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A LIST OF CONSTANTS

In this appendix, we list all the constants used in our main results, Theorems 3 and 5. They are finite
and their expressions do not affect the understanding of the theorems. Since their expressions are
quite long and complicated, we begin with the following set of constants, based on which we will
be able to present the constants used in the theorems and the proofs of the theorems in an easier
way. We hope that this way can also help the readers to better understand and follow our results and
analyses.

The first constant ζ1 is defined as follows. Recall that ε is given in equation 6 as

ε =

(
1 +

2bmax

Amax
− πminβ

2L

2δmax

)
(1 + αAmax)2L − 2bmax

Amax
(1 + αAmax)L.

ζ1 is defined as the unique solution for which ε = 1 if α = ζ1. The following remark shows why ζ1
uniquely exists.

Remark 5 From equation 6, it is easy to see that ε is monotonically increasing for α > 0. Define
the corresponding monotonic function as

f(α) =

(
1 +

2bmax

Amax
− πminβ

2L

2δmax

)
(1 + αAmax)2L − 2bmax

Amax
(1 + αAmax)L.

Note that 0 < f(0) < 1 and f(+∞) = +∞. Thus, f(α) = 1 has a unique solution ζ1. �

The other constants are defined as follows:

ζ2 =
4b2max

A2
max

[
(1 + αAmax)L − 1

]2
+ 2bmax

(1 + αAmax)L − 1

Amax
(1 + αAmax)L (12)

ζ3 =
(
144 + 4A2

max + 912τ(α)A2
max + 168τ(α)Amaxbmax

)
‖θ∗‖22

+ τ(α)A2
max

[
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+
48bmax

Amax

(
bmax

Amax
+ 1

)2

+
87b2max

A2
max

+
12bmax

Amax

]
+ 2 + 2b2max + 4‖θ∗‖22 +

48b2max

A2
max

(13)

ζ4 =
√
Nbmax

(
2 +

12b2max

A2
max

+ 38‖θ∗‖22
)

(14)

ζ5 = 144 + 916A2
max + 168Amaxbmax (15)

ζ6 = 4b2maxαL
2(1 + αAmax)2L−2 + 2bmaxL(1 + αAmax)2L−1 (16)

ζ7 = (148 + 916A2
max + 168Amaxbmax)‖θ∗‖22 + 2 +

48b2max

A2
max

+ 152

(
bmax +Amax‖θ∗‖2

)2

+ 89b2max + 12Amaxbmax + 48Amaxbmax

(
bmax

Amax
+ 1

)2

(17)

ζ8 = 144 + 916A2
max + 168Amaxbmax + 144Amaxµmax (18)

ζ9 =

[
2 + (4 + ζ8)‖θ∗‖22 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 12Amaxbmax + 48Amax(bmax + µmax)

(
bmax + µmax

Amax
+ 1

)2

+ 89(bmax + µmax)2

]
(19)

Here µmax = (N + 1)AmaxCθ, where Cθ is a finite number defined in Lemma 19 which can be
regarded as an upper bound of 2-norm of each agent i’s state θit generated by the Push-SA algorithm
equation 9.
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A.1 CONSTANTS USED IN THEOREM 3

K1 = min

{
ζ1,

γmax

0.9

}
K2 = 144 + 4A2

max + 912τ(α)A2
max + 168τ(α)Amaxbmax (20)

C1 =
γmax

γmin
(8 exp {2αAmaxT1}+ 4)E

[
‖〈θ〉0 − θ∗‖22

]
+ 8

γmax

γmin
exp {2αAmaxT1}

(
‖θ∗‖2 +

bmax

Amax

)2

C2 =
2ζ2

1− ε
+
γmax

γmin
· 2αζ3γmax

0.9

C3 =
2ζ6

1− ε
C4 = 2ζ7α0C

γmax

γmin

C5 = 2α0ζ4
γmax

γmin

C6 = 2LT2
γmax

γmin
E
[
‖〈θ〉LT2 − θ∗‖22

]

T1 is any positive integer such that for all t ≥ T1, there hold t ≥ τ(α) and 36
√
Nbmaxηt+1γmax +

K2αγmax ≤ 0.1.

Remark 6 We show that T1 must exist. From 0 < α < min{K1,
log 2

Amaxτ(α) ,
0.1

K2γmax
}, it is easy to

see that the feasible set of α is nonempty and K2αγmax < 0.1. Since limt→∞ ηt = 0 by Lemma 9
and τ(α) ≤ −C logα by Assumption 3, there exists a time instant T ≥ −C logα such that for any
t ≥ T , there hold t ≥ τ(α) and ηt+1 ≤ (0.1 −K2αγmax)/(36

√
Nbmaxγmax), which implies that

T1 exists. �

T2 is any positive integer such that for all t ≥ LT2, there hold αt ≤ α, 2τ(αt) ≤ t, τ(αt)αt−τ(αt) ≤
min{ log 2

Amax
, 0.1
ζ5γmax

} and ζ5αt−τ(αt)τ(αt)γmax + 36
√
Nbmaxηt+1γmax ≤ 0.1.

Remark 7 We explain why T2 must exist. Since αt = α0

t+1 is monotonically decreasing for
t and τ(αt) ≤ −C logαt = −C logα0 + C log(t + 1) from Assumption 3, there exists a
positive S1 such that for any t ≥ S1, we have αt ≤ α and t ≥ 2τ(αt) for any constant
0 < α < min{K1,

log 2
Amaxτ(α) ,

0.1
K2γmax

}. Moreover, it is easy to show that

lim
t→∞

t− τ(αt) ≥ lim
t→∞

t+ C logα0 − C log(t+ 1) = +∞,

lim
t→∞

τ(αt)αt−τ(αt) ≤ lim
t→∞

−Cα0 logα0 + Cα0 log(t+ 1)

t− τ(αt) + 1
= 0.

Then, there exists a positive S2 such that for any t ≥ S2, we have τ(αt)αt−τ(αt) ≤
min{ log 2

Amax
, 0.1
ζ5γmax

}. In addition, since limt→∞ ηt = 0 from Lemma 9, when τ(αt)αt−τ(αt) ≤
0.1

ζ5γmax
, there exists a positive S3 such that for any t ≥ S3, we have ηt+1 ≤ (0.1 −

ζ5αt−τ(αt)τ(αt)γmax)/(36
√
Nbmaxγmax). Therefore, T2 must exist as we can simply set T2 =

max{S1, S2, S3}. �
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A.2 CONSTANTS USED IN THEOREM 5

C7 =
16

ε1
E

[∥∥∥ N∑
i=1

θ̃i0 + α0A(X0)θ̃i0 + α0b
i(X0)

∥∥∥
2

]
C8 =

16

ε1
· AmaxCθ + bmax

1− ε̄
C9 = 2AmaxCθ + 2bmax

C10 = 2Nζ9α0C
γmax

γmin

C11 = 2α0N
γmax

γmin

C12 = 2T̄N
γmax

γmin
E
[
‖〈θ̃〉T̄ − θ∗‖22

]
Here ε1 is a positive constant defined as ε1 = inft≥0 mini∈V(Ŵt · · · Ŵ01N )i. From Corollary 2 (b)
in Nedić & Olshevsky (2015) and the fact that each Ŵt is column stochastic, ε1 ∈ [ 1

NNL , 1]. See
Lemma 20 for more details.

T̄ is any positive integer such that for all t ≥ T̄ , there hold 2τ(αt) ≤ t, µt+τ(αt)αt−τ(αt)ζ8 ≤ 0.1
γmax

and τ(αt)αt−τ(αt) ≤ min{ log 2
Amax

, 0.1
ζ8γmax

}.

Remark 8 From Lemma 21, limt→∞ µt = 0. Then, using the similar arguments as in Remark 7,
we can show the existence of T̄ . �

B RELATED WORK

A key tool used for designing and analyzing RL algorithms is stochastic approximation (Robbins &
Monro, 1951), e.g., for policy evaluation, including temporal difference (TD) learning as a special
case (Sutton & Barto, 2018). Convergence study of stochastic approximation based on ordinary
differential equation (ODE) methods has a long history (Borkar & Meyn, 2000). Notable examples
are Tsitsiklis & Roy (1997); Dayan (1992) which prove asymptotic convergence of TD(λ). Recently,
finite-time performance of single-agent stochastic approximation and TD algorithms has been stud-
ied in Dalal et al. (2018a); Lakshminarayanan & Szepesvari (2018); Bhandari et al. (2018); Srikant
& Ying (2019); Gupta et al. (2019); Wang et al. (2017); Ma et al. (2020); Xu et al. (2019); Chen et al.
(2020b); many other works have now appeared that perform finite-time analysis for other RL algo-
rithms, see, e.g., Zou et al. (2019); Qu & Wierman (2020); Wu et al. (2020); Xu & Gu (2020); Weng
et al. (2020); Wang & Zou (2020); Chen et al. (2020a); Wang et al. (2019); Dalal et al. (2018b);
Borkar & Pattathil (2018), just to name a few.

C DISCUSSION ON ASSUMPTION 6

In this appendix, we contend that Assumption 6 has more general applications than the previously
known case and that it is in fact necessary.

C.1 APPLICATIONS

First, as mentioned in Remark 3, there are at least two cases which satisfy Assumption 6, yet cannot
be directly handled by the existing analysis tool, which was developed only for doubly stochastic
matrices. Case 1 is when the number of in-neighbors of agents is unchanged over time. This case
has an interesting behavioral interpretation in fish biology, and has been adopted in bio-inspired
distributed algorithm design (Abaid & Porfiri, 2010). Case 2 is when the interaction matrix changes
arbitrarily over time during an initial period, after which it finally becomes fixed. As we describe
below, Case 2 occurs naturally in certain multi-agent systems.
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Case 1 is mathematically equivalent to the situation when all stochastic matrices share the same left
dominant eigenvector, which subsumes doubly stochastic matrices as a special case; thus it could
be analyzed by carefully choosing a fixed norm. There may be different choices: one choice is
to apply our time-varying quadratic Lyapunov comparison function

∑N
i=1 π

i
tE[||θit − θ∗||22] to the

time-invariant case (i.e., πit does not change over time), which leads to the weighted Frobenius norm
defined in the appendix.

The extension to Case 1 just described may be straightforward, but Case 2 is not. As we proved in
Theorems 2 and 3, when the interaction matrix arbitrarily changes over time for an initial period, say
of length T , and finally becomes a fixed matrix or enters Case 1, all agents’ trajectories determined
by (1) will converge in mean square. Also, recall that the corresponding finite-time error bounds in
this case were derived using the “absolute probability sequence” technique. Note that the existing
techniques can only be applied to analyze (1) after time T ; when T is very large, such an analysis is
undesirable, since the focus and challenge here are for “finite” time.

It is important to note that Case 2 provides a realistic model for certain systems. Consider scenar-
ios in which some agents do not function stably and thus they communicate with their neighbors
sporadically for a certain period, leading to a time-varying stochastic matrix. Such scenarios oc-
cur naturally when there is unstable communication due to environmental changes or movement of
agents (e.g., robots or UAVs may need to move into a new formation while continuing computation).
After this unstable period, which could be long, the whole system then enters a stable operation sta-
tus. This satisfies Case 2 and our finite-time analysis can be applied to the whole process, no matter
how long the unstable period could be, as long as it is finite. In addition to this example, Case 2 and
our analysis can be applied to certain scenarios in the presence of malicious agents. Suppose the
system is aware that a small subset of agents have potentially been attacked and are thus behaving
maliciously. To protect the system, the consensus interaction among the agents can switch to re-
silient consensus algorithms such as Vaidya et al. (2012); LeBlanc et al. (2013) in order to attenuate
the effect of malicious agents. In this situation, the resulting dynamics of the non-malicious agents
are in general characterized by a time-varying stochastic matrix. After identifying and/or fixing the
malicious agents, which could be a very slow process, the system can switch back to normal op-
eration status. This example again satisfies Case 2, and our analysis can be applied to the whole
procedure. As we mentioned in Remark 3, if some malicious agents always exist, the non-malicious
agents in general will not converge, and thus a finite-time analysis is probably meaningless. The
non-convergence issue will be further explained in the next subsection.

Whether Assumption 6 can represent more realistic/analytic examples is a very interesting future
direction. Though consensus has been extensively studied and the “absolute probability sequence”
was proposed decades ago, this question has never been explored. The development of more ad-
vanced analysis tools is an interesting topic as well.

C.2 NECESSITY

We now elaborate on why Assumption 6 is not restrictive from a theoretical point of view.

As mentioned in Remark 3, distributed SA with time-varying stochastic matrices does not converge,
in general, if Assumption 6 does not hold. Assumption 6 is sufficient to guarantee the convergence
of the distributed SA algorithm equation 1 when the interaction matrix is row stochastic and time-
varying. Let us denote the necessary and sufficient condition for convergence of consensus-based
distributed SA as Condition A, which is currently unknown. It is possible that there is a large
gap between Assumption 6 and Condition A. But Assumption 6 is (to our knowledge) the most
general sufficient condition that has been proposed so far; one indirect justification of this claim
is Assumption 6 is an analogue of condition (C3.4’) in Kushner & Yin (1987), which is itself a
sufficient condition guaranteeing the asymptotic convergence of a different form of distributed SA.
While Kushner & Yin (1987) only provided asymptotic analysis, we provided both asymptotic and
finite-time analyses using a novel tool. Assumption 6 subsumes the existing analysis for doubly
stochastic matrices as a special case, and can be used for more general, nontrivial cases (see the
examples provided in the discussion of Case 2 above). Existing analysis tools cannot be applied to
Case 2. From a theoretical point of view, our paper reduces the gap between the doubly stochastic
matrices assumption and Condition A to the smaller gap between Assumption 6 and Condition A,
for finite-time analysis of consensus-based distributed SA.
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In addition, the other equally important main contribution of our paper, push-SA, does not need
Assumption 6, though its analysis still relies on the “absolute probability sequence” technique.

C.3 CONTRIBUTIONS

Next, we present a high-level view of our paper, which may help the readers to better understand
our overall contributions.

There are three major information fusion schemes in the vast distributed algorithms literature:
“consensus” (time-varying stochastic matrices), “averaging” (time-varying doubly stochastic ma-
trices which include gossiping), and “push-sum” (time-varying column stochastic matrices). The
consensus-based scheme can guarantee an agreement among the agents, but the agreement point in
general cannot be specified, especially when the interaction is time-varying. The averaging scheme
can specify the agreement point to be the average among all agents using doubly stochastic ma-
trices, but these only work for undirected graphs (i.e., bi-directional communication is required
between any pair of neighbors); typical examples are the Metropolis algorithm (Xiao et al., 2005)
and gossiping (Boyd et al., 2006). The push-sum scheme is able to not only achieve agreement
on the average, but it also works for directed graphs, allowing uni-directional communication. The
push-sum scheme can also be straightforwardly modified to achieve any given convex combination
agreement among all agents. The three schemes are widely used, depending on task specifications.
Push-sum appears to be the most powerful, but the other two also have advantages; e.g., consensus
can be modified to be more resilient against malicious agents, and averaging is easier in algorithm
design (especially gossiping) and analysis (due to nicer properties of doubly stochastic matrices).
There is a very recently proposed scheme called push-pull, but it is not yet that popular, so we focus
our attention on the three major schemes.

With the above background in mind, there are three major information fusion schemes that can be
used to design distributed SA (as well as RL). The existing literature has only analyzed the averaging
scheme (doubly stochastic matrices), which to us appears to be the easiest among the three. Finite-
time analyses of the other two schemes are untouched in the literature. Our paper is the first to
consider both.

As explained in the preceding subsection, our result and analysis for the consensus scheme (based on
Assumption 6) are the most general so far and generalize the existing tools in a nontrivial manner.
This leads to very interesting, open research problems – like necessary and sufficient condition
for distributed SA convergence – as well as how to design resilient consensus fusion, which can
guarantee convergence of distributed SA.

D DISTRIBUTED TD LEARNING

In this section, we apply our distributed stochastic approximation finite-time analyses to distributed
TD learning, as TD(λ) is a special cases of stochastic approximation. To this end, we first introduce
the following multi-agent MDP tailored for distributed TD.

The multi-agent MDP can be defined by a tuple (S, {U i}i∈V , {Ri}i∈V , P̄ , γ, {Gt}t≥0), where S =
{1, . . . , S} is the finite set of S states, U i is the set of control actions for agent i. For each agent i,
Ri : S × U × S → R is the local reward function, where U =

∏N
i=1 U i is the joint control action

space. P̄ : S × U × S → [0, 1] denotes the state transition probability matrix of the MDP, and
γ ∈ (0, 1) is the discount factor. Given a fixed policy, we let P̄ be of size S × S for convenience,
and thus its ij-th entry p̄ij equals the probability from state i to state j under the given policy. The
multi-agent MDP then evolves as follows. At each time t ≥ 0, each agent i observes the current
state st ∈ S, takes action uit = µi(st) ∈ U i, and receive a corresponding reward Ri(st, ut, st+1),
where µi : S → U i is a function mapping a state to a control action in U i and ut =

∏N
i=1 u

i ∈ U .
It is worth emphasizing that in such a multi-agent setting, each agent’s rewards and reward function
are private information, and thus cannot be shared with any other agents.
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The discounted accumulative reward J : S → R associated with the multi-agent MDP is defined for
each s ∈ S as

J(s) = E

[ ∞∑
t=0

γt
∑
i∈V

ciRi(st, ut, st+1) | s0 = s

]
, (21)

which satisfies the Bellman equation Sutton & Barto (2018), i.e.,

J(s) =

S∑
s′=1

p̄ss
′

[∑
i∈V

ciRi(s, s′) + γJ(s′)

]
, s ∈ S,

where ci > 0, i ∈ V , is a set of convex combination weights. The existing distributed RL algorithms
all set ci = 1/N for all i ∈ V , e.g. Zhang et al. (2018); Doan et al. (2019), and this is why they
require interaction matrices all be doubly stochastic. We will show that ci = πi∞ for all i ∈ V for
general stochastic matrix sequences. Since for any doubly stochastic matrix sequence, its absolute
probability sequence is πt = (1/N)1N , i.e., πi∞ = 1/N for all i ∈ V , our results generalize the
existing results, e.g. Doan et al. (2019; 2021). In § 3, we will show how to achieve the straight
average reward, i.e.,ci = 1/N for all i ∈ V , without requiring doubly stochastic matrices.

When the number of the states is very large, the computation of exact J may be intractable. To
get around this, as did in Tsitsiklis & Roy (1997), we use a low-dimensional linear function Ĵ to
approximate J . Specifically, the linear function approximator Ĵ takes the form

Ĵ(s, θ) =

K∑
k=1

θkφsk, s ∈ S,

where each φsk is a fixed scalar function defined on the state space S , each θk is the associated
weight, and K � S. In other words, Ĵ is parameterized by θ ∈ RK , with θk being the k-th entry
of θ. To proceed, let φk ∈ RS be the vector whose j-th entry is φjk for all k ∈ {1, . . . ,K}, let
φ(s) ∈ RK be the vector whose j-th entry is φsj for all s ∈ S, and let Φ ∈ RS×K be the matrix
whose i-th row is the row vector φ(i)> and whose j-th column is the vector φj , i.e.,

Φ = [ φ1 · · · φK ] =

 φ(1)>

...
φ(S)>

 ∈ RS×K ,

which implies Ĵ = Φθ. The goal for the multi-agent network is to find an optimal θ∗ with which
the distance between Ĵ and J is minimized, under the following standard assumptions adopted e.g.
Srikant & Ying (2019); Doan et al. (2019).

Assumption 7 All the rewards are uniformly bounded, i.e., there exists a positive constant R such
that |Ri(s, s′)| ≤ R for all i ∈ V and s, s′ ∈ S.

Assumption 8 The vectors φ1, . . . , φK are linearly independent, i.e., Φ has full column rank, and
‖φ(s)‖2 ≤ 1 for all s ∈ S.

Assumption 9 The Markov chain that evolves according to the transition probability matrix P̄ is
irreducible and aperiodic. Let d ∈ RS be the unique stationary distribution associated with P̄ , i.e.,
d>P̄ = d>.

D.1 DISTRIBUTED TD(λ)

In this subsection, we make use of TD(λ) to estimate θ∗ in a distributed manner. Note that, TD(0)
can be applied in the similar manner. Each agent i updates its own estimator of θ∗, θit, as follows:

θit+1 =
∑
j∈N i

t

wijt θ
j
t + αt

A(Xt)
∑
j∈N i

t

wijt θ
j
t + bi(Xt)

 , i ∈ V, t ∈ {0, 1, 2, . . .}, (22)
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where Xt = (st, st+1, zt) is the Markov chain, with zt =
∑t
k=0(γλ)t−kφ(sk), and

A(Xt) = zt(γφ(st+1)− φ(st))
>, bi(Xt) = ritzt, (23)

with rit being the reward for agent i at time t. It is worth emphasizing that the proposed TD(λ)
algorithm is different from that in Doan et al. (2021). The update equation 22 with equation 23 is a
special case of equation 1.

In the sequel, we will show that the update equation 22 with equation 23 is a special case of equa-
tion 1 so that our analysis for equation 1 can be applied here. To this end, let D = diag(d) ∈ RS×S ,
where d is given in Assumption 9,

A = Φ>D(U − I)Φ, U = (1− λ)

∞∑
t=0

λt(γP̄ )t+1, bi = Φ>D

∞∑
t=0

(γλP̄ )tri, i ∈ V, (24)

where ri ∈ RS whose k-th entry is rik =
∑S
s=1 p̄

ksRi(k, s), and set Amax = 1+γ
1−γλ and bmax =

R
1−γλ , where R is given in Assumption 7.

Lemma 2 Let the sequences {θit}, i ∈ V , be generated by equation 22 with equation 23. If Assump-
tions 7–9 hold, so do Assumptions 2–4.

Proof of Lemma 2: Firstly, under Assumptions 7–9, we have

lim
t→∞

E[A(Xt)] = A, lim
t→∞

E[B(Xt)] =

 (b1)>

...
(bN )>

 ,
and ‖A(Xt)‖2 ≤ 1+γ

1−γλ , ‖b(Xt)‖2 ≤ R
1−γλ , where A(Xt) and bi(Xt) are defined in equation 23,

A and bi are defined in equation 24. Since Amax = 1 + γ and bmax = R, then we know that
Assumption 2 has been satisfied. Moreover,

‖E[bi(Xt)− bi|S0 = s0, S1 = s1]‖2

= ‖
S∑
s=1

(P(St = s|S1 = s1)− πs)φ(s)ris‖2 ≤ bmax

S∑
i=s

|P(St = i|S1 = s1)− πi|,

‖E[A(Xt)−A|S0 = s0, S1 = s1]‖2

= ‖
S∑
s=1

(P(St = s|S1 = s1)− πs)φ(s)(

S∑
j=1

p̄sjγφ(j)> − φ(s)>)‖2

≤ Amax

S∑
i=1

|P(St = s|S1 = s1)− πi|.

Since {St} is a finite state, aperiodic and irreducible Markov chain, it has a geometric mixing rate
(Brémaud, 2013), which implies that Assumption 3 holds. Lastly, when Assumption 8 holds, from
the proof of Theorem 1 in Tsitsiklis & Roy (1997), A given in equation 24 is a negative definite
matrix, i.e., x>Ax < 0 for all x ∈ RK , which implies that A+A> is a symmetric negative definite
matrix. From Theorem 7.11 in Rugh (1996), A is a Hurwitz matrix.

Then, using the similar arguments as in Lemma 2, we can show that Assumptions 7–9 imply As-
sumptions 2–4, and thus our analysis for equation 1 can be applied here. From the proof of Theo-
rem 1 in Tsitsiklis & Roy (1997), A in equation 24 is a negative definite matrix, which implies that
A+A> is a symmetric negative definite matrix. Thus, we can also choose P = I in Assumption 4
and use the Lyapunov function V (〈θ〉t) = ‖〈θ〉t−θ∗‖22 in the analysis, where θ∗ here is the limiting
point of equation 22. Using the same argument as in Theorem 2, we can show that θ∗ is the unique
equilibrium point of the ODE equation 5 with A and bi being defined in equation 24.

The finite-time performance of the distributed TD(λ) algorithm is characterized by the following
theorem.
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Theorem 6 Let the sequences {θit}, i ∈ V , be generated by equation 22 with equation 23. Suppose
that Assumptions 1 and 6–9 hold and {Gt} is uniformly strongly connected by sub-sequences of
length L. Let δt be the diameter of ∪t+L−1

k=t Gk and δ = maxt≥0 δt. Set Amax = 1+γ
1−γλ , bmax =

R
1−γλ , and σmin > 0 be the smallest eigenvalue of − 1

2 (A + A>), where A is given in equation 24.

Let 0 < α < min
{

Ψ9,
log 2

Amaxτ(α) ,
σmin

Ψ3
, 1
σmin

}
.

1) Fixed step-size: Let αt = α for all t ≥ 0. For all t ≥ T̂1,
N∑
i=1

πitE
[
‖θit − θ∗‖22

]
≤ 2εqt

N∑
i=1

πimt
E
[
‖θimt

− 〈θ〉mt
‖22
]

+ (1− ασmin)t−T̂1Ĉ1 + Ĉ2

+ Ĉ3

t−T̂1∑
k=0

ηt+1−k(1− ασmin)k. (25)

2) Time-varying step-size: Let αt = α0

t+1 with α0 ≥ 1
σmin

. For all t ≥ T̂1L,
N∑
i=1

πitE[‖θit − θ∗‖22] ≤ 2εqt−T̂1

N∑
i=1

πi
T̂1L+mt

E
[
‖θi
T̂1L+mt

− 〈θ〉T̂1L+mt
‖22
]

+ Ĉ4

(
α0ε

qt−1
2 + αd qt−1

2 eL

)
+

1

t

Ĉ5 log2(
t

α0
) + Ĉ6

t∑
l=T̂1L

ηl + Ĉ7

 . (26)

Here T̂1, T̂1−Ĉ7 are finite constants whose definitions are given in Appendix E.2 withAmax = 1+γ
1−γλ

and bmax = R
1−γλ .

D.2 PUSH-TD(λ)

In this subsection, we propose a push-based distributed TD(λ) algorithm and provide its finite-time
error bounds. Note that, push-based distributed TD(0) can be applied in the similar manner. Each
agent i ∈ V updates its variables at each time t ≥ 0 as follows:

yit+1 =
∑
j∈N i

t

ŵijt y
j
t , yi0 = 1,

θ̂it+1 =
∑
j∈N i

t

ŵijt θ̂
j
t + αt

(
A(Xt)ŵ

ij
t θ

j
t + bj(Xt)

)
,

θit+1 =
θ̂it+1

yit+1

,

(27)

where ŵijt = 1/|N j−
t |, Xt = (st, st+1, zt) is the Markov chain, with zt =

∑t
k=0(γλ)t−kφ(sk),

A(Xt) and bi(Xt) are given in equation 23. Using the same argument as in Theorem 4, we can
show that θ∗ is the unique equilibrium point of the ODE equation 10 with A and bi being defined in
equation 24.

Theorem 7 Suppose that Assumptions 7–9 hold and {Gt} is uniformly strongly connected by sub-
sequences of length L. Let the sequences {θit}, i ∈ V , be generated by equation 27 with equation 23,
αt = α0

t+1 and α0 ≥ 1
σmin

. Then, there exists a nonnegative ε̄ ≤ (1− 1
NNL )

1
L such that for all t ≥ T̄ ,

N∑
i=1

E
[∥∥θit+1 − θ∗

∥∥2

2

]
≤ C7ε̄

t + C8

(
α0ε̄

t
2 + αd t

2 e

)
+ C9αt

+
1

t

(
C10 log2

( t

α0

)
+ C11

t∑
k=T̄

µk + C12

)
. (28)

Here T̄ and C7 − C12 are finite constants whose definitions are given in Appendix in Appendix A
with Amax = 1+γ

1−γλ , bmax = R
1−γλ and γmax = γmin = 1.

8
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D.3 CONSTANTS FOR TD

Ĉ1 =
(

8 exp
{

2αAmaxT̂1

}
+ 4
)
E
[
‖〈θ〉0 − θ∗‖22

]
+ 8 exp

{
2αAmaxT̂1

}(
‖θ∗‖2 +

bmax

Amax

)2

;

Ĉ2 =
2ζ2

1− ε
+

2αζ3
σmin

;

Ĉ3 = 2αζ4;

Ĉ4 =
2ζ6

1− ε
;

Ĉ5 = 2ζ7α0C;

Ĉ6 = 2α0ζ4;

Ĉ7 = 2T̂2LE
[
‖〈θ〉T̂2L

− θ∗‖22
]
.

T̂1 is any positive integer such that for all t ≥ T̂1, there hold t ≥ τ(α) and 36
√
Nbmaxηt+1+K2α ≤

σmin.

T̂2 is any positive integer such that for all t ≥ T̂2L, there hold αt ≤ α, 2τ(αt) ≤ t, τ(αt)αt−τ(αt) ≤
min{ log 2

Amax
, σmin

ζ5
} and ζ5αt−τ(αt)τ(αt) + 36

√
Nbmaxηt+1 ≤ σmin.

D.4 SIMULATIONS

In this section, we numerically validate the finite-time bounds derived in this paper, for both dis-
tributed TD(λ) and push-TD(λ), and compare with the existing distributed TD(λ) results in Doan
et al. (2021). We focus on TD(λ) and TD(0) as the existing distributed TD(0) finite-time analysis in
Doan et al. (2019) only considers i.i.d. samples.

The TD setting and multi-agent network are given as follows. Set λ = 0.2 and discount factor
γ = 0.3. Consider an environment with N = 10 agents and |S| = 10 states. We generated a row
stochastic matrix with each entry in [0, 1] and then added a small constant 10−5 to each element to
make sure that the transition matrix satisfies Assumption 9. For each agent i and state pair (s, s′),
we randomly sampled mean reward Ri(s, s′) from [−3, 3], and the instantaneous reward rit was
randomly sampled from [Ri(s, a)− 0.5, Ri(s, a) + 0.5]. The dimension of the feature vector φ was
set as K = 5. We sampled the entry of φ from [0, 1] while simultaneously guaranteeing that the
feature matrix Φ satisfies Assumption 8.

First, we considered consensus-based algorithm equation 22 with time-varying stochastic matrices
to show the necessity of Assumption 6. To this end, we simulated two cases. In this first case,
we randomly generated a stochastic matrix at each time step, and thus the corresponding absolute
probability sequence πt does not converge. We set the time-varying stepsize as αt = 1/t0.68. Fig-
ure 1 (a) shows that in this case the average norm of all agents variables does not converge, implying
non-convergence of all agents’ states. In the second case, we consider a more special case in which
the underlying graph changes periodically. In many distributed algorithms like distributed optimiza-
tion, periodic settings can be regarded as a time-invariant case which thus guarantees convergence.
We set the period as 10 and constructed the same set of 10 different stochastic matrices for each
period. However, Figure 1 (b) shows that even with this periodic setting, the consensus-based algo-
rithm (1) still does not converge, because a periodic sequence of stochastic matrices does not have a
convergent absolute probability sequence.

Next, we will compare the finite-time bounds derived in this paper with the one in the existing liter-
ature Doan et al. (2021). As mentioned earlier, compared with the finite-time analysis of distributed
TD(λ) with doubly stochastic matrices in Doan et al. (2021), the finite-time analysis in the paper is
more general. In the sequel, we will evaluate the theoretical finite-time bounds for both distributed
TD(λ) and push-TD(λ). To illustrate the differences and advantage over Doan et al. (2021), for
consensus-based distributed TD(λ), we consider the following three settings:

1. The first 15 weight matrices are fixed, row stochastic (not doubly stochastic) and the fol-
lowing 85 weight matrices are fixed, doubly stochastic (see Figure 2 (a) - (d)).

9
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(a) Random row stochastic matrices (b) Periodic row stochastic matrices

Figure 1: Non-convergent distributed TD(λ) algorithm (equation 22) without Assumption 6.

Table 1: Comparison of the asymptotic bounds

Bound in this paper Bound in Doan et al. (2021)
Mixed stochastic matrices∗ + fixed
stepsize

88.1653 114.1386

Mixed stochastic matrices + time-
varying stepsize

0 0

All doubly stochastic matrices + fixed
stepsize

881.5952 1141.4

All non-doubly, stochastic matrices +
fixed stepsize

241.6035 NA

All column stochastic matrices (push-
TD) + time-varying stepsize

0 NA

∗A set of mixed stochastic matrices contains both doubly and non-doubly ones

2. All weight matrices are fixed, stochastic matrices, but not doubly stochastic (see Figure 2
(e), (f)).

3. All weight matrices are fixed, doubly stochastic (see Figure 2 (g), (h)).

In addition, we evaluated the finite-time bound of the push-TD(λ) algorithm with a fixed, column
stochastic weight matrix (see Figure 3).

Figure 2 (a), 2 (c) and 2 (e) show that the bounds in equation 25, equation 26 and Doan et al. (2021)
can be used to bound the actual error. However, the stating time for the bound in equation 25 and
equation 26 are earlier than those in Doan et al. (2021).

Figure 2 (b) and 2 (f) show the both bounds in equation 25 and Doan et al. (2021) will converge
to some fixed values when the stepsize is fixed. These values are listed and compared in Table 1.
Figure 2(d) shows that both the bounds in equation 26 and Doan et al. (2021) will converge to zero
for the time-varying stepsize.

Figure 2 (g) and 2 (h) show that the bound in Doan et al. (2021) can not be (directly) applied to
the stochastic (not doubly stochastic) weight matrix case. In addition, Figure 2 (h) shows that the
bound in equation 25 will converge to some fixed value when the stepsize is fixed, which is given in
Table 1.

Figure 3 shows that the push-TD(λ) algorithm will converge to the optimal point in the long run,
and the bound in equation 28 can be used to bound the actual error. It is worth emphasizing that the
bound in Doan et al. (2021) cannot be applied for this case.

In summary, from the figures and Table 1, we can see that (1) our consensus-based TD(λ) can be
applied to more general time-varying row stochastic matrices cases; though our finite-time bound is

10
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(a) Mixed stochastic matrices (fixed stepsize) (b) Mixed stochastic matrices (fixed stepsize)

(c) Mixed stochastic matrices (time-varying step-
size)

(d) Mixed stochastic matrices (time-varying step-
size)

(e) All doubly stochastic matrices (fixed stepsize) (f) All doubly stochastic matrices (fixed stepsize)

(g) All non-doubly, stochastic matrices (fixed
stepsize)

(h) All non-doubly, stochastic matrices (fixed
stepsize)

Figure 2: Finite-time bounds for consensus-based TD(λ) (equation 22).

11
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Figure 3: Finite-time bounds for push-TD(λ) (equation 27) with time-varying stepsizes.

looser at the beginning period, it can be applied at an earlier time instant and has a tighter limiting
bound, compared with Doan et al. (2021); and (2) our push-based TD(λ) expands the applicability
of the existing distributed TD learning, as it can work for any time-varying directed graphs as long
as they are uniformly strongly connected, without any restrictive assumptions such as Assumption 6
in our consensus-based one and the doubly stochasticity assumption in Doan et al. (2021).

E ANALYSIS AND PROOFS

In this appendix, we provide the analysis of our two algorithms, equation 1 and equation 9, and the
proofs of all the assertions in the paper. We begin with some notation.

E.1 NOTATION

We use 0n to denote the vector in Rn whose entries all equal to 0’s. For any vector x ∈ Rn, we use
diag(x) to denote the n × n diagonal matrix whose ith diagonal entry equals xi. We use ‖ · ‖F to
denote the Frobenius norm. For any positive diagonal matrix W ∈ Rn×n, we use ‖A‖W to denote
the weighted Frobenius norm for A ∈ Rn×m, defined as ‖A‖W = ‖W 1

2A‖F . It is easy to see that
‖ · ‖W is a matrix norm. We use P(·) to denote the probability of an event and E(X) to denote the
expected value of a random variable X .

E.2 DISTRIBUTED STOCHASTIC APPROXIMATION

In this subsection, we analyze the distributed stochastic approximation algorithm equation 1 and
provide the proofs of the results in Section 2. We begin with the asymptotic performance.

Proof of Lemma 1: Since the uniformly strongly connectedness is equivalent to B-connectedness
as discussed in Remark 2, the existence is proved in Lemma 5.8 of Touri (2012), and the uniqueness
is proved in Lemma 1 of Nedić & Liu (2017).

Proof of Theorem 1: Without loss of generality, let {Gt} be uniformly strongly connected by
sub-sequences of length L. Note that for any i ∈ V , we have

0 ≤ πmin‖θit − 〈θ〉t‖22 ≤ πmin

N∑
j=1

‖θjt − 〈θ〉t‖22 ≤
N∑
j=1

πjt ‖θ
j
t − 〈θ〉t‖22, (29)

12
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where πmin is defined in Lemma 1. From Lemma 10,

lim
t→∞

N∑
i=1

πit‖θit − 〈θ〉t‖22

≤ lim
t→∞

ε̂qt−T
∗
4

N∑
i=1

πiT∗4 L+mt
‖θiT∗4 L+mt

− 〈θ〉T∗4 L+mt
‖22 + lim

t→∞

ζ6
1− ε̂

(
α0ε̂

qt−1
2 + αd qt−1

2 eL

)
= 0. (30)

Combining equation 29 and equation 30, it follows that for all i ∈ V , limt→∞ πmin‖θit−〈θ〉t‖22 = 0.
Since πmin > 0 by Lemma 1, limt→∞ ‖θit − 〈θ〉t‖2 = 0 for all i ∈ V .

Proof of Theorem 2: From Theorem 1, all θit, i ∈ V , will reach a consensus with 〈θ〉t and the update
of 〈θ〉t is given in equation 4, which can be treated as a single-agent linear stochastic approximation
whose corresponding ODE is equation 5. From Kushner & Yin (1987); Kushner (1983),1 we know
that 〈θ〉t will converge to θ∗ w.p.1, which implies that θit will converge to θ∗ w.p.1. In addition, from
Theorem 3-(2) and Lemma 9, lim→∞

∑N
i=1 π

i
tE[‖θit − θ∗‖22] = 0. Since πit is uniformly bounded

below by πmin > 0, as shown in Lemma 1, it follows that θit will converge to θ∗ in mean square for
all i ∈ V .

We now analyze the finite-time performance of equation 1. In the sequel, we use K to denote the
dimension of each θit, i.e., θit ∈ RK for all i ∈ V .

E.2.1 FIXED STEP-SIZE

We first consider the fixed step-size case and begin with validation of two “convergence rates” in
Theorem 3.

Lemma 3 Both ε and (1− 0.9α
γmax

) lie in the interval (0, 1).

Proof of Lemma 3: Since 0 < α < K1 = min{ζ1, γmax

0.9 } as imposed in Theorem 3, we have
0 < α < ζ1 and 0 < α < γmax

0.9 . The latter immediately implies that 1 − 0.9α
γmax

∈ (0, 1). From
Remark 5, ε is monotonically increasing for α > 0. In addition, from the definition of ζ1 in Section A
that if α = ζ1, then ε = 1. Since 0 < α < ζ1, it follows that 0 < ε < 1.

To proceed, we need the following derivation and lemmas.

Let Yt = Θt − 1N 〈θ〉>t = (I − 1Nπ
>
t )Θt. For any t ≥ s ≥ 0, let Ws:t = WtWt−1 · · ·Ws. Then,

Yt+1 = Θt+1 − 1N 〈θ〉>t+1

= WtΘt + αWtΘtA
>(Xt) + αB(Xt)− 1N (〈θ〉>t + α〈θ〉>t A>(Xt) + απ>t+1B(Xt))

= Wt(I − 1Nπ
>
t )Θt + αWt(I − 1Nπ

>
t )ΘtA

>(Xt) + α(I − 1Nπ
>
t+1)B(Xt)

= WtYt + αWtYtA
>(Xt) + α(I − 1Nπ

>
t+1)B(Xt). (31)

For simplicity, let Y it be the i-th column of matrix Y >t . Then,

Y it+1 =

N∑
j=1

wijt Y
j
t + αA(Xt)

N∑
j=1

wijt Y
j
t + α

(
bi(Xt)−B>(Xt)πt+1

)
. (32)

1On page 1289 of Kushner & Yin (1987), it says that the idea in Kushner (1983) can be adapted to get the
w.p.1 convergence result.
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From equation 31, we have

Yt+L = Wt+L−1Yt+L−1(I + αA>(Xt+L−1)) + α(I − 1Nπ
>
t+L)B(Xt+L−1)

= Wt+L−1Wt+L−2Yt+L−2(I + αA>(Xt+L−2))(I + αA>(Xt+L−1))

+ αWt+L−1(I − 1Nπ
>
t+L−1)B(Xt+L−2)(I + αA>(Xt+L−1))

+ α(I − 1Nπ
>
t+L)B(Xt+L−1)

= Wt:t+L−1Yt(I + αA>(Xt)) · · · (I + αA>(Xt+L−1)) + α(I − 1Nπ
>
t+L)B(Xt+L−1)

+ α

t+L−2∑
k=t

Wk+1:t+L−1(I − 1Nπ
>
k+1)B(Xk)

(
Πt+L−1
j=k+1(I + αA>(Xj))

)
, (33)

and

Y it+L =
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t + αb̂it+L,

where

b̂it+L = (bi(Xt+L−1)−B(Xt+L−1)>πt+L)

+

t+L−2∑
k=t

(
Πt+L−1
j=k+1(I + αA(Xj))

) N∑
j=1

wijk+1:t+L−1(bj(Xk)−B(Xk)>πk+1).

Lemma 4 Suppose that Assumption 1 holds and {Gt} is uniformly strongly connected by sub-
sequences of length L. Then, for all t ≥ 0,

N∑
i=1

πit+L

N∑
j=1

N∑
k=1

wijt:t+L−1w
ik
t:t+L−1‖Y

j
t − Y kt ‖22 ≥

πminβ
2L

δmax

N∑
i=1

πit‖Y it ‖22,

where β > 0 and πmin > 0 are given in Assumption 1 and Lemma 1, respectively.

Proof of Lemma 4: We first consider the case when K = 1, i.e., Y it ∈ R,∀i. From Lemma 1, we
have

N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22

≥ πmin

N∑
i=1

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22.

Let j∗ and l∗ be the indices such that

|Y j
∗

t − Y l
∗

t | = max
1≤j,l≤N

|Y jt − Y lt |.

From the definition of Yt, Y
j
t − Y lt = θjt − θlt for all j, l ∈ V , which implies that

|Y j
∗

t − Y l
∗

t | = max
1≤j,l≤N

|Y jt − Y lt | = max
1≤j,l≤N

|θjt − θlt| = |θ
j∗

t − θl
∗

t |.

Since ∪t+L−1
k=t Gk is a strongly connected graph for all t ≥ 0, we can find a shortest path from

agent j∗ to agent l∗: (j0, j1), · · · , (jp−1, jp) with j0 = j∗, jp = l∗, and (jm−1, jm) is the edge of
graph ∪t+L−1

k=t Gk, for 1 ≤ m ≤ p, which implies that

N∑
i=1

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22

≥
N∑
i=1

p∑
m=1

w
ijm−1

t:t+L−1w
ijm
t:t+L−1(Y

jm−1

t − Y jmt )2. (34)
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Moreover, we have
N∑
i=1

w
ijm−1

t:t+L−1w
ijm
t:t+L−1 ≥ w

jm−1jm−1

t:t+L−1 w
jm−1jm
t:t+L−1 + w

jmjm−1

t:t+L−1w
jmjm
t:t+L−1 ≥ β

2L. (35)

Then, from Jensen’s inequality, equation 34 and equation 35, we have
N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22

≥ πmin

N∑
i=1

p∑
m=1

w
ijm−1

t:t+L−1w
ijm
t:t+L−1(Y

jm−1

t − Y jmt )2

≥ πminβ
2L

p
(Y j

∗

t − Y l
∗

t )2 =
πminβ

2L

δt
(θj
∗

t − θl
∗

t )2. (36)

For the case when K > 1, let Y ikt be the k-th entry of vector Y it . Then,
N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22

=

K∑
k=1

N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1(Y jkt − Y lkt )2.

For each entry k, we have
N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1(Y jkt − Y lkt )2 ≥ πminβ

2L

δmax
max

1≤j,l≤N
(θjkt − θlkt )2, (37)

where θikt is the k-th entry of vector θit. Moreover, let Θ·k
t be the k-th column of matrix Θt.

Since 2x1x2 ≤ x2
1 + x2

2, we have for any entry k = 1, . . . ,K,
N∑
i=1

πit(Y
ik
t )2 =

N∑
i=1

πit‖θikt − π>t Θ·k
t ‖22

≤ max
1≤i≤N

[
θikt − π>t Θ·k

t

]2
= max

1≤i≤N

[
π>t (1Nθ

ik
t −Θ·k

t )
]2

= max
1≤i≤N

 N∑
j=1

πjt (θ
ik
t − θ

jk
t )

2

= max
1≤i≤N

N∑
j=1

N∑
l=1

πjtπ
l
t(θ

ik
t − θ

jk
t )(θikt − θlkt )

≤ max
1≤i≤N

N∑
j=1

(πjt )
2(θikt − θ

jk
t )2 ≤ max

1≤i≤N

N∑
j=1

πjt (θ
ik
t − θ

jk
t )2

≤ max
1≤i≤N

max
1≤j≤N

(θikt − θ
jk
t )2.

Then, combining this inequality with equation 36 and equation 37, we have
K∑
k=1

N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1(Y jkt − Y lkt )2

≥ πminβ
2L

δmax

K∑
k=1

max
1≤j,l≤N

(θjkt − θlkt )2

=
πminβ

2L

δmax

K∑
k=1

N∑
i=1

πit(Y
ik
t )2 =

πminβ
2L

δmax

N∑
i=1

πit‖Y it ‖22.

This completes the proof.

15



Under review as a conference paper at ICLR 2022

Lemma 5 Suppose that Assumptions 1 and 2 hold and {Gt} is uniformly strongly connected by
sub-sequences of length L. Then, when α ∈ (0, ζ1), we have for all t ≥ τ(α),

N∑
i=1

πit‖θit − 〈θ〉t‖22 ≤ εqt
N∑
i=1

πimt
‖θimt

− 〈θ〉mt‖22 +
ζ2

1− ε
,

where ζ1 is defined in Appendix A, ε and ζ2 are defined in equation 6 and equation 12, respectively.

Proof of Lemma 5: Let Mt = diag(πt). Recall the update of Y it+L,

Y it+L =
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t + αb̂it+L.

Then, we have

‖Yt+L‖2Mt+L
=

N∑
i=1

πit+L‖Y it+L‖22

=

N∑
i=1

πit+L‖
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t ‖22 (38)

+ α2
N∑
i=1

πit+L‖b̂it+L‖22 (39)

+ 2α

N∑
i=1

πit+L(b̂it+L)>
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t . (40)

For equation 38, since 2(x1)>x2 = ‖x1‖22 + ‖x2‖22 − ‖x1 − x2‖22 and π>t = π>t+LWt:t+L−1, we
have

N∑
i=1

πit+L‖
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t ‖22

≤ (1 + αAmax)2L
N∑
i=1

πit+L‖
N∑
j=1

wijt:t+L−1Y
j
t ‖22

= (1 + αAmax)2L
N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1

1

2

[
‖Y jt ‖22 + ‖Y lt ‖22 − ‖Y

j
t − Y lt ‖22

]

= (1 + αAmax)2L

 N∑
i=1

πit‖Y it ‖22 −
1

2

N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22

 .
From Lemma 4, we have

N∑
i=1

πit+L

N∑
j=1

N∑
k=1

wijt:t+L−1w
ik
t:t+L−1‖Y

j
t − Y kt ‖22 ≥

πminβ
2L

δmax

N∑
i=1

πit‖Y it ‖22,

which implies that

N∑
i=1

πit+L‖
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t ‖22

≤ (1 + αAmax)2L(1− πminβ
2L

2δmax
)

N∑
i=1

πit‖Y it ‖22. (41)
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As for equation 39, since for any agent i we have ‖bi(Xt)−B>(Xt)πt+1‖2 ≤ 2bmax for all i, then

‖b̂it+L‖2 ≤ ‖(bi(Xt+L−1)−B(Xt+L−1)>πt+L)‖2

+

t+L−2∑
k=t

‖
(

Πt+L−1
j=k+1(I + αA(Xj))

)
‖2

N∑
j=1

wijk+1:t+L−1‖(b
j(Xk)−B(Xk)>πk+1)‖2

≤ 2bmax

L−1∑
j=0

(1 + αAmax)j ≤ 2bmax(1 + αAmax)L−1
L−1∑
j=0

1

(1 + αAmax)j

≤ 2bmax
(1 + αAmax)L − 1

αAmax
,

which implies that

α2
N∑
i=1

πit+L‖b̂it+L‖22 ≤
4b2max

A2
max

(
(1 + αAmax)L − 1

)2
. (42)

In addition, since for any vector x, there holds 2‖x‖2 ≤ 1 + ‖x‖22, then, for equation 40, we have

2α

N∑
i=1

πit+L(b̂it+L)>
(
Πt+L−1
k=t (I + αA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t

≤ 2α

N∑
i=1

πit+L‖b̂it+L‖2‖Πt+L−1
k=t (I + αA(Xk))‖2

N∑
j=1

wijt:t+L−1‖Y
j
t ‖2

≤ 4αbmax
(1 + αAmax)L − 1

αAmax
(1 + αAmax)L

N∑
i=1

πit‖Y it ‖2

≤ 2bmax
(1 + αAmax)L − 1

Amax
(1 + αAmax)L

(
N∑
i=1

πit‖Y it ‖22 + 1

)
. (43)

From equation 41–equation 43, we have

‖Yt+L‖2Mt+L

≤ (1 + αAmax)2L(1− πminβ
2L

2δmax
)

N∑
i=1

πit‖Y it ‖22 +
4b2max

A2
max

(
(1 + αAmax)L − 1

)2
+ 2bmax

(1 + αAmax)L − 1

Amax
(1 + αAmax)L

(
N∑
i=1

πit‖Y it ‖22 + 1

)

=

(
(1 + αAmax)2L(1− πminβ

2L

2δmax
) + 2bmax

(1 + αAmax)L − 1

Amax
(1 + αAmax)L

)
‖Yt‖2Mt

+
4b2max

A2
max

(
(1 + αAmax)L − 1

)2
+ 2bmax

(1 + αAmax)L − 1

Amax
(1 + αAmax)L.

From Lemma 3, 0 < ε < 1 when 0 < α < ζ1. With the definition of ε and ζ2 in equation 6 and
equation 12, we have

‖Yt+L‖2Mt+L
≤ ε‖Yt‖2Mt

+ ζ2 ≤ εqt+L‖Ymt‖2Mmt
+ ζ2

qt+L−1∑
k=0

εk

≤ εqt+L‖Ymt
‖2Mmt

+
ζ2

1− ε
,

which implies that
N∑
i=1

πit‖θit − 〈θ〉t‖22 ≤ εqt
N∑
i=1

πimt
‖θimt

− 〈θ〉mt
‖22 +

ζ2
1− ε

,

where qt and mt are defined in Theorem 3. This completes the proof.
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Lemma 6 Suppose that Assumptions 2 and 3 hold. If {Gt} is uniformly strongly connected, then
when the step-size α and corresponding mixing time τ(α) satisfy

0 < ατ(α) <
log 2

Amax
,

we have for any t ≥ τ(α),

‖〈θ〉t − 〈θ〉t−τ(α)‖2 ≤ 2αAmaxτ(α)‖〈θ〉t−τ(α)‖2 + 2ατ(α)bmax (44)

‖〈θ〉t − 〈θ〉t−τ(α)‖2 ≤ 6ατ(α)Amax‖〈θ〉t‖2 + 5ατ(α)bmax (45)

‖〈θ〉t − 〈θ〉t−τ(α)‖22 ≤ 72α2τ2(α)A2
max‖〈θ〉t‖22 + 50α2τ2(α)b2max ≤ 8‖〈θ〉t‖22 +

6b2max

A2
max

. (46)

Proof of Lemma 6: Recall the update of 〈θ〉t at equation 4 with αt = α for all t ≥ 0:

〈θ〉t+1 = 〈θ〉t + αA(Xt)〈θ〉t + αB(Xt)
>πt+1.

Then, we have

‖〈θ〉t+1‖2 ≤ ‖〈θ〉t‖2 + αAmax‖〈θ〉t‖2 + αbmax

≤ (1 + αAmax)‖〈θ〉t‖2 + αbmax.

By using (1 + x) ≤ exp(x), for all u ∈ [t− τ(α), t], we have

‖〈θ〉u‖2 ≤ (1 + αAmax)u−t+τ(α)‖〈θ〉t−τ(α)‖2 + αbmax

u−1∑
l=t−τ(α)

(1 + αAmax)u−1−l

≤ (1 + αAmax)τ(α)‖〈θ〉t−τ(α)‖2 + αbmax

u−1∑
l=t−τ(α)

(1 + αAmax)u−1−t+τ(α)

≤ exp(ατ(α)Amax)‖〈θ〉t−τ(α)‖2 + ατ(α)bmax exp(ατ(α)Amax).

Since we have ατ(α)Amax ≤ log 2 < 1
3 , then exp(ατ(α)Amax) ≤ 2, which meas that

‖〈θ〉u‖2 ≤ 2‖〈θ〉t−τ(α)‖2 + 2ατ(α)bmax.

Thus, we can use this to prove equation 44 for all t ≥ τ(α), i.e.,

‖〈θ〉t − 〈θ〉t−τ(α)‖2 ≤
t−1∑

u=t−τ(α)

‖〈θ〉u+1 − 〈θ〉u‖2

≤ αAmax

t−1∑
u=t−τ(α)

‖〈θ〉u‖2 + ατ(α)bmax

≤ αAmax

t−1∑
u=t−τ(α)

(
2‖〈θ〉t−τ(α)‖2 + 2ατ(α)bmax

)
+ ατ(α)bmax

≤ 2ατ(α)Amax‖〈θ〉t−τ(α)‖2 + 2α2τ2(α)Amaxbmax + ατ(α)bmax

≤ 2ατ(α)Amax‖〈θ〉t−τ(α)‖2 +
5

3
ατ(α)bmax

≤ 2ατ(α)Amax‖〈θ〉t−τ(α)‖2 + 2ατ(α)bmax.

Moreover, we can prove equation 45 by using the equation above for all t ≥ τ(α) as follows:

‖〈θ〉t − 〈θ〉t−τ(α)‖2 ≤ 2ατ(α)Amax‖〈θ〉t−τ(α)‖2 +
5

3
ατ(α)bmax

≤ 2

3
‖〈θ〉t − 〈θ〉t−τ(α)‖2 + 2ατ(α)Amax‖〈θ〉t‖2 +

5

3
ατ(α)bmax

≤ 6ατ(α)Amax‖〈θ〉t‖2 + 5ατ(α)bmax.
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Next, using the inequality (x+y)2 ≤ 2x2+y2 for all x, y, we can show equation 46 with equation 45,
i.e.,

‖〈θ〉t − 〈θ〉t−τ(α)‖22 ≤ 72α2τ2(α)A2
max‖〈θ〉t‖22 + 50α2τ2(α)b2max

≤ 8‖〈θ〉t‖22 +
6b2max

A2
max

,

where we use ατ(α)Amax <
1
3 in the last inequality.

Lemma 7 Let Ft = σ(Xk, k ≤ t) be a σ-algebra on {Xt}. Suppose that Assumptions 2–4 and 6
hold. If {Gt} is uniformly strongly connected, then when

0 < α <
log 2

Amaxτ(α)
,

we have for any t ≥ τ(α),∣∣E [(〈θ〉t − θ∗)>(P + P>)
(
A(Xt)〈θ〉t +B(Xt)

>πt+1 −A〈θ〉t − b
)
| Ft−τ(α)

]∣∣
≤ αγmax

(
72 + 456τ(α)A2

max + 84τ(α)Amaxbmax

)
E
[
‖〈θ〉t‖22 | Ft−τ(α)

]
+ αγmax

[
2 + 4‖θ∗‖22 +

48b2max

A2
max

+ τ(α)A2
max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+
48bmax

Amax

(
bmax

Amax
+ 1

)2

+
87b2max

A2
max

+
12bmax

Amax

)]

+ 2γmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(α)] +

6b2max

A2
max

+ ‖θ∗‖22
)
.

Proof of Lemma 7: Note that for all t ≥ τ(α), we have

|E[(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b) | Ft−τ(α)]|

≤ |E[(〈θ〉t − θ∗)>(P + P>)(A(Xt)−A)〈θ〉t | Ft−τ(α)]|
+ |E[(〈θ〉t − θ∗)>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(α)]|
≤ |E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(A(Xt)−A)〈θ〉t−τ(α) | Ft−τ(α)]| (47)

+ |E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(α)) | Ft−τ(α)]| (48)

+ |E[(〈θ〉t − 〈θ〉t−τ(α))
>(P + P>)(A(Xt)−A)〈θ〉t−τ(α) | Ft−τ(α)]| (49)

+ |E[(〈θ〉t − 〈θ〉t−τ(α))
>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(α)) | Ft−τ(α)]| (50)

+ |E[(〈θ〉t − 〈θ〉t−τ(α))
>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(α)]| (51)

+ |E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(B(Xt)
>πt+1 − b) | Ft−τ(α)]|. (52)

First, by using the mixing time in Assumption 3, we can get the bound for equation 47 and equa-
tion 52 for all t ≥ τ(α) as follows:

|E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(A(Xt)−A)〈θ〉t−τ(α) | Ft−τ(α)]|
≤ |(〈θ〉t−τ(α) − θ∗)>(P + P>)E[A(Xt)−A | Ft−τ(α)]〈θ〉t−τ(α)|
≤ 2αγmaxE[‖〈θ〉t−τ(α) − θ∗‖2‖〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ αγmaxE[‖〈θ〉t−τ(α) − θ∗‖22 + ‖〈θ〉t−τ(α)‖22 | Ft−τ(α)]

≤ αγmaxE[2‖θ∗‖22 + 3‖〈θ〉t−τ(α)‖22 | Ft−τ(α)]

≤ 6αγmaxE[‖〈θ〉t − 〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 6αγmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 2αγmax‖θ∗‖22

≤ 54αγmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 36αγmax(
bmax

Amax
)2 + 2αγmax‖θ∗‖22, (53)
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where in the last inequality, we use equation 44 from Lemma 6. Then, from the definition of π∞ in
Assumption 6,
|E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(α)]|

≤ |E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(

N∑
i=1

πit+1(bi(Xt)− bi) +

N∑
i=1

(πit+1 − πi∞)bi) | Ft−τ(α)]|

≤ |(〈θ〉t−τ(α) − θ∗)>(P + P>)(

N∑
i=1

πit+1E[bi(Xt)− bi | Ft−τ(α)] +

N∑
i=1

(πit+1 − πi∞)bi)|

≤ 2γmax(α+ ηt+1

√
Nbmax)E[‖〈θ〉t−τ(α) − θ∗‖2 | Ft−τ(α)]

≤ 2γmax(α+ ηt+1

√
Nbmax)

(
E[‖〈θ〉t−τ(α)‖2 | Ft−τ(α)] + ‖θ∗‖2

)
≤ 2γmax(α+ ηt+1

√
Nbmax)

(
1 +

1

2
E[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] +

1

2
‖θ∗‖22

)
≤ 2γmax(α+ ηt+1

√
Nbmax)

(
1 + E[‖〈θ〉t − 〈θ〉t−τ(α)‖22 + ‖〈θ〉t‖22 | Ft−τ(α)] + ‖θ∗‖22

)
≤ 2γmax(α+ ηt+1

√
Nbmax)

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(α)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
, (54)

where we also use equation 44 from Lemma 6 in the last inequality.

Next, by using Assumption 2, equation 44 and equation 46, we have
|E[(〈θ〉t−τ(α) − θ∗)>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(α)) | Ft−τ(α)]|
≤ 4γmaxAmaxE[‖〈θ〉t−τ(α) − θ∗‖2‖〈θ〉t − 〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 4γmaxAmaxE[‖〈θ〉t−τ(α)‖2‖〈θ〉t − 〈θ〉t−τ(α)‖2 | Ft−τ(α)]

+ 4γmaxAmax‖θ∗‖2E[‖〈θ〉t − 〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 8ατ(α)γmaxA
2
maxE[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 8ατ(α)γmaxAmaxbmax‖θ∗‖2

+ 8ατ(α)γmaxA
2
max

(
bmax

Amax
+ ‖θ∗‖2

)
E[‖〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 8ατ(α)γmaxA
2
maxE[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 8ατ(α)γmaxAmaxbmax‖θ∗‖2

+ 4ατ(α)γmaxA
2
maxE[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 4ατ(α)γmaxA

2
max

(
bmax

Amax
+ ‖θ∗‖2

)2

≤ 12ατ(α)γmaxA
2
maxE[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 8ατ(α)γmax (bmax +Amax‖θ∗‖2)

2

≤ 24ατ(α)γmaxA
2
maxE[‖〈θ〉t − 〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 8ατ(α)γmax (bmax +Amax‖θ∗‖2)

2

+ 24ατ(α)γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(α)]

≤ 216ατ(α)γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(α)] + 144ατ(α)γmaxb

2
max

+ 8ατ(α)γmax (bmax +Amax‖θ∗‖2)
2

≤ 216ατ(α)γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(α)] + 152ατ(α)γmax (bmax +Amax‖θ∗‖2)

2
. (55)

In additional, by using equation 44 and equation 46, we have
|E[(〈θ〉t − 〈θ〉t−τ(α))

>(P + P>)(A(Xt)−A)〈θ〉t−τ(α) | Ft−τ(α)]|
≤ 4γmaxAmaxE[‖〈θ〉t − 〈θ〉t−τ(α)‖2‖〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 8ατ(α)γmaxAmaxE[Amax‖〈θ〉t−τ(α)‖22 + bmax‖〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 4ατ(α)γmaxAmax(2Amax + bmax)E[‖〈θ〉t−τ(α)‖22 | Ft−τ(α)] + 4ατ(α)γmaxAmaxbmax

≤ 8ατ(α)γmaxAmax(2Amax + bmax)E[‖〈θ〉t − 〈θ〉t−τ(α)‖22 | Ft−τ(α)]

+ 8ατ(α)γmaxAmax(2Amax + bmax)E[‖〈θ〉t‖22 | Ft−τ(α)] + 4ατ(α)γmaxAmaxbmax

≤ 72ατ(α)γmaxAmax(2Amax + bmax)E[‖〈θ〉t‖22 | Ft−τ(α)]

+ 48ατ(α)γmaxAmaxbmax(
bmax

Amax
+ 1)2. (56)
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Moreover, we can get the bound for equation 50 by using equation 46 as follows:

|E[(〈θ〉t − 〈θ〉t−τ(α))
>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(α)) | Ft−τ(α)]|

≤ 4γmaxAmaxE[‖〈θ〉t − 〈θ〉t−τ(α)‖22 | Ft−τ(α)]|
≤ 4γmaxAmaxE[72α2τ2(α)A2

max‖〈θ〉t‖22 + 50α2τ2(α)b2max | Ft−τ(α)]

≤ 96ατ(α)A2
maxγmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 67ατ(α)b2maxγmax. (57)

Finally, using equation 45 we can get the bound for equation 51:

|E[(〈θ〉t − 〈θ〉t−τ(α))
>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(α)]|
≤ 4γmaxbmaxE[‖〈θ〉t − 〈θ〉t−τ(α)‖2 | Ft−τ(α)]

≤ 4γmaxbmaxE[6ατ(α)Amax‖〈θ〉t‖2 + 5ατ(α)bmax | Ft−τ(α)]

≤ 12ατ(α)γmaxAmaxbmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 12ατ(α)γmaxAmaxbmax + 20ατ(α)b2maxγmax.
(58)

Then, by using equation 53–equation 58, we have

|E[(〈θ〉>t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b) | Ft−τ(α)]|

≤ 54αγmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 36αγmax(
bmax

Amax
)2 + 2αγmax‖θ∗‖22

+ 216ατ(α)γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(α)] + 152ατ(α)γmax (bmax +Amax‖θ∗‖2)

2

+ 72ατ(α)γmaxAmax(2Amax + bmax)E[‖〈θ〉t‖22 | Ft−τ(α)]

+ 48ατ(α)γmaxAmaxbmax(
bmax

Amax
+ 1)2 + 20ατ(α)b2maxγmax

+ 96ατ(α)A2
maxγmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 67ατ(α)b2maxγmax

+ 12ατ(α)γmaxAmaxbmaxE[‖〈θ〉t‖22 | Ft−τ(α)] + 12ατ(α)γmaxAmaxbmax

+ 2γmax(α+ ηt+1

√
Nbmax)

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(α)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
≤ αγmax

(
72 + 456τ(α)A2

max + 84τ(α)Amaxbmax

)
E[‖〈θ〉t‖22 | Ft−τ(α)]

+ αγmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + τ(α)A2

max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+ 48
bmax

Amax
(
bmax

Amax
+ 1)2 + 87(

bmax

Amax
)2 + 12

bmax

Amax

)]
+ 2γmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(α)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
. (59)

This completes the proof.

Lemma 8 Suppose that Assumptions 2–4 and 6 hold. Then, when

0 < α < min

{
log 2

Amaxτ(α)
,

0.1

K2γmax

}
,
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we have for any t ≥ T1,

E[‖〈θ〉t+1 − θ∗‖22] ≤
(

1− 0.9α

γmax

)t−T1 γmax

γmin
E
[
‖〈θ〉T1

− θ∗‖22
]

+
αζ3γ

2
max

0.9γmin

+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k

≤
(

1− 0.9α

γmax

)t+1−T1 γmax

γmin
(4 exp {2αAmaxT1}+ 2)E[‖〈θ〉0 − θ∗‖22]

+ 4

(
1− 0.9α

γmax

)t+1−T1 γmax

γmin
exp {2αAmaxT1} (‖θ∗‖2 +

bmax

Amax
)2

+
αζ3γ

2
max

0.9γmin
+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k.

where ζ3, ζ4 and K2 are defined inequation 13, equation 14 and equation 20, respectively.

Proof of Lemma 8: Let H(〈θ〉t) = (〈θ〉t − θ∗)>P (〈θ〉t − θ∗). From Assumption 4, we know that

γmin‖〈θ〉t − θ∗‖22 ≤ H(〈θ〉t) ≤ γmax‖〈θ〉t − θ∗‖22.

Moreover, from Assumption 2, for all t ≥ 0 we have

H(〈θ〉t+1)

= (〈θ〉t+1 − θ∗)>P (〈θ〉t+1 − θ∗)
= (〈θ〉t + αA(Xt)〈θ〉t + αB(Xt)

>πt+1 − θ∗)>P (〈θ〉t + αA(Xt)〈θ〉t + αB(Xt)
>πt+1 − θ∗)

= (〈θ〉t − θ∗)>P (〈θ〉t − θ∗) + α2(A(Xt)〈θ〉t)>P (A(Xt)〈θ〉t)
+ α2(B(Xt)

>πt+1)>P (B(Xt)
>πt+1) + α2(A(Xt)〈θ〉t)>(P + P>)(B(Xt)

>πt+1)

+ α(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b)

+ α(〈θ〉t − θ∗)>P (A〈θ〉t + b) + α(A〈θ〉t + b)>P (〈θ〉t − θ∗)
= H(〈θ〉t) + α2(A(Xt)〈θ〉t)>P (A(Xt)〈θ〉t)

+ α2(B(Xt)
>πt+1)>P (B(Xt)

>πt+1) + α2(A(Xt)〈θ〉t)>(P + P>)(B(Xt)
>πt+1)

+ α(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b)

+ α(〈θ〉t − θ∗)>(PA+A>P )(〈θ〉t − θ∗), (60)

where we use the fact that Aθ∗ + b = 0 on the last equality.
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Next, we can take expectation on both sides of equation 60. From Assumption 4 and Lemma 7, for
t ≥ T1 we have

E[H(〈θ〉t+1)]

= E[H(〈θ〉t)] + α2E[(A(Xt)〈θ〉t)>P (A(Xt)〈θ〉t)]− αE[‖〈θ〉t − θ∗‖22]

+ α2E[(B(Xt)
>πt+1)>P (B(Xt)

>πt+1)] + α2E[(A(Xt)〈θ〉t)>(P + P>)(B(Xt)
>πt+1)]

+ αE[(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b)]

≤ E[H(〈θ〉t)]− αE[‖〈θ〉t − θ∗‖22] + α2A2
maxγmaxE[‖〈θ〉t‖22] + 2α2AmaxbmaxγmaxE[‖〈θ〉t‖2]

+ α2b2maxγmax + α2γmax

(
72 + 456τ(α)A2

max + 84τ(α)Amaxbmax

)
E[‖〈θ〉t‖22]

+ α2γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + τ(α)A2

max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+ 48
bmax

Amax
(
bmax

Amax
+ 1)2 + 87(

bmax

Amax
)2 + 12

bmax

Amax

)]
+ 2αγmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖22] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
≤ E[H(〈θ〉t)]− αE[‖〈θ〉t − θ∗‖22] + 2α2A2

maxγmaxE[‖〈θ〉t‖22] + 2α2b2maxγmax

+ α2γmax

(
72 + 456τ(α)A2

max + 84τ(α)Amaxbmax

)
E[‖〈θ〉t‖22]

+ α2γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + τ(α)A2

max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+ 48
bmax

Amax
(
bmax

Amax
+ 1)2 + 87(

bmax

Amax
)2 + 12

bmax

Amax

)]
+ 2αγmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖2] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
.

Since E[‖〈θ〉t‖22] ≤ 2E[‖〈θ〉t − θ∗‖22] + 2‖θ∗‖22, we have

E[H(〈θ〉t+1)]

≤ E[H(〈θ〉t)]− αE[‖〈θ〉t − θ∗‖22] + 2α2b2maxγmax

+ α2γmax

(
72 + 2A2

max + 456τ(α)A2
max + 84τ(α)Amaxbmax

)
(2E[‖〈θ〉t − θ∗‖22] + 2‖θ∗‖22)

+ α2γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + τ(α)A2

max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+ 48
bmax

Amax
(
bmax

Amax
+ 1)2 + 87(

bmax

Amax
)2 + 12

bmax

Amax

)]
+ 2αγmaxηt+1

√
Nbmax

(
1 + 18E[‖〈θ〉t − θ∗‖22] + 6(

bmax

Amax
)2 + 19‖θ∗‖22

)
≤ E[H(〈θ〉t)]

+
(
−α+ 2α2γmax

(
72 + 2A2

max + 456τ(α)A2
max + 84τ(α)Amaxbmax

))
E[‖〈θ〉t − θ∗‖22]

+ 2α2γmax

(
72 + 2A2

max + 456τ(α)A2
max + 84τ(α)Amaxbmax

)
‖θ∗‖22

+ α2γmax

[
2 + 2b2max + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + τ(α)A2

max

(
152

(
bmax

Amax
+ ‖θ∗‖2

)2

+ 48
bmax

Amax
(
bmax

Amax
+ 1)2 + 87(

bmax

Amax
)2 + 12

bmax

Amax

)]
+ 2αγmaxηt+1

√
Nbmax

(
1 + 18E[‖〈θ〉t − θ∗‖22] + 6(

bmax

Amax
)2 + 19‖θ∗‖22

)
≤ E[H(〈θ〉t)] +

(
−α+ α2γmaxK2 + 36αηt+1

√
Nbmaxγmax

)
E[‖〈θ〉t − θ∗‖22]

+ α2ζ3γmax + αγmaxηt+1ζ4.
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From Lemma 3, 1− 0.9α
γmax

∈ (0, 1). In addition, from the definition of T1 and α < 0.1
K2γmax

, we have

E[H(〈θ〉t+1)]

≤ E[H(〈θ〉t)]− 0.9αE[‖〈θ〉t − θ∗‖22] + α2ζ3γmax + αγmaxηt+1ζ4

≤
(

1− 0.9α

γmax

)
E[H(〈θ〉t)] + α2ζ3γmax + αγmaxηt+1ζ4

≤
(

1− 0.9α

γmax

)t+1−T1

E[H(〈θ〉T1
)] + α2ζ3γmax

t∑
k=T1

(1− 0.9α

γmax
)t−k

+ αγmaxζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k

≤
(

1− 0.9α

γmax

)t+1−T1

E[H(〈θ〉T1
)] +

αζ3γ
2
max

0.9
+ αγmaxζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k, (61)

which implies that

E[‖〈θ〉t+1 − θ∗‖22]

≤ 1

γmin
E[H(〈θ〉t+1)]

≤
(

1− 0.9α

γmax

)t+1−T1 γmax

γmin
E[‖〈θ〉T1 − θ∗‖22] +

αζ3γ
2
max

0.9γmin

+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k. (62)

Next, we consider the bound for E[‖〈θ〉T1 − θ∗‖22]. Since 1 + x ≤ exp{x} for any x, we have for
any t,

‖〈θ〉t+1 − 〈θ〉0‖2
= ‖〈θ〉t − 〈θ〉0 + αA(Xt)(〈θ〉t − 〈θ〉0) + αB(Xt)

>πt+1 + αA(Xt)〈θ〉0‖2
≤ (1 + αAmax)‖〈θ〉t − 〈θ〉0‖2 + α (Amax‖〈θ〉0‖2 + bmax)

≤ α (Amax‖〈θ〉0‖2 + bmax)

t∑
l=0

(1 + αAmax)
l

≤ (Amax‖〈θ〉0‖2 + bmax)
(1 + αAmax)

t+1

Amax

≤
(
‖〈θ〉0 − θ∗‖2 + ‖θ∗‖2 +

bmax

Amax

)
exp {αAmax(t+ 1)} ,

which implies that

‖〈θ〉T1 − 〈θ〉0‖2 ≤
(
‖〈θ〉0 − θ∗‖2 + ‖θ∗‖2 +

bmax

Amax

)
exp {αAmaxT1} .

Then, we have

E[‖〈θ〉T1
− θ∗‖22] ≤ 2‖〈θ〉T1

− 〈θ〉0‖22 + 2‖〈θ〉0 − θ∗‖22
≤ (4 exp {2αAmaxT1}+ 2)E[‖〈θ〉0 − θ∗‖22]

+ 4 exp {2αAmaxT1} (‖θ∗‖2 +
bmax

Amax
)2. (63)

24



Under review as a conference paper at ICLR 2022

From equation 62 and equation 63, we have

E[‖〈θ〉t+1 − θ∗‖22] ≤
(

1− 0.9α

γmax

)t+1−T1 γmax

γmin
(4 exp {2αAmaxT1}+ 2)E[‖〈θ〉0 − θ∗‖22]

+ 4

(
1− 0.9α

γmax

)t+1−T1 γmax

γmin
exp {2αAmaxT1} (‖θ∗‖2 +

bmax

Amax
)2

+
αζ3γ

2
max

0.9γmin
+
γmax

γmin
αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k.

This completes the proof.

We are now in a position to prove the fixed step-size case in Theorem 3.

Proof of Case 1) in Theorem 3: From Lemmas 5 and 8, for any t ≥ T1, we have

N∑
i=1

πitE[‖θit − θ∗‖22] ≤ 2

N∑
i=1

πitE[‖θit − 〈θ〉t‖22] + 2E[‖〈θ〉t − θ∗‖22]

≤ 2εqt
N∑
i=1

πimt
E[‖θimt

− 〈θ〉mt
‖22] +

2ζ2
1− ε

+
2αζ3γ

2
max

0.9γmin

+
γmax

γmin
2αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k

+

(
1− 0.9α

γmax

)t−T1 γmax

γmin
(8 exp {2αAmaxT1}+ 4)E[‖〈θ〉0 − θ∗‖22]

+ 8

(
1− 0.9α

γmax

)t−T1 γmax

γmin
exp {2αAmaxT1} (‖θ∗‖2 +

bmax

Amax
)2

≤ 2εqt
N∑
i=1

πimt
E
[∥∥θimt

− 〈θ〉mt

∥∥2

2

]
+ C1

(
1− 0.9α

γmax

)t−T1

+ C2

+
γmax

γmin
2αζ4

t−T1∑
k=0

ηt+1−k(1− 0.9α

γmax
)k,

where C1 and C2 are defined in Appendix A.1. This completes the proof.

E.2.2 TIME-VARYING STEP-SIZE

In this subsection, we consider the time-varying step-size case and begin with a property of ηt.

Lemma 9 Suppose that Assumption 6 holds. Then, limt→∞ ηt = 0 and limt→∞
1
t+1

∑t
k=0 ηk = 0.

Proof of Lemma 9: From Assumption 6, we know that πt will converge to π∞, and thus ηt will
converge to 0. Next, we will prove that limt→∞

1
t+1

∑t
k=0 ηk = 0. For any positive constant c > 0,

there exists a positive integer T (c), depending on c, such that ∀t ≥ T (c), we have ηt < c. Thus,

1

t

t−1∑
k=0

ηk =
1

t

T (c)∑
k=0

ηk +
1

t

t−1∑
k=T (c)+1

ηk ≤
1

t

T (c)∑
k=0

ηk +
t− 1− T (c)

t
c.

Let t→∞ on both sides of the above inequality. Then, we have

lim
t→∞

1

t

t−1∑
k=0

ηk ≤ lim
t→∞

1

t

T (c)∑
k=0

ηk + lim
t→∞

t− 1− T (c)

t
c = c.
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Since the above argument holds for arbitrary positive c, then limt→∞
1
t+1

∑t
k=0 ηk = 0.

Recall the updates corresponding to the time-varying step-size case given in equation 3 and equa-
tion 4,

Θt+1 = WtΘt + αtWtΘtA(Xt)
> + αtB(Xt),

〈θ〉t+1 = 〈θ〉t + αtA(Xt)〈θ〉t + αtB(Xt)
>πt+1.

From equation 33, we get the update for Yt with the time-varying step-size as follows:

Yt+L = Wt:t+L−1Yt(I + αtA
>(Xt)) · · · (I + αt+L−1A

>(Xt+L−1))

+ αt+L−1(I − 1Nπ
>
t+L)B(Xt+L−1)

+

t+L−2∑
k=t

αkWk+1:t+L−1(I − 1Nπ
>
k+1)B(Xk)

(
Πt+L−1
j=k+1(I + αjA

>(Xj))
)
,

and

Y it+L =
(
Πt+L−1
k=t (I + αkA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t + b̃it+L,

where

b̃it+L = αt+L−1(bi(Xt+L−1)−B(Xt+L−1)>πt+L)

+

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(I + αjA(Xj))

) N∑
j=1

wijk+1:t+L−1(bj(Xk)−B(Xk)>πk+1).

To prove the theorem, we need the following lemmas.

Lemma 10 Suppose that Assumptions 1 and 2 hold and {Gt} is uniformly strongly connected by
sub-sequences of length L. Given αt and T2 defined in Theorem 3, for all t ≥ T2L,

N∑
i=1

πit‖θit − 〈θ〉t‖22

≤ εqt−T2

N∑
i=1

πiT2L+mt
‖θiT2L+mt

− 〈θ〉T2L+mt
‖22 +

ζ6
1− ε

(
ε

qt−1
2 αmt + αd qt−1

2 eL+mt

)
≤ εqt−T2

N∑
i=1

πiT2L+mt
‖θiT2L+mt

− 〈θ〉T2L+mt‖22 +
ζ6

1− ε

(
α0ε

qt−1
2 + αd qt−1

2 eL

)
,

where ε and ζ6 are defined in equation 6 and equation 16, respectively.

Proof of Lemma 10: Similar to the proof of Lemma 5, we have

‖Yt+L‖2Mt+L
=

N∑
i=1

πit+L‖
(
Πt+L−1
k=t (I + αkA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t ‖22 (64)

+

N∑
i=1

πit+L‖b̃it+L‖22 (65)

+ 2

N∑
i=1

πit+L(b̃it+L)>
(
Πt+L−1
k=t (I + αkA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t . (66)
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By using Lemma 4, the item given by equation 64 can be bounded as follows:

N∑
i=1

πit+L‖
(
Πt+L−1
k=t (I + αkA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t ‖22

≤ Πt+L−1
k=t (1 + αkAmax)2

 N∑
i=1

πit‖Y it ‖22 −
1

2

N∑
i=1

πit+L

N∑
j=1

N∑
l=1

wijt:t+L−1w
il
t:t+L−1‖Y

j
t − Y lt ‖22


≤ Πt+L−1

k=t (1 + αkAmax)2(1− πminβ
2L

2δmax
)

N∑
i=1

πit‖Y it ‖22. (67)

Since ‖bi(Xt)−B(Xt)
>πt+1‖2 ≤ 2bmax holds for all i, then

‖b̃it+L‖2
≤ αt+L−1‖(bi(Xt+L−1)−B(Xt+L−1)>πt+L)‖2

+

t+L−2∑
k=t

αk‖
(

Πt+L−1
j=k+1(I + αjA(Xj))

)
‖2

N∑
j=1

wijk+1:t+L−1‖(b
j(Xk)−B(Xk)>πk+1)‖2

≤ 2bmax

[
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

)]
.

Then, we can bound the item given by equation 65 as follows:

N∑
i=1

πit+L‖b̃it+L‖22 ≤ 4b2max

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))2

. (68)

As for the item given by equation 66, we have

2

N∑
i=1

πit+L(b̃it+L)>
(
Πt+L−1
k=t (I + αkA(Xk))

) N∑
j=1

wijt:t+L−1Y
j
t

≤ 2

N∑
i=1

πit+L‖b̃it+L‖2‖Πt+L−1
k=t (I + αkA(Xk))‖2

N∑
j=1

wijt:t+L−1‖Y
j
t ‖2

≤ 2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
×(

N∑
i=1

πit‖Y it ‖22 + 1

)
. (69)
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From equation 67–equation 69, we have

‖Yt+L‖2Mt+L

≤ Πt+L−1
k=t (1 + αkAmax)2(1− πminβ

2L

2δmax
)

N∑
i=1

πit‖Y it ‖22

+ 4b2max

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))2

+ 2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
×

(
N∑
i=1

πit‖Y it ‖22 + 1

)

=

(
2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
+ Πt+L−1

k=t (1 + αkAmax)2(1− πminβ
2L

2δmax
)

)
‖Yt‖2Mt

+ 4b2max

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))2

+ 2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
= εt‖Yt‖2Mt

+ 4b2max

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))2

+ 2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
,

where

εt = 2bmax

(
αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

))(
Πt+L−1
k=t (I + αkAmax)

)
+ Πt+L−1

k=t (1 + αkAmax)2(1− πminβ
2L

2δmax
).

Since for all t ≥ T2L, we have αt ≤ α, then for t ≥ T2L we have 0 ≤ εt ≤ ε ≤ 1 and

αt+L−1 +

t+L−2∑
k=t

αk

(
Πt+L−1
j=k+1(1 + αjAmax)

)
≤
t+L−1∑
k=t

αk(1 + αAmax)t+L−k−1

≤ (1 + αAmax)L−1
t+L−1∑
k=t

αk.

Since we have
∑t+L−1
k=t αk ≤ Lαt ≤ Lα. Then, we can get

‖Yt+L‖2Mt+L

≤ ε‖Yt‖2Mt
+ 4b2max(1 + αAmax)2L−2

(
t+L−1∑
k=t

αk

)2

+ 2bmax(1 + αAmax)2L−1

(
t+L−1∑
k=t

αk

)
≤ ε‖Yt‖2Mt

+
(
4b2maxαL

2(1 + αAmax)2L−2 + 2bmaxL(1 + αAmax)2L−1
)
αt

≤ ε‖Yt‖2Mt
+ ζ6αt,
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where ε and ζ6 are defined in equation 6 and equation 16 respectively. Then,

‖Yt+L‖2Mt+L

≤ ε‖Yt‖2Mt
+ ζ6αt

≤ εqt+L−T2‖Ymt+T2L‖2Mmt+T2L
+ ζ6

qt∑
k=T2

εqt−kαkL+mt

≤ εqt+L−T2‖YT2L+mt‖2MT2L+mt
+ ζ6

b qt2 c∑
k=0

εqt−kαkL+mt +

qt∑
k=d qt2 e

εqt−kαkL+mt


≤ εqt+L−T2‖YT2L+mt

‖2MT2L+mt
+

ζ6
1− ε

(
ε

qt
2 αmt

+ αd qt2 eL+mt

)
,

which implies

N∑
i=1

πit‖θit − 〈θ〉t‖22

≤ εqt−T2

N∑
i=1

πiT2L+mt
‖θiT2L+mt

− 〈θ〉T2L+mt
‖22 +

ζ6
1− ε

(
ε

qt−1
2 αmt

+ αd qt−1
2 eL+mt

)
≤ εqt−T2

N∑
i=1

πiT2L+mt
‖θiT2L+mt

− 〈θ〉T2L+mt
‖22 +

ζ6
1− ε

(
α0ε

qt−1
2 + αd qt−1

2 eL

)
.

This completes the proof.

Lemma 11 Suppose that Assumptions 2 and 3 hold. When the step-size αt and corresponding
mixing time τ(αt) satisfy

0 < αtτ(αt) <
log 2

Amax
,

we have for any t ≥ T2L,

‖〈θ〉t − 〈θ〉t−τ(αt)‖2 ≤ 2Amax‖〈θ〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk + 2bmax

t−1∑
k=t−τ(αt)

αk, (70)

‖〈θ〉t − 〈θ〉t−τ(αt)‖2 ≤ 6Amax‖〈θ〉t‖2
t−1∑

k=t−τ(αt)

αk + 5bmax

t−1∑
k=t−τ(αt)

αk, (71)

‖〈θ〉t − 〈θ〉t−τ(αt)‖
2
2 ≤ 72α2

t−τ(αt)
τ2(αt)A

2
max‖〈θ〉t‖22 + 50α2

t−τ(αt)
τ2(αt)b

2
max

≤ 8‖〈θ〉t‖22 +
6b2max

A2
max

. (72)

Proof of Lemma 11: Recall the update of 〈θ〉t in equation 4:

〈θ〉t+1 = 〈θ〉t + αtA(Xt)〈θ〉t + αtB(Xt)
>πt+1.

Then, we have

‖〈θ〉t+1‖2 ≤ ‖〈θ〉t‖2 + αtAmax‖〈θ〉t‖2 + αtbmax ≤ (1 + αtAmax)‖〈θ〉t‖2 + αtbmax.
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Similar to the proof of Lemma 6, for all u ∈ [t− τ(αt), t], we have

‖〈θ〉u‖2

≤ Πu−1
k=t−τ(αt)

(1 + αkAmax)‖〈θ〉t−τ(αt)‖2 + bmax

u−1∑
k=t−τ(αt)

αkΠu−1
l=k+1(1 + αlAmax)

≤ exp{
u−1∑

k=t−τ(αt)

αkAmax}‖〈θ〉t−τ(αt)‖2 + bmax

u−1∑
k=t−τ(αt)

αk exp{
u−1∑
l=k+1

αlAmax}

≤ exp{αt−τ(αt)τ(αt)Amax}‖〈θ〉t−τ(αt)‖2 + bmax

u−1∑
k=t−τ(αt)

αk exp{αt−τ(αt)τ(αt)Amax}

≤ 2‖〈θ〉t−τ(αt)‖2 + 2bmax

u−1∑
k=t−τ(αt)

αk,

where we use αt−τ(αt)τ(αt)Amax ≤ log 2 < 1
3 in the last inequality. Thus, for all t ≥ T2L, we can

get equation 70 as follows:

‖〈θ〉t − 〈θ〉t−τ(αt)‖2

≤
t−1∑

k=t−τ(αt)

‖〈θ〉k+1 − 〈θ〉k‖2

≤ Amax

t−1∑
k=t−τ(αt)

αk‖〈θ〉k‖2 + bmax

t−1∑
k=t−τ(αt)

αk

≤ Amax

t−1∑
k=t−τ(αt)

αk

2‖〈θ〉t−τ(αt)‖2 + 2bmax

k−1∑
l=t−τ(αt)

αl

+ bmax

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
(
2Amaxτ(αt)αt−τ(αt) + 1

)
bmax

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
5

3
bmax

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk + 2bmax

t−1∑
k=t−τ(αt)

αk.

Moreover, by using the above inequality, we can get equation 71 for all t ≥ T2L as follows:

‖〈θ〉t − 〈θ〉t−τ(αt)‖2

≤ 2Amax‖〈θ〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
5

3
bmax

t−1∑
k=t−τ(αt)

αk

≤ 2Amaxτ(αt)αt−τ(αt)‖〈θ〉t − 〈θ〉t−τ(αt)‖2 + 2Amax‖〈θ〉t‖2
t−1∑

k=t−τ(αt)

αk

+
5

3
bmax

t−1∑
k=t−τ(αt)

αk

≤ 6Amax‖〈θ〉t‖2
t−1∑

k=t−τ(αt)

αk + 5bmax

t−1∑
k=t−τ(αt)

αk.
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Next, by using equation 71 and the inequality (x+y)2 ≤ 2x2+y2 for all x, y, we can get equation 72
as follows:

‖〈θ〉t − 〈θ〉t−τ(αt)‖
2
2 ≤ 72A2

max‖〈θ〉t‖22(

t−1∑
k=t−τ(αt)

αk)2 + 50b2max(

t−1∑
k=t−τ(αt)

αk)2

≤ 72α2
t−τ(αt)

τ2(αt)A
2
max‖〈θ〉t‖22 + 50α2

t−τ(αt)
τ2(αt)b

2
max

≤ 8‖〈θ〉t‖22 + 6(
bmax

Amax
)2,

where we use αt−τ(αt)τ(αt)Amax <
1
3 in the last inequality.

Lemma 12 Suppose that Assumptions 2–6 hold and {Gt} is uniformly strongly connected. When

0 < αt−τ(αt)τ(αt) <
log 2

Amax
,

we have for any t ≥ T2L,∣∣E [(〈θ〉t − θ∗)>(P + P>)
(
A(Xt)〈θ〉t +B(Xt)

>πt+1 −A〈θ〉t − b
)
| Ft−τ(αt)

]∣∣
≤ αt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax

)
E[‖〈θ〉t‖22 | Ft−τ(αt)]

+ αt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 +

48b2max

A2
max

+ 152 (bmax +Amax‖θ∗‖2)
2

+ 12Amaxbmax

+ 48Amaxbmax

(
bmax

Amax
+ 1

)2

+ 87b2max

]
+ 2γmaxηt+1

√
Nbmax

(
1 + 9E

[
‖〈θ〉t‖22 | Ft−τ(α)

]
+

6b2max

A2
max

+ ‖θ∗‖22
)
.

Proof of Lemma 12: Note that for all t ≥ T2L, we have

|E[(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b) | Ft−τ(αt)]|

≤ |E[(〈θ〉t − θ∗)>(P + P>)(A(Xt)−A)〈θ〉t | Ft−τ(αt)]|
+ |E[(〈θ〉t − θ∗)>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(αt)]|
≤ |E[(〈θ〉t−τ(αt) − θ

∗)>(P + P>)(A(Xt)−A)〈θ〉t−τ(αt) | Ft−τ(αt)]| (73)

+ |E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(αt)) | Ft−τ(αt)]| (74)

+ |E[(〈θ〉t − 〈θ〉t−τ(αt))
>(P + P>)(A(Xt)−A)〈θ〉t−τ(αt) | Ft−τ(αt)]| (75)

+ |E[(〈θ〉t − 〈θ〉t−τ(αt))
>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(αt)) | Ft−τ(αt)]| (76)

+ |E[(〈θ〉t − 〈θ〉t−τ(αt))
>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(αt)]| (77)

+ |E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(αt)]|. (78)

Similar to the proof of Lemma 7, by using the mixing time in Assumption 3, we can get the bound
for equation 73 and equation 78 for all t ≥ T2L:

|E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)〈θ〉t−τ(αt) | Ft−τ(αt)]|

≤ |(〈θ〉t−τ(αt) − θ
∗)>(P + P>)E[A(Xt)−A | Ft−τ(αt)]〈θ〉t−τ(αt)|

≤ 2αtγmaxE[‖〈θ〉t−τ(αt) − θ
∗‖2‖〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ αtγmaxE[‖〈θ〉t−τ(αt) − θ
∗‖22 + ‖〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

≤ αtγmaxE[2‖θ∗‖22 + 3‖〈θ〉t−τ(αt)‖
2
2 | Ft−τ(αt)]

≤ 6αtγmaxE[‖〈θ〉t − 〈θ〉t−τ(αt)‖
2
2 | Ft−τ(αt)] + 6αtγmaxE[‖〈θ〉t‖22 | Ft−τ(αt)] + 2αtγmax‖θ∗‖22

≤ 54αtγmaxE[‖〈θ〉t‖22 | Ft−τ(αt)] + 36αtγmax(
bmax

Amax
)2 + 2αtγmax‖θ∗‖22, (79)
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where in the last inequality, we use equation 72 from Lemma 11.

|E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(B(Xt)

>πt+1 − b) | Ft−τ(αt)]|

≤ |E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(

N∑
i=1

πit+1(bi(Xt)− bi) +

N∑
i=1

(πit+1 − πi∞)bi) | Ft−τ(αt)]|

≤ |(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(

N∑
i=1

πit+1E[bi(Xt)− bi | Ft−τ(αt)] +

N∑
i=1

(πit+1 − πi∞)bi)|

≤ 2γmax(αt + ηt+1

√
Nbmax)E[‖〈θ〉t−τ(αt) − θ

∗‖2 | Ft−τ(αt)]

≤ 2γmax(αt + ηt+1

√
Nbmax)

(
1 +

1

2
E[‖〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)] +

1

2
‖θ∗‖22

)
≤ 2γmax(αt + ηt+1

√
Nbmax)

(
1 + E[‖〈θ〉t−τ(αt) − 〈θ〉t‖

2
2 + ‖〈θ〉t‖22 | Ft−τ(αt)] + ‖θ∗‖22

)
≤ 2γmax(αt + ηt+1

√
Nbmax)

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(αt)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
, (80)

where in the last inequality we use equation 72.

Next, by using Assumption 2, equation 70 and equation 72, we have

|E[(〈θ〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(αt)) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ〉t−τ(αt) − θ
∗‖2‖〈θ〉t − 〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 4γmaxAmaxE[‖〈θ〉t−τ(αt)‖2‖〈θ〉t − 〈θ〉t−τ(αt)‖2 + ‖θ∗‖2‖〈θ〉t − 〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 8γmaxA
2
maxE[‖〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk + 8γmaxAmaxbmax‖θ∗‖2
t−1∑

k=t−τ(αt)

αk

+ 8γmaxA
2
max

(
bmax

Amax
+ ‖θ∗‖2

)
E[‖〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ γmaxA
2
max

(
12E[‖〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)] + 8

(
bmax

Amax
+ ‖θ∗‖2

)2
)

t−1∑
k=t−τ(αt)

αk

≤ 24γmaxA
2
maxE[‖〈θ〉t − 〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 24γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxA
2
max

(
bmax

Amax
+ ‖θ∗‖2

)2 t−1∑
k=t−τ(αt)

αk

≤ γmax

(
216A2

maxE[‖〈θ〉t‖22 | Ft−τ(αt)] + 152 (bmax +Amax‖θ∗‖2)
2
) t−1∑
k=t−τ(αt)

αk. (81)
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In additional, as for the bound of equation 75, by using equation 70 and equation 72, we have

|E[(〈θ〉t − 〈θ〉t−τ(αt))
>(P + P>)(A(Xt)−A)〈θ〉t−τ(αt) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ〉t − 〈θ〉t−τ(αt)‖2‖〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 8γmaxAmaxE[Amax‖〈θ〉t−τ(αt)‖
2
2 + bmax‖〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ 4γmaxAmax

(
(2Amax + bmax)E[‖〈θ〉t−τ(αt)‖

2
2 | Ft−τ(αt)] + bmax

) t−1∑
k=t−τ(αt)

αk

≤ 8γmaxAmax(2Amax + bmax)E[‖〈θ〉t − 〈θ〉t−τ(αt)‖
2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxAmax(2Amax + bmax)E[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 4γmaxAmaxbmax

t−1∑
k=t−τ(αt)

αk

≤ 72 γmaxAmax(2Amax + bmax)E[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 48γmaxAmaxbmax(
bmax

Amax
+ 1)2

t−1∑
k=t−τ(αt)

αk. (82)

Moreover, by using equation 72, we can get the bound for equation 76 as follows:

|E[(〈θ〉t − 〈θ〉t−τ(αt))
>(P + P>)(A(Xt)−A)(〈θ〉t − 〈θ〉t−τ(αt)) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ〉t − 〈θ〉t−τ(αt)‖
2
2 | Ft−τ(αt)]|

≤ 4γmaxAmaxE[72A2
max‖〈θ〉t‖22 + 50b2max | Ft−τ(αt)](

t−1∑
k=t−τ(αt)

αk)2

≤ 96A2
maxγmaxE[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk + 67b2maxγmax

t−1∑
k=t−τ(αt)

αk. (83)

Finally, we can get the bound of equation 77 by using equation 71:

|E[(〈θ〉t − 〈θ〉t−τ(αt))(P + P>)(B(Xt)
>πt+1 − b) | Ft−τ(αt)]|

≤ 4γmaxbmaxE[‖〈θ〉t − 〈θ〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 4γmaxbmaxE[6Amax‖〈θ〉t‖2 + 5bmax | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ γmax

(
12AmaxbmaxE[‖〈θ〉t‖22 | Ft−τ(αt)] + 12Amaxbmax + 20b2max

) t−1∑
k=t−τ(αt)

αk. (84)
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Then, by using equation 79–equation 84, we have

|E[(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b) | Ft−τ(αt)]|

≤ 54αtγmaxE[‖〈θ〉t‖22 | Ft−τ(αt)] + 36αtγmax(
bmax

Amax
)2 + 2αtγmax‖θ∗‖22

+ 216γmaxA
2
maxE[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 152γmax (bmax +Amax‖θ∗‖2)
2

t−1∑
k=t−τ(αt)

αk + 67b2maxγmax

t−1∑
k=t−τ(αt)

αk

+ 12 γmaxAmax(20Amax + 7bmax)E[‖〈θ〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 48γmaxAmaxbmax(
bmax

Amax
+ 1)2

t−1∑
k=t−τ(αt)

αk + (12Amaxbmax + 20b2max)γmax

t−1∑
k=t−τ(αt)

αk

+ 2γmax(αt + ηt+1

√
Nbmax)

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(αt)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
≤ αt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax

)
E[‖〈θ〉t‖22 | Ft−τ(αt)]

+ αt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + 152 (bmax +Amax‖θ∗‖2)

2
+ 12Amaxbmax

+ 48Amaxbmax(
bmax

Amax
+ 1)2 + 87b2max

]
+ 2γmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖22 | Ft−τ(α)] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
,

where we use αt ≤ αt−τ(αt) from Assumption 5 and τ(αt) ≥ 1 in the last inequality. This com-
pletes the proof.

Lemma 13 Under Assumptions 1–6, when the τ(αt)αt−τ(αt) ≤ min{ log 2
Amax

, 0.1
ζ5γmax

}, we have for
any t ≥ T2L,

E
[
‖〈θ〉t − θ∗‖22

]
≤ T2L

t

γmax

γmin
E[‖〈θ〉T2L − θ∗‖22] +

ζ7α0C log2( t
α0

)

t

γmax

γmin

+ α0ζ4
γmax

γmin

∑t
l=T2L

ηl

t
,

where T2 is defined in Appendix A.1, and ζ4, ζ5, ζ7 are defined in equation 14, equation 15, equa-
tion 17, respectively.

Proof of Lemma 13: Recall the update of 〈θ〉t in equation 4:

〈θ〉t+1 = 〈θ〉t + αtA(Xt)〈θ〉t + αtB(Xt)
>πt+1.
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Note that E[‖〈θ〉t‖22] ≤ 2E[‖〈θ〉t − θ∗‖22] + 2‖θ∗‖22 ≤ 2
γmin

E[H(〈θ〉t)] + 2‖θ∗‖22, then from equa-
tion 60 and Lemma 12, for t ≥ T2L we have

E[H(〈θ〉t+1)]

≤ E[H(〈θ〉t)]− αtE[‖〈θ〉t − θ∗‖22] + α2
tA

2
maxγmaxE[‖〈θ〉t‖22] + α2

t b
2
maxγmax

+ 2α2
tAmaxbmaxγmaxE[‖〈θ〉t‖2]

+ αtE[(〈θ〉t − θ∗)>(P + P>)(A(Xt)〈θ〉t +B(Xt)
>πt+1 −A〈θ〉t − b)]

≤ E[H(〈θ〉t)]− αtE[‖〈θ〉t − θ∗‖22] + 2α2
tA

2
maxγmaxE[‖〈θ〉t‖22] + 2α2

t b
2
maxγmax

+ αtαt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax

)
E[‖〈θ〉t‖22]

+ αtαt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + 152 (bmax +Amax‖θ∗‖2)

2

+ 12Amaxbmax + 48Amaxbmax(
bmax

Amax
+ 1)2 + 87b2max

]
+ 2αtγmaxηt+1

√
Nbmax

(
1 + 9E[‖〈θ〉t‖22] + 6(

bmax

Amax
)2 + ‖θ∗‖22

)
≤ E[H(〈θ〉t)] + 2αtαt−τ(αt)τ(αt)γmax

(
72 + 458A2

max + 84Amaxbmax

)
‖θ∗‖22

+
(
−αt + 2αtαt−τ(αt)τ(αt)γmax

(
72 + 458A2

max + 84Amaxbmax

))
E[‖〈θ〉t − θ∗‖22]

+ αtαt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 + 48(

bmax

Amax
)2 + 152 (bmax +Amax‖θ∗‖2)

2

+ 12Amaxbmax + 48Amaxbmax(
bmax

Amax
+ 1)2 + 89b2max

]
+ 2αtγmaxηt+1

√
Nbmax

(
1 + 18E[‖〈θ〉t − θ∗‖22] + 6(

bmax

Amax
)2 + 19‖θ∗‖22

)
≤ E[H(〈θ〉t)] +

(
−αt + αtαt−τ(αt)τ(αt)γmaxζ5 + 36αtγmaxηt+1

√
Nbmax

)
E[‖〈θ〉t − θ∗‖22]

+ αtαt−τ(αt)τ(αt)γmaxζ7 + αtγmaxηt+1ζ4,

where ζ4, ζ5 and ζ7 are defined in equation 14, equation 15 and equation 17, respectively. Moreover,
from αt = α0

t+1 , α0 ≥ γmax

0.9 and the definition of T2, we have for all t ≥ T2L

E[H(〈θ〉t+1)] ≤
(

1− 0.9αt
γmax

)
E[H(〈θ〉t)] + αtγmaxηt+1ζ4 + αtαt−τ(αt)τ(αt)γmaxζ7

≤ t

t+ 1
E[H(〈θ〉t)] + α0γmaxζ4

ηt+1

t+ 1
+

α2
0C log( t+1

α0
)γmaxζ7

(t+ 1)(t− τ(αt) + 1)

≤ T2L

t+ 1
E[H(〈θ〉T2L)] + α0γmaxζ4

t∑
l=T2L

ηl+1

l + 1
Πt
u=l+1

u

u+ 1

+ α2
0γmaxζ7

t∑
l=T2L

C log( l+1
α0

)

(l + 1)(l − τ(αl) + 1)
Πt
u=l+1

u

u+ 1

≤ T2L

t+ 1
E[H(〈θ〉T2L)] + α0γmaxζ4

∑t
l=T2L

ηl+1

t+ 1
+
ζ7α0γmaxC log2( t+1

α0
)

t+ 1

≤ T2L

t+ 1
E[H(〈θ〉T2L)] + α0γmaxζ4

∑t+1
l=T2L

ηl

t+ 1
+
ζ7α0γmaxC log2( t+1

α0
)

t+ 1
,

where we use

t∑
l=T2

2α0 log( l+1
α0

)

l + 1
≤ log2(

t+ 1

α0
)
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to get the last inequality. Then, we can get the bound of E[‖〈θ〉t+1 − θ∗‖22] as follows

E[‖〈θ〉t+1 − θ∗‖22] ≤ 1

γmin
E[H(〈θ〉t+1)]

≤ T2L

t+ 1

γmax

γmin
E[‖〈θ〉T2L − θ∗‖22] +

ζ7α0C log2( t+1
α0

)

t+ 1

γmax

γmin

+ α0ζ4
γmax

γmin

∑t+1
l=T2L

ηl

t+ 1
.

This completes the proof.

We are now in a position to prove the time-varying step-size case in Theorem 3.

Proof of Case 2) in Theorem 3: From Lemmas 10 and 13, for any t ≥ T2L, we have

N∑
i=1

πitE[‖θit − θ∗‖22] ≤ 2

N∑
i=1

πitE[‖θit − 〈θ〉t‖22] + 2E[‖〈θ〉t − θ∗‖22]

≤ 2εqt−T2

N∑
i=1

πiT2L+mt
E[‖θiT2L+mt

− 〈θ〉T2L+mt
‖22]

+
2T2L

t

γmax

γmin
E[‖〈θ〉T2L − θ∗‖22] +

2ζ7α0C log2( t
α0

)

t

γmax

γmin

+ 2α0ζ4
γmax

γmin

∑t
l=T2L

ηl

t
+

2ζ6
1− ε

(α0ε
qt−1

2 + αd qt−1
2 eL)

≤ 2εqt−T2

N∑
i=1

πiLT2+mt
E
[∥∥θiLT2+mt

− 〈θ〉LT2+mt

∥∥2

2

]
+ C3

(
α0ε

qt−1
2 + αd qt−1

2 eL

)
+

1

t

(
C4 log2

( t

α0

)
+ C5

t∑
k=LT2

ηk + C6

)
,

where C3 − C6 are defined in Appendix A.1. This completes the proof.

E.3 PUSH-SA

In this subsection, we analyze the push-based distributed stochastic approximation algorithm equa-
tion 9 and provide the proofs of the results in Section 3. We begin with the proof of asymptotic
performance.

Proof of Theorem 4: From Lemma 20, since ε̄ ∈ (0, 1) and αt = α0

t , we have limt→∞ ‖θit+1 −
〈θ̃〉t‖2 = 0, which implies that all θit+1, i ∈ V , will reach a consensus with 〈θ̃〉t. The update
of 〈θ̃〉t is given in equation 90, which can be treated as a single-agent linear stochastic approxi-
mation whose corresponding ODE is equation 10. In addition, from Theorem 5 and Lemma 21,
lim→∞

∑N
i=1 E[‖θit+1 − θ∗‖22] = 0, it follows that θit+1 will converge to θ∗ in mean square for all

i ∈ V .

We now analyze the finite-time performance of equation 9.
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Let Ŵt be the matrix whose ij-th entry is ŵijt . Then, from equation 9 we have

θit+1 =
θ̃it+1

yit+1

=

∑N
j=1 ŵ

ij
t (θ̃jt + αtA(Xt)θ

j
t + αtb

j(Xt))

yit+1

=

N∑
j=1

ŵijt y
j
t∑N

k=1 ŵ
ik
t y

k
t

[
θ̃jt

yjt
+ αtA(Xt)

θjt

yjt
+ αt

bj(Xt)

yjt

]

=

N∑
j=1

w̃ijt

[
θjt + αtA(Xt)

θjt

yjt
+ αt

bj(Xt)

yjt

]
, (85)

where w̃ijt =
ŵij

t y
j
t∑N

k=1 ŵ
ik
t y

k
t

and W̃t = [w̃ijt ] is a row stochastic matrix, i.e.,

N∑
j=1

w̃ijt =

∑N
j=1 ŵ

ij
t y

j
t∑N

k=1 ŵ
ik
t y

k
t

= 1, ∀i.

Let Θt = [θ1
t , · · · , θNt ]> and Θ̃t = [θ̃1

t , · · · , θ̃Nt ]>. Then equation 9 and equation 85 can be written
as

Θ̃t+1 = Ŵt

Θ̃t + αt

 (θ̃1
t )
>/y1

t
· · ·

(θ̃Nt )>/yNt

A(Xt)
> + αtB(Xt)

 (86)

Θt+1 = W̃t

Θt + αt

 (θ1
t )
>/y1

t
· · ·

(θNt )>/yNt

A(Xt)
> + αt

 (b1(Xt))
>/y1

t
· · ·

(bN (Xt))
>/yNt

 . (87)

Since each matrix W̃t = [w̃ijt ] is stochastic, from Lemma 1, there exists a unique absolute probability
sequence {π̃t} for the matrix sequence {W̃t} such that π̃it ≥ π̃min for all i ∈ V and t ≥ 0, with the
constant π̃min ∈ (0, 1).

Lemma 14 Suppose that {Gt} is uniformly strongly connected. Then, Πt
s=0Ŵs will converge to the

set {v1>N : v ∈ RN} exponentially fast as t→∞.

Proof of Lemma 14: The lemma is a direct consequence of Theorem 2 in Hajnal & Bartlett (1958).

Lemma 15 Suppose that {Gt} is uniformly strongly connected. Then, (Πt
l=sW̃l)

ij =
yjs
yit+1

(Πt
l=sŴl)

ij and π̃i
s

yis
= 1

yis
limt→∞(Πt

l=sW̃l)
ji = 1

N for all i, j ∈ V and s ≥ 0.

Proof of Lemma 15: Note that for all l ≥ 0, we have w̃ijl =
ŵij

l y
j
l

yil+1

. Let Ŵs:t = Πt
l=sŴl for all

t ≥ s ≥ 0. We claim that

(Πt
l=sW̃l)

ij =
yjsŵ

ij
s:t

yit+1

,

where ŵijs:t is the i, j-th entry of the matrix Ŵ ij
s:t. The claim will be proved by induction on t. When

t = s+ 1,

(W̃s+1W̃s)
ij =

N∑
k=1

w̃iks+1 · w̃kjs

=

N∑
k=1

yks+1ŵ
ik
s+1

yis+2

yjsŵ
kj
s

yks+1

=
yjs
yis+2

N∑
k=1

ŵiks+1ŵ
kj
s =

yjs
yis+2

ŵijs:s+1.
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Thus, in this case the claim is true. Now suppose that the claim holds for all t = τ ≥ s, where τ is
a positive integer. For t = τ + 1, we have

(Πτ+1
s=1W̃s)

ij =

N∑
k=1

w̃ikτ+1 ·
yjsŵ

kj
s:τ

ykτ+1

=

N∑
k=1

ŵikτ+1y
k
τ+1

yiτ+2

· y
j
sŵ

kj
s:τ

ykτ+1

=
yjs
yiτ+2

N∑
k=1

ŵikτ+1 · ŵkjs:τ =
yjs
yiτ+2

ŵijs:τ+1,

which establishes the claim by induction.

From Lemma 14, for given s ≥ 0, we have limt→∞ Ŵs:t = vs,∞1>N , with the understanding here
that vs,∞ is not a constant vector. Then, since yt+1 = Ŵtyt = Πt

l=sŴlys for all t ≥ s, we have

lim
t→∞

(Πt
l=sW̃l)

ij = lim
t→∞

yjsŵ
ij
s:t

yit+1

= lim
t→∞

yjsŵ
ij
s:t∑N

k=1 Ŵ
ik
s:ty

k
s

=
yjs limt→∞ ŵijs:t

limt→∞
∑N
k=1 Ŵ

ik
s:ty

k
s

=
yjsv

i
s,∞∑N

k=1 v
i
s,∞y

k
s

=
yjs
N
,

where we use the fact that 1>Nys = N for all s ≥ 0 in the last equality. This completes the proof.

To proceed, let

hj(Θn, yn) = A
θin
yin

+
bi

yin

M j
n =

(
A(Xn)− E[A(Xn)|Fn−τ(αn)]

) θjn
yjn

+
1

yjn

(
bj(Xn)− E[bj(Xn)|Fn−τ(αn)]

)
Gjn =

(
E[A(Xn)|Fn−τ(αn)]−A

) θjn
yjn

+
1

yjn

(
E[bj(Xn)|Fn−τ(αn)]− bj

)
.

From equation 85

θin+1 =

N∑
j=1

w̃ijn
[
θjn + αnh

j(θn, yn) + αnM
j
n + αnG

j
n

]
.

Let h = [h1, · · · , hN ]>, M = [M1, · · · ,MN ]> and G = [G1, · · · , GN ]>. Since

E[M j
n|Fn] =

(
E[A(Xt)|Fn]− E[E[A(Xt)|Fn−τ(αn)]|Fn]

) θjt
yjt

+
1

yjt

(
E[bj(Xt)|Fn]− E[E[bj(Xt)|Fn−τ(αn)]|Fn]

)
= 0

and for all n ≥ τ(αn)

E[‖Mn‖2F |Fn] =

N∑
j=1

E[‖M j
n‖22|Fn]

=

N∑
j=1

E[‖
(
A(Xn)− E[A(Xn)|Fn−τ(αn)]

) θjt
yjt

+
1

yjt

(
bj(Xt)− E[bj(Xt)|Fn−τ(αn)]

)
‖22|Fn]

≤
N∑
j=1

(
2Amax + α0

β
‖θjt‖2 +

2bmax + α0

β

)2

≤ 2(2Amax + α0)2

β2
‖Θt‖2F +

2N

β2
(2bmax + α0)2,
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then {Mn} is a martingale difference sequence satisfying E[‖Mn‖2F |Fn] ≤ Ĉ(1 + ‖Θt‖F ), where
Ĉ = max{ 2(2Amax+α0)2

β2 , 2N
β2 (2bmax + α0)2}.

Define hc : RN×K × RN → RN×K as hc(x, y) = h(cx, y)c−1 with some c ≥ 1. In addition, by
using Lemma 15, define h̃c(z) : RK → RK as h̃c(z) = hc(1N · z>, yn)>π̃n, i.e.,

hc(Θn, yn) =

 (A
θ1n
y1n

+ b1

y1nc
)>

· · ·
(A

θNn
yNn

+ bN

yNn c
)>

 , h̃c(z) = Az +

N∑
i=1

bi

Nc
.

Then h̃c(z) → h̃∞(z) = Az as c → ∞ uniformly on compact sets. Let φc(z, t) and φ∞(z, t)
denote the solutions of the ODE:

ż(t) = h̃c(z(t)), z(0) = z (88)

ż(t) = h̃∞(z(t)) = Az(t), z(0) = z

respectively. Furthermore, since the origin is the unique globally asymptotically stable equilibrium
of the ODE, then we have the following lemma.

Lemma 16 There exist constant c0 > 0 and T > 0 such that for all initial conditions z with the
sphere {z|‖z‖2 ≤ 1

N1/2 } and all c ≥ c0, we have ‖φc(z, t)‖2 < 1−κ
N1/2 for t ∈ [T, T + 1] for some

0 < κ < 1.

Proof of Lemma 16: Similar to the proof of Lemma 5 in Mathkar & Borkar (2016).

Define t0 = 0, tn =
∑n
i=0 αn, n ≥ 0. Define Θ̄(t), t ≥ 0 as Θ̄(tn) = Θn with linear interpolation

on each interval [tn, tn+1]. In addition, let T0 = 0 and Tn+1 = min{tm : tm ≥ Tn + T} for all
n ≥ 0. Then, Tn+1 ∈ [Tn +T, Tn +T + supn αn]. Let m(n) be the value such that Tn = tm(n) for
any n ≥ 0. Define the piecewise continuous trajectory Θ̂(t) = Θ̄(t) · r−1

n for t ∈ [Tn, Tn+1), where
rn = max{‖Θ̄(Tn)‖F , 1}.

Lemma 17 There exists a positive constant Cθ̂ <∞ such that supt ‖Θ̂(t)‖F < Cθ̂.

Proof of Lemma 17: First, we write the update of Θ̂(tk) for k ∈ [m(n),m(n+ 1))

Θ̂(tk+1) = W̃tk

Θ̂(tk) + αtk

 (θ̂1(tk))>/y1
tk

· · ·
(θ̂N (tk))>/yNtk

A(Xtk)> + αtk

 (b1(Xtk))>/(y1
tk
rn)

· · ·
(bN (Xtk))>/(yNtkrn)

 .
(89)

Since Wtk is a column matrix, thus we have

‖Θ̂(tk+1)‖∞

≤ ‖W̃tk‖∞

‖Θ̂(tk)‖∞ + αtk

∥∥∥∥∥∥
 A(Xtk)θ̂1(tk)/y1

tk
· · ·

A(Xtk)θ̂N (tk)/yNtk

∥∥∥∥∥∥
∞

+ αtk

∥∥∥∥∥∥∥∥


b1(Xtk
)

y1tk
rn

· · ·
bN (Xtk

)

yNtk
rn


∥∥∥∥∥∥∥∥
∞


≤ ‖Θ̂(tk)‖∞ +

αtk
√
KAmax

β
‖Θ̂(tk)‖∞ +

αtk
√
Kbmax

βrn

≤ ‖Θ̂(tm(n))‖∞ +
√
K

k−m(n)∑
l=0

αtk+l
Amax

β
‖Θ̂(tk+l)‖∞ +

αtk+l
bmax

βrn

≤
√
K +

(T + supl αl)
√
Kbmax

β
+

k−m(n)∑
l=0

αtk+l

√
KAmax

β
‖Θ̂(tk+l)‖∞,
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where we use the fact that ‖Θ̂(tm(n))‖F = 1 and rn ≥ 1 in the last inequality. Therefore, by using
discrete-time Grönwall inequality, we have

sup
m(n)≤k<m(n+1)

‖Θ̂(tk+1)‖∞ ≤
√
K(1 + (T + sup

l
αl)bmax) exp

{
Amax

√
K

β
(T + sup

l
αl)

}
.

Since T + supl αl <∞, we have supm(n)≤k<m(n+1) ‖Θ̂(tk+1)‖∞ <∞ for all n. By equivalence
of vector norms, we further obtain that supt ‖Θ̂(t)‖F <∞.

For n ≥ 0, let zn(t) denote the trajectory of ż = h̃c(z) with c = rn and zn(Tn) =
∑N
i=1 π̃

i
Tn
θ̂Tn

,
for [Tn, Tn+1).

Lemma 18 limn supt∈[Tn,Tn+1) ‖Θ̂t − 1⊗ zn(t)‖ = 0.

Proof of Lemma 18: From equation 85 and equation 89, for any k ∈ [m(n),m(n + 1)), by
Lemma 15, we have

N∑
i=1

π̃in+1θ
i
n+1 = Θ>n+1π̃n+1

=

Θn + αn

 (A(Xn)θ1
n)>/y1

n
· · ·

(A(Xn)θNn )>/yNn

+ αn

 (b1(Xn))>/y1
n

· · ·
(bN (Xn))>/yNn

> π̃n
=

N∑
i=1

π̃inθ
i
n + αn

N∑
i=1

π̃in(A(Xn)θin/y
i
n + bi(Xn)/yin)

=

N∑
i=1

π̃inθ
i
n +

αn
N
A(Xn)

N∑
i=1

θin +
αn
N

N∑
i=1

bi(Xn).

Similarly, we have

N∑
i=1

π̃itk+1
θ̂itk+1

=

N∑
i=1

π̃itk θ̂
i
tk

+ αt

N∑
i=1

π̃itk(A(Xtk)θ̂itk/y
i
tk

+ bi(Xtk)/(yitkrn))

=
N∑
i=1

π̃itk θ̂
i
tk

+ αtk

(
A(Xtk)

N∑
i=1

π̃itk θ̂
i
tk

+
1

Nrn

N∑
i=1

bi(Xtk)

)

+ αtk
A(Xtk)

N

N∑
i=1

(
θ̂itk −

N∑
i=1

π̃itk θ̂
i
tk

)

=

N∑
i=1

π̃itk θ̂
i
tk

+ αtk

(
A

N∑
i=1

π̃itk θ̂
i
tk

+
1

Nrn

N∑
i=1

bi

)
+ αtk

A(Xtk)

N

N∑
i=1

(
θ̂itk −

N∑
i=1

π̃itk θ̂
i
tk

)

+ αtk

(
A(Xtk)− E[A(Xtk)|Ftk−τ(αtk

)]
) N∑
i=1

π̃itk θ̂
i
tk

+
αtk
Nrn

N∑
i=1

(
bi(Xtk)− E[bi(Xtk)|Ftk−τ(αtk

)]
)

+ αtk

((
E[A(Xtk)|Ftk−τ(αtk

)]−A
) N∑
i=1

π̃itk θ̂
i
tk

+
1

Nrn

N∑
i=1

(
E[bi(Xtk)|Ftk−τ(αtk

)]− bi
))

.
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Let

M̂tk =
(
A(Xt)− E[A(Xtk)|Ftk−τ(αtk

)]
) N∑
i=1

π̃itk θ̂
i
tk

+
1

Nrn

N∑
i=1

(
bi(Xtk)− E[bi(Xtk)|Ftk−τ(αtk

)]
)

Ĝtk =
(
E[A(Xtk)|Ftk−τ(αtk

)]−A
) N∑
i=1

π̃itk θ̂
i
tk

+
1

Nrn

N∑
i=1

(
E[bi(Xtk)|Ftk−τ(αtk

)]− bi
)

+
A(Xtk)

N

N∑
i=1

(
θ̂itk −

N∑
i=1

π̃itk θ̂
i
tk

)
.

It is easy to verify that {M̂tk} is a martingale difference sequence satisfying E[‖M̂tk‖22|Ftk ] ≤
C̄(1 + ‖

∑N
i=1 π̃

i
tk
θ̂itk‖

2
2) for some C̄ ≤ ∞. In addition, we have

θ̂itk −
N∑
j=1

π̃jtk θ̂
j
tk

=

N∑
j=1

(w̃ijts:tk
− π̃jts)θ̂jts +

k∑
r=s+1

αtr

N∑
i=1

(w̃ijtr:tk
− π̃jtr )(A(Xtr )θ̂jtr/y

j
tr + bj(Xtr/y

j
tr ).

Since {Gt} is uniformly strongly connected, then for any s ≥ 0, Ws:t converges to 1π>s exponen-
tially fast as t → ∞ and there exist a finite positive constant C and a constant 0 ≤ λ < 1 such
that

|w̃ijs:t − π̃js| ≤ Cλt−s

for all i, j ∈ V and s ≥ 0. Then,for any k ∈ [m(n),m(n+ 1)), we have

‖θ̂itk −
N∑
j=1

π̃jtk θ̂
j
tk
‖2

≤
N∑
j=1

‖w̃ijtm(n):tk
− π̃jtm(n)

‖2‖θ̂jtm(n)
‖2 +

k∑
r=m(n)+1

αtr

N∑
i=1

‖w̃ijtr:tk
− π̃jtr‖2

Amax‖θ̂jtr‖2 + bmax

β

≤
N∑
j=1

Cλtk−tm(n)‖θ̂jtm(n)
‖2 +

k∑
r=m(n)+1

αtr

N∑
i=1

Cλtk−tr (
Amax‖θ̂jtr‖2 + bmax

β
)

≤ NCλtk−tm(n) +
αtm(n)

NC

1− λ
AmaxCθ̂ + bmax

β
,

where in the last inequality, we use the fact that for all n ≥ 0, we have ‖Θ̂(tm(n))‖F = 1, αn+1 ≤
αn and the boundedness of ‖Θ̂n‖F from Lemma 17. Since αtk → 0 as k →∞, then

lim
k→∞

‖θ̂itk −
N∑
j=1

π̃jtk θ̂
j
tk
‖2 = 0,

which implies that

lim
k→∞

∥∥∥∥∥∥A(Xtk)

N

N∑
i=1

(θ̂itk −
N∑
j=1

π̃jtk θ̂
j
tk

)

∥∥∥∥∥∥
2

= 0.

Then,

lim
k→∞

‖Ĝtk‖2 ≤ lim
k→∞

αtk(‖
N∑
j=1

π̃jtk θ̂
j
tk
‖2 + 1) + lim

k→∞

∥∥∥∥∥∥A(Xtk)

N

N∑
i=1

(θ̂itk −
N∑
j=1

π̃jtk θ̂
j
tk

)

∥∥∥∥∥∥
2

= 0.
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Therefore, by Corollary 8 and Theorem 9 in Chapter 6 of Borkar (2008), we obtain that∑N
i=1 π̃

i
tk
θ̂itk → zn(t) as n → ∞, namely k → ∞. Furthermore, we obtain that θ̂itk+1

→ zn(t)
as n → ∞ for all i ∈ V , which concludes the proof following Theorem 2 in Chapter 2 of Borkar
(2008).

Lemma 19 The sequence {Θn} generated from equation 87 is bounded almost surely, i.e., Cθ =
supn ‖Θn‖F <∞ almost surely.

Proof of Lemma 19: In order to prove this lemma, we need to show that supn ‖Θ̄(Tn)‖F < ∞
first. If this does not hold, there will exist a sequence Tn1

, Tn2
, · · · such that ‖Θ̂(Tnk

)‖F → ∞,
i.e., rnk

→ ∞. If rn > c0 and ‖Θ̂(Tn)‖F = 1, then ‖zn(Tn)‖2 = ‖
∑N
i=1 π̃Tn

θ̂iTn
‖2 ≤ N−1/2.

Using Lemma 16, we have ‖1N · (zn(T−n+1))>‖F = N1/2‖zn(T−n+1)‖2 ≤ 1−κ. In addition, using
Lemma 18, there exists a constant 0 < κ′ < κ such that ‖Θ̂(T−n+1)‖F < 1− κ′. Hence for rn > c0
and n sufficiently large,

‖Θ̄(Tn+1)‖F
‖Θ̄(Tn)‖F

=
‖Θ̂(T−n+1)‖F
‖Θ̂(Tn)‖F

≤ 1− κ′.

It shows that if ‖Θ̄(Tn)‖F > c0, ‖Θ̄(Tk)‖F for all k ≥ n falls back to the ball of radius c0 at an
exponential rate.

Thus, if ‖Θ̄(Tn)‖F > c0, then ‖Θ̄(Tn−1)‖F is either greater than ‖Θ̄(Tn)‖F or is inside the ball of
radius c0. Since we assume rnk

→ ∞, then we can find a time Tn such that ‖Θ̄(Tn)‖F < c0 and
‖Θ̄(Tn+1)‖F =∞. However, by using discrete-time Grönwall inequality, we have

‖Θ̄(Tn+1)‖∞ ≤ ‖Θ̄(Tn+1 − 1)‖∞ + αTn+1−1

√
KAmax

β
‖Θ̄(Tn+1 − 1)‖∞ + αTn+1−1

√
K
bmax

β

≤ ‖Θ̄(Tn)‖∞ +
√
K

Tn+1−Tn∑
s=0

αTn+s
Amax

β
‖Θ̄(Tn + s)‖∞ + αTn+s

bmax

β

≤
√
Kc0 +

√
K(T + sup

n
αn)

bmax

β
+

√
KAmax

β

Tn+1−Tn∑
s=0

αTn+s‖Θ̄(Tn + s)‖∞

≤
√
K(c0 + (T + sup

n
αn)

bmax

β
) exp

{
(T + sup

n
αn)

√
KAmax

β

}
,

which implies that ‖Θ̄(Tn+1)‖F can be bounded if ‖Θ̄(Tn)‖F < c0. This leads to a contradiction.

Moreover, let Cθ̄ = supn ‖Θ̄(Tn)‖F <∞, then Cθ = supn ‖Θn‖F ≤ Cθ̄Cθ̂ <∞.

Recall the update of θ̃it in equation 9:

θ̃it+1 =

N∑
j=1

ŵijt

[
θ̃jt + αt

(
A(Xt)θ

j
t + bj(Xt)

)]
.

From the definition that 〈θ̃〉t = 1
N

∑N
i=1 θ̃

i
t and 〈θ〉t = 1

N

∑N
i=1 θ

i
t, we have

〈θ̃〉t+1 = 〈θ̃〉t + αtA(Xt)〈θ〉t +
αt
N

N∑
i=1

bi(Xt)

= 〈θ̃〉t + αtA(Xt)〈θ̃〉t +
αt
N

N∑
i=1

bi(Xt) + αtρt, (90)

where ρt = A(Xt)〈θ〉t − A(Xt)〈θ̃〉t. From Lemma 19, we have ‖〈θ〉t‖2 ≤ maxi∈V ‖θit‖2 ≤ Cθ
for all t ≥ 0, which implies that ‖〈θ̃〉t‖2 ≤ NCθ and

µt = ‖ρt‖2 =
∥∥∥A(Xt)〈θ〉t −A(Xt)〈θ̃〉t

∥∥∥
2
≤ µmax,

where µmax = (N + 1)AmaxCθ.
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Lemma 20 Suppose that Assumptions 2 and 5 hold and {Gt} is uniformly strongly connected by
sub-sequences of length L. Let ε1 = inft≥0 mini∈V(Ŵt · · · Ŵ01N )i. For all t ≥ 0 and i ∈ V ,

‖θit+1 − 〈θ̃〉t‖2 ≤
8

ε1
ε̄t‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2

+
8

ε1

AmaxCθ + bmax

1− ε̄

(
α0ε̄

t/2 + αd t
2 e

)
+ αtAmaxCθ + αtbmax,

where ε1 > 0 and ε̄ ∈ (0, 1) satisfy ε1 ≥ 1
NNL and ε̄ ≤ (1− 1

NNL )1/L.

Proof of Lemma 20: Since ε1 = inft≥0 mini∈V(Ŵt · · · Ŵ01N )i and all weight matrices Ŵs are
column stochastic matrices for all s ≥ 0, from Corollary 2 (b) in Nedić & Olshevsky (2015), we
know that ε1 ≤ 1

NNL . If the weight matrices are doubly stochastic matrices, then ε1 = 1.

From Assumption 2 and Lemma 19, we know that ‖A(Xt)θ
i
t + bi(Xt)‖2 ≤ AmaxCθ + bmax. Then,

by using Lemma 1 in Nedić & Olshevsky (2015), for all t ≥ 0 and i ∈ V we have

‖θit+1 − 〈θ̃〉t − αtA(Xt)〈θ〉t −
αt
N

N∑
i=1

bi(Xt)‖2

≤ 8

ε1
(ε̄t‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2 +

t∑
s=0

ε̄t−sαs(AmaxCθ + bmax))

≤ 8

ε1
ε̄t‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2

+
8

ε1
(AmaxCθ + bmax)

b t
2 c∑
s=0

ε̄t−sαs +

t∑
s=d t

2 e

ε̄t−sαs


≤ 8

ε1
ε̄t‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2 +

8

ε1

AmaxCθ + bmax

1− ε̄

(
α0ε̄

t/2 + αd t
2 e

)
,

which implies that

‖θit+1 − 〈θ̃〉t‖2

≤ ‖θit+1 − 〈θ̃〉t − αtA(Xt)〈θ〉t −
αt
N

N∑
i=1

bi(Xt)‖2 + αt‖A(Xt)〈θ〉t +
1

N

N∑
i=1

bi(Xt)‖2

≤ 8

ε1
ε̄t‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2 +

8

ε1

AmaxCθ + bmax

1− ε̄

(
α0ε̄

t/2 + αd t
2 e

)
+ αtAmaxCθ + αtbmax.

This completes the proof.

Lemma 21 limt→∞ µt = limt→∞ ‖ρt‖2 = 0 and limt→∞

∑t
k=0 µk

t+1 = limt→∞

∑t
k=0 ‖ρk‖2
t+1 = 0.

Proof of Lemma 21: From Lemma 20, we have

µt = ‖ρt‖2 =
∥∥∥A(Xt)〈θ〉t −A(Xt)〈θ̃〉t

∥∥∥
2

≤ 8Amax

ε1
ε̄t‖Θ̃0‖1 +

8Amax

ε1

N
√
K(AmaxCθ + bmax)

1− ε̄

(
α0ε̄

t/2 + αd t
2 e

)
.

Since ε̄ ∈ (0, 1), then limt→∞ ‖ρt‖2 = 0. Next, we will prove that limt→∞
1
t+1

∑t
k=0 ‖ρk‖2 = 0.

For any positive constant c > 0, there exists a positive integer T (c), depending on c, such that
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∀t ≥ T (c), we have ‖ρt‖2 < c. Thus,

1

t

t−1∑
k=0

‖ρk‖2 =
1

t

T (c)∑
k=0

‖ρk‖2 +
1

t

t−1∑
k=T (c)+1

‖ρk‖2 ≤
1

t

T (c)∑
k=0

‖ρk‖2 +
t− 1− T (c)

t
c.

Let t→∞ on both sides of the above inequality. Then, we have

lim
t→∞

1

t

t−1∑
k=0

‖ρk‖2 ≤ lim
t→∞

1

t

T (c)∑
k=0

‖ρk‖2 + lim
t→∞

t− 1− T (c)

t
c = c.

Since the above argument holds for arbitrary positive c, then limt→∞
1
t+1

∑t
k=0 ‖ρk‖2 = 0.

Lemma 22 Suppose that Assumptions 2 and 3 hold. When the step-size αt and corresponding
mixing time τ(αt) satisfy 0 < αtτ(αt) <

log 2
Amax

, we have for any t ≥ T̄ ,

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 ≤ 2Amax‖〈θ̃〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk + 2(bmax + µmax)
t−1∑

k=t−τ(αt)

αk, (91)

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 ≤ 6Amax‖〈θ̃〉t‖2
t−1∑

k=t−τ(αt)

αk + 5(bmax + µmax)

t−1∑
k=t−τ(αt)

αk, (92)

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖
2
2 ≤ 72α2

t−τ(αt)
τ2(αt)A

2
max‖〈θ̃〉t‖22 + 50α2

t−τ(αt)
τ2(αt)(bmax + µmax)2

≤ 8‖〈θ̃〉t‖22 +
6(bmax + µmax)2

A2
max

. (93)

Proof of Lemma 22: From the update of 〈θ̃〉t in equation 90:

〈θ̃〉t+1 = 〈θ̃〉t + αtA(Xt)〈θ̃〉t +
αt
N

N∑
i=1

bi(Xt) + αtρt.

Then, we have

‖〈θ̃〉t+1‖2 ≤ (1 + αtAmax)‖〈θ̃〉t‖2 + αtbmax + αtµmax.

For all u ∈ [t− τ(αt), t], we have

‖〈θ̃〉u‖2 ≤ Πu−1
k=t−τ(αt)

(1 + αkAmax)‖〈θ̃〉t−τ(αt)‖2

+ (bmax + µmax)

u−1∑
k=t−τ(αt)

αkΠu−1
l=k+1(1 + αlAmax)

≤ exp{
u−1∑

k=t−τ(αt)

αkAmax}‖〈θ̃〉t−τ(αt)‖2

+ (bmax + µmax)

u−1∑
k=t−τ(αt)

αk exp{
u−1∑
l=k+1

αlAmax}

≤ exp{αt−τ(αt)τ(αt)Amax}‖〈θ̃〉t−τ(αt)‖2

+ (bmax + µmax)

u−1∑
k=t−τ(αt)

αk exp{αt−τ(αt)τ(αt)Amax}

≤ 2‖〈θ̃〉t−τ(αt)‖2 + 2(bmax + µmax)

u−1∑
k=t−τ(αt)

αk,
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where we use αt−τ(αt)τ(αt)Amax ≤ log 2 < 1
3 in the last inequality. Thus, for all t ≥ T̄ , we can

get equation 91 as follows:

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2

≤
t−1∑

k=t−τ(αt)

‖〈θ̃〉k+1 − 〈θ̃〉k‖2

≤ Amax

t−1∑
k=t−τ(αt)

αk‖〈θ̃〉k‖2 + (bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ Amax

t−1∑
k=t−τ(αt)

αk

2‖〈θ̃〉t−τ(αt)‖2 + 2(bmax + µmax)

k−1∑
l=t−τ(αt)

αl


+ (bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ̃〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
(
2Amaxτ(αt)αt−τ(αt) + 1

)
(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ̃〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
5

3
(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 2Amax‖〈θ̃〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk + 2(bmax + µmax)

t−1∑
k=t−τ(αt)

αk.

Moreover, by using the above inequality, we can get equation 92 for all t ≥ T̄ as follows:

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2

≤ 2Amax‖〈θ̃〉t−τ(αt)‖2
t−1∑

k=t−τ(αt)

αk +
5

3
(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 2Amaxτ(αt)αt−τ(αt)‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 + 2Amax‖〈θ̃〉t‖2
t−1∑

k=t−τ(αt)

αk

+
5

3
(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 6Amax‖〈θ̃〉t‖2
t−1∑

k=t−τ(αt)

αk + 5(bmax + µmax)

t−1∑
k=t−τ(αt)

αk.

Next, by using equation 92 and the inequality (x+y)2 ≤ 2x2+y2 for all x, y, we can get equation 93
as follows:

‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖
2
2 ≤ 72A2

max‖〈θ̃〉t‖22(

t−1∑
k=t−τ(αt)

αk)2 + 50(bmax + µmax)2(

t−1∑
k=t−τ(αt)

αk)2

≤ 72α2
t−τ(αt)

τ2(αt)A
2
max‖〈θ̃〉t‖22 + 50α2

t−τ(αt)
τ2(αt)(bmax + µmax)2

≤ 8‖〈θ̃〉t‖22 +
6(bmax + µmax)2

A2
max

,

where we use αt−τ(αt)τ(αt)Amax <
1
3 in the last inequality.
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Lemma 23 Suppose that Assumptions 2–5 hold and {Gt} is uniformly strongly connected by sub-
sequences of length L. When 0 < αt−τ(αt)τ(αt) <

log 2
Amax

, we have for any t ≥ T̄ ,

|E[(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +B(Xt)
>πt+1 −A〈θ̃〉t − b) | Ft−τ(αt)]|

≤ αt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax + 72Amaxµmax

)
E[‖〈θ̃〉t‖22 | Ft−τ(αt)]

+ αt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 12Amaxbmax + 48Amax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2 + 87(bmax + µmax)2

]
.

Proof of Lemma 23: Note that for all t ≥ T̄ , we have

E[(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +
1

N
B(Xt)

>1N −A〈θ̃〉t − b) | Ft−τ(αt)]|

≤ |E[(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)−A)〈θ̃〉t | Ft−τ(αt)]|

+ |E[(〈θ̃〉t − θ∗)>(P + P>)(
1

N
B(Xt)

>1N − b) | Ft−τ(αt)]|

≤ |E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)〈θ̃〉t−τ(αt) | Ft−τ(αt)]| (94)

+ |E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)(〈θ̃〉t − 〈θ̃〉t−τ(αt)) | Ft−τ(αt)]| (95)

+ |E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))
>(P + P>)(A(Xt)−A)〈θ̃〉t−τ(αt) | Ft−τ(αt)]| (96)

+ |E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))
>(P + P>)(A(Xt)−A)(〈θ̃〉t − 〈θ̃〉t−τ(αt)) | Ft−τ(αt)]| (97)

+ |E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))
>(P + P>)(

1

N
B(Xt)

>1N − b) | Ft−τ(αt)]| (98)

+ |E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(

1

N
B(Xt)

>1N − b) | Ft−τ(αt)]|. (99)

By using the mixing time in Assumption 3, we can get the bound for equation 94 and equation 99
for all t ≥ T̄ :

|E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)〈θ̃〉t−τ(αt) | Ft−τ(αt)]|

≤ |(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)E[A(Xt)−A | Ft−τ(αt)]〈θ̃〉t−τ(αt)|

≤ 2αtγmaxE[‖〈θ̃〉t−τ(αt) − θ
∗‖2‖〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ αtγmaxE[‖〈θ̃〉t−τ(αt) − θ
∗‖22 + ‖〈θ̃〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

≤ αtγmaxE[2‖θ∗‖22 + 3‖〈θ̃〉t−τ(αt)‖
2
2 | Ft−τ(αt)]

≤ 6αtγmaxE[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖
2
2 | Ft−τ(αt)] + 6αtγmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)] + 2αtγmax‖θ∗‖22

≤ 54αtγmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)] + 36αtγmax
(bmax + µmax)2

A2
max

+ 2αtγmax‖θ∗‖22, (100)

where in the last inequality, we use equation 91 from Lemma 22.

|E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(

1

N
B(Xt)

>1N − b) | Ft−τ(αt)]|

≤ |(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)

1

N

N∑
i=1

E[bi(Xt)− bi | Ft−τ(αt)]|

≤ 2γmaxαtE[‖〈θ̃〉t−τ(αt) − θ
∗‖2 | Ft−τ(αt)]

≤ 2γmaxαt

(
1 +

1

2
E[‖〈θ̃〉t−τ(αt)‖

2
2 | Ft−τ(αt)] +

1

2
‖θ∗‖22

)
≤ 2γmaxαt

(
1 + E[‖〈θ̃〉t−τ(αt) − 〈θ̃〉t‖

2
2 | Ft−τ(αt)] + E[‖〈θ̃〉t‖22 | Ft−τ(αt)] + ‖θ∗‖22

)
≤ 2γmaxαt

(
1 + 9E[‖〈θ̃〉t‖22 | Ft−τ(αt)] + 6

(bmax + µmax)2

A2
max

+ ‖θ∗‖22
)
, (101)
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where in the last inequality we use equation 91.

Next, by using Assumption 2, equation 91 and equation 93, we have

|E[(〈θ̃〉t−τ(αt) − θ
∗)>(P + P>)(A(Xt)−A)(〈θ̃〉t − 〈θ̃〉t−τ(αt)) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ̃〉t−τ(αt) − θ
∗‖2‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 4γmaxAmaxE[‖〈θ̃〉t−τ(αt)‖2‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

+ 4γmaxAmax‖θ∗‖2E[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 8γmaxA
2
maxE[‖〈θ̃〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxAmax(bmax + µmax)‖θ∗‖2
t−1∑

k=t−τ(αt)

αk

+ 8γmaxA
2
max

(
bmax + µmax

Amax
+ ‖θ∗‖2

)
E[‖〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ 12γmaxA
2
maxE[‖〈θ̃〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxA
2
max

(
bmax + µmax

Amax
+ ‖θ∗‖2

)2 t−1∑
k=t−τ(αt)

αk

≤ 24γmaxA
2
maxE[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖

2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 24γmaxA
2
maxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxA
2
max

(
bmax + µmax

Amax
+ ‖θ∗‖2

)2 t−1∑
k=t−τ(αt)

αk

≤ 216γmaxA
2
maxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 152γmax (bmax + µmax +Amax‖θ∗‖2)
2

t−1∑
k=t−τ(αt)

αk. (102)
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In additional, as for the bound of equation 96, by using equation 91 and equation 93, we have

|E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))
>(P + P>)(A(Xt)−A)〈θ̃〉t−τ(αt) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2‖〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 8γmaxAmaxE[Amax‖〈θ̃〉t−τ(αt)‖
2
2 + (bmax + µmax)‖〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ 4γmaxAmax(2Amax + bmax + µmax)E[‖〈θ̃〉t−τ(αt)‖
2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 4γmaxAmax(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 8γmaxAmax(2Amax + bmax + µmax)E[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖
2
2 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 8γmaxAmax(2Amax + bmax + µmax)E[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 4γmaxAmax(bmax + µmax)

t−1∑
k=t−τ(αt)

αk

≤ 72 γmaxAmax(2Amax + bmax + µmax)E[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 48γmaxAmax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2

t−1∑
k=t−τ(αt)

αk. (103)

Moreover, by using equation 93, we can get the bound for equation 97 as follows:

|E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))
>(P + P>)(A(Xt)−A)(〈θ̃〉t − 〈θ̃〉t−τ(αt)) | Ft−τ(αt)]|

≤ 4γmaxAmaxE[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖
2
2 | Ft−τ(αt)]|

≤ 4γmaxAmaxE[72A2
max‖〈θ̃〉t‖22 + 50(bmax + µmax)2 | Ft−τ(αt)]

 t−1∑
k=t−τ(αt)

αk

2

≤ 96A2
maxγmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk + 67(bmax + µmax)2γmax

t−1∑
k=t−τ(αt)

αk.

(104)
Finally, we can get the bound of equation 98 by using equation 92:

|E[(〈θ̃〉t − 〈θ̃〉t−τ(αt))(P + P>)(
1

N
B(Xt)

>1N − b) | Ft−τ(αt)]|

≤ 4γmaxbmaxE[‖〈θ̃〉t − 〈θ̃〉t−τ(αt)‖2 | Ft−τ(αt)]

≤ 4γmaxbmaxE[6Amax‖〈θ̃〉t‖2 + 5(bmax + µmax) | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

≤ 12γmaxAmaxbmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ (12Amax + 20bmax + 20µmax)γmaxbmax

t−1∑
k=t−τ(αt)

αk. (105)
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Then, by using equation 100–equation 105, we have
|E[(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +B(Xt)

>πt+1 −A〈θ̃〉t − b) | Ft−τ(αt)]|

≤ 54αtγmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)] + 36αtγmax
(bmax + µmax)2

A2
max

+ 2αtγmax‖θ∗‖22

+ 2γmaxαt

(
1 + 9E[‖〈θ̃〉t‖22 | Ft−τ(αt)] + 6

(bmax + µmax)2

A2
max

+ ‖θ∗‖22
)

+ 216γmaxA
2
maxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 152γmax (bmax + µmax +Amax‖θ∗‖2)
2

t−1∑
k=t−τ(αt)

αk

+ 72 γmaxAmax(2Amax + bmax + µmax)E[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ 48γmaxAmax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2

t−1∑
k=t−τ(αt)

αk

+ 96A2
maxγmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk + 67(bmax + µmax)2γmax

t−1∑
k=t−τ(αt)

αk

+ 12γmaxAmaxbmaxE[‖〈θ̃〉t‖22 | Ft−τ(αt)]

t−1∑
k=t−τ(αt)

αk

+ (12Amax + 20bmax + 20µmax)γmaxbmax

t−1∑
k=t−τ(αt)

αk

≤ αt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax + 72Amaxµmax

)
E[‖〈θ̃〉t‖22 | Ft−τ(αt)]

+ αt−τ(αt)τ(αt)γmax

[
2 + 4‖θ∗‖22 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 12Amaxbmax + 48Amax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2 + 87(bmax + µmax)2

]
,

where we use αt ≤ αt−ταt
from Assumption 5 and τ(αt) ≥ 1 in the last inequality. This completes

the proof.

Lemma 24 Suppose that Assumptions 2–4 hold and αt = α0

t+1 . When µt+τ(αt)αt−τ(αt)ζ8 ≤ 0.1
γmax

and τ(αt)αt−τ(αt) ≤ min{ log 2
Amax

, 0.1
ζ8γmax

}, we have for t ≥ T̄ ,

E[‖〈θ̃〉t+1 − θ∗‖22] ≤ T̄

t+ 1

γmax

γmin
E[‖〈θ̃〉T̄ − θ∗‖22] +

ζ9α0C log2( t+1
α0

)

t+ 1

γmax

γmin

+ α0
γmax

γmin

∑t+1
l=T̄ µl
t+ 1

,

where T̄ is defined in Appendix A.2, ζ8 and ζ9 are defined in equation 18 and equation 19, respec-
tively.

Proof of Lemma 24: Let H(〈θ̃〉t) = (〈θ̃〉t− θ∗)>P (〈θ̃〉t− θ∗). From Assumption 4, we know that

γmin‖〈θ̃〉t − θ∗‖22 ≤ H(〈θ̃〉t) ≤ γmax‖〈θ̃〉t − θ∗‖22.
Recall the update of 〈θ̃〉t in equation 90:

〈θ̃〉t+1 = 〈θ̃〉t + αtA(Xt)〈θ̃〉t +
αt
N

N∑
i=1

bi(Xt) + αtρt.
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From Assumption 2, for t ≥ T̄ we have

H(〈θ̃〉t+1)

= (〈θ̃〉t+1 − θ∗)>P (〈θ̃〉t+1 − θ∗)

=

(
〈θ̃〉t + αtA(Xt)〈θ̃〉t +

αt
N

N∑
i=1

bi(Xt) + αtρt − θ∗
)>

P ·(
〈θ̃〉t + αtA(Xt)〈θ̃〉t +

αt
N

N∑
i=1

bi(Xt) + αtρt − θ∗
)

= (〈θ̃〉t − θ∗)>P (〈θ̃〉t − θ∗) + α2
t (A(Xt)〈θ̃〉t)>P (A(Xt)〈θ̃〉t)

+
α2
t

N2
(B(Xt)

>1N )>P (B(Xt)
>1N ) +

α2
t

N
(A(Xt)〈θ̃〉t)>(P + P>)(B(Xt)

>1N ) + α2
tρ
>
t Pρt

+ α2
t (A(Xt)〈θ̃〉t +

1

N
B(Xt)

>1N )>(P + P>)ρt + αt(〈θ̃〉t − θ∗)>(P + P>)ρt

+ αt(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +
1

N
B(Xt)

>1N −A〈θ̃〉t − b)

+ αt(〈θ̃〉t − θ∗)>P (A〈θ̃〉t + b) + αt(A〈θ̃〉t + b)>P (〈θ̃〉t − θ∗)

= H(〈θ̃〉t) + α2
t (A(Xt)〈θ̃〉t)>P (A(Xt)〈θ̃〉t) +

α2
t

N2
(B(Xt)

>1N )>P (B(Xt)
>1N )

+
α2
t

N
(A(Xt)〈θ̃〉t)>(P + P>)(B(Xt)

>1N ) + α2
tρ
>
t Pρt

+ α2
t (A(Xt)〈θ̃〉t +

1

N
B(Xt)

>1N )>(P + P>)ρt + αt(〈θ̃〉t − θ∗)>(P + P>)ρt

+ αt(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +
1

N
B(Xt)

>1N −A〈θ̃〉t − b)

+ αt(〈θ̃〉t − θ∗)>(PA+A>P )(〈θ̃〉t − θ∗), (106)

where we use the fact that Aθ∗ + b = 0 on the last equality.

50



Under review as a conference paper at ICLR 2022

Next, we can take expectation on both sides of equation 106. From Assumption 4 and Lemma 23,
for t ≥ T̄ we have

E[H(〈θ̃〉t+1)]

= E[H(〈θ̃〉t)] + α2
tE[(A(Xt)〈θ̃〉t)>P (A(Xt)〈θ̃〉t)]− αtE[‖〈θ̃〉t − θ∗‖22] + E[α2

tρ
>
t Pρt]

+
α2
t

N2
E[(B(Xt)

>1N )>P (B(Xt)
>1N )] +

α2
t

N
E[(A(Xt)〈θ̃〉t)>(P + P>)(B(Xt)

>1N )]

+ α2
tE[(A(Xt)〈θ̃〉t +

1

N
B(Xt)

>1N )>(P + P>)ρt] + αtE[(〈θ̃〉t − θ∗)>(P + P>)ρt]

+ αtE[(〈θ̃〉t − θ∗)>(P + P>)(A(Xt)〈θ̃〉t +
1

N
B(Xt)

>1N −A〈θ̃〉t − b)]

≤ E[H(〈θ̃〉t)] + α2
tA

2
maxγmaxE[‖〈θ̃〉t‖22]− αtE[‖〈θ̃〉t − θ∗‖22] + 2αtγmax‖ρt‖2E[‖〈θ̃〉t − θ∗‖2]

+ α2
tγmaxb

2
max + 2α2

tγmaxAmaxbmaxE[‖〈θ̃〉t‖2] + α2
tγmaxµ

2
max

+ 2α2
tγmaxµmax(AmaxE[‖〈θ̃〉t‖2] + bmax)

+ αtαt−τ(αt)τ(αt)γmax

(
72 + 456A2

max + 84Amaxbmax + 72Amaxµmax

)
E[‖〈θ̃〉t‖22]

+ αtαt−τ(αt)τ(αt)γmax

[
2 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 4‖θ∗‖22 + 12Amaxbmax + 48Amax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2 + 87(bmax + µmax)2

]
≤ E[H(〈θ̃〉t)] + (−αt + αtγmax‖ρt‖2)E[‖〈θ̃〉t − θ∗‖22] + αtγmax‖ρt‖2

+ αtαt−τ(αt)τ(αt)γmax

(
72 + 458A2

max + 84Amaxbmax + 72Amaxµmax

)
E[‖〈θ̃〉t‖22]

+ αtαt−τ(αt)τ(αt)γmax

[
2 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 4‖θ∗‖22 + 12Amaxbmax + 48Amax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2 + 89(bmax + µmax)2

]
.

Using the facts that E[‖〈θ̃〉t‖22] ≤ 2E[‖〈θ̃〉t − θ∗‖22] + 2‖θ∗‖22 and γmin‖〈θ̃〉t − θ∗‖22 ≤ H(〈θ̃〉t) ≤
γmax‖〈θ̃〉t − θ∗‖22, then

E[H(〈θ̃〉t+1)]

≤ E[H(〈θ̃〉t)] + (−αt + αtγmaxµt)E[‖〈θ̃〉t − θ∗‖22] + αtγmaxµt

+ 2α2
tγmax(bmax + µmax)2

+ 2αtαt−τ(αt)τ(αt)γmax

(
72 + 458A2

max + 84Amaxbmax + 72Amaxµmax

)
E[‖〈θ̃〉t − θ∗‖22]

+ 2αtαt−τ(αt)τ(αt)γmax

(
72 + 458A2

max + 84Amaxbmax + 72Amaxµmax

)
‖θ∗‖22

+ αtαt−τ(αt)τ(αt)γmax

[
2 + 48

(bmax + µmax)2

A2
max

+ 152 (bmax + µmax +Amax‖θ∗‖2)
2

+ 4‖θ∗‖22 + 12Amaxbmax + 48Amax(bmax + µmax)(
bmax + µmax

Amax
+ 1)2 + 87(bmax + µmax)2

]
≤ E[H(〈θ̃〉t)] + (−αt + αtγmaxµt + αtαt−τ(αt)τ(αt)γmaxζ8)E[‖〈θ̃〉t − θ∗‖22]

+ αtαt−τ(αt)τ(αt)γmaxζ9 + αtγmaxµt.
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Moreover, from αt = α0

t+1 , α0 ≥ γmax

0.9 and the definition of T̄ , for all t ≥ T̄ we have

E[H(〈θ̃〉t+1)] ≤ (1− 0.9αt
γmax

)E[H(〈θ̃〉t)] + αtαt−τ(αt)τ(αt)γmaxζ9 + αtγmaxµt

≤ t

t+ 1
E[H(〈θ̃〉t)] + α0γmax

µt
t+ 1

+
α2

0C log( t+1
α0

)γmaxζ9

(t+ 1)(t− τ(αt) + 1)

≤ T̄

t+ 1
E[H(〈θ̃〉T̄ )] + α0γmax

t∑
l=T̄

µl
l + 1

Πt
u=l+1

u

u+ 1

+ α2
0γmaxζ9

t∑
l=T̄

C log( l+1
α0

)

(l + 1)(l − τ(αl) + 1)
Πt
u=l+1

u

u+ 1

=
T̄

t+ 1
E[H(〈θ̃〉T̄ )] + α0γmax

t∑
l=T̄

µl
t+ 1

+
α2

0γmaxζ9
t+ 1

t∑
l=T̄

C log( l+1
α0

)

l − τ(αl) + 1

≤ T̄

t+ 1
E[H(〈θ̃〉T̄ )] + α0γmax

∑t
l=T̄ µl
t+ 1

+
α2

0γmaxζ9
t+ 1

t∑
l=T̄

2C log( l+1
α0

)

l + 1

≤ T̄

t+ 1
E[H(〈θ̃〉T̄ )] + α0γmax

∑t+1
l=T̄ µl
t+ 1

+
ζ9α0γmaxC log2( t+1

α0
)

t+ 1
, (107)

where we use
t∑

l=T̄

2α0 log( l+1
α0

)

l + 1
≤ log2(

t+ 1

α0
)

to get the last inequality. Then, we can get the bound of E[‖〈θ̃〉t+1 − θ∗‖22] from equation 107 as
follows:

E[‖〈θ̃〉t+1 − θ∗‖22]

≤ 1

γmin
E[H(〈θ̃〉t+1)]

≤ T̄

t+ 1

γmax

γmin
E[‖〈θ̃〉T̄ − θ∗‖22] +

ζ9α0C log2( t+1
α0

)

t+ 1

γmax

γmin
+ α0

γmax

γmin

∑t+1
l=T̄ µl
t+ 1

.

This completes the proof.

We are now in a position to prove Theorem 5.

Proof of Theorem 5: Note that
N∑
i=1

E[‖θit+1 − θ∗‖22] ≤ 2

N∑
i=1

E[‖θit+1 − 〈θ̃〉t‖22] + 2NE[‖〈θ̃〉t − θ∗‖22].

By using Lemmas 20 and 24, for any t ≥ T̄ , we have
N∑
i=1

E
[∥∥θit+1 − θ∗

∥∥2

2

]
≤ 16

ε1
ε̄tE[‖

N∑
i=1

θ̃i0 + α0A(X0)θi0 + α0b
i(X0)‖2] +

16

ε1

AmaxCθ + bmax

1− ε̄

(
α0ε̄

t/2 + αd t
2 e

)
+ 2αtAmaxCθ + 2αtbmax +

2T̄N

t

γmax

γmin
E[‖〈θ̃〉T̄ − θ∗‖22]

+
2Nζ9α0C log2( t

α0
)

t

γmax

γmin
+ 2α0N

γmax

γmin

∑t
l=T̄ µl
t

≤C7ε̄
t + C8

(
α0ε̄

t
2 + αd t

2 e

)
+ C9αt +

1

t

(
C10 log2

( t

α0

)
+ C11

t∑
l=T̄

µl + C12

)
.

This completes the proof.

52



Under review as a conference paper at ICLR 2022

REFERENCES

Nicole Abaid and Maurizio Porfiri. Consensus over numerosity-constrained random networks. IEEE
Transactions on Automatic Control, 56(3):649–654, 2010.

J. Bhandari, D. Russo, and R. Singal. A finite time analysis of temporal difference learning with
linear function approximation. In 31st Conference on Learning Theory, pp. 1691–1692, 2018.

V. S. Borkar. Stochastic approximation: A Dynamical Systems Viewpoint. Cambridge University
Press, 2008.

V. S. Borkar and S. P. Meyn. The ODE method for convergence of stochastic approximation and
reinforcement learning. SIAM Journal on Control and Optimization, 38(2):447–469, 2000.

V. S. Borkar and S. Pattathil. Concentration bounds for two time scale stochastic approximation.
In 56th Annual Allerton Conference on Communication, Control, and Computing, pp. 504–511,
2018.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Transactions
on Information Theory, 52(6):2508–2530, 2006.
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A. Nedić and A. Olshevsky. Distributed optimization over time-varying directed graphs. IEEE
Transactions on Automatic Control, 60(3):601–615, 2015.

G. Qu and A. Wierman. Finite-time analysis of asynchronous stochastic approximation and Q-
learning. In 33rd Conference on Learning Theory, volume 125, pp. 3185–3205. Proceedings of
Machine Learning Research, 09–12 Jul 2020.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical statis-
tics, pp. 400–407, 1951.

W. J. Rugh. Linear System Theory (2nd Ed.). Prentice-Hall, Inc., USA, 1996. ISBN 0134412052.

R. Srikant and L. Ying. Finite-time error bounds for linear stochastic approximation and TD learn-
ing. In 32nd Conference on Learning Theory, volume 99, pp. 2803–2830. Proceedings of Machine
Learning Research, 25–28 Jun 2019.

R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction. MIT Press, 2018.

B. Touri. Product of Random Stochastic Matrices and Distributed Averaging. Springer Science &
Business Media, 2012.

J.N. Tsitsiklis and B. Van Roy. An analysis of temporal-difference learning with function approxi-
mation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997.

N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate byzantine consensus in arbitrary di-
rected graphs. In Proceedings of the 2012 ACM symposium on Principles of distributed comput-
ing, pp. 365–374, 2012.

G. Wang, B. Li, and G. B. Giannakis. A multistep lyapunov approach for finite-time analysis of
biased stochastic approximation. arXiv preprint arXiv:1909.04299, 2019.

Y. Wang and S. Zou. Finite-sample analysis of Greedy-GQ with linear function approximation under
markovian noise. In Jonas Peters and David Sontag (eds.), Proceedings of the 36th Conference
on Uncertainty in Artificial Intelligence (UAI), volume 124 of Proceedings of Machine Learning
Research, pp. 11–20. PMLR, 03–06 Aug 2020.

Y. Wang, W. Chen, Y. Liu, Z. Ma, and T. Liu. Finite sample analysis of the GTD policy evaluation
algorithms in markov setting. In 31st Conference on Neural Information Processing Systems, pp.
5504–5513, 2017.

W. Weng, H. Gupta, N. He, L. Ying, and R. Srikant. The mean-squared error of double Q-learning.
In 34th Conference on Neural Information Processing Systems, 2020.

Y. Wu, W. Zhang, P. Xu, and Q. Gu. A finite time analysis of two time-scale actor critic methods.
In 34th Conference on Neural Information Processing Systems, 2020.

L. Xiao, S. Boyd, and S. Lall. A scheme for robust distributed sensor fusion based on average
consensus. In Proceedings of the 4th International Conference on Information Processing in
Sensor Networks, pp. 63–70, 2005.

54



Under review as a conference paper at ICLR 2022

P. Xu and Q. Gu. A finite-time analysis of Q-learning with neural network function approximation.
In 37th International Conference on Machine Learning, 2020.

T. Xu, S. Zou, and Y. Liang. Two time-scale off-policy TD learning: Non-asymptotic analysis over
markovian samples. In 33rd Conference on Neural Information Processing Systems, pp. 10634–
10644, 2019.
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