action spaces. This limitation
poses a significant challenge, considering that many real-
world robotic control tasks necessitate continuous action
spaces. For future work, it would be interesting to adapt
our approach to continuous action spaces and modeling
better-disentangled tokens for faster learning.

Acknowledgement

The authors would like to thank the reviewers for their valu-
able feedback. We are also thankful to the Digital Research
Alliance of Canada for the computing resources and CIFAR
for research funding.

Impact Statement

This paper presents works where the goal is to advance
the field of Machine Learning. There are many potential
societal consequences of our work, none of which we feel
must be specifically highlighted here.

References

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C.,
and Bellemare, M. Deep reinforcement learning at the
edge of the statistical precipice. Advances in neural in-
formation processing systems, 34:29304-29320, 2021.

Andersen, P.-A., Goodwin, M., and Granmo, O.-C. The
dreaming variational autoencoder for reinforcement learn-
ing environments. In Artificial Intelligence XXXV: 38th
SGAI International Conference on Artificial Intelligence,

Al 2018, Cambridge, UK, December 11-13, 2018, Pro-
ceedings 38, pp. 143—155. Springer, 2018.

Atkeson, C. G. and Santamaria, J. C. A comparison of direct
and model-based reinforcement learning. In Proceedings
of international conference on robotics and automation,
volume 4, pp. 3557-3564. IEEE, 1997.

Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M.
The arcade learning environment: An evaluation plat-
form for general agents. Journal of Artificial Intelligence
Research, 47:253-279, 2013.

Buckman, J., Hafner, D., Tucker, G., Brevdo, E., and Lee, H.
Sample-efficient reinforcement learning with stochastic
ensemble value expansion. Advances in neural informa-
tion processing systems, 31, 2018.

Bulatov, A., Kuratov, Y., and Burtsev, M. Recurrent memory
transformer. Advances in Neural Information Processing
Systems, 35:11079-11091, 2022.

Cartuyvels, R., Spinks, G., and Moens, M.-F. Discrete
and continuous representations and processing in deep
learning: Looking forward. Al Open, 2:143-159, 2021.

Chen, C., Wu, Y.-F,, Yoon, J., and Ahn, S. Transdreamer:
Reinforcement learning with transformer world models.
arXiv preprint arXiv:2202.09481, 2022.

Corneil, D., Gerstner, W., and Brea, J. Efficient model-based
deep reinforcement learning with variational state tabula-

tion. In International Conference on Machine Learning,
pp- 1049-1058. PMLR, 2018.

Dai, Z., Yang, Z., Yang, Y., Carbonell, J. G., Le, Q. V., and
Salakhutdinov, R. Transformer-xl: Attentive language
models beyond a fixed-length context. In Annual Meeting
of the Association for Computational Linguistics, 2019.

Darcet, T., Oquab, M., Mairal, J., and Bojanowski, P. Vi-
sion transformers need registers. In The Twelfth In-
ternational Conference on Learning Representations,
2024. URL https://openreview.net/forum?
1d=2dnO3LLiJ1.

Deng, F.,, Park, J., and Ahn, S. Facing off world model back-
bones: RNNs, transformers, and s4. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
1d=GDYuzX0rwi.

Didolkar, A., Gupta, K., Goyal, A., Gundavarapu, N. B.,
Lamb, A. M., Ke, N. R., and Bengio, Y. Temporal la-
tent bottleneck: Synthesis of fast and slow processing

mechanisms in sequence learning. Advances in Neural
Information Processing Systems, 35:10505-10520, 2022.


https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=2dnO3LLiJ1
https://openreview.net/forum?id=GDYuzX0rwj
https://openreview.net/forum?id=GDYuzX0rwj

Learning to Play Atari in a World of Tokens

Doerr, A., Daniel, C., Schiegg, M., Duy, N.-T., Schaal, S.,
Toussaint, M., and Sebastian, T. Probabilistic recurrent
state-space models. In International conference on ma-
chine learning, pp. 1280-1289. PMLR, 2018.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929, 2020.

Du, S. S., Kakade, S. M., Wang, R., and Yang, L. F. Is a good
representation sufficient for sample efficient reinforce-
ment learning? In International Conference on Learning

Representations, 2020. URL https://openreview.

net/forum?id=rlgenAVKPB.

Dunion, M., Mclnroe, T., Luck, K. S., Hanna, J. P., and Al-
brecht, S. V. Temporal disentanglement of representations
for improved generalisation in reinforcement learning.
In The Eleventh International Conference on Learning

Representations, 2023. URL https://openreview.

net/forum?id=sPgP6aISLTD.

Esser, P, Rombach, R., and Ommer, B. Taming transformers
for high-resolution image synthesis. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1287312883, 2021.

Guss, W. H., Houghton, B., Topin, N., Wang, P., Codel,
C. R., Veloso, M. M., and Salakhutdinov, R. Minerl: A
large-scale dataset of minecraft demonstrations. In In-
ternational Joint Conference on Artificial Intelligence,
2019.
org/CorpusID:199000710.

Ha, D. and Schmidhuber, J. World models. arXiv preprint
arXiv:1803.10122, 2018.

Hafner, D. Benchmarking the spectrum of agent capabilities.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
1id=1wW0z96MFEOH.

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. Dream
to control: Learning behaviors by latent imagination. In
International Conference on Learning Representations,
2020. URL https://openreview.net/forum?
1d=S110TC4tDS.

Hafner, D., Lillicrap, T. P., Norouzi, M., and Ba, J.
Mastering atari with discrete world models. In In-
ternational Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=0ocabwyZzbOu.

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. Mastering
diverse domains through world models. arXiv preprint
arXiv:2301.04104, 2023.

URL https://api.semanticscholar.

10

Hamrick, J. B., Friesen, A. L., Behbahani, F., Guez, A.,
Viola, F., Witherspoon, S., Anthony, T., Buesing, L.,
Velickovié, P., and Weber, T. On the role of planning in
model-based deep reinforcement learning. arXiv preprint
arXiv:2011.04021, 2020.

Islam, R., Zang, H., Goyal, A., Lamb, A. M., Kawaguchi, K.,
Li, X., Laroche, R., Bengio, Y., and Tachet des Combes,
R. Discrete compositional representations as an abstrac-
tion for goal conditioned reinforcement learning. Ad-

vances in Neural Information Processing Systems, 35:
3885-3899, 2022.

James, S., Ma, Z., Arrojo, D. R., and Davison, A. J. Rlbench:
The robot learning benchmark & learning environment.
IEEE Robotics and Automation Letters, 5(2):3019-3026,
2020.

Ji, T, Luo, Y., Sun, F, Jing, M., He, F., and Huang, W.
When to update your model: Constrained model-based
reinforcement learning. Advances in Neural Information
Processing Systems, 35:23150-23163, 2022.

Kaelbling, L. P, Littman, M. L., and Cassandra, A. R. Plan-
ning and acting in partially observable stochastic domains.
Artificial intelligence, 101(1-2):99-134, 1998.

Ke, N. R., Singh, A., Touati, A., Goyal, A., Bengio, Y.,
Parikh, D., and Batra, D. Modeling the long term future
in model-based reinforcement learning. In International
Conference on Learning Representations, 2018.

Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. Transformers in vision: A survey. ACM
computing surveys (CSUR), 54(10s):1-41, 2022.

Kingma, D. P., Welling, M., et al. An introduction to vari-
ational autoencoders. Foundations and Trends® in Ma-
chine Learning, 12(4):307-392, 2019.

Kurutach, T., Clavera, 1., Duan, Y., Tamar, A., and Abbeel,
P. Model-ensemble trust-region policy optimization. In
International Conference on Learning Representations,
2018. URL https://openreview.net/forum?
1d=SJJinbWRZ.

Laskin, M., Srinivas, A., and Abbeel, P. Curl: Contrastive
unsupervised representations for reinforcement learning.
In International Conference on Machine Learning, pp.

5639-5650. PMLR, 2020.

Lee, L., Eysenbach, B., Salakhutdinov, R. R., Gu, S. S., and
Finn, C. Weakly-supervised reinforcement learning for
controllable behavior. Advances in Neural Information
Processing Systems, 33:2661-2673, 2020.

Li, L. and Qiu, X. Token-aware virtual adversarial training
in natural language understanding. Proceedings of the


https://openreview.net/forum?id=r1genAVKPB
https://openreview.net/forum?id=r1genAVKPB
https://openreview.net/forum?id=sPgP6aISLTD
https://openreview.net/forum?id=sPgP6aISLTD
https://api.semanticscholar.org/CorpusID:199000710
https://api.semanticscholar.org/CorpusID:199000710
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=1W0z96MFEoH
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=S1lOTC4tDS
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=0oabwyZbOu
https://openreview.net/forum?id=SJJinbWRZ
https://openreview.net/forum?id=SJJinbWRZ

Learning to Play Atari in a World of Tokens

AAAI Conference on Artificial Intelligence, 35(9):8410—
8418, 2021.

Lin, T., Wang, Y., Liu, X., and Qiu, X. A survey of trans-
formers. Al Open, 2022.

Mai, V., Mani, K., and Paull, L. Sample efficient deep
reinforcement learning via uncertainty estimation. In
International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=vrW3tvDfOJOQ.

Mao, C., Jiang, L., Dehghani, M., Vondrick, C., Sukthankar,
R., and Essa, I. Discrete representations strengthen vi-
sion transformer robustness. In International Confer-
ence on Learning Representations, 2022. URL https:
//openreview.net/forum?id=8hWs60AZcWk.

Mclnroe, T., Schifer, L., and Albrecht, S. V. Learning
temporally-consistent representations for data-efficient
reinforcement learning. arXiv preprint arXiv:2110.04935,
2021.

Micheli, V., Alonso, E., and Fleuret, F. Transformers
are sample-efficient world models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=vhFulAcbOxb.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning, 16(1):
1-118, 2023a.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning, 16(1):
1-118, 2023b.

Mu, Y., Zhuang, Y., Wang, B., Zhu, G., Liu, W., Chen, J.,
Luo, P, Li, S., Zhang, C., and Hao, J. Model-based rein-
forcement learning via imagination with derived memory.

Advances in Neural Information Processing Systems, 34:
9493-9505, 2021.

Ni, T., Ma, M., Eysenbach, B., and Bacon, P.-L. When
do transformers shine in RL? decoupling memory from
credit assignment. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Okada, M. and Taniguchi, T. Dreaming: Model-based re-
inforcement learning by latent imagination without re-
construction. In 2021 ieee international conference on
robotics and automation (icra), pp. 4209—4215. IEEE,
2021.

Parisotto, E., Song, F., Rae, J., Pascanu, R., Gulcehre, C.,
Jayakumar, S., Jaderberg, M., Kaufman, R. L., Clark, A.,

11

Noury, S., et al. Stabilizing transformers for reinforce-
ment learning. In International conference on machine
learning, pp. 7487-7498. PMLR, 2020.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty
of training recurrent neural networks. In International
conference on machine learning, pp. 1310-1318. Pmlr,
2013.

Plaat, A., Kosters, W., and Preuss, M. High-accuracy model-
based reinforcement learning, a survey. Artificial Intelli-
gence Review, pp. 1-33, 2023.

Polydoros, A. S. and Nalpantidis, L. Survey of model-
based reinforcement learning: Applications on robotics.
Journal of Intelligent & Robotic Systems, 86(2):153—173,
2017.

Qi, M., Huang, Y., Yao, Y., Wang, M., Gu, B., and Sun-
daresan, N. Is next token prediction sufficient for gpt?
exploration on code logic comprehension. arXiv preprint
arXiv:2404.08885, 2024.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, 1., et al. Language models are unsupervised
multitask learners. OpenAl blog, 1(8):9, 2019.

Robine, J., Hoftmann, M., Uelwer, T., and Harmeling, S.
Transformer-based world models are happy with 100k
interactions. In The Eleventh International Conference
on Learning Representations, 2023a. URL https://
openreview.net/forum?id=TdBaDGCpjly.

Robine, J., Uelwer, T., and Harmeling, S. Smaller world
models for reinforcement learning. Neural Processing
Letters, pp. 1-31, 2023b.

Schwarzer, M., Anand, A., Goel, R., Hjelm, R. D,
Courville, A., and Bachman, P. Data-efficient reinforce-
ment learning with self-predictive representations. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=uCQfPZwRaUu.

Seo, Y., Hafner, D., Liu, H., Liu, F.,, James, S., Lee, K., and
Abbeel, P. Masked world models for visual control. In
Conference on Robot Learning, pp. 1332-1344. PMLR,
2023.

Sutton, R. S. Dyna, an integrated architecture for learning,
planning, and reacting. ACM Sigart Bulletin, 2(4):160—
163, 1991.

Svidchenko, O. and Shpilman, A. Maximum entropy model-
based reinforcement learning. In Deep RL Workshop
NeurIPS 2021, 2021. URL https://openreview.
net/forum?id=uBDG3yX-2sQ.


https://openreview.net/forum?id=vrW3tvDfOJQ
https://openreview.net/forum?id=vrW3tvDfOJQ
https://openreview.net/forum?id=8hWs60AZcWk
https://openreview.net/forum?id=8hWs60AZcWk
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=TdBaDGCpjly
https://openreview.net/forum?id=TdBaDGCpjly
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uCQfPZwRaUu
https://openreview.net/forum?id=uBDG3yX-2sQ
https://openreview.net/forum?id=uBDG3yX-2sQ

Learning to Play Atari in a World of Tokens

Van Den Oord, A., Vinyals, O., et al. Neural discrete rep-
resentation learning. Advances in neural information
processing systems, 30, 2017.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, C., Yang, T., Hao, J., Zheng, Y., Tang, H., Barez,
F, Liu, J., Peng, J., Piao, H., and Sun, Z. Ed2: An envi-
ronment dynamics decomposition framework for world
model construction. arXiv preprint arXiv:2112.02817,
2021a.

Wang, J., Li, W., Jiang, H., Zhu, G., Li, S., and Zhang, C.
Offline reinforcement learning with reverse model-based
imagination. Advances in Neural Information Processing
Systems, 34:29420-29432, 2021b.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Transformers: State-of-the-art natural language
processing. In Proceedings of the 2020 conference on em-

pirical methods in natural language processing: system
demonstrations, pp. 38—45, 2020.

Xiao, C., Wu, Y., Ma, C., Schuurmans, D., and Miiller, M.
Learning to combat compounding-error in model-based
reinforcement learning. arXiv preprint arXiv:1912.11206,
2019.

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing,
C., Zhang, H., Lan, Y., Wang, L., and Liu, T. On layer
normalization in the transformer architecture. In Inter-

national Conference on Machine Learning, pp. 10524—
10533. PMLR, 2020.

Xu, R., Yang, K., Liu, K., and He, F. ¢(2)-equivariant vision
transformer. In Uncertainty in Artificial Intelligence, pp.
2356-2366. PMLR, 2023.

Yarats, D., Kostrikov, 1., and Fergus, R. Image augmentation
is all you need: Regularizing deep reinforcement learning
from pixels. In International Conference on Learning

Representations, 2021. URL https://openreview.

net/forum?id=GY6-6sTvGaf.

Ye, W., Liu, S., Kurutach, T., Abbeel, P., and Gao, Y. Mas-
tering atari games with limited data. Advances in neural
information processing systems, 34:25476-25488, 2021.

Yin, Z.-H., Ye, W,, Chen, Q., and Gao, Y. Planning for
sample efficient imitation learning. Advances in Neural
Information Processing Systems, 35:2577-2589, 2022.

Yoon, J., Wu, Y.-F., Bae, H., and Ahn, S. An investi-
gation into pre-training object-centric representations

12

for reinforcement learning. In International Con-
ference on Machine Learning, 2023. URL https:
//api.semanticscholar.org/CorpusID:
256697459.

Yu, T., Quillen, D., He, Z., Julian, R., Hausman, K., Finn,
C., and Levine, S. Meta-world: A benchmark and evalua-
tion for multi-task and meta reinforcement learning. In
Conference on robot learning, pp. 1094-1100. PMLR,
2020.

Yu, Y. Towards sample efficient reinforcement learning. In
IJCAL pp. 5739-5743, 2018.

Yun, C., Bhojanapalli, S., Rawat, A. S., Reddi, S., and
Kumar, S. Are transformers universal approximators of
sequence-to-sequence functions? In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=ByxRMONtvr.

Zhang, L., Lieffers, J., and Pyarelal, A. Deep reinforcement
learning with vector quantized encoding. arXiv preprint
arXiv:2211.06733,2022.

Zhang, W., Wang, G., Sun, J., Yuan, Y., and Huang, G.
STORM: Efficient stochastic transformer based world
models for reinforcement learning. In Thirty-seventh
Conference on Neural Information Processing Systems,
2023. URL https://openreview.net/forum?
1d=WxnrX42rnS.

Zhu, G., Zhang, M., Lee, H., and Zhang, C. Bridging imag-
ination and reality for model-based deep reinforcement
learning. Advances in Neural Information Processing
Systems, 33:8993-9006, 2020.

tukasz Kaiser, Babaeizadeh, M., Milos, P., Osinski, B.,
Campbell, R. H., Czechowski, K., Erhan, D., Finn, C.,
Kozakowski, P., Levine, S., Mohiuddin, A., Sepassi, R.,
Tucker, G., and Michalewski, H. Model based rein-
forcement learning for atari. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=S1xCPJHtDB.


https://openreview.net/forum?id=GY6-6sTvGaf
https://openreview.net/forum?id=GY6-6sTvGaf
https://api.semanticscholar.org/CorpusID:256697459
https://api.semanticscholar.org/CorpusID:256697459
https://api.semanticscholar.org/CorpusID:256697459
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=ByxRM0Ntvr
https://openreview.net/forum?id=WxnrX42rnS
https://openreview.net/forum?id=WxnrX42rnS
https://openreview.net/forum?id=S1xCPJHtDB
https://openreview.net/forum?id=S1xCPJHtDB

Learning to Play Atari in a World of Tokens

A. Appendix
A.1. Experiment on Crafter

Crafter (Hafner, 2022), inspired by Minecraft (Guss et al., 2019), allows assessing an agent’s general abilities within a single
environment. This distinguishes it from Atari 100k, where the agent must be evaluated across 26 different games that test
for different skills. In Crafter, 2D worlds are randomly generated, featuring diverse landscapes like forests, lakes, mountains,
and caves on a 64 x64 grid. Players aim to survive by searching for essentials like food, water, and shelter while defending
against monsters, collecting materials, and crafting tools. This setup allows for evaluating a wide range of skills within a
single environment, spanning multiple domains, and increasing assessment comprehensiveness. The environment is partially
observable with observations covering a small 9x9 region centered around the agent.

Table 3: Comparing the sample efficiency of DreameV3, IRIS, and DART on challenging Crafter environment which
involves long-horizon tasks. Reported returns are specified as average and standard deviation over 5 seeds.

Model | DreamerV3 IRIS DART
Steps M M M
Return | 11.74+1.9 9.23+£0.56 12.24+1.67

In the results shown in Table 3, we compare DART with IRIS and Dreamer V3 in a low data regime and observed that
DART achieves a higher average return, further showcasing the efficiency of DART over previous models.

A.2. Experiment on Atari with More Environment Steps

Table 4: Performance of DART with 100k and 150k environment steps (k). All results are shown as average and standard
deviation over 5 seeds.

Environment S:g)s Score
S 100k 322+057
y 150k 33.1 + 0.37
100k | 237443 + 3271.53
KungFuMaster |50 | 24756.5 + 2635.21
pon 100k 172+ 1.74
& 150k 17.6 + 2.79

By training it beyond 100k training steps, we see improved performance of DART as shown in Table 4, showcasing the
scalability of DART with more data.

A.3. Model Configuration

Recent works have used transformer-based architectures for MBRL. In Table 5 we compare the configurations used by
different approaches for representation learning, world modeling, and behavior learning.

Table 5: Comparing the model configuration of recent MBRL approaches. n/a- Not Available; Cat.-VAE - Categorical VAE.;
MAE - Masked Auto Encoder

MWM TWM IRIS DreamerV3 STORM  DART
Parameters n/a n/a 3.04M 18M n/a 3.07M
State model MLP MLP CNN MLP MLP ViT
Agent memory  ViT Tr-XL LSTM GRU GPT VIiT (Self-attention)

Representation MAE Cat.-VAE VQ-VAE Cat.-VAE Cat.-VAE  VQ-VAE

A 4. Hyperparameters

A detailed list of hyperparameters is provided for each module: Table 6 for Image Tokenizer, Table 7 for World Modeling,
and Table 8 for behaviour learning.

13



Learning to Play Atari in a World of Tokens

Table 6: Hyperparameters for image tokenization using VQ-VAE.

Hyperparameter Symbol | Value
Encoder convolutional layers | — 4
Decoder convolutional layers | — 4

Per layer residual blocks - 2
Self-attention layers - 8/16
Codebook size N 512
Embedding dimension d 512
Input image resolution - 64 %64
Image channels - 3
Activation - Swish
Tokens per image K 16
Batch size - 64
Learning rate - 0.0001

Table 7: Hyperparameters used for modeling the dynamics using transformer decoder.

Hyperparameter Symbol | Value
Embedding dimension | — 256
Transformer layers - 10
Attention heads - 4
Imagination steps H 20
Embedding dropout - 0.1
Weight decay - 0.01
Attention dropout - 0.1
Residual dropout - 0.1
Attention type - Causal
Activation - GeLU
Batch size - 64
Learning rate - 0.0001

Table 8: Hyperparameters used for modeling behavior using transformer encoder.

Hyperparameter Symbol | Value
Input tokens - 18
Embedding dimension | — 512
Attention heads - 8
Transformer layers L 6
Dropout - 0.2
Activation - GeLU
Transformer layers - 6
Attention type - Self-attention
Positional embedding | — Learnable
Gamma ol 0.995
Lambda A 0.95
Batch size - 64
Epsilon € 0.01
Temperature (train) - 1.0
Temperature (test) - 0.5
Learning rate - 0.0001

A.5. Comparing the performance with STORM

Recently released another transformer-based model STORM (Zhang et al., 2023) showcases close to similar performance
when compared with DART as shown in Table 9. STORM relies on utilizing VAEs for modeling stochastic world models,
while we use VQ-VAE for modeling discrete world models. While STORM performs similarly to DART overall, it struggles
in games like Pong and Breakout with single small moving objects. Comparing DART’s performance with STORM, there’s
a notable improvement in DART’s performance due to its discrete representation. DART’s use of discrete tokens for each
entity, coupled with an attention mechanism, enables the agent to focus precisely on relevant tasks, leading to significant
performance boosts, especially in such games. Additionally, this approach makes DART more interpretable compared to
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STORM, as illustrated in Figure 4’s heatmap visualization.

Table 9: Comparing the performance of DART with STORM.

Game STORM DART
Alien 984 962.0
Amidar 205 125.7
Assault 801 1316.0
Asterix 1028 956.2
BankHeist 641 629.7
BattleZone 13540 15325.0
Boxing 80 83.0
Breakout 16 41.9
ChopperCommand | 1888 1263.8
CrazyClimber 66776 34070.6
DemonAttack 165 2452.3
Freeway 0 322
Frostbite 1316 346.8
Gopher 8240 1980.5
Hero 11044 4927.0
Jamesbond 509 353.1
Kangaroo 4208 2380.0
Krull 8413 7658.3
KungFuMaster 26182 23744.3
MsPacman 2673 1132.7
Pong 11 17.2
PrivateEye 7781 765.7
Qbert 4522 750.9
RoadRunner 17564 7772.5
Seaquest 525 895.8
UpNDown 7985 3954.5
#Superhuman(T) 9 9
Mean(T) 1.267 1.022
Median(1) 0.584 0.790

A.6. Integrating DART with lookahead search methods.

The proposed model DART doesn’t utilize lookahead search, limiting its ability to leverage the learned dynamics for future
trajectory planning. In contrast, Efficient Zero (Ye et al., 2021) the state-of-the-art model-based reinforcement learning
uses the lookahead search method to plan future trajectories based on the learned model of the environment. Simulating
future states and rewards, enables more effective decision-making. This approach predicts outcomes of different actions and
selects the best course of action, utilizing Monte Carlo tree search (MCTS) for planning future trajectories.

Our method of modeling DART with discrete representation enables it to be easily integrated with lookahead search methods.
In the Algorithm 1 below, we’ll briefly outline how we integrate the lookahead search method into DART for efficient future
trajectory planning, which we plan to explore further in future work. However, this approach is computationally expensive
because exploring the entire state-action space is infeasible. Additionally, exploring the vast state-action space at each
iteration requires significant computational resources, posing a challenge. Therefore, we currently limit DART’s results
without incorporating lookahead search methods.

A.7. Modeling DART for continuous action space.

As outlined in Algorithm 2, adapting DART for continuous action space involves training an additional action tokenizer,
alongside an image tokenizer as explained in Section 2.1. The action tokenizer converts continuous action tokens into
discrete codebook embeddings, while the world modeling process remains unchanged. In policy learning, the transformer
encoder translates state tokens into action tokens, which are then decoded into continuous actions using the VQVAE decoder.
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Algorithm 1 Integrating DART with lookahead search methods

1: Initialize pretrained dynamics model f (transformer decoder) and policy 7 (transformer encoder).

2: for each episode do

3 Sample initial state s from the environment

4:  Map state s into a sequence of discrete tokens sg, S1, ..., Sy using pre-trained VQ-VAE

5: fort=0toT —1do

6 Planning Action Sequence:

7 Given current state tokens, use transformer decoder f to simulate possible future state tokens s’ and rewards for
each possible action

8: Apply a planning algorithm (e.g., Monte Carlo Tree Search) to search for the optimal sequence of actions that
maximize cumulative reward
9: Select the first action a; from the optimal sequence
10: Execute a;, observe next state s;; and reward 7
11:  end for
12: end for

Algorithm 2 Modeling DART for continuous action space.

Representation Learning

— Sample trajectories 7 (s, a, s’, 7).

— Use states in the form of an image to train an image tokenizer.

— Use the collected actions to train an action tokenizer.

World Model Learning

— Concatenate State tokens and action tokens for each time step.

— Process each state and action token using the transformer decoder.

— Optimize for the next state token, reward, and termination criterion.

Policy Learning

— Transformer encoder modeling the policy processes the tokenized state to predict discrete action tokens.
— VQVAE decoder maps the action token to continuous action.

— Train the transformer encoder policy for the next H steps using the imagined trajectories from the world model.
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