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A LIST OF CONSTANTS

In this appendix, we list all the constants used in our main results, Theorems 3 and 5. They are finite
and their expressions do not affect the understanding of the theorems. Since their expressions are
quite long and complicated, we begin with the following set of constants, based on which we will
be able to present the constants used in the theorems and the proofs of the theorems in an easier
way. We hope that this way can also help the readers to better understand and follow our results and
analyses.

The first constant (; is defined as follows. Recall that € is given in equation 6 as
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(1 is defined as the unique solution for which € = 1 if = (;. The following remark shows why (;
uniquely exists.

Remark 5 From equation 6, it is easy to see that € is monotonically increasing for o > 0. Define
the corresponding monotonic function as
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Here ftmax = (N + 1) AmaxCo, where Cy is a finite number defined in Lemma 19 which can be
regarded as an upper bound of 2-norm of each agent ¢’s state §; generated by the Push-SA algorithm
equation 9.
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A.1 CONSTANTS USED IN THEOREM 3
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T) is any positive integer such that for all ¢ > T, there hold ¢ > 7(c) and 367/ Nbuax -1 Vmax +
Koaymax < 0.1.

Remark 6 We show that Ty must exist. From 0 < o < min{ K7, Aml:ff(a) , Kzov'iax }, it is easy to
see that the feasible set of o is nonempty and Kooymax < 0.1. Since lim;_, oo ¢ = 0 by Lemma 9
and 7(a) < —C'log « by Assumption 3, there exists a time instant T > —C'log « such that for any
t > T, there hold t > T(«) and ni41 < (0.1 — Kgavmax)/(?)ﬁ\/ﬁbmaxvmax), which implies that

|

T exists.

Ty is any positive integer such that for all t > LT5, there hold oy < o, 27(ay) < t, T(t) 7 () <
min{ log 2 0.17} and <50¢t—r(at)7-(o‘t)fymax + 36\/meax7]t+1’7max <0.1.
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Remark 7 We explain why T must exist. Since oy = t‘j‘r—(’l is monotonically decreasing for
t and 7(oy) < —Cloga; = —Clogag + Clog(t + 1) from Assumption 3, there exists a

positive Sy such that for any t > Sy, we have oy < « and t > 27(ay) for any constant
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A.2 CONSTANTS USED IN THEOREM 5
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Here €, is a positive constant defined as €; = inf;>¢ miniev(Wt e Wol ~)%. From Corollary 2 (b)

in Nedi¢ & Olshevsky (2015) and the fact that each Wt is column stochastic, €1 € [ﬁ, 1]. See
Lemma 20 for more details.
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Remark 8 From Lemma 21, limy_, pty = 0. Then, using the similar arguments as in Remark 7,
we can show the existence of T. (I

B RELATED WORK

A key tool used for designing and analyzing RL algorithms is stochastic approximation (Robbins &
Monro, 1951), e.g., for policy evaluation, including temporal difference (TD) learning as a special
case (Sutton & Barto, 2018). Convergence study of stochastic approximation based on ordinary
differential equation (ODE) methods has a long history (Borkar & Meyn, 2000). Notable examples
are Tsitsiklis & Roy (1997); Dayan (1992) which prove asymptotic convergence of TD()\). Recently,
finite-time performance of single-agent stochastic approximation and TD algorithms has been stud-
ied in Dalal et al. (2018a); Lakshminarayanan & Szepesvari (2018); Bhandari et al. (2018); Srikant
& Ying (2019); Gupta et al. (2019); Wang et al. (2017); Ma et al. (2020); Xu et al. (2019); Chen et al.
(2020b); many other works have now appeared that perform finite-time analysis for other RL algo-
rithms, see, e.g., Zou et al. (2019); Qu & Wierman (2020); Wu et al. (2020); Xu & Gu (2020); Weng
et al. (2020); Wang & Zou (2020); Chen et al. (2020a); Wang et al. (2019); Dalal et al. (2018b);
Borkar & Pattathil (2018), just to name a few.

C DISCUSSION ON ASSUMPTION 6

In this appendix, we contend that Assumption 6 has more general applications than the previously
known case and that it is in fact necessary.

C.1 APPLICATIONS

First, as mentioned in Remark 3, there are at least two cases which satisfy Assumption 6, yet cannot
be directly handled by the existing analysis tool, which was developed only for doubly stochastic
matrices. Case 1 is when the number of in-neighbors of agents is unchanged over time. This case
has an interesting behavioral interpretation in fish biology, and has been adopted in bio-inspired
distributed algorithm design (Abaid & Porfiri, 2010). Case 2 is when the interaction matrix changes
arbitrarily over time during an initial period, after which it finally becomes fixed. As we describe
below, Case 2 occurs naturally in certain multi-agent systems.
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Case 1 is mathematically equivalent to the situation when all stochastic matrices share the same left
dominant eigenvector, which subsumes doubly stochastic matrices as a special case; thus it could
be analyzed by carefully choosing a fixed norm. There may be different choices: one choice is
to apply our time-varying quadratic Lyapunov comparison function Zf;l miE[||0 — 6*||3] to the
time-invariant case (i.e., 7r,'f does not change over time), which leads to the weighted Frobenius norm
defined in the appendix.

The extension to Case 1 just described may be straightforward, but Case 2 is not. As we proved in
Theorems 2 and 3, when the interaction matrix arbitrarily changes over time for an initial period, say
of length T, and finally becomes a fixed matrix or enters Case 1, all agents’ trajectories determined
by (1) will converge in mean square. Also, recall that the corresponding finite-time error bounds in
this case were derived using the “absolute probability sequence” technique. Note that the existing
techniques can only be applied to analyze (1) after time 7T'; when 7' is very large, such an analysis is
undesirable, since the focus and challenge here are for “finite” time.

It is important to note that Case 2 provides a realistic model for certain systems. Consider scenar-
ios in which some agents do not function stably and thus they communicate with their neighbors
sporadically for a certain period, leading to a time-varying stochastic matrix. Such scenarios oc-
cur naturally when there is unstable communication due to environmental changes or movement of
agents (e.g., robots or UAV's may need to move into a new formation while continuing computation).
After this unstable period, which could be long, the whole system then enters a stable operation sta-
tus. This satisfies Case 2 and our finite-time analysis can be applied to the whole process, no matter
how long the unstable period could be, as long as it is finite. In addition to this example, Case 2 and
our analysis can be applied to certain scenarios in the presence of malicious agents. Suppose the
system is aware that a small subset of agents have potentially been attacked and are thus behaving
maliciously. To protect the system, the consensus interaction among the agents can switch to re-
silient consensus algorithms such as Vaidya et al. (2012); LeBlanc et al. (2013) in order to attenuate
the effect of malicious agents. In this situation, the resulting dynamics of the non-malicious agents
are in general characterized by a time-varying stochastic matrix. After identifying and/or fixing the
malicious agents, which could be a very slow process, the system can switch back to normal op-
eration status. This example again satisfies Case 2, and our analysis can be applied to the whole
procedure. As we mentioned in Remark 3, if some malicious agents always exist, the non-malicious
agents in general will not converge, and thus a finite-time analysis is probably meaningless. The
non-convergence issue will be further explained in the next subsection.

Whether Assumption 6 can represent more realistic/analytic examples is a very interesting future
direction. Though consensus has been extensively studied and the “absolute probability sequence”
was proposed decades ago, this question has never been explored. The development of more ad-
vanced analysis tools is an interesting topic as well.

C.2 NECESSITY

We now elaborate on why Assumption 6 is not restrictive from a theoretical point of view.

As mentioned in Remark 3, distributed SA with time-varying stochastic matrices does not converge,
in general, if Assumption 6 does not hold. Assumption 6 is sufficient to guarantee the convergence
of the distributed SA algorithm equation 1 when the interaction matrix is row stochastic and time-
varying. Let us denote the necessary and sufficient condition for convergence of consensus-based
distributed SA as Condition A, which is currently unknown. It is possible that there is a large
gap between Assumption 6 and Condition A. But Assumption 6 is (to our knowledge) the most
general sufficient condition that has been proposed so far; one indirect justification of this claim
is Assumption 6 is an analogue of condition (C3.4’) in Kushner & Yin (1987), which is itself a
sufficient condition guaranteeing the asymptotic convergence of a different form of distributed SA.
While Kushner & Yin (1987) only provided asymptotic analysis, we provided both asymptotic and
finite-time analyses using a novel tool. Assumption 6 subsumes the existing analysis for doubly
stochastic matrices as a special case, and can be used for more general, nontrivial cases (see the
examples provided in the discussion of Case 2 above). Existing analysis tools cannot be applied to
Case 2. From a theoretical point of view, our paper reduces the gap between the doubly stochastic
matrices assumption and Condition A to the smaller gap between Assumption 6 and Condition A,
for finite-time analysis of consensus-based distributed SA.
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In addition, the other equally important main contribution of our paper, push-SA, does not need
Assumption 6, though its analysis still relies on the “absolute probability sequence” technique.

C.3 CONTRIBUTIONS

Next, we present a high-level view of our paper, which may help the readers to better understand
our overall contributions.

There are three major information fusion schemes in the vast distributed algorithms literature:
“consensus” (time-varying stochastic matrices), “averaging” (time-varying doubly stochastic ma-
trices which include gossiping), and “push-sum” (time-varying column stochastic matrices). The
consensus-based scheme can guarantee an agreement among the agents, but the agreement point in
general cannot be specified, especially when the interaction is time-varying. The averaging scheme
can specify the agreement point to be the average among all agents using doubly stochastic ma-
trices, but these only work for undirected graphs (i.e., bi-directional communication is required
between any pair of neighbors); typical examples are the Metropolis algorithm (Xiao et al., 2005)
and gossiping (Boyd et al., 2006). The push-sum scheme is able to not only achieve agreement
on the average, but it also works for directed graphs, allowing uni-directional communication. The
push-sum scheme can also be straightforwardly modified to achieve any given convex combination
agreement among all agents. The three schemes are widely used, depending on task specifications.
Push-sum appears to be the most powerful, but the other two also have advantages; e.g., consensus
can be modified to be more resilient against malicious agents, and averaging is easier in algorithm
design (especially gossiping) and analysis (due to nicer properties of doubly stochastic matrices).
There is a very recently proposed scheme called push-pull, but it is not yet that popular, so we focus
our attention on the three major schemes.

With the above background in mind, there are three major information fusion schemes that can be
used to design distributed SA (as well as RL). The existing literature has only analyzed the averaging
scheme (doubly stochastic matrices), which to us appears to be the easiest among the three. Finite-
time analyses of the other two schemes are untouched in the literature. Our paper is the first to
consider both.

As explained in the preceding subsection, our result and analysis for the consensus scheme (based on
Assumption 6) are the most general so far and generalize the existing tools in a nontrivial manner.
This leads to very interesting, open research problems — like necessary and sufficient condition
for distributed SA convergence — as well as how to design resilient consensus fusion, which can
guarantee convergence of distributed SA.

D DISTRIBUTED TD LEARNING

In this section, we apply our distributed stochastic approximation finite-time analyses to distributed
TD learning, as TD() is a special cases of stochastic approximation. To this end, we first introduce
the following multi-agent MDP tailored for distributed TD.

The multi-agent MDP can be defined by a tuple (S, {U*}icv, {R }iev, P, 7, {Gi}i>0), where S =
{1,...,S} is the finite set of S states, " is the set of control actions for agent i. For each agent i,
R : S xU x S — R is the local reward function, where U = Hf\il U' is the joint control action
space. P : 8 x U x & — [0,1] denotes the state transition probability matrix of the MDP, and
~v € (0,1) is the discount factor. Given a fixed policy, we let P be of size S x S for convenience,
and thus its 7j-th entry p* equals the probability from state 7 to state j under the given policy. The
multi-agent MDP then evolves as follows. At each time ¢ > 0, each agent 7 observes the current
state s; € S, takes action ul = u'(s;) € U, and receive a corresponding reward R (s, us, S111),
where p% : S — U is a function mapping a state to a control action in ¢/ and u; = Hf\il ut € U.
It is worth emphasizing that in such a multi-agent setting, each agent’s rewards and reward function
are private information, and thus cannot be shared with any other agents.
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The discounted accumulative reward JJ : S — R associated with the multi-agent MDP is defined for
eachs € S as

ZV Zc RT (8¢,ut,5t41) | S0 = 31 ) 20

t=0 2%
which satisfies the Bellman equation Sutton & Barto (2018), i.e.,

Z 5 [Z c'R'(s,5) —I—’yJ(S’)] , s€ES,
s'=1 Y

where cl > 0,7 € V, is a set of convex combination weights. The existing distributed RL algorithms
all set ¢ = 1/N forall i € V, e.g. Zhang et al. (2018); Doan et al. (2019), and this is why they
require interaction matrices all be doubly stochastic. We will show that ¢* = 7% for all+ € V for
general stochastic matrix sequences. Since for any doubly stochastic matrix sequence, its absolute
probability sequence is 7, = (1/N)1y, i.e., 7., = 1/N for all i € V, our results generalize the
existing results, e.g. Doan et al. (2019; 2021). In § 3, we will show how to achieve the straight
average reward, i.e.,c' = 1/N for all i € V, without requiring doubly stochastic matrices.

When the number of the states is very large, the computation of exact J may be intractable. To
get around this, as did in Tsitsiklis & Roy (1997), we use a low-dimensional linear function J to
approximate .J. Specifically, the linear function approximator .J takes the form

K
=> 0"¢;, seS,
=1

where each ¢ is a fixed scalar function defined on the state space S, each 6% is the associated
weight, and K < S. In other words, J is parameterized by § € R¥, with 6 being the k-th entry
of #. To proceed, let ¢, € R be the vector whose j-th entry is qﬂ; forall £ € {1,..., K}, let
#(s) € RE be the vector whose j-th entry is ¢j forall s € S, and let © € RS*K be the matrix
whose i-th row is the row vector ¢(i) " and whose j-th column is the vector ¢j,i.e.,

o))"
d=[¢1 -+ oK |= : € R9*K,
o(S)"

which implies J = ®0. The goal for the multi-agent network is to find an optimal §* with which

the distance between .J and .J is minimized, under the following standard assumptions adopted e.g.
Srikant & Ying (2019); Doan et al. (2019).

Assumption 7 All the rewards are uniformly bounded, i.e., there exists a positive constant R such
that |R'(s,s")| < Rforalli € Vand s,s' € S.

Assumption 8 The vectors ¢1, ..., Qi are linearly independent, i.e., ® has full column rank, and
|[o(s)|l2 < Lforalls € S.

Assumption 9 The Markov chain that evolves according to the transition probability matrix P is
irreducible and aperiodic. Let d € RS be the unique stationary distribution associated with P, i.e.,

d"P=d".

D.1 DISTRIBUTED TD(\)

In this subsection, we make use of TD()) to estimate 6™ in a distributed manner. Note that, TD(0)
can be applied in the similar manner. Each agent 7 updates its own estimator of 6%, 6y, as follows:

O =Y w0l +oa | AXy) Y w0l +V(Xy) |, i€V, te{0,1,2,...}, (22
JEN JEN}
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where X; = (s, 8111, 2¢) is the Markov chain, with z, = 325 _(Y\)**¢(sy), and

AXy) = 2 (vb(se41) — d(s0)) T, b (Xy) = iz, (23)

with 7! being the reward for agent i at time ¢. It is worth emphasizing that the proposed TD())
algorithm is different from that in Doan et al. (2021). The update equation 22 with equation 23 is a
special case of equation 1.

In the sequel, we will show that the update equation 22 with equation 23 is a special case of equa-
tion 1 so that our analysis for equation 1 can be applied here. To this end, let D = diag(d) € R®**,
where d is given in Assumption 9,

A= DU -DNP, U=(1-NY NOP)", v =2TDY (WP)r', ieV, (24)
t=0 t=0

where 7' € R® whose k-th entry is r** = Zle PR (K, s), and set Aoy = fi;& and bpayx =

R . . . .
T where R is given in Assumption 7.

Lemma 2 Let the sequences {0:}, i € V, be generated by equation 22 with equation 23. If Assump-
tions 7-9 hold, so do Assumptions 2—4.

Proof of Lemma 2: Firstly, under Assumptions 7-9, we have
oHT
Jim BAC)] =4, lm BBX) = |
)"

and ||A(Xy)|2 < ':)\, 6(Xe)ll2 < 1 R , where A(X;) and b*(X;) are defined in equation 23,

A and b’ are defined in equation 24. Slnce AmaX = 1+ ~ and byax = R, then we know that
Assumption 2 has been satisfied. Moreover,

B[ (X;) — b'[So = s0, S1 = s1]||2

S S
= H Z St = S‘Sl = 51) - 775)¢(5)7’is||2 S bmaxz ‘P(Sf = Z‘Sl == 51) - 7Ti|7
s=1

=5

|E[A(X}) — AlSo = 50,51 = s1]||2

S
— ISP = 5181 = 1) — 7)6 pr — () )llz
s=1

S
< Amaxz |P(St = S‘Sl = 81) — 7Tz|

i=1

Since {S;} is a finite state, aperiodic and irreducible Markov chain, it has a geometric mixing rate
(Brémaud, 2013), which implies that Assumption 3 holds. Lastly, when Assumption 8 holds, from
the proof of Theorem 1 in Tsitsiklis & Roy (1997), A given in equation 24 is a negative definite
matrix, i.e., x| Az < 0 for all z € REX, which implies that A + ATisa symmetric negative definite
matrix. From Theorem 7.11 in Rugh (1996), A is a Hurwitz matrix. |

Then, using the similar arguments as in Lemma 2, we can show that Assumptions 7-9 imply As-
sumptions 2—4, and thus our analysis for equation 1 can be applied here. From the proof of Theo-
rem 1 in Tsitsiklis & Roy (1997), A in equation 24 is a negative definite matrix, which implies that
A+ AT is a symmetric negative definite matrix. Thus, we can also choose P = I in Assumption 4
and use the Lyapunov function V' ({8);) = ||(8); — 6*||3 in the analysis, where 6* here is the limiting
point of equation 22. Using the same argument as in Theorem 2, we can show that 6 is the unique
equilibrium point of the ODE equation 5 with A and b* being defined in equation 24.

The finite-time performance of the distributed TD()) algorithm is characterized by the following
theorem.
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Theorem 6 Let the sequences {0:}, i € V, be generated by equation 22 with equation 23. Suppose
that Assumptions 1 and 6-9 hold and {G+} is uniformly strongly connected by sub-sequences of

length L. Let 0y be the diameter of UHL Gy and § = max¢>q ¢ Set Apax = lljij/\ bmax =

%, and oy > 0 be the smallest eigenvalue of—%(A + AT), where A is given in equation 24.

Let0<a<m1n{\119, AIL2 m, %}

maxT(a)? U3
1) Fixed step-size: Let oy = avforallt > 0. Forall t > Ty,
Z mE [||6; — 73] < 2¢n ZwmtE 165, = (D), lI3] + (1 = a0wmin)' " C1 + Co
=1
t—T1
+C5 > -kl — aomin)* (25)
k=0

2) Time-varying step-size: Let a; = 25 with g > —L Forallt > T\ L,

ZW;E 167 — 67]I3) < 2%~ g Z”T1L+mt {Hezﬂurmt - <9>T1L+mt”§}
i=1

A at—1 1
+Ci (06" +apun,) + 7 | CGolog() + G S owecn). oo
I=T"L
Here Tl, T — C’7 are finite constants whose definitions are given in Appendix E.2 with Ay .x = 11_+,7/\
and bmax = %

D.2 PUSH-TD()\)

In this subsection, we propose a push-based distributed TD(\) algorithm and provide its finite-time
error bounds. Note that, push-based distributed TD(0) can be applied in the similar manner. Each
agent ¢ € ) updates its variables at each time ¢ > 0 as follows:

L idyd i
Yiy1 = Z Wy, Yo =1,
JEN}

=Y @i —i—at( (Xt)w§j9{+bj(xt)>, 27)
JEN}

where w;” = 1/|N] 7|, X; = (s¢, 5141, 2) is the Markov chain, with z, = >} _(YA)! *¢(s),
A(X;) and b'(X,) are given in equation 23. Using the same argument as in Theorem 4, we can
show that §* is the unique equilibrium point of the ODE equation 10 with A and b’ being defined in
equation 24.

Theorem 7 Suppose that Assumptions 7-9 hold and {G;} is uniformly strongly connected by sub-

sequences of length L. Let the sequences {0:}, i € V, be generated by equation 27 with equation 23,
ap = t+1 and oy > —. Then, there exists a nonnegative € < (1— NJIVL )T T such that for all t > T,

ZE [ |67, — 9*||;] < Cyrét + Cy (aogé + a[%]) + Cyay

(Cw log” ( ) +Cn Z o + Cm) (28)

Here T and Cy; — Co are finite constants whose definitions are given in Appendix in Appendix A

. 1+ R
with Amax = ﬁr bmax - m and Ymax = Ymin — 1.
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D.3 CONSTANTS FOR TD

Cr = <8exp {QQAmaxfl} + 4) E [||<9>0 - 9*\@] + 8exp {2aAmaxT1} <|9*||2 + Binax >2;

Amax
N 2 200( -
&y = G2 n 04(3;
1—e¢ Omin

Cs = 2a(s;

A 26
Gy = -

4 1_ 67
Cs5 = 2700 C5
é@ = 20&0(4;

Cr = 2BLE [|(0),, - 0°13].

Ty is any positive integer such that for all ¢ > T, there hold t > 7(a) and 36V Nbmax 41+ Koo <

Omin-
Tg is any positive integer such that for all ¢ > Ty L, there hold oy < av, 27 () <t 7o) r(ay) <
min{%, %} and (s (o) T(0¢) + 36\/meaxm+1 < Omin-

D.4 SIMULATIONS

In this section, we numerically validate the finite-time bounds derived in this paper, for both dis-
tributed TD(\) and push-TD()), and compare with the existing distributed TD(\) results in Doan
et al. (2021). We focus on TD(A) and TD(0) as the existing distributed TD(0) finite-time analysis in
Doan et al. (2019) only considers i.i.d. samples.

The TD setting and multi-agent network are given as follows. Set A = 0.2 and discount factor
~ = 0.3. Consider an environment with N = 10 agents and |S| = 10 states. We generated a row
stochastic matrix with each entry in [0, 1] and then added a small constant 10~ to each element to
make sure that the transition matrix satisfies Assumption 9. For each agent ¢ and state pair (s, s'),
we randomly sampled mean reward R'(s, s’) from [—3, 3], and the instantaneous reward 7} was
randomly sampled from [R’(s, a) — 0.5, R*(s, a) + 0.5]. The dimension of the feature vector ¢ was
set as K = 5. We sampled the entry of ¢ from [0, 1] while simultaneously guaranteeing that the
feature matrix & satisfies Assumption 8.

First, we considered consensus-based algorithm equation 22 with time-varying stochastic matrices
to show the necessity of Assumption 6. To this end, we simulated two cases. In this first case,
we randomly generated a stochastic matrix at each time step, and thus the corresponding absolute
probability sequence 7; does not converge. We set the time-varying stepsize as oy = 1/t°-68. Fig-
ure 1 (a) shows that in this case the average norm of all agents variables does not converge, implying
non-convergence of all agents’ states. In the second case, we consider a more special case in which
the underlying graph changes periodically. In many distributed algorithms like distributed optimiza-
tion, periodic settings can be regarded as a time-invariant case which thus guarantees convergence.
We set the period as 10 and constructed the same set of 10 different stochastic matrices for each
period. However, Figure 1 (b) shows that even with this periodic setting, the consensus-based algo-
rithm (1) still does not converge, because a periodic sequence of stochastic matrices does not have a
convergent absolute probability sequence.

Next, we will compare the finite-time bounds derived in this paper with the one in the existing liter-
ature Doan et al. (2021). As mentioned earlier, compared with the finite-time analysis of distributed
TD(\) with doubly stochastic matrices in Doan et al. (2021), the finite-time analysis in the paper is
more general. In the sequel, we will evaluate the theoretical finite-time bounds for both distributed
TD(\) and push-TD(A). To illustrate the differences and advantage over Doan et al. (2021), for
consensus-based distributed TD()\), we consider the following three settings:

1. The first 15 weight matrices are fixed, row stochastic (not doubly stochastic) and the fol-
lowing 85 weight matrices are fixed, doubly stochastic (see Figure 2 (a) - (d)).
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(a) Random row stochastic matrices (b) Periodic row stochastic matrices

Figure 1: Non-convergent distributed TD(\) algorithm (equation 22) without Assumption 6.

Table 1: Comparison of the asymptotic bounds

Bound in this paper Bound in Doan et al. (2021)
Mixed stochastic matrices® + fixed | 88.1653 114.1386
stepsize
Mixed stochastic matrices + time- | O 0
varying stepsize
All doubly stochastic matrices + fixed | 881.5952 1141.4
stepsize
All non-doubly, stochastic matrices + | 241.6035 NA
fixed stepsize
All column stochastic matrices (push- | 0 NA
TD) + time-varying stepsize

* A set of mixed stochastic matrices contains both doubly and non-doubly ones

2. All weight matrices are fixed, stochastic matrices, but not doubly stochastic (see Figure 2

(e), ().
3. All weight matrices are fixed, doubly stochastic (see Figure 2 (g), (h)).

In addition, we evaluated the finite-time bound of the push-TD()\) algorithm with a fixed, column
stochastic weight matrix (see Figure 3).

Figure 2 (a), 2 (c) and 2 (e) show that the bounds in equation 25, equation 26 and Doan et al. (2021)
can be used to bound the actual error. However, the stating time for the bound in equation 25 and
equation 26 are earlier than those in Doan et al. (2021).

Figure 2 (b) and 2 (f) show the both bounds in equation 25 and Doan et al. (2021) will converge
to some fixed values when the stepsize is fixed. These values are listed and compared in Table 1.
Figure 2(d) shows that both the bounds in equation 26 and Doan et al. (2021) will converge to zero
for the time-varying stepsize.

Figure 2 (g) and 2 (h) show that the bound in Doan et al. (2021) can not be (directly) applied to
the stochastic (not doubly stochastic) weight matrix case. In addition, Figure 2 (h) shows that the

bound in equation 25 will converge to some fixed value when the stepsize is fixed, which is given in
Table 1.

Figure 3 shows that the push-TD(\) algorithm will converge to the optimal point in the long run,
and the bound in equation 28 can be used to bound the actual error. It is worth emphasizing that the
bound in Doan et al. (2021) cannot be applied for this case.

In summary, from the figures and Table 1, we can see that (1) our consensus-based TD(\) can be
applied to more general time-varying row stochastic matrices cases; though our finite-time bound is

10
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Figure 2: Finite-time bounds for consensus-based TD()\) (equation 22).
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Figure 3: Finite-time bounds for push-TD(\) (equation 27) with time-varying stepsizes.

looser at the beginning period, it can be applied at an earlier time instant and has a tighter limiting
bound, compared with Doan et al. (2021); and (2) our push-based TD(\) expands the applicability
of the existing distributed TD learning, as it can work for any time-varying directed graphs as long
as they are uniformly strongly connected, without any restrictive assumptions such as Assumption 6
in our consensus-based one and the doubly stochasticity assumption in Doan et al. (2021).

E ANALYSIS AND PROOFS

In this appendix, we provide the analysis of our two algorithms, equation 1 and equation 9, and the
proofs of all the assertions in the paper. We begin with some notation.

E.1 NOTATION

We use 0,, to denote the vector in R™ whose entries all equal to 0’s. For any vector x € R", we use
diag(z) to denote the n x n diagonal matrix whose ith diagonal entry equals z°. We use || - || to
denote the Frobenius norm. For any positive diagonal matrix W € R™*", we use ||A||w to denote
the weighted Frobenius norm for A € R"*™, defined as || Ally = ||[W 2 A p. It is easy to see that
| - [[w is a matrix norm. We use P(+) to denote the probability of an event and E(X) to denote the
expected value of a random variable X.

E.2 DISTRIBUTED STOCHASTIC APPROXIMATION
In this subsection, we analyze the distributed stochastic approximation algorithm equation 1 and
provide the proofs of the results in Section 2. We begin with the asymptotic performance.

Proof of Lemma 1: Since the uniformly strongly connectedness is equivalent to B-connectedness
as discussed in Remark 2, the existence is proved in Lemma 5.8 of Touri (2012), and the uniqueness
is proved in Lemma 1 of Nedié¢ & Liu (2017). [ |

Proof of Theorem 1: Without loss of generality, let {G;} be uniformly strongly connected by
sub-sequences of length L. Note that for any 7 € V, we have

N N
0 < Tanin16F — (0)ell3 < min D 167 — (O)ell5 < Y7L 116] — (0):]13, (29)
j=1 j=1

12
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where 7y, 1S defined in Lemma 1. From Lemma 10,

N
: iNgi 2
tE{&E”t”et (0)ell2

N
s g =T i i _ 2 . € A2e=1
< tli}gloﬁ o ;WTIL-FthGTZL-i—’mt <9>T4*L+mt||2 + tlggo 1—¢ <0¢0€ 2+ 0‘(%@
1=
=0. (30)

Combining equation 29 and equation 30, it follows that for all i € V, limy_,c Tminl|0; — (6)+]|3 = 0.
Since Tmin > 0 by Lemma 1, lim;_, o |0} — (0)+]|]2 = 0 forall ¢ € V. [ ]

Proof of Theorem 2: From Theorem 1, all 9,?, i € V, will reach a consensus with (6); and the update
of (6); is given in equation 4, which can be treated as a single-agent linear stochastic approximation
whose corresponding ODE is equation 5. From Kushner & Yin (1987); Kushner (1983),' we know
that (0); will converge to 8* w.p.1, which implies that 6% will converge to §* w.p.1. In addition, from
Theorem 3-(2) and Lemma 9, lim_, o, Y"1, 7/ E[||§7 — 6*|2] = 0. Since 7 is uniformly bounded
below by myin > 0, as shown in Lemma 1, it follows that 92 will converge to 6* in mean square for
allz € V. [ |

We now analyze the finite-time performance of equation 1. In the sequel, we use K to denote the
dimension of each 6}, i.e., 0] € RX foralli € V.

E.2.1 FIXED STEP-SIZE

We first consider the fixed step-size case and begin with validation of two “convergence rates” in
Theorem 3.

Lemma 3 Both ¢ and (1 — %) lie in the interval (0, 1).

Proof of Lemma 3: Since 0 < o < K; = min{(y, 73%‘5"} as imposed in Theorem 3, we have
0 <a<and0 < a < Tge=. The latter immediately implies that 1 — 2'90‘ € (0,1). From

max

Remark 5, € is monotonically increasing for o > 0. In addition, from the definition of (; in Section A
that if @ = (3, then e = 1. Since 0 < « < (3, it follows that 0 < € < 1. [ |

To proceed, we need the following derivation and lemmas.

LetY; = ©; — 1n5(0)] = (I — 1y7])O;. Forany t > s >0, let Wy, = W, W,;_y - - - W,. Then,

Yig1 = O — In(0)/4,
=W,0; + aW,0, AT (Xy) + aB(Xy) — 1n((0), + a(0), AT(Xy) + ar, B(X}))
=Wi(I - 17 )0y + aWy(I — 1y )0, AT (Xy) + a(I — 1n7/) 1) B(Xy)
=W.Y; + aW, Y AT(X,) + (I — 1y7) 1) B(Xy). (31)

For simplicity, let Yti be the i-th column of matrix YtT. Then,

N N
Yig =Y wlY! +aA(X)> wiY! +a (b'(Xy) — BT (Xy)miga) - (32)

j=1 j=1

'On page 1289 of Kushner & Yin (1987), it says that the idea in Kushner (1983) can be adapted to get the
w.p.1 convergence result.

13
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From equation 31, we have
Yier = Wisr-1Yisr—1(I + AT (Xppr-1)) + a(I = 1n7. ) B(Xpgr-1)
=Wipr-1Wigr—2Yipro—oI + C%AT(Xt+L72))(I +aA’ (Xttr-1))
+ Wi (I = Inmlyp ) B(Xeyp—o) (I + AT (Xpy 1))
+a(l = 1nm ) B(Xesr-1)
=Wetrr1Yi(I +aAT (X)) - (I + aAT (Xip1-1)) + oI — I ) B(Xeg1-1)

t+L—2
+a > Witrapra(I = 1nml,)B(Xy) (H?ﬁﬁ(f + aAT(Xj))) ) (33)
k=t
and
4 N
Vi, = (HZJ;ﬁil(I"‘ aA(Xy)) Zwt it L— 1Y + abt+L7
j=1
where

Ai+L = (0" (X¢sr-1) — B(X4rp-1) ' mesr)
t+L—2

+ Z (ML (0 + A, )Zwkﬂm (09 (X3) = B(X3) Tmisn).

Lemma 4 Suppose that Assumption 1 holds and {G;} is uniformly strongly connected by sub-
sequences of length L. Then, for all t > 0,

Tmin37F
Zﬂ—tJrLZZwttJrL 1wtt+L 1HY] YHIE > L Zﬂ”yl”z’

] 1 k=1 HlaX

where 3 > 0 and myi, > 0 are given in Assumption 1 and Lemma 1, respectively.

Proof of Lemma 4: We first consider the case when K = 1, i.e., Y;Z € R, Vi. From Lemma 1, we
have

N N N
ZWZ-FLZZ tt+L 1wtt+L 1HY Y I3

i=1 j=11=

N N
il j !
2 Tmin Z wt:t+L—1wz:t+L—1 1Y, = Y{|3.
i=1 1=1

=1 j=1 (=

[
—

N

Let 5* and [* be the indices such that

Yy vyl = Y)Y
|Y; ¢ 1£?§N‘ t 2

From the definition of Y;, Y/ — Y} = 6/ — 6! for all j,1 € V, which implies that

Y7 =V = max [YY Y= max |6/ -6} =0 —6\).

1<j,I<N 1<4,I<N

Since UH'L 'Gy, is a strongly connected graph for all + > 0, we can find a shortest path from
agent j* to agent I*: (jo,Jj1), "+, (Jp—1,Jp) With jo = j*, jp = 1", and (jim—1, jm) is the edge of
graph Ut+L 1(Grk, for 1 < m < p, which implies that

N N N
j il J 12

Z Y wih it 1YY = Y3
=1 j=1[=1
N p

©Jm—1 ©Jm Jm—1 Jm\2

ZZ Wiy p 1 Wiy (Y —Y/m)" (34)
i=1 m=1

14
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Moreover, we have

Jm—1 Jm Jm—1Jm—1_ Jm—1Jm ImIm—1, JmIm 2L
E :wt M LWL —1 2 Wi -1 Wiy F W T w2 B (35

Then, from Jensen’s inequality, equation 34 and equation 35, we have

Zﬂ't-s-LZZwt t+L— 1wt t+L— 1||Y - Y13

j=11=1
p
iJm—1 Jm Jm—1 Jm\2
2 7TmimZ: Z Wiy LWt (YT = Y)
=1 m=1
2L 2L
Tmin B . I Tmin 8 i I
2 mlr; (l/tj _i/t )2: ml(r;t (9g _et )2. (36)

For the case when K > 1, let Yt““ be the k-th entry of vector Y. Then,

Zﬂ“‘LZZthL VWi Y7 —v}2
j=11=1
K

k=1 1i=

N

) 1k
7Tt+L§ E wtt+L 1wtt+L 1(Y -Y; )
1 j=11=1

For each entry k, we have

7Tmin/BQL ik
ZWHLZZ“&HL 1wtlt+L 1(Y —Ylk) ———— max (6] —Gik)ga (37)

j=11=1 6max 1<5,I<N

where 0:F is the k-th entry of vector 0. Moreover, let ©; be the k-th column of matrix ©.

Since 2z129 < 27 + 23, we have forany entry k = 1,..., K,

N N
dom¥)? = mlek — o3
i=1 i=1

< max [0““ T@;kf: max [W:(lN‘gik_eik)f

T 1<i<N 1<i<N
2
N N N
J(pik ik J_l(pik ik pik Ik
= max T (0:F — 6 = max i (0;F — 0 0" —0
[maxs E 7 (04 ) 1<i<N§ E 1 (04 ) (04 +)
=1 = =" j=11=1
N N
2/pnik Jk\2 J/nik Jk\2
< max )2 (0% — 6 < max 7wl (0% — 6
s S0 — 01 < ma S0 00
j= j=

ik
< max max (8% — 67")2,
1<i<N 1<j<N

Then, combining this inequality with equation 36 and equation 37, we have

Z Z ﬂ-HL Z Z wt t+L— 1wtlt+L 1(Y - Ylk)

k=11=1 j=11=1
- )
2 mmﬁ Z max 0]]6 _ 9%]@)2
Omax 1<), l<N
2, K N 2, N
_ 7Tmm,8 Ylk‘ _ Wminﬁ 1||Y1H2
= 5 7Tt t1l2-
max k=1 i=1 max i=1
This completes the proof. u
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Lemma 5 Suppose that Assumptions 1 and 2 hold and {G;} is uniformly strongly connected by
sub-sequences of length L. Then, when « € (0, (1), we have for all t > 7(a),

N N C

|| pt t % 7 2
Zﬂ—tHet - <9>t||% < € Zﬂ-thgmt - <0>mt||§ + 1_ 67
=1 i=1

where (1 is defined in Appendix A, € and (5 are defined in equation 6 and equation 12, respectively.

Proof of Lemma 5: Let M; = diag(m;). Recall the update of Y}’ ‘L

Yop = (IE (I + aA(Xy) Zwt o+ L— Y+ abt+L

j=1
Then, we have
N
Yerzlan., =Y meclViicld
N
— ZW;HH (51T + aA(Xy)) Zwt L Y7 3 (38)
; et
+a Zlelb 1l (39)
N N
+ QQZW§+L(5§+L)T (I (I + aA(Xy) Zwt t+L—171 (40)
i=1
For equation 38, since 2(z1) "2 = |13 + ||lz2l|3 — [|#1 — 22[3 and 7] = 7] Wi p1, we

have

N
ZT‘-;+LH (IEE (T + aA(Xy) Zwt 1Y 3
N .. .
< (1 + aAmax)®” Z | Z w1 Y7 |13

= (1+ admu)? ZmZZwM iy VIR + V3 — 17— v{13]

Jj=11=1
N

:(1+aAmax)2L ZWtLHYtng ZWHLZZwttJrL 1wtt+L 1||YJ Yl”z

i=1 j=11=1
From Lemma 4, we have

k ™ ﬁ
E 7rt+L§ E wtt+L 1wtt+L 1HYJ Yy Hz min E t”Yz”Qa
mdx

J=1k=1

which implies that

N
Z’”Z+LH (HZJ;%%(I"‘O‘A Xk)) Zwt hr—1Y7 ||§
N

’/Tminﬂ 1 7
< (1 + ahmax) (1 - m) ;WtHYt [E2 41)

16
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As for equation 39, since for any agent i we have ||b*(X;) — BT (X¢)7¢11]l2 < 2bmax for all i, then

10 ll2 < 10" (Xepr-1) — B(Xerr—1) merr)|2
t+L—2

2 (sl + aa(x; )||22wk+m I (X0) = B(X) Tmes0)l2

L-1 L—-1

» 1

S 2bmax Z(]- + aAmax)j S 2bmax(1 + OéAmax)L71 Z 71 . A N4

j=0 =0 (1 + Amax)?

(1+ aApa)t — 1
< 2bm X 5
- * aAmax

which implies that
2 - i 7 2 4br2nax L 2
o Z Tiplbipllz < a2 ((1 + @Amax)” — 1) . (42)
i=1 max

In addition, since for any vector z, there holds 2||z|js <1+ Hx||§, then, for equation 40, we have

N
QQZWZ+L(bz+L)T (Hiif‘l(f +aA(Xy)) wa t+2-177

i=1

N
<20y iy p b 2 ITEE (T + @A (X)) ZWE?HL_lIIYtJIIz

i=1 j=1
N
(1+ aAmax)t — 1 P
< dabmax A (1+ @A max) " Zl TV 2
N
(14 Ay X)L —1 iy
< a1+ adma) ;wtlm I5+1)- (43)
From equation 41-equation 43, we have
Yeszli,. .
N 2
2L TrmiﬂﬂZL i )12 4bmax L 2
< (L @0 T2 7) SOV + 2 (14 0~ )

N
(1+ O‘AmaX)L -1 iV
Ao (1+ aAmaX)L ZﬂtHYt 13 +1

i=1

+ 2bmax

7Tmin52L (]- + aAmax)L -1
= (- a1 - T o, B0 (1 + 0 ) ¥l
max max
4b2 1 Apax)¥ —1
+ (1 + aAmax)” = 1) + 2bmax< + QA ) (14 aAmax) ™.

From Lemma 3, 0 < € < 1 when 0 < a < (;. With the definition of € and (5 in equation 6 and
equation 12, we have

qt+r—1
YorelBn,, < eelldy + G < oV B, + G2 Y
k=0
< e Vo B, +
=~ t my 1_67

which implies that

N N ;
19t t % i 2

S w6 — @)l < € S, 16, — (O I3+ T2,

i=1 i=1

where ¢; and m, are defined in Theorem 3. This completes the proof. [ |
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Lemma 6 Suppose that Assumptions 2 and 3 hold. If {G.} is uniformly strongly connected, then
when the step-size o and corresponding mixing time 7(«) satisfy

log 2
Amax ’

0<ar(a) <

we have for any t > 1(«),

||<0>t - <0>t—7—(o¢) H2 < 2O“’LllmaxT(O‘)||<9>t—'r(04)H2 + 2a7—(a)bmax (44)
[1{0)¢ — (0)t—r () ll2 < 6aT(a) Amax[[(B)e]l2 + 5aT(a)bmax (45)

602,
A;ﬂd*. (46)

max

K0)e = (O)e—r(ll3 < 720772 () AT {0) 13 + 500772 ()b < 811{0)¢]13 +

max max —

Proof of Lemma 6: Recall the update of (¢); at equation 4 with a; = « for all ¢ > 0:

<0>t+1 = <9>t + OZA(Xt)<9>t + OéB(Xt)TTFH_l.
Then, we have
10)t11ll2 < 1{0)¢ll2 + aAmax||{0)t|l2 + Obmax
S (1 + aAmax)||<0>t||2 + Cmeau)v
By using (1 + z) < exp(x), forall u € [t — 7(«), t], we have

u—1

1O)ull2 < (1+ @Ama) OO o ll2 + Abmax D (L + adman) !
I=t—7(a)
u—1

< (14 @) OO sy llz + abimax > (L + Q)T

I=t—7(c)

< exp(a7 (@) Amax) [[(0)t—r (o) l2 + @7 (@) bmax exp(aT(a) Amax)-
Since we have a7 () Amax < 1og2 < %, then exp(a7(a) Amax) < 2, which meas that

||<9>U||2 < 2H<9>t7'r(a)||2 + 207 () bmax-
Thus, we can use this to prove equation 44 for all ¢t > 7(«), i.e.,

t—1

1O = ) t—r@llz < D 1O urr — (B)ullo

u=t—7(a)
t—1
S OU4ma,x Z H<9>u”2 + OéT(Oé)bmax
u=t—7(a)
t—1
< aAmax Z (2” <9>t7‘r(a) H2 + 2aT(a)bmax) + aT(a)bmax

u=t—7(x)

< 2a7(a) Amax || (0)t—r(a)ll2 + 20272 () Amaxbmax + a7 () bmax
5
< QQT(Q)AInaXH<0>t—T(O¢) 2 + gO‘T(O‘)bmax
S QQT(O‘)AIIIBXH <0>t77(a) ||2 + QaT(a)bmax-
Moreover, we can prove equation 45 by using the equation above for all ¢ > 7(«) as follows:

5
H<9>t - <9>t7'r(a)||2 < 2047'(0‘)Amax||<9>t7'r(04)||2 + gaT(O‘)bmax

2 5
< 3l80)e = (O)i—r (e ll2 + 2a7(0) Amax[|(O)el2 + FaT(A)brmax
< 67 () Amax || {0)t|l2 + SaT(@)bmax-
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Next, using the inequality (z+y)? < 22242 for all , yy, we can show equation 46 with equation 45,
ie.,

1(0)s = (O)i—r(all3 < 720772 () ARl {0) 13 + 500”72 ()b

max

- by
where we use a7 () Apax < % in the last inequality. [ |

Lemma 7 Let F; = o(Xy, k <t) be a o-algebra on {X,}. Suppose that Assumptions 2—4 and 6
hold. If {G4} is uniformly strongly connected, then when

log 2

0 e
<a< Amaxr(a)’

we have for any t > (),
[E[((0)e —0")T(P+ PT) (A(X){(0) + B(Xy) " migr — A0y — b) | For(o]|
< OYmax (72 + 4567 (v )AIQnax + 847 () Amaxb maX) [||< )t ||% ‘ ]:tfr(a)}

* 8b12nax bmax * 2
2+ 4073+ 250 <>A3nax(152(A +16la)

+ Ymax

max

48bmax ( bmax 78T, 12bmax
+ +1) + +

Amax Amax A?nax Amax
\/7 2 6br2nax * 12
+ 2fmaxtfe+1V Nbmax | 1+ 9E([[(0)ell2 | Foore] + —5 + 1107112 ) -

Proof of Lemma 7: Note that for all t > 7(«), we have

[E[((0): — 6) T (P + PT)(A(X:){0)s + B(Xe) "meg1 — Al = ) | Fyrw]l

< [E[((0): — 0") " (P+ PT)(A(Xy) = A){O)1 | Fior(al
+[E[((0): = 0") " (P+ PT)(B(Xy) w1 — b) | Foer(o)]l

< E[((0)1—r() = 0) T (P + PT)(A(Xy) = A)0)t—r(a) | Fror(l (47)
+ B[((0)t—r(@) — 0°) (P + PT)(A(Xe) = A) ()1 — (0)—r(a) | Feerio]l (48)
+E[((0)r = (0)1—r@) " (P+ PT)AX:) = A (O)1—r(a) | Fior(al (49)
+ [E[((0) — (0)1—r(a) T (P + PT)(AX:) = A)(0): — (0)1—r(a) | Frerio]l (50)
+ E[((0) — (0)1—r(a) (P + PT)(B(Xs) "mig1 = b) | Foria]l (51
+IE[((0)1—r(a) = 0°) (P + PT)(B(Xy) 'mis1 = b) | Forio]l- (52)

First, by using the mixing time in Assumption 3, we can get the bound for equation 47 and equa-
tion 52 for all ¢ > 7(«) as follows:

[E[(0)t—r(a) = 0) (P + PT)(AX:) = A)(0)1—r(a) | Fir(a)]l
<|(O)t—r(ay — )T (P + PTE[A(Xy) = A | Fo o)) (01— (e
< 20YmaxE[[(0)t—r(a) — O 20(0)t—r (@) |2 | Fi—r(a)]
< YmaxBl[(0)1—r(a) = 0113 + 1(0) - I3 | Frer(o)]
< YmaxER2(167]15 + 31(0)t— (@13 | Feer(o)]
< 60%maxE[[(8): = (0)1—r(a) 13 | Fir(e)] + 60%maxE[[(0)ell3 | Fior(a)] + 207maxl607 (3

bmax *
< 54a7maxE[H<9>t||2 | ]:tf'r(oz)] + 36a7max(A ) + 2a'7max||9 H% (53)
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where in the last inequality, we use equation 44 from Lemma 6. Then, from the definition of 7, in
Assumption 6,

[E[((0)t—r(a) — ") T (P + PT)(B(Xt)TT"t+1 —0) | Firll

N
< [E[((0)t—7(a) — 9*)T(P+P ZWtJrl b’ (Xe) — bl )+ Z 7Tt+1 bz ) | Feer(all
i=1 i=1

N N

() t—r(e) = O07) (P +PT)Q_ i B (X2) = b | Fir(a)] + Y (mi1 — T )V))|
=1 =1

< 2¥max (0 + nt+1\/ﬁbmaX)E[”<9>t—‘r(a) - 0*”2 | }-t—‘f(oé)]

< 27max(a + nt+1\/ﬁbmax) (E[||<9>t77(o¢)”2 ‘ ]:tfr(a)] + ||9*H2)

1 1, .
< 27max(a + nt-‘rl\/ﬁbmax) <1 + iE[H<0>t—T(a)H§ | ‘Ft—‘r(a)] + 5“0 ||§>
< 2ma (@ + 001V Nbimax) (1+ B0 = (0)i—r(all3 + 10)ell3 | Firey] + 167113

bmax %
< V(-4 141V W) (1 OBIIONIE | Firin] + OG22 4 [0 59

max

where we also use equation 44 from Lemma 6 in the last inequality.
Next, by using Assumption 2, equation 44 and equation 46, we have
[E[((0)s—r(a) = 0%) (P + PT)AXe) = A)((0): = (0)1—r(a) | Frral
< Dmax AmaxB[[(0)i—r(a) — 0" [[2[{0): — (O)1—r (o) ll2 | Fier(a]
< YymaxAmaxB[[[{0)t—r (o) 12[[{0)t = (O)i—r(a)ll2 | Fimr(a)]
+ 4'VmaxAmaX||9*H2E[”< )t — <0>t*‘r(a)H2 | ]:t*‘f(a)}
< 807 () Ymax Amas B0t (o) I3 | Fimr(a)] + 87 () Ymax Amaxbmax||0*]|2

bmax *
+807(@) s A (22 41071 ) B O)emrio 2 | Ficro]

< 80‘7'(04)’Ymax max B[ (@)~ T(a)“g | ]:t—r(a)] + 8a7 () Ymax AmaxOmax]|07 |2

bmax ey )
+40‘7—(O‘)’Ymax max [H< )e— T(a)Hg | "T-'tf‘r(a)] +4O‘T(O‘)’YmaxA12nax (A =+ [0 2)

< 1207 () Ymax AZrax BIO) (o) I3 | Fizr(a)] + 807 () Ymas (Bmax + Amax[107]|2)”

< 2407(0) Ymax Azax BI O = (0)¢—r(a) |13 | Feor(a)] + 807(0)Ymax (bmax + Amax[|012)*
+ 2407 () Ymax Amax Bl O)e 13 | Fior ()]

< 21607 () Ymax Amax B[ (0)el[3 | Fi—r(a)] + 14407 () Ymaxbinax
+ 807 () Ymax (Pmax + Amax[|0%]|2)*

< 2160‘7'(0‘)7max max B[ (@) H% | ]:t—-r(a)] + 152a7 () Ymax (bmax + AmaX||9*||2)2- (55)
In additional, by using equation 44 and equation 46, we have

[E[((0) = (0)t—r(e) " (P + PTYAX:) = A)(0)i—r(a) | Fir(w]l
< AYmax AmaxB[[[(0)¢ — (0)t—r () 12[{)t—r (o) l2 | Frr(a)]
< 8a7() Ymax Amax B[ Amax [(0)1— () 13 + bmax (01— () ll2 | Fir(a)]
< 407 (@) Ymax Amax (2Amax + Omax) E[[(0)1— (o) I3 | Fe—r(a)] + 407 (@) YmaxAmaxbmax
< 8aT(a) Ymax Amax (2Amax + bmax) E[|[(0)¢ — (0)— T(a)||2 | Fier(a)]
+ 807 () Ymax Amax (2 Amax + bmax)E[[(0)e[|3 | Fi—r(a)] + 407 () max Amaxbma
< 7207(@) Ymax Amax (2Amax + bmax) E[[(0)¢]l5 | Fior(a)]

bde
+ 4804T(a)’7maxAmaxbmax(A + 1) (56)
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Moreover, we can get the bound for equation 50 by using equation 46 as follows:

E[((8)e = (0)t—r() " (P + PT)(AXe) = A)({0)e — (0)t—r(e) | Frria]l
< max AmaxB[(0)¢ — (0)1—r(@)13 | Foer(a)]l
< max Amax B[720° 7% () AL | 0[5 + 500772 ()b | Fimr )]
< 9607(0) A ax Ymax BIKO) 13 | Fi—r )] + 6707 ()05 Ymax- (57)

Finally, using equation 45 we can get the bound for equation 51:

E[(0)t = (O)e—r(a)) T (P + PT)B(Xy) "1 = b) | Fier(o|
< Dmaxbmax B[ (0)r = (O)t—r(oll2 | Fi—r(a)]
< 47maxbmaxE[6aT( )Amax||< > H2 + 50[7'( ) max | ]:tf'r(oz)]

< 1207 () Ymax Amaxbmax B[ (0)+ H% | Fier(e)] + 1207 () YmaxAmaxbmax + 20@T(Q)br2nax'7ma>c~
(58)

Then, by using equation 53—equation 58, we have

[E[((0)] —6")"(P+PT)(AX)(0) + B(Xy) mep1 — AB) — b) | Foeria)l
bmax

Amax
+ 216017—(0‘)’7max max [||< > H% | Fie T(a)] + 152&T(a)’7max (bmax + Amax||9*||2)2
+ 7207 () Ymax Amax (2 Amax + bina) E[(0) |3 | Fior(a)]

)2 + 20‘7maxuo*”g

< 540‘7maxE[||<8>tHg | ‘Ft—T(O’)] + 360‘7111&)((

bmax

(
+ 48047—(04 ’Ymax max max(A + 1) + QOOéT(Oé)bi]aX’)/max
(
(

)
)
+ 960”- Oé)fﬁlmax’ymax [H< > H% | ]:tf'r(og)] + 67aT(a)b?nax,ymaX
+ 12a7 a)’}/max max max [H< > ||§ | ‘Ft—T(Q)] + 12aT(a)’YmaxAmaxbmax

Amax
< OYmax (72 + 4567'( )Afnax + 847’(04)Ammx mmx) [||< > H% | ‘Ft—T(a)]

bmax *
T 2@+ 741V Vo) (1 COBIBYZ | Frrio] +6(20)2 4 6 ||§)

. bunax bnax ey )
2 408 480525 () e (152 (22 107

Amax max
b b b b
4 max max 1 2 max \2 12 max )i|
+ 48 Amax( A +1)° +87( Amax) + 1
bmax *
+ 2maxtle+1V Nbimax <1+9E[II< Y3 | Fore] +6(7) + 110 |§). (59)
max
This completes the proof. u

Lemma 8 Suppose that Assumptions 2—4 and 6 hold. Then, when

0 < o < min ,
{AHIBXT(O‘) KQ'Ymax

log 2 0.1 }
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we have for any t > T1,

0.9a """ 5 alsa
E — ¢ 1= DO [[[(0) 7, — 67[|3] + S max
[1(0)e+1 H]( va o L1007 = 07l12] + i
t—T,
i 0.9a
4 Jma aly Z Ner1—k(1 — )
P)/mln k=0 "Ymax

0.9\ 1 5
S@ ) % (4 exp {20 AmaxTi} + 2)E[[[(0)0 — 07]13]

Ymax “Ymin

0.9« t+1-Th max * bmax
+4 <1 - ) i exp {20 AmaxT1} (1|67 [|2 + A )2

Ymax Ymin max
oz(g,fyz Yma: t 0.9,
+ max + X a<4 Mo 1—k 1_ = )
0'9’Ymin Ymin Z o ( “Ymax )

where (3, (4 and K5 are defined inequation 13, equation 14 and equation 20, respectively.

Proof of Lemma 8: Let H((0);) = ({(6); — 0*) T P({0); — 6*). From Assumption 4, we know that

Yanin [ (0)e — 07113 < H((0)e) < Ymax[[(0)e — 075

Moreover, from Assumption 2, for all £ > 0 we have

H((0)t+1)

((0)141 — 6°) " P((0) 141 — 0%)

= ((0)r + aA(X)(0) + OZB(Xt)TWt+1 )TP(<9>t + aA(X)(0): + aB(Xt)Tﬂ—t+1 —0%)
(( ? (

= ((0): — 0%) " P((0) — 0%) + a®(A(X;)(0):) " P(A(X,)(0):)
+®(B(X;) "mip1) T P(B(Xy) ") + o (A(X0)(0)0) T (P + PT)(B(X:) Tmiq)
+a((0)r — %) (P + PT)(A(X)(0): + B(X:) "1 — A(0); — b)
+ a((0)r — 0°) T P(A(0); + b) + a(A{0): + b) T P((6); — 0)

= H((0):) + o (A(X)(0):) " P(A(X)(0):)
+a?(B(X¢) "miq1) T P(B(Xy) ") + @ (A(Xe)(0)0) T (P + P )(B(Xt) "me41)
+a((f) —0")T(P+ P")(A(X)(0) + B(Xy) " m41 — Af), — b)
+a((0); — 0°) " (PA+ ATP)((0): — 07), (60)

where we use the fact that A0* + b = 0 on the last equality.
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Next, we can take expectation on both sides of equation 60. From Assumption 4 and Lemma 7, for
t > T we have

E[H ((0)¢+1)]
= E[H((0),)] + «®E[(A(X;)(0):) " P(A(X:)(0):)] — aE[||(0); — 67|3]
+ ”E[(B(Xy) "me1) T P(B(Xy) "misn)] + @E[(A(X)(0)) T (P + PT)(B(X:) "me41)]
+aE[((0); — 0*) " (P + PT)(A(X:)(0): + B(Xy) T w1 — A(); — b)]
E[H((0):)] — aE[[[(0): — 0°[13] + o A7 Ymax Bl (0):[13] + 20° AmmaxbmasYmax B[l (0)¢[|2]
+a2b?naxwmax+a%max (72 + 4567 (@) AT, + 847(01) Amaxbmase) B[ (0) 3]

bmax bmaX * 2
0 2 1071 82 4 7 () A (152 (22 40

Amax max
bmax bmax bde bmax
+ 48 Anlax ( Amax + ) + 87( Amax ) + 12 Amax )i|

bmax *
+ 2071V N (1 OO ] + 622 + 3

< E[H((0)0)] = aE[l[{0)¢ — 07[13] + 20 A7, 0 vmax B[ (0)¢ 3] + 20257, Yimax
+ & Yimax (72+4567'( )Ar2nax + 847 () Ammaxb maX) E[[|(6). ||g]

bmax * 2

2 0]

max

bmax
+ a Ymax |:2 + 4“9*”2 + 48(A )2 ( )Ar2nax (152 <

b b b b
4 max max 1 2 max \2 192 max )}
48 Amax ( Amax N ) + 87( Amax ) + Arnax

bmax *
+ 201V Wi (14 SBI] O] + 6(525)° + 10713

Since B|[(0): (3] < 2B([|[(0): — 0"[13] + 2[|6*[|3. we have
)

[ ((@)¢41)]
E[H((0))] — aE[[[(8); — 07[|3] + 2020 Yimax
+ 0 Ymax (72 + 242, + 4567 () A2, + 847 (@) Amaxbmax) CE[|[(0): — 07(|3] + 2/107(|3)

b b ?
2 * max 2 2 max *
0 2 1071 4852 4 7 () A (152 (22 4 )
b b b b
4 max max 1 2 max \2 192 max

bmax *
+ 20YmaxTi+1V Nbmax (1 + 18E[||(8), — 67]12] + G(T)Q +19)|6 ||§>
< E[H((0):)]
+ (=04 20 Ymax (72 4 242, + 4567 () A2, + 847(0t) Amaxbmax) ) B[|[(0)¢ — 6%[[3]

+ 20" Ymax (72 + 247 1 + 4567 (@) AT, + 847 () Amascbmase) 10713

max max

bmax bmax * ?
+ 0% Ymax [2+2b?nax+4ll9*|\z+48( )2 +7( )A?nax<152 + 1167l
Amax Amax

b b b b
4 max max 1 2 max \2 12 max )}
a8 Amax (Arnax i ) + 87( Amax ) + Amax

bmax *
20 mm1V Wi (14 8B = 0731+ 62+ 19003

< EIH((0)0)] + (—a + 0 max Ko + 3607041V Nbimaxmax ) Ell[(0): — 0°[3]

+ a2c3’7max + AYmaxt+1 C4-
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From Lemma 3,1 — 22 ¢ (0, 1). In addition, from the definition of 77 and o < 2=

-, we have
E[H((0)t+1)]
< E[H((0):)] — 0.9aE[[[(0): — 6%[13] + *(3Ymax + @Vmax+1a
0.9a
S (1 ¥ ) E[H(<9>t)] + 042<3’Ymax + (X’Ymaxnt+lg4
0.9\ 1 ‘ 0.9a .,
< (1= 2) B+ e 3 (1 D2
’Ymax k:Tl ’Ymax
t—T1
0.9«
+ a'ymaxc4 Z 77t+17k(1 - )k
k}=0 ’}/max
0.9\ 1 alsy? L 0.9a
< (1- E[H((0)r,)] + 280mex 4 ooy > k(1= =)k, (61)
Ymax 0.9 =0 max
which implies that
E[|[(0)¢11 — 0%113]
1
< o~ E[H((0)¢+1)]
0.9a\ T 4, alsy?
< 1— maXE 0 —f* 2 + max
(1-250) " Ty, g+ S
t—T4
max 090[
+ 1000 N k(1= )k, (62)
’ymlﬂ k) O ’Ymax

Next, we consider the bound for E[||(6)

7, — 0*||3]. Since 1 + x < exp{x} for any x, we have for
any ¢,

1) t+1 = (O)oll2
|

= (0)s — ()0 + @ A(X:)((0)s — (0)0) + aB(Xe) "mer1 + @ A(X:)(0)oll2
< (1 + admax) [[{0)e — (D)oll2 + o (Amax||{F)oll2 + bmax)

t

o (Amaxl|(0)ol2 + bmax) D (1 + @Amax)’
=0
(1 + aAIIlaX)t+1
Amax

IN

< (Amaxl[(@)oll2 + bmax)

* bmax
< (16)o = 07l + 16712 + 52 ) exp fa (e + 1),

max

which implies that

* * bmax
1{0) 1, — (B)oll2 < <||<9>o = 07ll2 + (10712 + )exp{aAmaxTﬁ.

Then, we have
E[[[(0)7, — 0*[13] < 2[(6)7, — (B)oll3 + 2[[(8)0 — 673
< (dexp {20 AmaTi} + 2)E[|[()0 — 67|3]

bmaX
+ dexp {20Amax T} (||07])2 + I )2, (63)
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From equation 62 and equation 63, we have

0.9a\ " 4,
) %“(4 exp {QOKAmale} + 2)EH|<9>0 — 0 H%]

E[[[(6)41 — 6°]3] < (1 -

’Ymax

0.9\ 4, b
+4<1‘ ) % o {20 A1} (107 2 + 22

Ymax “Ymin Amax
2 t—T
« 0.9c
2 Tmax oy D k(1 — )~
0-97m1n Ymin k=0 max
This completes the proof. ]

We are now in a position to prove the fixed step-size case in Theorem 3.

Proof of Case 1) in Theorem 3: From Lemmas 5 and 8, for any ¢ > 77, we have

N N

> mE[6; — 67151 < 2D wE[[|6] — (6):][3] + 2E[[|(6): — 6713]

i=1 1=1

2(2 + 20‘(3’71%1;1)(
1—c¢ 0~9’Ymin

N
< 2¢% Y "m0 Bll65, — (O)m,]13] +

i=1
t—T4
v, 0.9a
+ 2200y E Ne+1—k(1 — )"
“Ymin =0 max

0~9a t=h Ymax * (12
+ 1= (8 exp {2aAmaxT1} + 4)E[[[(0)o — 67[|2]

Ymax Ymin

0.9a\"""" ~ b
1 _ max 2 AmaxT 9* max \2
+8 ( %ﬂlax) “Ymin exp{ “ 1}(H ||2+ Amax)

N i i 2 090[ t=T1
< 2t ZﬁmtE [Hé)mt — <9>th2} +Ci(1-— + Cy
=1

erax
t—T
max 09&
+ %90, D i1kl — )",
Ymin k=0 Ymax
where C' and C5 are defined in Appendix A.1. This completes the proof. [ |

E.2.2 TIME-VARYING STEP-SIZE

In this subsection, we consider the time-varying step-size case and begin with a property of 7,.
Lemma 9 Suppose that Assumption 6 holds. Then, lim;_, o, n; = 0 and lim;_, o, t—%l ZZ:O Nk = 0.

Proof of Lemma 9: From Assumption 6, we know that 7m; will converge to 7., and thus 7; will
converge to 0. Next, we will prove that lim;_, t_%l ZZ:O 1, = 0. For any positive constant ¢ > 0,
there exists a positive integer T'(c), depending on ¢, such that V¢ > T'(c), we have 7; < c. Thus,

t—1 T(c) t—1 T(c)
1 1 1 1 t—1—"T(c)
;E ﬁngE 77k:+¥ nkgzg nk+f0.

k=0 k=0 k=T(c)+1 k=0

Let t — oo on both sides of the above inequality. Then, we have
t—1 T(c)
1 .1 . t=1-T(c)
Ja g 2 < Jum g ) et Jim e =
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Since the above argument holds for arbitrary positive ¢, then lim;_, H% ch:o e = 0. ]

Recall the updates corresponding to the time-varying step-size case given in equation 3 and equa-
tion 4,

Orp1 = Wi + W, 0, A(Xy) " + au B(Xy),
(0)e1 = (0): + A A(Xe)(0)s + @ B(X;) " mpn.

From equation 33, we get the update for Y; with the time-varying step-size as follows:

Yier = Wierr V(I + atAT(Xt)) (I + at+L71AT(Xt+L71))
oI = 1n7) ) B(Xpir 1)

t+L—2
+ ) o Wigraprn1(I — Inml ) B(Xy) (H§+ﬁ+%(f+ Oé.jAT(Xj)D :
k=t
and
N
Yon = (AN + anA(Xy)) Zwt hip 1Y +br
J=1
where
bisr = s (0" (Xerp1) = B(Xerp1) "merp)
t+L—2
+ Z Qk (H§+i+%(l+a1 )Zwk+1 tar—1( b (Xy) — B(Xk) "mhp1)-
k=t

To prove the theorem, we need the following lemmas.

Lemma 10 Suppose that Assumptions 1 and 2 hold and {G+} is uniformly strongly connected by
sub-sequences of length L. Given oy and T, defined in Theorem 3, for allt > T, L,

ZﬂtW 0)¢l3
N

< (a—Ts i 0i 0 2 o &1
€ § T, Lm0, Lm, — (O)Tarm, 2 + 1_¢ \¢ Qm, + Qratyp o,
i=1

N
at—1

_ ; ; Go
< ¢l T Zﬂ-%zL_i_thQ%FQLJ'_mt — <9>T2L+mt”2 + 71 p (0106 2 4 Oé[qf 1]L>
i=1

where € and (g are defined in equation 6 and equation 16, respectively.

Proof of Lemma 10: Similar to the proof of Lemma 5, we have

N
il = 3 anll (1270 0000 Zwt NG (64
+ ZWHL”b +L||2 (65)
+ 2Z7Tt+L fen) | (I + arA(X)) Zwt L Y?. (66)
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By using Lemma 4, the item given by equation 64 can be bounded as follows:

N
ZWZ—&-LH (IS + arA(Xy)) wa 1 Y7113

Jj=1
N
<IN (1 + e Amax)® ZﬁHYtZH% ZWHLZZ“%HL 1wtt+L Y? = Y13
i=1 j=11=1
STEHE (1 4 ag Ama) 2(1 — Tinin I VA 67

Since ||b°(X;) — B(X;) "mia1]l2 < 2bmax holds for all 4, then

[

< o p1|(0(Xewp—1) — B(Xigr-1) "mirr) 2
t+L—2

N
+ 0 ol (U + @A) o D i |6 (X0) = BOXR) T o
= i=1

t+L—2

S 2bmax [at+L—l + Z (€77 (Hé—‘rf;_;'_%(]- + ajAmax))] .
k=t

Then, we can bound the item given by equation 65 as follows:

t+L—2 2
Zwt+LHb w3 < 4bfax (at+L1 + Z o7 (H§+i+%(1 + ajAmaX))> . (68)

As for the item given by equation 66, we have

QZWH-L t+L) (H}iif_l(f + arA(Xk)) Zwt 4 L—1Y1

S2ZW§+LIIbi+LH [l 1(I+akA(Xk))llzZwl'?t+L_1llYﬂHz
- P

t+L—2
< 2bmax (atJrLl + Z af (H§+i+%( + ajAmax)>> (HZiItJil(I + akAmax)) X
k=t

N
(Z T Y23 + 1) : (69)
=1
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From equation 67—equation 69, we have
2
Yerz s,y 0

N
< -1 A V21— TminB2F iyi|2
S gy ( + oy max) ( 2 )Z’/Tt” t||2
max i=1

2

k=t

t+L—2
+ 4b12nax (at+L—1 + Z Qg (H?’:—i:—%(l + ajAmax))>
> (H21%71(1+ akAmax))

t+L—-2
+ 2bmax (at+L1 + Z g (Hﬁiﬁ;%(l + ajAmax))

k=t
N
, (zﬂznwnaﬂ)
=1

t+L—2
= (2bmax (atJrLl + Z (697 (H;ié;i(l + ajAmax))> (H21%71(I + akAmax))
k=t

7rmin62L
) LU

t+L—2 2
L, ( 23 e (na ajAmax>)>
k=t

+ IR+ ap Apax) (1

t+L—-2
+ 2bmax (at+L1 + Z g (Hﬁii/;%(l + ajAmax))> (H21%71(1+ akAmax))
k=t

t+L—2 2
= 6t”YVt”?\/It + 4b?nax (at+L1 + Z &7 (HELI];;%(I + ajAmax))>
k=t

t+L—2
+ 2bmax <Qt+L—1 + > (Héjﬁ(l + OéjAmax))> (I (T + apAmax)) 5

k=t
where
t4+L—2
€t = 2bmax (O‘HLI + D (Hﬁﬁﬁ(l + ajAmax))> (21 + akAmax))
k=t
_ 71'minBQL
+ I (1 + o Amax) 2 (1 — T)'

Since for all t > T5 L, we have oy < a, then fort > ToL wehave 0 < ¢; < e <1 and
t+L—2 t+L—1

Qryp—1+ Z Qag (Héi{;;ll(l + ajAmax)) < Z (1 + QA pax ) HER1
k=t k=t
t+L—1

<1+ aAmaX)L_1 Z Q.
k=t

Since we have Zf;?il ar < La; < La. Then, we can get

1Yiirll3s,, .
t+L—1 2 t+L—1
< e|Vill3y, + 462 (1 + aAmax) 72 ( Z ozk) + 2bmax (1 + @Apay )27t ( Z ozk>
k=t k=t

< €|Vil3s, + (4620 L? (1 + aAmax)®" % + 2bmax L(1 4+ @Apmax) " ) oy

max

< el Yill3s, + Cooue
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where € and (g are defined in equation 6 and equation 16 respectively. Then,

Yerzldn,, .
< €|l Yell3s, + Coore

qt

—T: 2 —k
< e RN Yo oLl oy o Z e gL gm,
k=T>

L% q

qt+r—T2 2 qt—k qt—k
< e?t ||YT2L+7”t||MT2L+mt + Ce E € oL 4m, T €L 4m,

k=0 B=T4]

qt+r—T2 2 CG @
<e ||YT2L+mt||MT2L+mt + 1—e €2 Q, + a[%ﬂL—l—m, )

which implies

N . .
> willo; — 0)l3
=1

N
-T i ] 2 % =
< ¢t T ZwZTQLJFWHG%QLert — O 1or4m, 2 + 1—e (6 Q¥ a(‘“é;lWLert)
i=1
N
< G—Ts i Ql 0 2 46 ap—1
S € ZWT2L+th ToL+my (O)1ozm 2 + 1—¢€ Goc * o
i=1

This completes the proof.

Lemma 11 Suppose that Assumptions 2 and 3 hold. When the step-size o and corresponding

mixing time 7(oy) satisfy

log 2
Ama.x ’

0< OltT(Olt) <

we have for any t > T L,

t—1

||<9>t - <9>t77(a1)||2 < 2Amax||<9>t77(at)”2 Z ag + 2bmau(

t—1

>, ow

k=t—7(ay) k=t—7(c)
t—1 t—1
||<9>t - <9>t—‘r(at)||2 S 6Amax||<9>t||2 Z (675 + 5bmax Z e,
k=t—7(ay) k=t—7(ay)

1000 = (@) t—r(an I3 < 7207 0,y T2 () AL O 115 + 5007 () T2 (1) D

6
< B3 + =,

max

Proof of Lemma 11: Recall the update of (f), in equation 4:

(O)e41 = (0 + A A(X)(0)¢ + e B(X) "oy

Then, we have

||<9>t+1||2 S ||<9>t||2 + OétAm'a»x||<9>t||2 + atbmax S (1 + atAmaX)H<9>t||2 + atbmax~

29

(70)

(71)

(72)



Under review as a conference paper at ICLR 2022

Similar to the proof of Lemma 6, for all u € [t — 7(cv), t], we have

[[(0)ull2
u—1
< Hz;tl—T(Oq) (1 + akAmﬂX)” <9>t—'r(at) H2 + bmax Z akH7;k1+l(1 + alAmax)
k=t—7(ay)
u—1 u—1 u—1
< exp{ Z akAmax}||<6>t77-(at)||2 + bmax Z Qg eXp{ Z alAmax}
k=t—7 (o) k=t—7(ay) I=k+1
u—1
< exp{at—T(at)T(at)Amax}” <9>t—‘r(at) H2 + bmax Z (673 EXP{at—T(at)T(at)Amax}
k=t—7(a)
u—1
< 2” <0>t—‘r(at) HQ + 2bmax Z af,
k=t—7(ay)

where we use at_T(at)T(at)Amax <log2 < % in the last inequality. Thus, for all ¢ > T5 L, we can
get equation 70 as follows:

1{0)e = (0)e—r(an 2

t—1
< D KOk — Okl
k=t—7(ay)
t—1 t—1
S Amax Z akH<9>k||2 +bmax Z Qe
k=t—7 (o) k=t—7 (o)
t—1 k-1 t—1
< Amax Z Qg 2” <0>t77(at) ||2 + 2bmax Z ap | + bmax Z (o)A
k=t—7 (o) I=t—7(ay) k=t—7 (o)
t—1 t—1
< 2Amax||<9>t_7—(at) HQ Z ag + (2Amax7—(at)at—7—(at) + 1) bmax Z (693
k=t—7 () k=t—7 (o)
t—1 5 t—1
< 2AH1&X||<9>t7T(at) HQ Z ag + gbmax Z Qaf
k=t—7(ct) k=t—7 ()
t—1 t—1
< 2Amax|| <9>t77(at) H2 Z o + 2bmax Z .
k=t—7 (o) k=t—7 ()

Moreover, by using the above inequality, we can get equation 71 for all ¢ > T5 L as follows:

16} = (O)t—r(an)ll2

t—1 t—1

< 2AmaX||<9>t77—(at) 2 Z Qg + gbmax Z Qg
k=t—7(ay) k=t—7 (o)
t—1
S 2Amax7—(at)at77‘(o¢t) ||<9>t - <9>t77(at) H2 + 2Amax||<9>t”2 Z 677
k=t—7(ay)
5 t—1
+ gbmax Z Qg
k=t—7(ay)
t—1 t—1
S 6Amax||<9>t||2 Z (697 + 5bmax Z Q.
k=t—7(ay) k=t—7(a)
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Next, by using equation 71 and the inequality (z+y)? < 22%+y? for all x, 3, we can get equation 72
as follows:

t—1 t—1
18)e = {0)t—r(an I3 < T2A0 100130 D car) + 50000 (Y aw)?
k=t—7(ay) k=t—7(ay)

< 720%2—7'(04,,)7—2 (at)A?nax” <0>t H% + 50&?—T(at)7_2(at)br2nax

bmax
< 8(0)ul3 + 6(")2,

where we use o, (q,)T () Amax < 3 1n the last inequality. [ ]

Lemma 12 Suppose that Assumptions 2—6 hold and {G} is uniformly strongly connected. When

log 2
Amax ’

0< at,T(at)T(at) <

we have for anyt > T L,
[E[((8): —0") (P+PT) (AX)(0)s + B(X¢e) "mr1 — A(B) = b) | Fyer(an)]|

< atf‘l'(ozt)’r(at)’}/max (72 + 456A1211ax 84Amax max) H|< > ||§ | ]:tf'r(at)]

48b2
AQmax + 152( max + AmaX”a*Hz)Q + 12Amaxbmax

max

+ at—T(at)T(at)'ymax |:2 + 4”9* H%

bmax 2
+ 48 Apnaxcbmax ( + 1) + 87b,2nax}

AmaX
2 6b12nax * (|2
+ 2%maxNe+1V Nbmax ( 1+ 9E [[(0)el|3 | Foor(ay] + ot 107113 ) -

Proof of Lemma 12: Note that for all ¢ > T5 L, we have
[E[((0): — ") T (P + PT)(A(X:)(0): + B(Xt) w1 — A0)r —b) | Foeran)]l

< [E[((0) — 0) T (P + PT)(A(X:) = A){O)s | Fir(an)]l
+ [E[((0): — 07) (P+PT)(B(Xt)T7rt+1 = b) | Frer(an]l

< [E[({0)t—r(an = 07) T (P + PTYAXY) = A)0)—r(an) | Feoran)l (73)
+ lE[(<9>t (an) = 0) (P + PO (AX:) = A)((0)r = (0)t—r(an) | Frerian]| (74)
+IE[((0): — (0)t—r(ar) )T (P+PT)(AXy) - ANO)t—r(ar) | Frer(an)]l (75)
+IB[((0)r = (0)1—r(ar) (P +PTAKXL) = A)((0)r = (0)1—ran) | Fieranll  (76)
+ [BE[((0)¢ — (0)1—r( at)) (P+P")(B(Xy) " mg1 — b) | Firanl a7
+|E[((0)t—r(ay) — 07) "(P+P")(B(Xy) w1 —b) | Firan)ll- (78)

Similar to the proof of Lemma 7, by using the mixing time in Assumption 3, we can get the bound
for equation 73 and equation 78 for all ¢ > T5 L:

[E[((0)t—r(an) — 0°) T (P + PT)(AXy) = A)O)t—ra) | Froran)]l
<N({0)t—r(ay) — 0" ) (P+PTE[A(X,) — A| Fir(a) {0 t—r(ap)]
< 200 YmaxE[[(0)t—r(ar) — O7[|2[[{O)t—r(an) 2 | Fir(ar)]
< A YmaxE[(0)t—r(ae) = 015 + 10)t—r(an) 13 | Fi—r(an)]
< @ YmaxE2]167]13 + 3101 —r(an I3 | Fir(an]
<60 YmaxB[[(0)t = () e—r(an) 5 | Feor(an)] + 60 max Bl 113 | Feoran)] + 200 vmaxl07 3

bmax *
< 54at’7maxE[”<9>tH§ | ]:tfr(at)] + 36at'YmaX(A )2 + 20‘t7maX||9 ||§v (79)
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where in the last inequality, we use equation 72 from Lemma 11.

E({0)—r(an) — 0°) T (P + PT)(B(Xt)TWm = 0) [ Firianll

N
< [E[((0)t—7(ar) — 07) (PJFPT Zﬂ—t+1 (X¢) — bl )+ Z 7Tt+1 T )b') | Fi—r(an]l
i=1 i=1
< () t—r(ar) — 07) P +PT Zﬂ—tJrlE (Xe) = b’ | Fir(an] + Z(WLA — T5e)b')
i=1

< 2Ymax(ov +"7t+1\/7bmaX) [H< >t—7'(01t) = 0"l2 | Feor(an)]
1 1.,
< 2Vmax (o + nt-i-l\/ﬁbma)() <1 + 7E[||<9>t77'(at)”§ | ]:tf‘r(at)] + 5”9 ||%>
< 29max (o Jr77t+1\/meax (1 + E[|[{0)— (o) — <9>tH§ + H<9>t”§ | ft—ﬂ—(at)] + He*”g)

bmdx *
< sl + 11V W) (14 SEIN O | Ficrian] 4 OGP 4 16°18) . (50)

where in the last inequality we use equation 72.

Next, by using Assumption 2, equation 70 and equation 72, we have

[E[(0)t—r(ar) — %) T (P + PT)(AX) = A)((0)r = (0)t—r(an) | Fiorian)]l
< 4’YmaxAmaxE[H<9>t—T(at) - 9*||2H<9>t - <0>t—7'(041,)||2 | ‘Ft—T(Ott)]

< Ymax AmaxB[[[(0)t—r () [2[{0)e = (O)e—r(an) 12 + 107 [|211{0)e = (B)e—r(an)ll2 | Fioran)]
t—1 t—1

< SPYde max [H< >t T(at)H% | ftfr(oct)} Z ap + SFYmaxAmaxbmaxHo*”Q Z 6753
k=t—7(ay) k=t—7(ay)
b t—1
+ 8VmaxAmax (Amax + ||9*||2) E[{)i—r@oll2 | Fier@n] D>, o
max k=t—7(ay)

bmax * 2 —
< o Al (12E[||< vt B Ficrtan] +8 (3225 4 1 ||2)> >

k=t—7(c)
t—1
< 24’Ymax max [||< > < >t T(a) ||2 | Fio 7( Oét)} Z Qg
k=t—7(ay)
t—1
+24'7max max E[[[(0)¢ H% | ]:tf'r(af,)] Z Qk
k=t—7(ay)
b 2 t—1
2 max *
+ 8VmaxAmax <Amax + 6 ||2) Z Xk
k=t—7(ay)
t—1
< Yo (216420 BIONN | Fomran) +152 (s + Amac6°]12)7) D awe 8D
k=t—7(ay)
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In additional, as for the bound of equation 75, by using equation 70 and equation 72, we have

({0 = (0)t—r(an) T (P + PTYA(Xe) = A)(0)t—r(an) | Fimran]l
< Pymax AmaxB[[(0)t = (D) e—r(an) l2[{0)t—ran) 2 | Fir(an)]

t—1
S 87nlaxAmaxE[AmaxH<9>t—7'(041,) H% + bmax||<0>t—7'(oct) ||2 ‘ ‘Ft—T(at)] Z Ak
k=t—7(ay)
t—1
< 47maxAmax ((2Amax + bmax)E[H<9>t77—(at) H% | ]:th(ozt)] + bmax) Z Qg
k=t—7(ay)
t—1
< 8'VmaxAmax(2AmaX + bmax) [||< > < >t T(ot) ||2 | ]:t 7( ozt)] Z 9%
k=t—7(ay)
t—1
+ 8"YmaxAmax(2Amax + bmax)E[||<0>tH§ | Ft—T(at)] Z Qg
k=t—7(a)
t—1
+ 4'}/maxAmaxbmax Z (077
k=t—7(ay)
t—1
< 72 'YmaxAmax(QAmax + bmaX)E[H<9>t||§ | ]:tf'r(ozt)] Z Qg
k=t—7(ay)
b t—1
max 2
+ 48 max Amasbmax(725 +1)7 37 g
k:t—r(at)

Moreover, by using equation 72, we can get the bound for equation 76 as follows:

[E[((0) = (0)t—r(a0) T (P + PT)AX:) = A) () = (0)t—r(a) | Fioran)]]
< 4'VmaxAmaxE[||<9> <9>t 7( at)HQ | Fie T(at)]l

t—1
< Dyinax AmaxBIT2A2, [{0)e]3 + 5002 | Frorianl( > aw)?

k=t—7(ay)
t—1 t—1
< 9642 E[||(0)]13 | F 67b2
= max /max H|< >t||2 | t—T(at)] Z oy + max /max Z .
k=t—7 () k=t—T(c)

Finally, we can get the bound of equation 77 by using equation 71:

[E[((0) = (0)t—r(a0) (P + PT)B(Xe) "mer1 = b) | Fioran)]l
< 4Ymaxbmax [||< > < >f T(at)H2 | Fi 7( Qt)]

t—1
< 4’)/max max [6AmaxH< > ||2 + 5bmax | ‘Ft—T(Olt)] Z (97
k=t—7(ay)
t—1
< Ymax (12Amaxbmax Bl O:l13 | Fior(an)] + 12Amaxbmax + 20000) D i
k=t—7 (o)
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Then, by using equation 79—equation 84, we have

[B[((0): — 6°) (P + P (A(X)(0)¢ + B(Xs) "mi1 — AlO)r — 1) | Fooran)]l

bmax *
S 54at7n1axE[||<6>f|‘§ | ‘Ft—T(Olt)] + 36at7max(A )2 + Zat’)/max”e ||%

t—1
+ 216Ymax A B O)e 13 | Foran] D
k=t—7(ay)

t—1 t—1

+ 1529max (bmax + Amaxl[07112)° D k67020 Ymax D,
k=t—7 (o) k=t—7 (o)
t—1

+ 12 'YmaxAmax(20Amax + 7bmaX)EH|<0>t”§ | ft—*r(at)] Z Qg

k=t—7(a)

t—1 t—1
bmax

+ 487nlaxAmaxbmax(A7 + 1)2 Z €95 + (12Amaxbmax + QOb?nax)’YInaX Z 875
max k=t—7(ay) k=t—7 (o)

bmax *
+ {0+ 1001V W) (1 OB | Fimria] + 6375+ 673
max

< at—T(at)T(at)’ymax (72 + 45614-3113)( + 84Amaxbmax) E[H<0>t”§ | ft—*r((x,,)]

bIIl ax

Amax

+ Q7 () T(@) Ymax [2 F4]07)13 + 48(525)2 4152 (brnax + Amax[|07]12)7 + 12 Amaxbmax

bmax
+ 48 A maxbimax ( T+ 12 + 87bfnax}

bmaX *
21V W (14 SBIN O | Ficria] + 6522 410713
max

where we use a; < @;_r(q,) from Assumption 5 and 7(a;) > 1 in the last inequality. This com-
pletes the proof. ]

Lemma 13 Under Assumptions 1-6, when the T(av;) 0ty (o,) < min{ }fgf , og'l, }, we have for
anyt > T,L, ‘

2/t
* TQL Ymax * C?OéoClOg (07) Ymax
E [[(6): — 6*]3] < —~ 5 Ell0)r.L — 0 13] + P o~
t
‘max = m
+aOC4’y ] Zl z;QL )

where Ty is defined in Appendix A.1, and (4, (5, (7 are defined in equation 14, equation 15, equa-
tion 17, respectively.

Proof of Lemma 13: Recall the update of (), in equation 4:

(@) i1 = (0 + A A(Xe)(0)r + e B(X:) " mig1.
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Note that E[||(0): 3] < 2E[[[(8): — 0*[|3] + 2[|6* |13 <
tion 60 and Lemma 12, for t > T5 L we have
E[H((0)1+1)]
< E[H((0):)] — aE[[(0)¢ — 0*[13] + af AbaxYmax B[ (0)2]13] + 07 b3 Ymae
+ 207 Amaxbmax ymaxE[][(0)¢]|2]
+E[((0); — %) T (P + PT)(A(X,)(0): + B(Xy) w1 — A(), — b)]
< E[H((0)0)] — wE[(0): — 07113) + 207 AL s ymax Bl {0 [13] + 20703 0 ymax
+ Q7 (a) () Ymax (72 + 456 A7, + 84 Amaxbmax) E[[[(0)¢]13]

2_E[H((0):)] + 2||6*|3, then from equa-

Ymin

bmax *
+ atat—f(at)T(at)’Ymax {2 + 4”0*”3 + 48(A )2 + 152 (bmax + Amax||0 ”2)2
max

bmax
+ 12Amax max + 48Amax max(A ) Jr 87b1?nax:|

Amax
< E[H((0)1)] + 2000 r(a,) () Ymax (72 + 458A2% . + 84 Amaxbmax) 10713
+ (—Oét + 2atatfr(at)7—(at)7max (72 + 4581412“&}( + 84Amax ma,x)) [||< >t - 9*”3]

bmax *
+ 204 Vet 41V N bmax <1 -+ 9E[|[(0).13] + 6( )2 +1|60 |I§)

bmax *
+ atat—r(at)'r(at)’ymax {2 + 4”9*”3 + 48(A )2 + 152 (bmax + Amax]|0 ”2)2
max

bmax
+ 12Amaxbmax + 48Amaxbmax(A B ) + 89b12nax:|

bmax *
+ 2at’7maxnt+1\/ﬁbmax (1 + 18E[||<9>t - 9*”3] + 6(A )2 + 19”9 %)

< E[H(<9>t)] + (—Oét + atat—r(at)T(at)'Ymax<5 + 36at'}/tnax77t+1\/ﬁbmax> E[||<9>t - 0*”3]
+ atat—-r(at)’r(at)’\/maxc7 + at’)/maxntJrlCALa

where (4, C5 and (7 are defined in equation 14, equation 15 and equation 17, respectively. Moreover,
from o; = ag > 7"““” and the definition of 75, we have for all t > Th L

t+1’

E[H(<9>t+1)] < (1 — (’)}/.gat> E[H(<9>t)] + O‘t’)/max’r}t-‘rl@l + O‘tatf‘r(at)'r(at)'ymaxc7

2 t+1
l Me41 a5 Clog(“= ) YmaxCr
<—E H 9 max .

t
1L Mi+1
t+ 1E[H(<9>T2L)] + aOVmaxC4 ;Hfj,:lq-l

l:TZLH—l

¢ Clog(l(;"—ol) . u

2
max H_
+ 09 Yma 4712” U+ 1) —t(a)+1) ““Hy+1
=12

v
u—+1

IN

t 2/t+1
T2L Zl:T L +1 C7O‘O"Ymaxc log (T)
< E[H ({0 e P S
< o BEO)z0)] + a0tmaxCa =775 —

TyL S L Cr0oYmaxC log? (L)
E[H((0 max : a0
P [H({0)1,L)] + 20 YmaxCa 1 + =l

IA

b

where we use

2aq log (&) t+1
S0 a0 ) 02
Z [+1 = o8 ( (o) )

=T

35



Under review as a conference paper at ICLR 2022

to get the last inequality. Then, we can get the bound of E[||(8);,1 — 6*||3] as follows

N 1

E[[[(0)t+1 — 07[3] < ——B[H((0)1+1)]

TQL ’ana‘x 2 <7a()010g ( ) Ymax
< -0

= 1+ 1 Y E[ll{6) 7. = 67]12] + tr1 i

t+1

+a C Ymax Zl 2a=T,L "Il m
0 Ymin t+1
This completes the proof. ]

We are now in a position to prove the time-varying step-size case in Theorem 3.

Proof of Case 2) in Theorem 3: From Lemmas 10 and 13, for any ¢ > T5 L, we have

ZFEE 167 —6°13] < 2Z7TZE 167 — (0)¢113] + 2E[]|(0), — 6" |3]
N . .
< 26Qt7T2 Zﬁ%2L+7rztE[||0%2L+mt - <9>T2L+mt H%]
=1
2T2L Ymax * 2<70[()C IOg ( ) Ymax
— - Ell¥)nr -0 131 +
Ymin t Ymin
t
Ymax Zl:TgL m 2C6 at—=1
+ 2006 ~Ymin t + 1-— e(a06 Tt afqﬁTflU)
N ) 9
<26 N gy, E [H@ZLTﬁmt — (0) LT 4m, Hz}
=1

+ C3 (aoe% —|—a(thflu) <C’410g ( 0>+C’5 Z 77k+06>

k=LT>,

where C5 — Cg are defined in Appendix A.1. This completes the proof. ]

E.3 PUSH-SA

In this subsection, we analyze the push-based distributed stochastic approximation algorithm equa-
tion 9 and provide the proofs of the results in Section 3. We begin with the proof of asymptotic
performance.

Proof of Theorem 4: From Lemma 20, since € € (0,1) and oy = 22, we have limy_,o [|0},, —
(8)¢]|]2 = 0, which implies that all 6} 411, % € V, will reach a consensus with (0);. The update

of <9>t is given in equation 90, which can be treated as a single-agent linear stochastic approxi-
mation whose corresponding ODE is equation 10. In addition, from Theorem 5 and Lemma 21,
lim_, Zf;l E[||6i,, — 6*||3] = 0, it follows that 6, ; will converge to §* in mean square for all
1€ V. ]

We now analyze the finite-time performance of equation 9.
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Let W, be the matrix whose ij-th entry is u?ij Then, from equation 9 we have
o O L (0] + n AX)0] + aub (X))
t+1 — ~5 T ;

Yiv1 Yit
by’ ] 0] V(X
ol B sy +at(jt)]
j=1 Zk 1wt yt yt yt Yi
0]  b(X
Z 0] + (X)) % + oy (jt) , (85)
j=1 Yi Yi
where @}/ = % and W; = [@}’] is a row stochastic matrix, i.e.,
N N ~1]
w
S ay :7] A
j=1 Zk 1wt y¢
Let©; = [0},---,0N]T and ©, = [},--- ,6N]T. Then equation 9 and equation 85 can be written
as
) . @Dyt .
@t+1 = Wt @t —+ (673 B e A(Xt) + OZtB(Xt) (86)
I RCANEA
. 0" /ui . (b1 X))yt
6t+1 = Wt @t —+ ¢ NT N A(Xt) + Qi N . (87)
L 2 )y ] (0 ( ) /yt

Since each matrix W, = [u?i’] is stochastic, from Lemma 1, there exists a unique absolute probability
sequence {7} for the matrix sequence {W;} such that 7 > 7, forall i € V and ¢ > 0, with the
constant 7y, € (0, 1).

Lemma 14 Suppose that {G,} is uniformly strongly connected. Then, 11%_,, W will converge to the
set {v1}; : v € RN} exponentially fast as t — oo.

Proof of Lemma 14: The lemma is a direct consequence of Theorem 2 in Hajnal & Bartlett (1958).
|

Lemma 15 Suppose that {G;} is uniformly strongly connected. Then, (Hf:sz)ij
Y (T Wh)¥ and & = L himy oo (T W,)7" = L foralli,j € Vand s > 0.
Vit iyl

Proof of Lemma 15: Note that for all | > 0, we have 0}/ = lzl Y Let W = IIE_ W, for all
Yiva
t > s > 0. We claim that
L Iy
(I, W) = Pt
Yig1

where w?t is the 7, j-th entry of the matrix W;Jt The claim will be proved by induction on . When
t=s+1,

~ik | ~kj
w+ W,

(Ws—o—le)Zj =

= TTMZ

j : y5+1ws+1 ij
1 ys+2 ys+1

J J -

y N . Ys .

= E Wby = g
ys+2 k=1 ys+2
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Thus, in this case the claim is true. Now suppose that the claim holds for all t = 7 > s, where 7 is
a positive integer. For t = 7 + 1, we have

T+1 § ~ik s
(Hs 1W wT+1
yT—‘rl

_ Z T+1ZUT+1 ys

k=1 y‘”r? y'rJrl
J J .
_ Ys ~1k Ak] _ Ys ~ 1]
w‘r+1 i ws:‘r+17

y7+2 P y7+2

which establishes the claim by induction.
From Lemma 14, for given s > 0, we have lim;_, Ws;t = vs,ooll,, with the understanding here
that v, o 1S not a constant vector. Then, since ;11 = Wiy, = Hf:SleS forallt > s, we have

hm (Hl VVl) (V- hm y]L?t — 1 yg llmf_>oo ﬁ)?t

=7 N
t=o0 Yy t=o0 Z k=1 Wikyk hmt—>oo > k=1 Wztys
& yu
b
Zk 1 ve ooy9 N

where we use the fact that 1ys = N for all s > 0 in the last equality. This completes the proof. ®

yl w”

To proceed, let

W(©up) = A% 4
Yho Yh
j 0, 1 . ;
M, = (A(X,) — E[A(X0) | Frr(an)]) ) + J (b (X) = B[V (X0)| Fnrany)])
j 07 1 ; .
G, = (B[A(Xn) | For(an)] — A4) bt (B0 (X)) | Friany] — V) -
From equation 85
N .
01 = Zw 67 + anh? (0, yn) + an M7 +a,Gl].
Jj=1

Leth=[h',--- AN]T. M = [M',--- MY]T and G = [G},---,GN]T. Since

E[M| 7] = (BIACX)|Fo) — EEIACX) | Fara)1 o)) z
+ ylj (E[ (Xt)|"r ] [E[bj(Xt”fnf‘r(an)} fn]) =0
and for all n > 7(ay,)
N .
E[| Mo |51 Fa] = > E[IM |31 7]
j=1
. o1 | :
= ZE — E[A(X )| Fr—r(an)]) i + 7 (07 (X:) = B[V (Xo)| Frer(am)]) 151F]

IN

N ) 2 2
Z <2Amax + (e7)] HeiH2 + meax + OfO) S 2(2Amax + Oéo) 2 2N

3 B2 107 + F(Qbmax + ap)?,

Jj=1
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then {M,, } is a martingale difference sequence satisfying E[||M,,||%|F,] < C(1 + ||©¢||r), where

N 2
C = max{wAmgi’éJr%)v 2%(Qbmax + ag)?}.

Define h, : RVXE x RN — RNXK a5 h.(x,9) = h(cx,y)c™! with some ¢ > 1. In addition, by
using Lemma 15, define h.(2) : RE — REX as ho(2) = he(In - 27, yn) T 7, e,

1
(A + 3007

yke . N pi
hc(enayn) = o Y s hC(Z) :AZ+ZNC
(AU% T yl?)’c)T =

Then he(z) — hoo(z2) = Az as ¢ — oo uniformly on compact sets. Let ¢(z,t) and ¢oo(z,1)
denote the solutions of the ODE:

2(t) = he(2(t), 2(0) =z (88)
2(t) = hoo(2(t)) = Az(t), 2(0) = 2
respectively. Furthermore, since the origin is the unique globally asymptotically stable equilibrium

of the ODE, then we have the following lemma.

Lemma 16 There exist constant co > 0 and T > 0 such that for all initial conditions z with the
sphere {z|||z||2 < N1/z} and all ¢ > cg, we have ||¢pc(z,t)||2 < ~or% fort € [T, T + 1] for some
O0<kr<l

N1/2

Proof of Lemma 16: Similar to the proof of Lemma 5 in Mathkar & Borkar (2016). |

Define tg = 0, t,, = Z?:o ap,n > 0. Define O(t),t > 0as O(t,) = O, With linear interpolation
on each interval [t,,, t,41]. In addition, let Ty = 0 and T},1 = min{t,, : ¢, > T, + T} for all
n > 0. Then, Ty,41 € [T, + T, T, +T +sup,, ay]. Let m( ) be the value such that T}, = t,,(, for

any n. > 0. Define the piecewise continuous trajectory ©(t) = O(t) - ;! for t € [Ty, T)y11), where
ra = max{[|6(T,,)||F,1}.

Lemma 17 There exists a positive constant Ciy < oo such that sup, 1O |F < Cj.

Proof of Lemma 17: First, we write the update of O () for k € [m(n), m(n + 1))
. . 0" (tx) " /i, . (M (X)) T/ (Yh )
Otet1) = Wi, |O(tk) + oy, | -+ A(Xey,) ' +ay, -
O () /uiy O™ (X)) T/ (wirn)
(89)

Since Wy, is a column matrix, thus we have

1O (tx11) oo
1 b (ka)
5 R A(th)Q (tk)/ytk Yl
< ”Wtk”OO ||®(tk)||00+atk + oy, N“'
A /) ] T
ytkTTL 00
A (6% ~\/?141{118»}( A o \/?bmax
< 100t8) e + 2T A ) 4, 2 B
A \/*]€ m(n) atk_H max atk+lbmax
<O @)l + > 5 1O (trr1) oo + Br
1=0 "
k—m(n)
T max (e} \/7Amax A
< Vi 4 LoV D ey e LSO

B
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where we use the fact that H(:)(tm(n)) |lF = 1and r, > 1 in the last inequality. Therefore, by using
discrete-time Gronwall inequality, we have

Amax \/?

sup ||(:)(t;€+1)||oo < \/E(l + (T + stllp ) bmax) €Xp { 5

m(n)<k<m(n+1)

(T+81l1paz)}-

Since T' + sup; oy < 00, we have Sup,, () <k<m(nt1) [©(trs1)]loe < oo for all n. By equivalence

of vector norms, we further obtain that sup, |©(t)||r < cc. [ |

For n > 0, let 2™(t) denote the trajectory of z = he(z) with ¢ = r,, and 2"(T},) = ZN

for [T}, Th+1)-

1 7TT,, 9T

Lemma 18 lim, sup,¢ (7, 1, .,) 16 —1® 2"(t)|| = 0.

Proof of Lemma 18: From equation 85 and equation 89, for any & € [m(n),m(n + 1)), by
Lemma 15, we have

Zﬁﬁ+19n+1 n+17Tn+1
T
(A(X0)00) " Jym (0" (X)) " Jyn
— 6n+an + ay, ﬁ—n
(AX)0) T [y ON (X)) Ty
N N 4
=D FnlhFan Y T (AKX, /Y + 6 (Xa)/yh)
i=1 i=1
o « o
=D b+ AKX Ze o
i=1
Similarly, we have
Zﬂ-thrl tet1
N
Z 7~r . T 0 Z Wtk th /ytk +b (th)/(ytk Tn))
]_V N N
B Z’ﬁ'zk Q;k + Q. <A(th) Zfr;)ﬁ;k —+ N Zb’(th)>
i=1 i=1 " i=1
A(X ) al Nt al ~i 0
+ Ntk Z etk _Zﬂ-tkatk
i=1 =1
N N N A(X,,) N N
~i pi ~i pi i t i i
= 7,01 + oy, <AZ 0wl + Zb) o, 3 <9m Zﬂtﬁtk>
=1 =1 i=1 i=1 =1
N
+ ar, (A = BIAG) | Foy—ra)]) Yo 74,0,
i=1
o X
th i i
Ny (¥ (X0) = BB (X0~ )
N . .
+ay, ((E[ (Ko Fis—r(an)] = )ka bt s S (B (X0, P o] - b1)> .
" i=1
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Let

N
Mtk = (A(Xt) - E[A(th”ftk—T(atk)]) Zﬁ-;‘kaik
=1

N

3 (bi(th) - E[b”(th)lftk—mkﬂ)

i=1

1
Nry,

G, = (B F ()] — )ka bt Z( b (X0 Py e — V)

A(X a hi ad ~i pi
+ %Z <9tk — Zﬂ-tketk> .

i=1 =1

+

It is easy to verify that {M1;, } is a martingale difference sequence satisfying E[||M;, ||3]F,] <
C(1+ | Zf\il 7, 0; ||3) for some C' < co. In addition, we have

N
Z i i
— 7y, by,

N
Zwt T ej + Z A, Zwt ity — T, (A(Xt )QJ /yt +V (X, /yt)
j=1

r=s+1 i=1

Since {G;} is uniformly strongly connected, then for any s > 0, W,.; converges to 17, exponen-
tially fast as ¢ — oo and there exist a finite positive constant C' and a constant 0 < A < 1 such
that

@ — 7Y < OX'7
foralli,j € V and s > 0. Then,for any k € [m(n), m(n + 1)), we have

N . .
1, — Zﬁikaik 2
k

N -
~ . - -~ A d||9}7 ||2+b a;
Z [| @ zm(n) ity 7Tgm(n) HZHng(n) [l2 + Z Aty Z ”wt ity ’/Tgr 2 — TB —

r=m(n)+1 =1

. t—t 0N - Y ti—t AmaxnézT HZ + bmax
S ONTON Ll YL e ) OAT 5 )
j=1 r=m(n)+1 i=1
NC A Cy+b
< NC)\tk—tm(”) n7(71 max max’
< + =7 ’

where in the last inequality, we use the fact that for all n > 0, we have ||@(tm(n))||p =1, ap41 <
o, and the boundedness of ||©,,|| » from Lemma 17. Since oy, — 0 as k — oo, then

N
- i il —
kli{{:o ||02k - Z;ﬂ-tketk ||2 - 07

which implies that
N

N
7 J NJ —
Jim | S5 520, - Yo w )| =0
1=1 Jj=1 9

Then,

N AXy,) & N
. A . ~j A . ty Ai -7 Aj _
Jim (|G [l < lim o, (| z;ﬂik@ikllz +1) + lim || = Z;(%. - Zlﬂikﬂik) =0.
J= 1= Jj= 9
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Therefore, by Corollary 8 and Theorem 9 in Chapter 6 of Borkar (2008), we obtain that
SN 7L 6i — z(t) asm — oo, namely k — oco. Furthermore, we obtain that 6, een — 2"

as n — oo for all 7+ € V, which concludes the proof following Theorem 2 in Chapter 2 of Borkar
(2008). [ |

Lemma 19 The sequence {O,,} generated from equation 87 is bounded almost surely, i.e., Cy =
sup,, ||©n|lF < oo almost surely.

Proof of Lemma 19: In order to prove this lemma, we need to show that sup,, ||®( WlE < oo
first. If this does not hold, there will exist a sequence Ty, , Th,, - - - such that H@( T.)|lF = oo,
ie., rp, — 0o. Ifr, > coand |O(T,)||r = 1, then ||2™(T},)|2 = | ZZ V1, 0% [l2 < NT 172,
Using Lemma 16, we have |1y - (2"(T,,1)) || = NY2[|z"(T;,, )|l < 1 — k. In addition, using

Lemma 18, there exists a constant 0 < x’ < & such that ||©( T, 1)llr <1— &' Hence forr, > co
and n sufficiently large,

10(Twedllr _ 10Tl _ |

10(T0) |l 1o(T)llr

It shows that if ||©(T,)||r > co, ||O(T}k)||F for all k& > n falls back to the ball of radius ¢y at an
exponential rate.

Thus, if ||©(T},)||r > co, then ||©(T},_1)||F is either greater than ||©(T},)||  or is inside the ball of
radius co. Since we assume r,, — oo, then we can find a time 7}, such that ||©(T,)||r < co and
|©(T}41)|| 7 = oo. However, by using discrete-time Gronwall inequality, we have

VKA

~ ~ max || A bmax
[O(Tni1)lloe S NO(Tnt1 = Dlloo + @z, py 1 3 10(Tht1 — Dl + aTn+1—1\/E7

Tn+1 Th

Amax bmax
<NOT)lle + VE > g4 =22 ||O(T + 5)|loo + a1 E
s=0

— Trpy1—Tn
bmax KAmaX A\
< VKeo+ VE(T +supay) 3 + 3 E oz, +5[0(Th + 5) s
" s=0

< VK (co + (T +sup ) bn;X \/E;lmax } )

which implies that |©(T},+1)| r can be bounded if |©(T},)|| < co. This leads to a contradiction.

) exp {(T +sup )

Moreover, let C5 = sup,, [|©(T;,)||r < oo, then Cy = sup,, |O,||r < C5C; < co. |

Recall the update of ég in equation 9:
i1 = Z o,/ {éi + oy (A(thf + bj(Xt))} :

From the definition that (§); = + S~ | 6 and (8), = + va,l 0%, we have

<é>t+1 = <§>f + a A(X)(0): + — Z b (X,)
= )+ A O + % ; b'(Xe) + aepr, (90)

where p; = A(X;)(0); — A(Xt)@) From Lemma 19, we have [[(0):]|2 < max;ey [|0i]]2 < Cy
for all ¢ > 0, which implies that ||(0):]]2 < NCy and

i = lloela = [ ACX)(0): = ACX0)(O)e

< Hmax;
2

where fimax = (N + 1) ApnaxC.
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Lemma 20 Suppose that Assumptions 2 and 5 hold and {G.} is uniformly strongly connected by
sub-sequences of length L. Let €, = inf;>¢ min;eyp(Ws - - Woly)'. Forallt > 0andi €V,

N
_ ~ 8 _ _ .
0741 — (O)ell2 < gétH >0 + anA(X0)65 + b’ (Xo) 2
=1
éAmaxCG + bmax
€1 1—¢€

where €1 > 0 and € € (0, 1) satisfy e; > NllVL ande < (1— ﬁ)l/L.

(Ologt/Q + Ol[%]) + OétAmaxC(i + Oétbmax,

Proof of Lemma 20: Since ¢; = inf;> miniev(Wt Wl ~)? and all weight matrices W, are
column stochastic matrices for all s > 0, from Corollary 2 (b) in Nedi¢ & Olshevsky (2015), we
know that ¢; < ﬁ If the weight matrices are doubly stochastic matrices, then €; = 1.

From Assumption 2 and Lemma 19, we know that || A(X;)0: + b*(X¢)|l2 < AmaxCh + bmax. Then,
by using Lemma 1 in Nedi¢ & Olshevsky (2015), for all ¢ > 0 and ¢ € V we have

||9t+1 <é>t - A(Xe)(0) — — Zbl (Xo)ll2

N
Z ¢ + OéoA XO)HO + Oé()b (XO ||2 + Z G s Amaxc(9 + bmax))

s=0

8 _ . .
—& Z 06 + a0 A(Xo)0g + aob’ (Xo) |2

€
L)

IN

3 L5] t

+ *(Amaxce + bmax) EtiSO‘s + Z EtiSO[s
€1 s=0 S:[A]

8

€

< —& Z 05 + a0 A(Xo)0p + aob’ (Xo)l2 +—

i=1

8 AmaxCH + bmdx
€

=t/2
- (e +ap3)

=

which implies that

16741 = (0)ella
<01 = (0)e — ar A(Xe) (0)e — Nf D V(X2 + | AX) () + Zbl X1)ll2
i=1
S 8 AmaxCo +b
< 2 ) i i © Amax max —t/2 .
=g | 290 + g A(Xo)bp + b (Xo)l2 + o 1-¢ (aoe + O‘FW)

i=1
+ atAmaXCG + atbmax~
This completes the proof. ]

ZZ‘:O KK

Zk 0 HPkH 0
t+1

t+1

Lemma 21 lim;_, o0 pty = lims, o0 || pt]|2 = 0 and limy—, oo = limy_ o0

Proof of Lemma 21: From Lemma 20, we have
pe = |lpellz = HA Xe)(O0)r — A(Xe)( H

8Amax 41 =
—EO0]l1 +
€1

IN

max N\/>(Amax09 + bmax) _t/2
€1 1—¢€ (Oéo6 +a(%w)'

Since € € (0, 1), then lim;_, » ||p¢||2 = 0. Next, we will prove that lim;_, t_%l ZZ:O lpxll2 = 0.
For any positive constant ¢ > 0, there exists a positive integer T'(¢), depending on ¢, such that
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V¢ > T'(c), we have ||p¢]|2 < c. Thus,

T(c t—1 T(c

1 t—1—"T(c)
;ankuz— ankuﬁf > ||pku2_tz||pk|\z+fc.

k=T(c)+1
Let t — oo on both sides of the above inequality. Then, we have

T(c)

1 _
A - Z||Pk||2 Jim — Z lpkll2 + Jim fc: c.

Since the above argument holds for arbitrary positive ¢, then lim;_, ﬂ%l 22:0 llpkll2 = 0. ]

Lemma 22 Suppose that Assumptions 2 and 3 hold. When the step-size o, and corresponding

mixing time 7(ay) satisfy 0 < a;7() < l°g2 , we have for any t > T,
t—1 t—1
||<0~>t - <9~>t—7(at)H2 < 2Amax”<é>t—7’(ag) HQ Z ag + 2(bmax + :U'max) Z ag, O
k=t—7 (o) k=t—7 (o)
t—1 t—1
10): = (O)1—r(anllo < 6Amax[[B)ellz Yk +5(bmax + pmax) D i, 92)
k=t—7(c) k=t—7(ay)

||<9~>t - <é>t*‘r(at)H% < 7204?77(at)7-2(at)14?nax”<é>tH% + 50&?77(at)7-2(at)<bmax + /’LmaX)2

N 6 bmax + max 2
< 8[1(0)ell3 + %~ (93)

max

Proof of Lemma 22: From the update of (6), in equation 90:

N
O = B+ 00 AK)B): + 5 V(X + aupr.

Then, we have
||< >t+1||2 (1 + atAde)H( > H2 + atbmax + Q¢ fhmax -

For all u € [t — 7(ay), t], we have

1@)ullz < T2 oy (1 + @k Anad) | )i s

u—1
+ (bmax + ,LLmax) Z H;L_k_;,_l(]- + alAmax)
k=t—7(ay)
u—1 ~
<epl Y ardmactl @ rianllz
k=t—7(c)
u—1 u—1
+ (bmax + ,U/max) Z Qg GXP{ Z alAmax}
k=t—7(ay) I=k+1

< eXp{at—T(oz,,)T(at)Amax} H <9~>t—7—(at) ||2

u—1
+ (bmax + ,LLmax) Z (97 exp{at—T(at)T(at)Amax}
k=t—7(ay)

u—1

S ZH <é>t77(at) ||2 + 2(bmax + ,umax) Z L,
k=t—7(ay)
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where we use a;_r(q,)T(t) Amax < log2 < % in the last inequality. Thus, for all ¢ > T, we can
get equation 91 as follows:

166 = (0)t—r a2

t—1
< D KOk — (O)ll2
k=t—7(ay)
t—1 - t—1
S Amax Z ak:l|<9>k:||2 + (bmax + /’Lmax) Z (677
k=t—7 (o) k=t—7(ay)
t—1 B k—1
< Amax Z ay 2” <0>t—‘r(at) ||2 + 2(bmax + ﬂmax) Z (7]
k=t—7 (o) I=t—7(a)
t—1
+ (bmax + Mmax) Z €73
k:t—‘r(at)
~ t—1 t—1
S 2AmaxH<0>t—T(at) ||2 Z oy + (ZAmaxT(O‘t)atfr(at) + 1) (bmax + Hmax) Z Qaf
k=t—7(ay) k=t—7(ay)
B t—1 5 t—1
S 2AmaxH <9>t7'r(at) ||2 Z ap + g(bmax + /J/max) Z QL
k=t—7(ay) k=t—7(ay)
B t—1 t—1
< 2AmaxH <0>t—7—(o¢,,) ||2 Z ag + 2(bmax + /ufmax) Z Q.
k=t—7(ay) k=t—7(ay)

Moreover, by using the above inequality, we can get equation 92 for all t > T as follows:

16 = (0)t—r(an 12

t—1 t—1

~ 5

S 2Amax|| <9>t77(at) ”2 Z (675 + g(bmax + ,U/max) Z (077
k=t—7(ay) k=t—7(ay)
. ~ B t—1
< 2Amax7(at)0‘t—r(at)”<0>t - <0>t—r(ag)H2 + 2Amax||(0)¢ |2 Z e93
k=t—7(ay)
5 t—1
+ g(bmax + /f’lmax) Z af
k=t—7(ay)

B t—1 t—1

S 6Amax||<9>t||2 Z (693 + 5<bmax + Nmax) Z Q.
k=t—7(ay) k=t—7(ay)

Next, by using equation 92 and the inequality (z+y)? < 222+ for all z, y, we can get equation 93
as follows:

t—1 t—1
1B)e = {0)t—r(an I3 < 72400100130 D ) +50(bmax + pma)* (Y )’
k=t—7(ay) k=t—7 (o)

< 720‘15277'(0&)7-2 (at)A?naXH <é>tHg + 500[?77-(0“)7-2 (at)(bmax + Mmax)
6(bmax + Mmax)2
A2 ’

max

< 8[(6):I3 +

where we use a;_r(q,)7() Amax < % in the last inequality. [ ]
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Lemma 23 Suppose that Assumptions 2-5 hold and {Gt} is uniformly strongly connected by sub-
sequences of length L. When 0 < oy (o) () < A , we have for any t > T,

[E[((0): — 0) " (P + PT)(A(X:)(0): + B(Xe) o1 — AW0)e = b) | Firan|
S at—r(at)T(at)’YmaX (72 + 456A12nax + 84Amaxbmax + 72Amaxﬂmax) E[||<é>t|‘§ | ]:t—‘r(at)]

(bmax + ,Ufmax)2
A?nax

bmax + Hmax
Amax

+ Q7 (a) T() Ymax |2 + 4“0*H§ + 48 + 152 (bmax + Hmax + AmaX||0*||2)2

+ 12 Amaxbmax + 48 Amax (Bmax + fmax)( +1)? + 87(bmax + fmax)”

Proof of Lemma 23: Note that for all ¢ > T', we have
E[((6), = 67) T (P + PT)(A(X.)(0): + %B(Xt)TlN — A =) | Foeran)]]
< [E[((6): = ") T (P + PT)(A(Xe) = A)(0)1 | Freran]l
+[E[(6); — 6) T (P + PT)(%B(Xt)TlN =) | Fier(an]l

< [BI(B)e-rw) — ) (P + PTYAK) = A0 vy | Forre)] 94)
+ [BI()r—ria — ) (P + PTIAKD) = A0 — Ohrian) | Firual]l  O9)
+ BI(O)e = O ria) T (P+ PTIAXD = A)Bhire) | Forian 96)
1Bl = i) (P + PIYACD = A= Brcrien) | Fireall - 07
+IB(B): ~ B)eran)T (P+ PTG B Iy =) | Forra] ©8)
BB rta — )T (P4 PGB Ty = 8) | For] 99)

By using the mixing time in Assumption 3, we can get the bound for equation 94 and equation 99
forallt > T

[BI((0)t—r(an) — 07) T (P + PT)AX,) = A{0)ir(ar) | Freranl
<[(O)1—r(ar) = 0°) (P + PTE[A(Xy) = A | Fy (o) (0)—r(ay)]
< 20 Ymax B0 (a0) = O 1211(0)t— (o) ll2 | Fieran)]
< Oét’YmaxE[H@)t—r(at) —0*15 + H(@)FT(M)H% | Fir(ap)]
< aYmax B 216713 + 3[1(0)s—r (0 13 | Fior(an)]
< 6 YmaxE[[|[(0 > (0 >t T(as) ||2 | Foer (ar) } + 6t Ymax B [||<é>t|‘g | ]:th(at)] + 204t7max||9*||%
(bmax + Hmax)®
A2

max

S 54at7maxE[”<é>tH§ | —Ft—‘r(at)] + 360‘t’ymax + 2at’7max”9*‘|g7 (100)
where in the last inequality, we use equation 91 from Lemma 22.

(B o) — 67 (P+ PT)(=

NB(Xt)TlN = b) | Fir(an)l

< |(<9>t7'r(m) 6 ) P+PT ZE bl — b | ft*"'(at)”
< 2")/maxatE[H<é>t—T(ag) A ||2 ‘ JT'.t—'r(at)]

1 s Los
< 2t (1+ FB{0h-a | Frertar) + 31015 )

< Dyumast (14 BN —rta) — B)el3 | Fimrion] + EIGI3 | Firian] + 16°13)

A2

max

s bmax + max 2 *
< P (1 OB ()4]12 | Frrs ] + 6 e T Hmax)” g ||%) , (101
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where in the last inequality we use equation 91.

Next, by using Assumption 2, equation 91 and equation 93, we have

E[((0)—r(a) = 07) T (P + PTYAX:) = A)((0)r = (0)i—r(a) | Frrian)ll
< 4'YmaxAmaxE[||<9>t77—(at) - 0*||2||<0>t - <0>t77(at)H2 | ‘thr(at)]
< 4'YmaxAmaxE[||<9>t7T(at)||2H<9>t - <6>t7‘r(0¢t)||2 ‘ ‘Ft*‘r(at)]

+ 4'YmaxAmax||0*H2E[”<é>t - <é>t*7(at)”2 | ]:t*T(at)]

t—1
< 87maxA12naxE[||<9>tf'r(at)||g ‘ ]:tff(at)] Z Qg
k=t—7(ay)
t—1
+ 87maxAmax(bmax + Nmax) ”0* ||2 Z (077
k=t—7(ay)

bmax + ,umax * s
+%M@(+GMMWMWMRWHX:%

Amax
~ t—1
< 12’YmaXAr2naxE[||<0>t*T(Oét)||§ | ‘Ft*‘r(at)] Z Ak
k=t—7 (o)
bmaX + max * ? —
+ 8'YmaXAEnax (14” + He ||2> Z Qg
max k=t—7(ay)

t—1

< 2 max A B O)e = 01— r (@013 | Froran] D

k=t—7(a)
) t—1
+ 2 A2 B O3 | Fioran)) D o
k=t—7(a)
b +u R
2 max max *
+ 8YmaxAmax (Armx + 1|6 ||2> Z Ok
k=t—7(ay)
i t—1
S 2167maxAr2naxEH|<0>t”§ | ‘Ft—T(Oét)] Z €75
k=t—7(a)
t—1

+ 1529 max (bmax + Hmax + Amax||9*||2)2 Z Q.

k=t—7(ay)
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In additional, as for the bound of equation 96, by using equation 91 and equation 93, we have
IE[((0)r — (0)t—r(a)) (P +PT)AXe) = A)O)t—r(a) | Fror(an]l

< 4’YmaxAmaxE[||<0>t - <0>t_7—(at)||2||<0>t_7—(0¢t)||2 | ‘Ft_T(at)]
t—1
< S’YmaxAmaxE[Amax”<9>t77(o¢t) ||§ + (bmax + N’max)“<0>t77(at) ||2 | ‘th‘r(oct)] Z g
k=t—7(ay)
t—1
< 4'7maxAmax(2Amax + bmax + Mmax)E“|<9>t77(o¢t) ”% | ]:tf'r(at)] Z A
k=t—7 (o)
t—1
+ 4’7maxAmax(bmax + Mmax) Z (€%
k=t—7(a)
t—1
< 8’YmaxAmax(2Amax + bmax + NmaX) H|< > < >t T(a) ||2 ‘ Fie T(at)] Z Qg
k=t—7(a)
t—1
+ 8'ymaxAmax(2f4max + bmax + Mmax)EH|<9>tH§ | ]:tf'r(at)] Z A
k=t—7 (o)
t—1
+ 4’7maxAmax(bmax + Mmax) Z (€%
k=t—7(a)
t—1
S 72 ’YmaxAmax(QAmax + bmax + ,UmaX)E[H<0>t”§ ‘ -’T'th‘r(at)] Z (677
k=t—7(c)
t—1

+17 Y o (103)

k=t—7(ay)

bmax + ,U/max

+ 48'YmaxAmax(bmax + Mmax)( A

Moreover, by using equation 93, we can get the bound for equation 97 as follows:
E[((0): = (0)1—r(ae) " (P + PTYAXL) = A)((0)s = (0t —r(a) | Frr(an)l
é 4’7maxAmaxE[||<0>t - <9>t—'r(at)H% | ‘Ft—T(Oét,)”

< max AmaxB[72450 [0} 13 + 50(bmax + pimax)® | Ficran] | D
k:f,—‘f‘(()éf,)
t—1 t—1

< 96Afnax'7maxE[||<é>tH% ‘ ]:tfr(at)] Z o + 67(bmax + MmaX)Q'Ymax Z Q-
k=t—7(c) k=t—7(ay)
(104)

Finally, we can get the bound of equation 98 by using equation 92:
~ ~ 1
|E[(<9>t - <9>t—‘r(af))(P + PT)(NB(Xt)TlN - b) | -Ft—‘r(at)H

< 4Ymaxbmax Hl( > < >t T(ay) ||2 ‘]:t 7( at)]
t—1
< 4’Ymax max [6Amax||< > ||2 + 5(bmax + Mmax) ‘ ]:tf‘r(at)] Z Qe
k=t—7(c)
t—1
< ]-2'7maxAmaX max [||< > ||g ‘ ft—T(at)] Z Ak
k=t—7 (o)
t—1
+ (124max + 20bmax + 20fimax) Ymaxbmax D, k- (105)
k=t—7(ay)
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Then, by using equation 100—equation 105, we have
[E[((0)¢ — 0") " (P + P )(AX)(0)¢ + B(Xy) "1 — A0)e — b) | Frer(an)]l

(bmax + /f"max)Q

< 54at7maxEH|<9~>t”§ | ]:tf'r(at)] + 36at7max + 2at7max‘|9*||§

A?nax
Y bmaX + /’[/maX 2 *
+ 2rmas (14 OBINONIE | Fomriog] + 62y o)
max
t—1
+2167max max B[[[(¢ > ||§ | ]:tf'r(at)] Z Ak
k=t—7 (o)

t—1
+ 152’7max (bmax + Hmax + AmaX”g* ||2)2 Z (077

k=t—7(a)
t—1
+ 72 'YmaxAmax(2Amax + bmax + /Lmax)E[” <0>t||§ | -Ft—‘r(at)] Z Qg
k=t—7 (o)
t—1
+ 48’YmaxAmax<bmax + Mmax)(bma);{’—ﬂ + 1)2 Z A
max k=t—7(ay)
t—1 t—1
+ 96A12nax7maxE[||<0>t”g ‘ th—'r(at)] Z A + 67(bmax + Nmax)27max Z (075
k=t—7(o) k=t—7 (o)
t—1
+ 12’YmaxAmax max [||< > ||§ |‘7:t—7'(at)] Z 93
k=t—7(ay)
t—1
+ (12Amax + 20bmax + ZOPImax)'Ymaxbmax Z Qg
k=t—7(ay)

S at—r(at)T(at)’YmaX (72 + 456A12nax + 84Amaxbmax + 72Amaxﬂmax) E[||<é>t|‘§ | ]:t—‘r(af,)]

(bmax + ,Ufmax)2

+ at—f(at)T(at)'Vmax 2+ 4“9*”3 +48 + 152 (bmax + Hmax + Amaxne*”2)2

A2
+ 12A b + 48A (b + bmax + Mmax 2 2
maxYmax max \Ymax ﬂmax)(Ai + 1) + 87(bmax + ,umax) 9
where we use a; < ay—rq, from Assumption 5 and 7(c;) > 1 in the last inequality. This completes
the proof. [ ]
Lemma 24 Suppose thatAssumptions 2—4 hold and o,y = t%l When iy +T7 (0t )0ty (a,)Cs < ’YO.I
and T(v) 07 (a,) < min{ ilogQ , m }, we have fort > T,
T ’Yma,x CgOé()ClOg ( )’Ymax
E — 0" —_— — 0"
1)y = 0°13) < g B (B) g — 03] + et T
+ g Ymax Zl:’f 12 :
f}/min 4 + 1

where T is defined in Appendix A.2, (s and (g are defined in equation 18 and equation 19, respec-
tively.

Proof of Lemma 24: Let H((0),) = ((8); — 0*)T P({0); — 6*). From Assumption 4, we know that
Yanin [ (0)e — 07113 < H((B)e) < Ymax[[(0)e — 073
Recall the update of (), in equation 90:

(O)er1 = (0)¢ + ar A(Xe)(0)e + Z b (Xy) + apr.

1=1
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From Assumption 2, for ¢ > T we have

H((0)1+1)
= ((0)er1 — 0°) T P((0)141 — 07)

=1

N T
= <<9~>t + OétA(Xt)<9~>t + % sz(Xt) + Qg pr — 9*> P-
N
<<9>t + o A(X:)(0)e + % Z b (X4) + cupy — 9*>
= ((0) = ") T P((6)s — 07) + aF (A(X1)(0)e) " P(A(X)(0):)
2 2
+5(B(X:) "1n) "P(B(X,) "1y) + %(A(Xt)@t)T(P +P1)(B(X:) 1) +aip/ Pp;

+af (A(X)(B): + %B(Xt)TlN)T(P‘F PT)pe+ () —6) (P +Pp,
(B~ 6) (P + PTIAX) G+ - BX) 1y — Af), —b)

+au((B)e — )T P(AG): + D) + u(A@). + )T PG, —6°)
= H((0)) + a3 (ACX,) (0)) T PIAC) (@):) + 35 (BOX) T1n) T P(B(X) 1)

+ SEAX)B))T (P +PT)B(X) 1x) + afo] Py

+af (A(X:) (0) + %B(Xt)TlN)T(P +PNYpr + au((B), — )T (P+ P )p,
+a((0) — 0%) T (P+ PT)(AX)(0) + %B(Xt)TlN — A(f) — b)
+ () — 01)T(PA+ ATP)((B) — 0%), 106)

where we use the fact that A6* + b = 0 on the last equality.
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Next, we can take expectation on both sides of equation 106. From Assumption 4 and Lemma 23,
for ¢t > T we have

E[H ({0)1+1)]
E[H (< 0)0)] + QT E[(A(X:)(0)e) " P(A(X0)(0):)] — a:E[[[(0): — 67 [13] + Elaip] Ppi]

+ *tE[(B(Xt)T1N)TP(B(Xt)T1N)] + %%E[(A(Xt)<é>t)T(P +PT)(B(X¢) "1y)]

N2
+ aZBIACX) ) + 1B 1IN (P 4+ PT)pd + aqBI(G) — %) (P+ PT)p)
aBI() 69 (P + PTYAX) @) + - BOX) 1y — Alf), — D)
< BIH (0] + 034t E e8] — @Bl B)c — 67113 + 200yl pu B B — 67 2]

+ 02 maxb? s + 202 Ymax Amaxbmax B[ ()¢ ]|2] + a2 Ymax 12 ix

+ 207 Ymaxtmax (AmaxE[|[(0)¢]|2] + brax)

+ 0 —r (0ry) T ) Ymax (72 + 456 A2, + 84 Amaxbmax + T2 Amaxtmax) E[|[(0):]13]

(Dmax + fimax)?
AQ

max

+ Oétat—r(oct)T(o‘t)’Ymax |:2 + 48 + 152 (bmax + Hmax + AmaxHG* ||2)2

bmax + Hmax
Amax
< E[H((0)0)] + (=t + avymaxllosll2)El10)e — 67 113] + csvmax|pel2
+ Oétat—T(oct)T(at)’Ymax (72 + 458Aiqax + 84Amaxbmax + 72Amax,ufmax) EH| <é>t||§]
(bmax + ,Ufmax)2
A2

max

FA)0%12 + 12 Amacbmas + 48 A (B + e ( 192 4 87(bas + umax)Q]

+ O‘tatf‘r(at)T(at)'}/max |:2 + 48 + 152 (bmax + Hmax + Amaxng* H2)2

bmax + Hmax

+ 4H0* ||§ + 12Amaxbmax + 48Amax(bmax + /J/max)( A

+ 1) + 89(bymax + umax>2].

Using the facts that B[||(9)[|3] < 2E[[[(0); — 0*[13] + 210" |3 and yunin|(6); — 67[|3 < H((6):) <
7max||<9>t - 9*”%, then

E[H((0)141)]
<E[H(0):)] + (—ou + aYmaxtie) B[ () — 07]13] + ct¢Ymaxtte
+ 207 Ymax (Dmax + Himax)
+ 200007 () () Yimax (72 + 45847, + 84 Amaxbmax + T2Amaxttmax) E[|[(0): — 03]
+ 2040 — 7 (0) T (0t ) Yimax (72 + 45842, + 84 Amaxbmax + T2Amax/tmax) |07 13
(Dmax + Hmax)?
AQ

max

+ Oétat—r(m)T(O‘t)’Ymax 2+48 + 152 (bmax + Hmax + Amax||0* ”2)2

bmax + Mmax
Amax
< E[H((0)0)] + (—a¢ + ahmaxhts + @01 r(a)T(@) YmaxC)E[[(0): — 07|3]
+ atO‘t—T(at)T(at)VmaxCQ + QtYmax/ht-

+ 40|03 + 124 maxbmax + 48 Amax (Bmax + fimax ) ( +1)% + 87(bmax + fimax)>
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Moreover, from a; = t - o, o > 7’"” and the definition of T, for all ¢ > T we have

~ O.9at

E[H(<9>t+1)] < (1 - )E[H(<9~>t)] + atatf'r(at)T(at)’YmaxCQ + Q¢ YmaxHt

Mt agc IOg(%)VmaXCQ

Ymax

t
<

E[H((6)+)] + 0 Vmax

+
t+1 t+1 " (t+ 1) — (o) + 1)
T Lo u
<~ _E[H{f)+ max L
S [H({0)7)] + o 2 l—|—1 u=l+1,17
i C’log(“‘l) U
2 i Ht_ v
+ 09 7ma Cg; I+ D)1 —7(a)+1) ““Hlu+1
T 5 N A YmaxCo CIOg(i)
_ EIH((8)~ e 0 /max o
71 H(O)2)] + a0y Sl il lr(a)+
T ; i i, 07maxCe < 2C log({H)
< ——E[H({0)r max =T 0 Imax
S [H((0)7)] + aoVma t+1 + 1 Eﬁ: I+1
T ~ Zt+1 i 9040'7max010g (H_l)
< — _E[H{0)+ max ==L 107
“t+1 [H{O)7)] + o t+1 t+1 ’ (107)
where we use
2aq log(LEL) t+1

< 2
Z l+1 _log(ao)
=T

to get the last inequality. Then, we can get the bound of E[||(8)¢41 — 6*||2] from equation 107 as
follows:

E[||(6) 1 — 6713]

1 -
< o E[H((0)1+1)]
= 1
T ’Ymdx [||< > 9* || ] CQCYOC log ( ) ’Ymax + a Vmax Z;:T :u“l
a t Jr 1 7m1n t Jr 1 ’Ymm 0 p)/mln t Jr 1 .
This completes the proof. ]

We are now in a position to prove Theorem 5.

Proof of Theorem 5: Note that
N

N
> El6, —673) Z (1671 — (0):l13] + 2NE[|(9)¢ — 67[13].
i=1

By using Lemmas 20 and 24, for any ¢ > T, we have

ZE [ 021 — 9*||§]

< %gtE | ;é@ + ag A(X0)0 + apb™(Xo)||2] + g%zbmax (aoét/2 + aréw)
200 Ao+ 201+ 2 B (0) 7~ )
QNCgaoC;IOg (L ) 1::: 2040N% Zz:tT i
<Cre' + Cy (aoe2 +oar: ]> + Coary + — (Clolog ( ) + Ch1 Z,uz + 012)
This completes the proof. = ]
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