
A Fast and Provable Algorithm for Sparse Phase
Retrieval

Anonymous Author(s)

Affiliation

Address

email

Abstract

We study the sparse phase retrieval problem, which aims to recover a sparse signal1

from a limited number of phaseless measurements. Existing algorithms for sparse2

phase retrieval primarily rely on first-order methods with linear convergence rate.3

In this paper, we propose an efficient second-order algorithm based on Newton4

projection, which maintains the same per-iteration computational complexity as5

popular first-order methods. The proposed algorithm is theoretically guaranteed6

to converge to the ground truth (up to a global sign) at a quadratic convergence7

rate after at most O
(
log(∥x♮∥/x♮min)

)
iterations, provided a sample complexity of8

O(s2 log n), where x♮ ∈ Rn represents an s-sparse ground truth signal. Numerical9

experiments demonstrate that our algorithm not only outperforms state-of-the-art10

methods in terms of achieving a significantly faster convergence rate, but also11

excels in attaining a higher success rate for exact signal recovery from noise-free12

measurements and providing enhanced signal reconstruction in noisy scenarios.13

1 Introduction14

We study the phase retrieval problem, which involves reconstructing an n-dimensional signal x♮15

using its intensity-only measurements:16

yi = |⟨ai,x♮⟩|2, i = 1, 2, · · · ,m, (1)

where each yi represents a measurement, ai denotes a sensing vector, x♮ is the unknown signal to17

be recovered, and m is the total number of measurements. The phase retrieval problem arises in18

various applications, including diffraction imaging [1], X-ray crystallography [2, 3], and optics [4],19

where detectors can only record the squared modulus of Fresnel or Fraunhofer diffraction patterns of20

radiation scattered from an object. The loss of phase information complicates the understanding of21

the scattered object, as much of the image’s structural content may be encoded in the phase.22

Although the phase retrieval problem is ill-posed and even NP-hard [5], several algorithms have23

been proven to succeed in recovering target signals under certain assumptions. Algorithms can be24

broadly categorized into convex and nonconvex approaches. Convex methods, such as PhaseLift25

[6, 7], PhaseCut [8], and PhaseMax [9, 10], offer optimal sample complexity but are computationally26

challenging in high-dimensional cases. To improve computational efficiency, nonconvex approaches27

are explored, including alternating minimization [11], Wirtinger flow [6], truncated amplitude flow28

[12], Riemannian optimization [13], Gauss-Newton [14, 15], and Kaczmarz [16, 17]. Despite the29

nonconvex nature of its objective function, the global geometric landscape lacks spurious local30

minima [18, 19], allowing algorithms with random initialization to work effectively [20, 21].31
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The nonconvex approaches previously mentioned can guarantee successful recovery of the ground32

truth (up to a global phase) with a sample complexity m ∼ O(n loga n), where a ≥ 0. This33

complexity is nearly optimal, as the phase retrieval problem requires m ≥ 2n− 1 for real signals and34

m ≥ 4n−4 for complex signals [22]. However, in practical situations, especially in high-dimensional35

cases, the number of available measurements is often less than the signal dimension (i.e., m < n),36

leading to a need for further reduction in sample complexity.37

In this paper, we focus on the sparse phase retrieval problem, which aims to recover a sparse signal38

from a limited number of phaseless measurements. It has been established that the minimal sample39

complexity required to ensure s-sparse phase retrievability in the real case is only 2s for generic40

sensing vectors [23]. Several algorithms have been proposed to address the sparse phase retrieval41

problem [24, 25, 26, 27, 28]. These approaches have been demonstrated to effectively reconstruct the42

ground truth using O(s2 log n) Gaussian measurements. While this complexity is not optimal, it is43

significantly smaller than that in general phase retrieval.44

1.1 Contributions45

Existing algorithms for sparse phase retrieval primarily employ first-order methods with linear46

convergence. Recent work [28] introduced a second-order method, while it fails to obtain a quadratic47

convergence rate. The main contributions of this paper can be summarized in three key points:48

1. We propose a second-order algorithm based on Newton projection for sparse phase retrieval49

that maintains the same per-iteration computational complexity as popular first-order methods.50

To ensure fast convergence, we integrate second-order derivative information from intensity-51

based empirical loss into the search direction; to ensure computational efficiency, we restrict52

the Newton update to a subset of variables, setting others to zero in each iteration.53

2. We establish a non-asymptotic quadratic convergence rate for our proposed algorithm and54

provide the iteration complexity. Specifically, we prove that the algorithm converges to55

the ground truth (up to a global sign) at a quadratic rate after at most O
(
log(|x♮|/x♮min)

)
56

iterations, provided a sample complexity of O(s2 log n). To the best of our knowledge, this is57

the first algorithm to establish a quadratic convergence rate for sparse phase retrieval.58

3. Numerical experiments demonstrate that the proposed algorithm achieves a significantly faster59

convergence rate in comparison to state-of-the-art methods. Furthermore, the experiments60

reveal that our algorithm attains a higher success rate in exact signal recovery from noise-free61

measurements and provides enhanced signal reconstruction performance in noisy scenarios,62

as evidenced by the improved Peak Signal-to-Noise Ratio (PSNR).63

Notation: The p-norm ∥x∥p := (
∑n
i=1 |xi|p)

1/p for p ≥ 1. ∥x∥0 denotes the number of nonzero64

entries of x, and ∥x∥ denotes the 2-norm. For a matrix A ∈ Rm×n, ∥A∥ is the spectral norm of A.65

For any q1 ≥ 1 and q2 ≥ 1, ∥A∥q2→q1 denotes the induced operator norm from the Banach space66

(Rn, ∥ · ∥q2) to (Rm, ∥ · ∥q1). λmin(A) and λmax(A) denote the smallest and largest eigenvalues67

of the matrix A. |S| denotes the number of elements in S. a ⊙ b denotes the entrywise product68

of a and b. For functions f(n) and g(n), we write f(n) ≲ g(n) if f(n) ≤ cg(n) for some69

constant c ∈ (0,+∞). For x, x♮ ∈ Rn, the distance between x and x♮ is defined as dist(x,x♮) :=70

min
{
∥x− x♮∥, ∥x+ x♮∥

}
. x♮min denotes the smallest nonzero entry in magnitude of x♮.71

2 Problem Formulation and Related Works72

We first present the problem formulation for sparse phase retrieval, and then review related works.73

2.1 Problem formulation74

The standard sparse phase retrieval problem can be concisely expressed as finding x that satisfies75

|⟨ai,x⟩|2 = yi ∀ i = 1, . . . ,m, and ∥x∥0 ≤ s, (2)

where {ai}mi=1 are known sensing vectors and {yi}mi=1 represent phaseless measurements with76

yi = |⟨ai,x♮⟩|2, where x♮ is the ground truth signal (∥x♮∥0 ≤ s). While sparsity level s is assumed77

known a priori for theoretical analysis, our experiments will also explore cases with unknown s.78
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Table 1: Overview of per-iteration computational cost, numbers of iterations for convergence, loss
function, and algorithm types for various methods. x♮ represents the ground truth signal with
dimension n and sparsity s, and x♮min denotes the smallest nonzero entry in magnitude of x♮.

Methods Per-iteration cost Iteration complexity Loss function Algorithm types

ThWF [25] O(n2 logn) O(log(1/ϵ)) fI(x) Grad. Proj.

SPARTA [26] O(ns2 logn) O(log(1/ϵ)) fA(x) Grad. Proj.

CoPRAM [27] O(ns2 logn) O(log(1/ϵ)) fA(x) Alt. Min.

HTP [28] O((n+ s2)s2 logn) O(log(s2 logn) + log(∥x♮∥/x♮
min)) fA(x) Alt. Min.

Proposed O((n+ s2)s2 logn) O(log(log(1/ϵ))+log(∥x♮∥/x♮
min)) fI(x) Newton Proj.

To address Problem (2), various problem reformulations have been explored. Convex formulations,79

such as the ℓ1-regularized PhaseLift method [24], often use the lifting technique and solve the problem80

in the n×n matrix space, resulting in high computational costs. To enhance computational efficiency,81

nonconvex approaches [25, 26, 28, 29] are explored, which can be formulated as:82

minimize
x

f(x), subject to ∥x∥0 ≤ s. (3)

Both the loss function f(x) and the ℓ0-norm constraint in Problem (3) are nonconvex, making it83

challenging to solve. Two prevalent loss functions are investigated: intensity-based empirical loss84

fI(x) :=
1

4m

m∑
i=1

(
|⟨ai,x⟩|2 − yi

)2
, (4)

and amplitude-based empirical loss85

fA(x) :=
1

2m

m∑
i=1

(|⟨ai,x⟩| − zi)
2
, (5)

where zi =
√
yi, i = 1, . . . ,m. The intensity-based loss fI(x) is smooth, while the amplitude-based86

loss fA(x) is non-smooth because of the modulus.87

2.2 Related works88

Existing nonconvex sparse phase retrieval algorithms can be broadly classified into two categories:89

gradient projection methods and alternating minimization methods. Gradient projection methods, such90

as ThWF [25] and SPARTA [26], employ thresholded gradient descent and iterative hard thresholding,91

respectively. On the other hand, alternating minimization methods, including CoPRAM [27] and92

HTP [28], alternate between updating the signal and phase. When updating the signal, formulated as93

a sparsity-constrained least squares problem, CoPRAM leverages the cosamp method [30], while94

HTP applies the hard thresholding pursuit algorithm [31]. In this paper, we introduce a Newton95

projection-based algorithm that incorporates second-order derivative information, resulting in a faster96

convergence rate compared to gradient projection methods, and, unlike alternating minimization97

methods, it eliminates the need for separate signal and phase updates. We note that ThWF and our98

algorithm utilize intensity-based loss as the objective function, while SPARTA, CoPRAM, and HTP99

employ amplitude-based loss. All these algorithms require a sample complexity of O(s2 log n) under100

Gaussian measurements for successful recovery.101

The majority of sparse phase retrieval algorithms, such as ThWF, SPARTA, and CoPRAM, are first-102

order methods with linear convergence rates. While HTP is a second-order method that converges103

in a finite number of iterations, it fails to establish a quadratic convergence rate. We propose a104

second-order algorithm that attains a non-asymptotic quadratic convergence rate and exhibits lower105

iteration complexity compared to HTP. Our algorithm maintains the same computational complexity106

per iteration as popular first-order methods when s ≲
√
n. This condition is always assumed to hold107

true; otherwise, the established sample complexity for sparse phase retrieval algorithms, O(s2 log n),108

would be reduced to that of general phase retrieval methods. Table 1 presents a comparative overview109

of the previously discussed methods and our proposed method.110
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3 Main Results111

In this section, we present our proposed algorithm for sparse phase retrieval. Generally, nonconvex112

methods comprise two stages: initialization and refinement. The first stage generates an initial guess113

close to the target signal, while the second stage refines the initial guess using various methods,114

such as ThWF, SPARTA, CoPRAM, and HTP. Our proposed algorithm adheres to this two-stage115

strategy. In the first stage, we employ an existing effective method to generate an initial point. Our116

primary focus is on the second stage, wherein we propose an efficient second-order algorithm based117

on Newton projection to refine the initial guess.118

Before delving into the details of our proposed algorithm, we present a unified algorithmic framework119

for addressing the sparsity-constrained optimization problem in Eq. (3), as summarized in [32].120

Given the k-th iterate xk, the next iterate xk+1 can be obtained through the following steps:121

Step 1 (Hard thresholding):122

uk+1 = Hr(ϕ(x
k)), (6)

Step 2 (Debiasing):123

vk+1 = arg min
x

ψk(x), subject to supp(x) ⊆ Sk+1, (7)

Step 3 (Pruning):124

xk+1 ∈ Hs(v
k+1), (8)

where ϕ(xk) is typically chosen as either ∇f(xk) or xk − η∇f(xk), ψk(x) is designed based on125

the objective function f(x) and the iterate xk, and Sk+1 is usually defined as the support of uk+1.126

The hard-thresholding operator, denoted by Hs, is defined with a sparsity level of s as follows:127

Hs(w) := arg min
x

∥x−w∥2, subject to ∥x∥0 ≤ s. (9)

A variety of well-known algorithms for solving sparsity-constrained optimization problems adhere to128

the three-step algorithmic framework mentioned earlier. For instance, the Iterative Hard Thresholding129

(IHT) algorithm solely performs Step 1 using Hs(x
k − η∇f(xk)) with η the stepsize; the Hard130

Thresholding Pursuit (HTP) implements the first two steps by computing uk+1 via one-step IHT in131

Step 1, and then solving the support-constrained problem in Step 2 with Sk+1 = supp(uk+1); the132

Compressive Sampling Matching Pursuit (CoSaMP) executes all three steps, calculating uk+1 =133

H2s(∇f(xk)) in Step 1, performing Step 2 with Sk+1 = supp(uk+1) ∪ supp(xk), and pruning the134

result in Step 3 to ensure an s-sparse level.135

Several state-of-the-art methods for sparse phase retrieval share strong connections with the previously136

described popular algorithms for sparsity-constrained optimization, and thus relate closely to the137

algorithmic framework. SPARTA combines IHT with gradient truncation to eliminate erroneously138

estimated signs. HTP merges hard thresholding pursuit with alternating minimization, updating139

the signal and phase alternately. CoPRAM integrates CoSaMP with alternating minimization. Our140

proposed algorithm will also be presented using this algorithmic framework.141

3.1 Proposed algorithm142

In this subsection, we introduce our proposed algorithm for sparse phase retrieval, which utilizes the143

intensity-based loss fI defined in Eq. (4) as the objective function. The algorithm incorporates the144

first two steps of the previously discussed algorithmic framework.145

Our algorithm is developed based on the Newton projection method. It is worth mentioning that146

Newton-type methods typically require solving a linear system at each iteration to determine the147

Newton direction. This generally results in a computational cost of O(n3) for our problem, rendering148

it impractical in high-dimensional situations. To address this challenge, we categorize variables into149

two groups at each iteration: free and fixed, updating them separately. The free variables, consisting150

of at most s variables, are updated according to the (approximate) Newton direction, while the fixed151

variables are set to zero. This strategy requires solving a linear system of size s× s, substantially152

decreasing the computational expense from O(n3) to O(s3).153
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In the first step, we identify the set of free variables using one-step IHT of the loss fA(x) in (5):154

Sk+1 = supp
(
Hs(x

k − η∇fA(xk))
)
,

where η is the stepsize. Since fA is non-smooth, we adopt the generalized gradient [33] as ∇fA. The155

s-sparse hard thresholding limits |Sk+1| to s, implying that there are at most s free variables. We156

only update free variables along the approximate Newton direction and set others to zero.157

In the second step, we update the free variables in Sk+1 by solving a support-constrained problem158

in Eq. (7). Note that we adopt the intensity-based loss fI as the objective function. To accelerate159

convergence, we choose function ψk(x) in (7) as the second-order Taylor expansion of fI at xk:160

ψk(x) := fI(x
k) +

〈
∇fI(xk), x− xk

〉
+

1

2

〈
x− xk, ∇2fI(x

k)(x− xk)
〉
.

Let x⋆ denote the minimizer of Problem (7). For notational simplicity, define gkSk+1
=161 [

∇fI(xk)
]
Sk+1

, which denotes the sub-vector of ∇fI(xk) indexed by Sk+1, Hk
Sk+1

=162 [
∇2fI(x

k)
]
Sk+1

, which represents the principle sub-matrix of the Hessian indexed by Sk+1, and163

Hk
Sk+1,Sc

k+1
=

[
∇2fI(x

k)
]
Sk+1,Sc

k+1

, denoting the sub-matrix of the Hessian whose rows and164

columns are indexed by Sk+1 and Sck+1, respectively. Following from the first-order optimality165

condition of Problem (7), we obtain that x⋆Sc
k+1

= 0 and x⋆Sk+1
satisfies166

Hk
Sk+1

(
x⋆Sk+1

− xkSk+1

)
= Hk

Sk+1,Sc
k+1

xkSc
k+1

− gkSk+1
. (10)

As a result, we obtain the next iterate xk+1 by167

xk+1
Sk+1

= xkSk+1
− pkSk+1

, and xk+1
Sc
k+1

= 0, (11)

where pkSk+1
represents the approximate Newton direction over Sk+1, which can be calculated by168

Hk
Sk+1

pkSk+1
= −Hk

Sk+1,Jk+1
xkJk+1

+ gkSk+1
. (12)

where Jk+1 := Sk \ Sk+1 with |Jk+1| ≤ s. In contrast to Eq. (10), we replace xkSc
k+1

with xkJk+1
in169

(12), as Jk+1 captures all nonzero elements in xkSc
k+1

as follows:170

G
(
xkSc

k+1

)
=

[
xkSc

k+1∩Sk

0

]
=

[
xkSk\Sk+1

0

]
=

[
xkJk+1

0

]
, (13)

where operator G arranges all nonzero elements of a vector to appear first, followed by zero elements.171

The first equality in (13) follows from the fact that supp(xk) ⊆ Sk. By calculating Hk
Sk+1,Jk+1

172

rather than Hk
Sk+1,Sc

k+1
as in (12), the computational cost is substantially reduced from O(smn) to173

O(s2m). The costs for computing Hk
Sk+1

and solving the linear system in (12) are O(s2m) and174

O(s3), respectively. Therefore, the overall computational cost for Step 2 is O(s2m), while the cost175

for Step 1 amounts to O(mn), which involves calculating ∇fA(xk).176

In summary, the computational costs for Steps 1 and 2 are O(mn) and O(s2m), respectively, making177

the total cost per iteration O(n + s2)m, with m ∼ O(s2 log n) that is required for successful178

recovery. Since s ≲
√
n is always assumed to hold true as discussed in Section 2.2, the per-iteration179

computational complexity of our algorithm is equivalent to that of popular first-order methods, which180

is O(ns2 log n). The pruning step is omitted as xk+1 in (11) is already s-sparse.181

Algorithm 1 Proposed algorithm

Input: Data {ai, yi}mi=1, sparsity s, initial estimate x0, and stepsize η.
1: for k = 0, 1, 2, . . . do
2: Identify the set of free variables Sk+1 = supp(Hs(x

k − η∇fA(xk)));
3: Compute the approximate Newton direction pkSk+1

over Sk+1 by solving (12).

4: Update xk+1:
xk+1
Sk+1

= xkSk+1
− pkSk+1

, and xk+1
Sc
k+1

= 0.

5: end for
Output: xk+1.
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3.2 Initialization182

The nonconvex nature of phase retrieval problems often requires a well-designed initial guess to find183

a global minimizer. Spectral initialization is a common approach [6]. In this paper, we adopt a sparse184

variant of the spectral initialization method to obtain a favorable initial guess for Algorithm 1.185

Assuming {ai}mi=1 are independently drawn from a Gaussian distribution N (0, In), the expectation186

of the matrix 1
m

∑m
i=1 yiaia

T
i is M := ∥x♮∥2In + 2x♮(x♮)T . The leading eigenvector of M is187

precisely ±x♮. Hence, the leading eigenvector of 1
m

∑m
i=1 yiaia

T
i can be close to ±x♮ [6]. However,188

this method requires the sample complexity of at least O(n), which is excessively high for sparse189

phase retrieval. Leveraging the sparsity of x♮ is crucial to lower this complexity.190

We adopt the sparse spectral initialization method proposed in [27]. Specifically, we first collect the191

indices of the largest s values from
{

1
m

∑m
i=1 yi[ai]

2
j

}n
j=1

and obtain the set Ŝ, which serves as an192

estimate of the support of the true signal x♮. Next, we construct the initial guess x0 as follows: x0
Ŝ

193

is the leading eigenvector of 1
m

∑m
i=1 yi[ai]Ŝ [ai]

T
Ŝ

, and x0
Ŝc

= 0. Finally, we scale x0 such that194

∥x0∥2 = 1
m

∑m
i=1 yi, ensuring the power of x0 closely aligns with the power of x♮.195

The study in [27] demonstrates that, given a sample complexitym ∼ O(s2 log n), the aforementioned196

sparse spectral initialization method can produce an initial estimate x0 that is sufficiently close to the197

ground truth. Specifically, it holds dist(x0,x♮) ≤ γ∥x♮∥ for any γ ∈ (0, 1), with a probability of at198

least 1− 8m−1.199

3.3 Theoretical results200

Given the nonconvex nature of both the objective function and the constraint set in the sparse phase201

retrieval problem, a thorough theoretical analysis is essential for ensuring the convergence of our202

algorithm to the ground truth. In this subsection, we provide a comprehensive analysis of the203

convergence of our algorithm for both noise-free and noisy scenarios.204

3.3.1 Noise-free case205

We begin by the noise-free case, in which each measurement yi = |⟨ai,x♮⟩|2. Starting with an initial206

guess obtained via the sparse spectral initialization method, the following theorem shows that our207

algorithm exhibits a quadratic convergence rate after at most O
(
log(∥x♮∥/x♮min)

)
iterations.208

Theorem 3.1. Let {ai}mi=1 be i.i.d. random vectors distributed as N (0, In), and x♮ ∈ Rn209

be any signal with ∥x♮∥0 ≤ s. Let {xk}k≥1 be the sequence generated by Algorithm 1 with210

the input measurements yi = |⟨ai,x♮⟩|2, i = 1, . . . ,m, and the initial guess x0 generated211

by the sparse spectral initialization method mentioned earlier. There exists positive constants212

ρ, η1, η2, C1, C2, C3, C4, C5 such that if the stepsize η ∈ [η1, η2] and m ≥ C1s
2 log n, then with213

probability at least 1− (C2K + C3)m
−1, the sequence {xk}k≥1 converges to the ground truth x♮214

at a quadratic rate after at most O
(
log(∥x♮∥/x♮min)

)
iterations, i.e.,215

dist(xk+1,x♮) ≤ ρ · dist2(xk,x♮), ∀ k ≥ K,

where K ≤ C4 log
(
∥x♮∥/x♮min

)
+ C5, and x♮min is the smallest nonzero entry in magnitude of x♮.216

The proof of Theorem 3.1 is available in Appendix B.2.217

Remark 3.2. Theorem 3.1 establishes the non-asymptotic quadratic convergence rate of our algorithm218

as it converges to the ground truth, leading to an iteration complexity of O
(
log(log(1/ϵ)) +219

log(∥x♮∥/x♮min)
)

for achieving an ϵ-accurate solution. This convergence rate is significantly faster220

than those of state-of-the-art methods such as ThWF [25], SPARTA [26], and CoPRAM [27],221

which, as first-order methods, exhibit only linear convergence. Although HTP [28] is a second-222

order approach, it fails to establish a quadratic convergence rate, and its iteration complexity,223

O
(
log(log(ns

2

)) + log(∥x♮∥/x♮min)
)
, is higher than that of our algorithm.224

Remark 3.3. It is worth emphasizing that while the superlinear convergence is extensively established225

for Newton-type methods in existing literature, it often holds only asymptotically: the ratio of the226

distance to the optimal solution at (k + 1)-th and k-th iterations tends to zero as k goes to infinity.227

Consequently, the overall iteration complexity cannot be explicitly characterized. This fact highlights228

the significance of establishing a non-asymptotic superlinear convergence rate.229
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3.3.2 Noisy case230

In real-world scenarios, observations are frequently affected by noise. In what follows, we231

demonstrate the robustness of our proposed algorithm in the presence of noise within phaseless232

measurements. Building upon [25, 34], we assume that the noisy measurements are given by:233

yi = |⟨ai,x♮⟩|2 + ϵi, for i = 1, . . . ,m,

where ϵ represents a vector of stochastic noise that is independent of {ai}mi=1. Throughout this paper,234

we assume, without loss of generality, that the expected value of ϵ is 0.235

Theorem 3.4. Let {ai}mi=1 be i.i.d. random vectors distributed as N (0, In), and x♮ ∈ Rn be236

any signal with ∥x♮∥0 ≤ s. Let {xk}k≥1 be the sequence generated by Algorithm 1 with noisy237

input yi = |⟨ai,x♮⟩|2 + ϵi, i = 1, . . . ,m. There exists positive constants η1, η2, C6, C7, C8, and238

γ ∈ (0, 1/8], such that if the stepsize η ∈ [η1, η2], m ≥ C6s
2 log n and the initial guess x0 obeys239

dist(x0,x♮) ≤ γ∥x♮∥ with ∥x0∥0 ≤ s, then with probability at least 1− (C7K
′ + C8)m

−1,240

dist(xk+1,x♮) ≤ ρ′ · dist(xk,x♮) + υ∥ϵ∥, ∀ 0 ≤ k ≤ K ′,

where ρ′ ∈ (0, 1), υ ∈ (0, 1), and K ′ is a positive integer.241

The proof of Theorem 3.4 is provided in Appendix B.3. Theorem 3.4 validates the robustness of our242

algorithm, demonstrating its ability to effectively recover the signal from noisy measurements.243

4 Experimental Results244

In this section, we present a series of numerical experiments designed to validate the efficiency and245

accuracy of our proposed algorithm. All experiments were conducted on a 2 GHz Intel Core i5246

processor with 16 GB of RAM, and all compared methods were implemented using MATLAB.247

Unless explicitly specified, the sensing vectors {ai}mi=1 were generated by the standard Gaussian248

distribution. The true signal x♮ has s nonzero entries, where the support is selected uniformly from249

all subsets of [n] with cardinality s, and their values are independently generated from the standard250

Gaussian distribution N (0, 1). In the case of noisy measurements, we have:251

yi = |⟨ai,x♮⟩|2 + σεi, for i = 1, . . . ,m, (14)

where {εi}mi=1 follow i.i.d standard Gaussian distribution, and σ > 0 determines the noise level.252
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(c) Noise level σ = 0.03, sparsity s = 80
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(d) Noise level σ = 0.03, sparsity s = 100

Figure 1: Relative error versus iterations for various algorithms, with fixed signal dimension n = 5000
and sample size m = 3000. The results represent the average of 100 independent trial runs.
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We compare our proposed algorithm with state-of-the-art methods, including ThWF [25], SPARTA253

[26], CoPRAM [27], and HTP [28]. For ThWF, we set parameters as recommended in [25]. For254

SPARTA, we set parameters as follows: µ = 1 and |I| = ⌈m/6⌉. Both HTP and our algorithm use255

a step size η of 0.95. The maximum number of iterations for each algorithm is 100. The Relative256

Error (RE) between the estimated signal x̂ and the ground truth x♮ is defined as RE := dist(x̂,x♮)
∥x♮∥ .257

A recovery is deemed successful if RE < 10−3. We provide additional experimental results on258

robustness to noise levels and phase transition with varying sparsity levels in Appendix A.259

Figure 1 compares the number of iterations required for convergence across various algorithms. In260

these experiments, we set the number of measurements to m = 3000, the dimension of the true signal261

to n = 5000, and the sparsity levels to s = 80 and 100. We consider both noise-free measurements262

and noisy measurements with a noise level of σ = 0.03. As depicted in Figure 1, all five algorithms263

perform well under both noise-free and noisy conditions; however, our algorithm converges with264

significantly fewer iterations compared to state-of-the-art methods.265

Table 2: Comparison of running times (in seconds) for different algorithms in the recovery of signals
with sparsity levels of 80 and 100 for both noise-free and noisy scenarios.

Methods ThWF SPARTA CoPRAM HTP Proposed

Noise free (σ = 0)
Sparsity 80 0.3630 1.0059 0.9762 0.0813 0.0530

Sparsity 100 0.6262 1.2966 3.3326 0.2212 0.1024

Noisy (σ = 0.03)
Sparsity 80 0.2820 1.1082 1.3426 0.1134 0.0803

Sparsity 100 0.4039 1.6368 4.1006 0.2213 0.1187

Table 2 presents a comparison of the convergence running times for various algorithms, corresponding266

to the experiments depicted in Figure 1. For noise-free measurements, all algorithms are set to267

terminate when the iterate satisfies the following condition: dist(xk,x♮)
∥x♮∥ < 10−3, which indicates268

a successful recovery. In the case of noisy measurements, the termination criterion is set as269

dist(xk+1,xk)
∥xk∥ < 10−3. As evidenced by the results in Table 2, our algorithm consistently outperforms270

state-of-the-art methods in terms of running time, for both noise-free and noisy cases, highlighting its271

superior efficiency for sparse phase retrieval applications.272
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(a) s = 25
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(b) s = 50

Figure 2: Phase transition performance of various algorithms for signals of dimension n = 3000 with
sparsity levels s = 25 and 50. The results represent the average of 100 independent trial runs.

Figure 2 depicts the phase transitions of different algorithms, with the true signal dimension fixed273

at n = 3000 and sparsity levels set to s = 25 and 50. The phase transition graph is generated by274

evaluating the successful recovery rate of each algorithm over 100 independent trial runs. Figure 2275

shows that the probability of successful recovery for each algorithm transitions from zero to one as276

the sample size m increases. Furthermore, our algorithm consistently outperforms state-of-the-art277

methods, achieving a higher successful recovery rate across various measurement counts.278
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In practical applications, natural signals may not be inherently sparse; however, their wavelet279

coefficients often exhibit sparsity. Figure 3 illustrates the reconstruction performance of a signal from280

noisy phaseless measurements, where the true signal, with a dimension of 30,000, exhibits sparsity281

and contains 208 nonzero entries under the wavelet transform, using 20,000 samples. The sampling282

matrix A ∈ R20,000×30,000 is constructed from a random Gaussian matrix and an inverse wavelet283

transform generated using four levels of Daubechies 1 wavelet. The noise level is set to σ = 0.03. To284

evaluate recovery accuracy, we use the Peak Signal-to-Noise Ratio (PSNR), defined as:285

PSNR = 10 · log V2

MSE
,

where V represents the maximum fluctuation in the ground truth signal, and MSE denotes the mean286

squared error of the reconstruction. A higher PSNR value generally indicates better reconstruction287

quality. As depicted in Figure 3, our proposed algorithm outperforms state-of-the-art methods in288

terms of both reconstruction time and PSNR. It achieves a higher PSNR while requiring considerably289

less time for reconstruction. In the experiments, the sparsity level is assumed to be unknown, and the290

hard thresholding sparsity level is set to 300 for various algorithms.291

(a) Original signal (b) ThWF: PSNR = 71,
Time(s) = 11.586 (c) SPARTA: PSNR = 66,

Time(s) = 38.379

(d) CoPRAM: PSNR = 61,
Time(s) = 117.685 (e) HTP: PSNR = 62,

Time(s) = 6.689 (f) Proposed: PSNR = 78,
Time(s) = 2.629

Figure 3: Reconstruction of the signal with a dimension of 30,000 from noisy phaseless measurements
by various algorithms. The proposed algorithm requires significantly less time for reconstruction than
state-of-the-art methods while preserving the highest PSNR. Time(s) is the running time in seconds.

5 Conclusions and Discussions292

In this paper, we have introduced an efficient Newton projection-based algorithm for sparse phase293

retrieval. Our algorithm attains a non-asymptotic quadratic convergence rate while maintaining the294

same per-iteration computational complexity as popular first-order methods, which exhibit linear295

convergence limitations. Empirical results have demonstrated a significant improvement in the296

convergence rate of our algorithm. Furthermore, experiments have revealed that our algorithm excels297

in attaining a higher success rate for exact signal recovery with noise-free measurements and provides298

superior signal reconstruction performance when dealing with noisy data.299

Finally, we discuss the limitations of our paper, which also serve as potential avenues for future300

research. Both our algorithm and state-of-the-art methods share the same sample complexity301

of O(s2 log n) for successful recovery; however, our algorithm requires this complexity in both302

the initialization and refinement stages, while state-of-the-art methods require O(s2 log n) for303

initialization and O(s log n/s) for refinement. Investigating ways to achieve tighter complexity304

in our algorithm’s refinement stage is a worthwhile pursuit for future studies.305

Currently, the initialization stage exhibits a sub-optimal sample complexity of O(s2 log n). A key306

challenge involves reducing its quadratic dependence on s. Recent work [27] attained a complexity of307

O(s log n), closer to the information-theoretic limit, but relied on the strong assumption of power law308

decay for sparse signals. Developing an initialization method that offers optimal sample complexity309

for a broader range of sparse signals is an engaging direction for future research.310
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In Appendix A, we present two additional experimental results, illustrating the robustness of the402

proposed algorithm against noise in measurements and offering phase transition comparisons. The403

proofs for Theorem 3.1 and Theorem 3.4 are provided in Appendix B. Auxiliary lemmas can be404

found in Appendix C.405

A Additional Experiments406

In this section, we carry out experiments to assess the robustness of the proposed algorithm against407

noise in measurements and to evaluate its performance in phase transition for signal recovery.408

We first investigate the impact of the noise level of measurements on the recovery error of our409

proposed algorithm. Noise levels are represented by signal-to-noise ratios (SNR), i.e., ∥x♮∥/σ, where410

x♮ is the ground truth signal and σ is a parameter determining the standard deviation of Gaussian411

noise, as defined in (14). We set the dimension of the ground truth signal to n = 2000, the sparsity412

level to s = 20, and the number of measurements to m = 1500.413

Figure 4 depicts the relative error of the proposed algorithm as a function of signal-to-noise ratios414

(SNR) in dB. We observe a nearly linear decrease in the relative error as the SNR increases, implying415

that the recovery error of our algorithm can be controlled by a multiple of the measurement noise level.416

This result demonstrates the robustness of our proposed algorithm against noise in measurements.417

Additionally, the small error bars shown in Figure 4 emphasize the low variability of recovery errors418

of our proposed algorithm.419
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Figure 4: Robustness of the proposed algorithm against additive Gaussian noise. The y-axis represents
the relative error of the proposed algorithm, while the x-axis corresponds to the signal-to-noise ratios
(SNR) of the measurements. The results are averaged over 100 independent trial runs, with error bars
indicating the standard deviation of the recovery error. We set n = 2000, m = 1500, and s = 20.

Figure 5 illustrates the success rate of various algorithms as a function of varying sparsity levels s420

and the number of measurements m. With a fixed signal dimension of n = 3000, we vary the signal421

sparsity s from 6 to 120 and the number of measurements m from 150 to 3000. A signal recovery is422

considered successful if the relative error dist(x̂,x♮)
∥x♮∥ < 10−3. The gray level of a block represents the423

success rate: black corresponds to a 0% successful recovery, white to a 100% successful recovery,424

and gray to a rate between 0% and 100%.425

As shown in Figure 5, our proposed algorithm performs better than the state-of-the-art methods when426

the sparsity s is large. In contrast, when s is small, our algorithm, along with SPARTA, CoPRAM,427

and HTP, exhibits a slightly better performance than ThWF. These successful recovery rates are428

computed by averaging the results over 100 independent trial runs.429
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Figure 5: Phase transition comparison for various algorithms with a signal dimension of n = 3000.
The successful recovery rates are represented by different grey levels in the corresponding block.
Black signifies a 0% successful recovery rate, white indicates 100%, and grey represents values
between 0% and 100%. All the results are averaged over 100 independent trial runs.

B Proofs430

We provide proofs for Theorem 3.1, the recovery guarantee for noise-free measurements, and Theorem431

3.4, the recovery guarantee for noisy measurements. First, we present several essential lemmas in432

Appendix B.1. Following that, we provide the proofs for Theorem 3.1 and Theorem 3.4 separately in433

Appendix B.2 and Appendix B.3, respectively.434

For a more concise representation, we arrange the sampling vectors and observations as follows:435

A := [a1 a2 · · · am]T , y := [y1 y2 · · · ym]T , z := [z1 z2 · · · zm]T , (15)

where zi =
√
yi, i = 1, . . . ,m.436

B.1 Key Lemmas437

In this section, we introduce and prove several essential lemmas that serve as the foundation for438

proving Theorem 3.1 and Theorem 3.4.439

The first lemma asserts that, given a sufficiently large m, the normalized random Gaussian matrix440

A obeys the restricted isometry property (RIP) with overwhelming probability. This conclusion is441

well-established in the compressive sensing literature [35, 36].442

Lemma B.1. [36, Theorem 9.27] Let A be defined as in (15) with each vector ai distributed as443

the random Gaussian vector a ∼ N (0, In) independently for i = 1, 2, . . . ,m. There exists some444

universal positive constants C ′
1, C

′
2 such that for any positive integer r ≤ n and any δr ∈ (0, 1), if445

m ≥ C ′
1δ

−2
r r log (n/r), then 1√

m
A satisfies r-RIP with constant δr, namely446

(1− δr)∥x∥2 ≤
∥∥∥∥ 1√

m
Ax

∥∥∥∥2 ≤ (1 + δr)∥x∥2, ∀x ∈ Rnwith∥x∥0 ≤ r, (16)

with probability at least 1− e−C
′
2m.447
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The next lemma, derived from [25], asserts that the induced norm of the submatrix of random448

Gaussian matrix A is bounded by its size.449

Lemma B.2. [25, Lemma A.5] Let {ai}mi=1 ⊆ Rn be identically and independently distributed as450

N (0, In) and define the matrix A as in (15). Given a support S ⊆ [n] with cardinality s, with451

probability at least 1− 4m−2, there holds452

∥AS∥2→4 ≤ (3m)1/4 + s1/2 + 2
√
logm. (17)

453

The following lemma serves as an extension of Lemma 7.4 found in [6].454

Lemma B.3. For any s-sparse vector x♮ ∈ Rn with support S♮ = supp(x♮), let {ai}mi=1 ⊆455

Rn be identically and independently distributed as N (0, In). For any subset S ⊆ [n] such that456

supp(x♮) ⊆ S and |S| ≤ r for some integer r ≤ n. With probability at least 1−m−4−caδ−2m−1−457

cb exp
(
−ccδ2m/ logm

)
, we have458 ∥∥∥∥ 1

m

m∑
i=1

|aTi,Sx♮|2ai,SaTi,S −
(
∥x♮∥2(In)S,S + 2x♮S(x

♮
S)
T
)∥∥∥∥ ≤ δ∥x♮∥2 (18)

providedm ≥ C(δ)r log(n/r). HereC(δ) is a constant depending on δ and ca, cb and cc are positive459

absolute constants.460

Proof. If |S| = |S♮|, then S = S♮ and the result is established by Lemma C.6. We now focus on the461

case where T := S\S♮ ̸= ∅. We first define two matrices as follows:462

G =

ai,S♮aTi,S♮ ai,S♮aTi,T

ai,T a
T
i,S♮ ai,T a

T
i,T

 , H =

∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x
♮
S♮)

T 0

0 ∥x♮∥2(In)T ,T

 .
Then we rephrase the term on the left-hand side of (18) as follows:463 ∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2G−H

∥∥∥∥ ≤
∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥

+

∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,T

∥∥∥∥+

∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,T aTi,T − ∥x♮∥2(In)T ,T

∥∥∥∥.
The first term can be bounded with overwhelming probability via a direct application of Lemma C.6464

as below whenever m ≥ c1δ
−2s log(n/s):465 ∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮,S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥ ≤ δ/4.

For the other two terms, it is enough to consider x♮ = e1 because the unitary invariance of the466

Gaussian measure and rescaling. Then for a prefixed subset S (thus T is also fixed), there exists a467

unit vector u ∈ Rn with supp(u) ⊆ T such that the second term is equal to468 ∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3aTi,T

∥∥∥∥ =
1

m

m∑
i=1

(ai(1))
3
(aTi u).

We emphasize that aTi u = aTi,T uT is a random Gaussian variable distributed as N (0, 1) for all469

u ∈ Rn, ∥u∥ = 1, supp(u) ⊆ T and independent of ai(1) for all i ∈ [m]. So for one realization of470

{ai(1)}, Lemma C.1 (Hoeffding-type inequality) implies471

P
{∣∣∣∣ 1m

m∑
i=1

(ai(1))
3
aTi u

∣∣∣∣ > t

}
≤ e exp

(
− c2m

2t2∑m
i=1 |ai(1)|6

)
,

for any t > 0. Define the set Wn
r to be a collection of all the index set in [n] with cardinality no472

larger than r, i.e. Wn
r := {S ⊆ [n] : |S| ≤ r}. Note that the cardinality of Wn

r can be bounded by473
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∑r
j=1

(
n
j

)
≤

(
en
r

)r
. Taking t = δ/8, together with a union bound on the set Wn

r , we obtain for any474

subset T = S\S♮,475

P
{∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3
aTi,T

∥∥∥∥ > δ/4

}
≤ e exp

(
− c2m

2δ2

64
∑m
i=1 |ai(1)|6

+ 6r log(n/r)

)
.

Now with an application of Chebyshev’s inequality, we have
∑m
i=1 |ai(1)|6 ≤ 20m with probability476

at least 1 − c3m
−1. Substituting this into the above, we conclude that for any subset S ⊆ Wn

r ,477

whenever m ≥ c4δ
−2r log(n/r) for some sufficiently large c4,478 ∥∥∥∥ 1

m

m∑
i=1

(ai(1))
3
aTi,T

∥∥∥∥ ≤ δ/4,

with probability at least 1− c3m
−1 − e exp(−c5δ2m).479

Assuming x♮ = e1 and fixing a subset S ⊆ [n] (thus T is also fixed), we can simplify the last term480

as follows:481 ∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2ai,T aTi,T −(In)T ,T

∥∥∥∥ ≤
∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥+∣∣∣∣ 1m
m∑
i=1

|ai(1)|2−1

∣∣∣∣,
for which there exists a unit vector u ∈ Rn with supp(u) ⊆ T such that482 ∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ =
1

m

m∑
i=1

∣∣ai(1)∣∣2 ∣∣∣(aTi,T uT
)2 − 1

∣∣∣ .
Note that {ai(1)} is independent of {ai,T }, an application of Bernstein’s inequality implies483

P
{

1

m

m∑
i=1

|ai(1)|2
∣∣∣(aTi,T uT

)2 − 1
∣∣∣ > t

}
≤ 2 exp

(
− c6 min (d1, d2)

)
,

where d1 = t2

c27
∑m

i=1 |ai(1)|4 , and d2 = t
c7 maxi∈[m] |ai(1)|2

. Taking t = δ/8, together with a union484

bound on the subset Wn
r , we obtain for any subset S ∈ Wn

r ,485

P
{∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ > δ/4

}
≤ 2 exp (−c6 min (d3, d4) + 6r log(n/r)) ,

where d3 = m2δ2

64c27
∑m

i=1 |ai(1)|4 and d4 = mδ
8c7 maxi∈[m] |ai(1)|2

. Applying Chebyshev’s inequality and486

the union bound, we obtain:487

m∑
i=1

|ai(1)|4 ≤ 10m and max
i∈[m]

|ai(1)|2 ≤ 10 logm

hold with probability at least 1 − c8m
−1 − m−4. To conclude, for any subset S ∈ Wn

r , when488

m ≥ c9δ
−2r log(n/r) for some sufficiently large constant c9,489 ∥∥∥∥ 1

m

m∑
i=1

|ai(1)|2
(
ai,T a

T
i,T − I|T |

) ∥∥∥∥ ≤ δ/4

with probability at least 1− c8m
−1 −m−4 − 2 exp

(
−c10δ2m/ logm

)
. Finally, an application of490

Chebyshev’s inequality implies491 ∣∣∣∣ 1m
m∑
i=1

|ai(1)|2 − 1

∣∣∣∣ ≤ δ/4

with probability at least 1− c11δ
−2m−1. The proof is finished by combining the above bounds and492

probabilities.493
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The subsequent result concerning the spectral norm of submatrices of 1√
m
A can be deduced by494

employing the restricted isometry property of matrix 1√
m
A.495

Lemma B.4. [30, Proposition 3.1] Assume the matrix A satisfies RIP inequality (16) with r = s496

and r = s′. Then for any disjoint subsets S and T of {1, 2, · · · ,m} satisfying |S| ≤ s and |T | ≤ s′,497

the following inequalities hold:498 ∥∥∥∥ 1√
m
AT

S

∥∥∥∥ ≤
√
1 + δs, (19)∥∥∥∥ 1

m
AT

SAT

∥∥∥∥ ≤ δs+s′ , (20)

∀u ∈ R|S|, (1− δs)∥u∥ ≤
∥∥∥∥ 1

m
AT

SASu

∥∥∥∥ ≤ (1 + δs)∥u∥, . (21)

499

The following lemma is derived through the application of Hölder’s inequality and Lemma B.2:500

Lemma B.5. Given two vectors x, z ∈ Rn each with sparsity no larger than s and two subsets501

S, T ⊆ [n]. Define the subset R := S ∪ T ∪ supp(x)∪ supp(z). Under the event (17) with support502

R, there holds503 ∥∥∇2
S,T fI(x)−∇2

S,T fI(z)
∥∥ ≤ 3

m

(
(3m)1/4 + (|R|)1/2 + 2

√
logm

)4

∥x+ z∥∥x− z∥. (22)

Proof. A simple calculation yields504

∇2
S,T fI(x)−∇2

S,T fI(z) =
3

m
AT

SD(|Ax|2 − |Az|2)AT .

There exist unit vectors u,v ∈ Rn with support supp(u) ⊆ S and supp(v) ⊆ T such that505 ∥∥∇2
S,T fI(x)−∇2

S,T fI(z)
∥∥

=
3

m

∥∥AT
SD(|Ax|2 − |Az|2)AT

∥∥
=

3

m

∣∣∣∣ m∑
i=1

(
|aTi x|2 − |aTi z|2

)
(aTi,SuS)(a

T
i,T vT )

∣∣∣∣
=

3

m

∣∣∣∣ m∑
i=1

(
|aTi,RxR|2 − |aTi,RzR|2

)
(aTi,RuR)(aTi,RvR)

∣∣∣∣
≤ 3

m

m∑
i=1

∣∣(aTi,R(xR + zR)
) (

aTi,R(xR − zR)
)
(aTi,RuR)(aTi,RvR)

∣∣
≤ 3

m

( m∑
i=1

(
aTi,R(xR + zR)

)4 ) 1
4
( m∑
i=1

(
aTi,R(xR − zR)

)4 ) 1
4
( m∑
i=1

(
aTi,RuR

)4 ) 1
4
( m∑
i=1

(
aTi,RvR

)4 ) 1
4

≤ 3

m
∥AR∥42→4∥x+ z∥∥x− z∥

≤ 3

m

(
(3m)

1
4 + (|R|)1/2 + 2

√
logm

)4

∥x+ z∥∥x− z∥,

where the second inequality is implied by Hölder’s inequality and the fourth inequality is implied by506

Lemma B.2.507

The following inequalities in Lemma B.6 can be derived using Lemmas B.5, B.3, C.5, and C.4.508

Lemma B.6. Let x♮ ∈ Rn be any signal with sparsity ∥x♮∥0 ≤ s and support S♮. Let {ai}mi=1509

be random Gaussian vectors identically and independently distributed as N (0, In). Define A, y510

and fI(x) as in (15) and (4) respectively. Given two subsets S, T ⊆ [n] satisfying |S| ≤ s and511

|T | ≤ s. Then if m ≥ 30s2, for any s-sparse vector x ∈ Rn with supp(x) ⊆ T and obeying512

dist(x,x♮) ≤ γ∥x♮∥ with 0 < γ ≤ 0.1, under events (17) and (18), the following inequalities hold:513
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(i)514

l1∥u∥ ≤
∥∥∇2

SfI(x)u
∥∥ ≤ l2∥u∥, ∀u ∈ R|S|, (23)

where l1 := (2− 2δ − 10γ(2 + γ)) ∥x♮∥2 and l2 := (6 + 2δ + 10γ(2 + γ)) ∥x♮∥2.515

(ii)516 ∥∥∥∇2
S,S♮\SfI(x)

∥∥∥ ≤ l3 := (2 + 2δ + 10γ(2 + γ)) ∥x♮∥2. (24)

Proof. (i) Define R = T ∪ S ∪ S♮. Then |R| ≤ 3s. Applying Lemma B.5 yields that517 ∥∥∇2
RfI(x)−∇2

RfI(x
♮)
∥∥ ≤ 3

m

(
(3m)1/4 + (3s)1/2 + 2

√
logm

)4

∥x+ x♮∥∥x− x♮∥

≤ 10∥x+ x♮∥∥x− x♮∥,

provided m ≥ 30s2. Furthermore, it follows from Weyl theorem in Lemma C.4, the inequalities in518

Lemma B.5 and Lemma B.3 and the interlacing inequality that519

λmin(∇2
SfI(x)) ≥ λmin(∇2

RfI(x))

≥ λmin(∇2
RfI(x

♮))−
∥∥∇2

RfI(x)−∇2
RfI(x

♮)
∥∥

≥ λmin

(
E
[
∇2

RfI(x
♮)
])

−
∥∥∇2

RfI(x
♮)− E

[
∇2

RfI(x
♮)
]∥∥− 10∥x+ x♮∥∥x− x♮∥

≥ 2∥x♮∥2 − 2δ∥x♮∥2 − 10∥x+ x♮∥∥x− x♮∥
≥ (2− 2δ − 10γ(2 + γ)) ∥x♮∥2,

where the last inequality is implied by dist(x,x♮) ≤ γ∥x♮∥. Similarly, the upper bound for the520

largest eigenvalue of ∇2
SfI(x) can be bounded as follows:521

λmax(∇2
SfI(x)) ≤ λmax(∇2

RfI(x))

≤ λmax(∇2
RfI(x

♮)) +
∥∥∇2

RfI(x)−∇2
RfI(x

♮)
∥∥

≤ λmax

(
E
[
∇2

RfI(x
♮)
])

+
∥∥∇2

RfI(x
♮)− E

[
∇2

RfI(x
♮)
]∥∥+ 10∥x+ x♮∥∥x− x♮∥

≤ 6∥x♮∥2 + 2δ∥x♮∥2 + 10∥x+ x♮∥∥x− x♮∥
≤ (6 + 2δ + 10γ(2 + γ)) ∥x♮∥2.

(ii) Define R = T ∪ S ∪ S♮. Thus |R| ≤ 3s. For the disjoint subsets S and S♮\S, we consider522

∇2
S,S♮\SfI(x), which is a submatrix of ∇2

RfI(x)− 4∥x♮∥2I . We note that the spectral norm of a523

submatrix never exceeds the norm of the entire matrix. By employing the result from part (i), we can524

deduce that525 ∥∥∥∇2
S,S♮\SfI(x)

∥∥∥ ≤
∥∥∇2

RfI(x)− 4∥x♮∥2I
∥∥

≤ max {6 + 2δ + 10γ(2 + γ)− 4, 4− (2− 2δ − 10γ(2 + γ))} · ∥x♮∥2

= (2 + 2δ + 10γ(2 + γ)) ∥x♮∥2,

completing the proof.526

The next lemma is adapted from Lemma 3 in [28].527

Lemma B.7. Let {xk, Tk}k≥1 be generated by the Algorithm 1. Let zk := z ⊙ sgn(Axk). Assume528

∥xk − x♮∥ ≤ γ∥x♮∥. Then under the event (16) with r = s, 2s and the event (41), it holds that529

1

m

∥∥∥AT
Tk+1

(zk −Ax♮)
∥∥∥ ≤

√
Cγ(1 + δs)∥xk − x♮∥,

where Cγ = 4
(1−γ2) (ϵ0 + γ

√
21
20 )

2 with ϵ0 = 10−3.530

Proof. Define the sets {Gk}k≥1 as follows:531

Gk = {i | sgn(aTi xk) = sgn(aTi x
♮), 1 ≤ i ≤ m}.
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With zk := z ⊙ sgn(Axk), where z is defined in (15), we deduce that532 (
1√
m

∥∥zk −Ax♮
∥∥)2

=
1

m

m∑
i=1

(sgn(aTi x
k)− sgn(aTi x

♮))2|aTi x♮|2

≤ 4

m

∑
i∈Gc

k

|aTi x♮|2 · 1(aT
i xk)(aT

i x♮)≤0

≤ 4

(1− γ)2
(ϵ0 + γ

√
21

20
)2︸ ︷︷ ︸

Cγ

∥∥xk − x♮
∥∥2 ,

(25)

where the first inequality follows from |sgn(aTi xk) − sgn(aTi x
♮)| ≤ 2 and sgn(aTi x

k) −533

sgn(aTi x
♮) = 0 on Gk, and the second inequality follows from Lemma C.7. Together with (19) in534

Lemma B.4, (25) leads to535

1

m

∥∥∥AT
Tk+1

(zk −Ax♮)
∥∥∥ ≤

√
Cγ(1 + δs)

∥∥xk − x♮
∥∥ ,

completing the proof.536

Given a point xk that is close to the ground truth signal, the following lemma provides an upper537

bound on the estimation error for the vector obtained after one iteration of IHT, as described in [37].538

To make this paper self-contained, we include the details of the proof for the reader’s convenience.539

Lemma B.8. Given an s-sparse estimate xk satisfying ∥xk − x♮∥ ≤ γ∥x♮∥. Define the vector540

obtained by one iteration of IHT with stepsize η to be541

uk := Hs(x
k − η∇fA(xk)).

Under the RIP event (16), it holds that542

∥uk − x♮∥ ≤ ζ∥xk − x♮∥,

where ζ = 2
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
.543

Proof. Define S♮ := supp(x♮), Tk+1 := Sk+1 ∪ S♮, and544

vk := xk − η∇fA(xk).

Since uk is the best s-term approximation of vk, we have545

∥uk − vk∥ ≤ ∥x♮ − vk∥,
which implies546

∥ukTk+1
− vkTk+1

∥ ≤ ∥x♮Tk+1
− vkTk+1

∥,
because of the relation supp(uk) ⊆ Tk+1 and supp(x♮) ⊆ Tk+1. Then, it follows from the triangle547

inequality and the inequality above that548

∥uk − x♮∥ = ∥ukTk+1
− x♮Tk+1

∥ =
∥∥∥ukTk+1

− vkTk+1
+ vkTk+1

− x♮Tk+1

∥∥∥
≤ ∥ukTk+1

− vkTk+1
∥+ ∥vkTk+1

− x♮Tk+1
∥

≤ 2∥vkTk+1
− x♮Tk+1

∥.

(26)

Define zk := z ⊙ sgn(Axk) with z as in (15). Using the definition of vk, a direct calculation yields549

∥vkTk+1
− x♮Tk+1

∥ =
∥∥∥xkTk+1

− x♮Tk+1
− η

m
AT

Tk+1
A(xk − x♮) +

η

m
AT

Tk+1
(zk −Ax♮)

∥∥∥
≤

∥∥∥ η
m
AT

Tk+1
(zk −Ax♮)

∥∥∥︸ ︷︷ ︸
I1

+
∥∥∥(I − η

m
AT

Tk+1
ATk+1

)(xkTk+1
− x♮Tk+1

)
∥∥∥︸ ︷︷ ︸

I2

+
∥∥∥ η
m
AT

Tk+1
ATk\Tk+1

[xk − x♮]Tk\Tk+1

∥∥∥︸ ︷︷ ︸
I3

.
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We will now proceed to estimate I1, I2, and I3 sequentially.550

For I1: An application of Lemma B.7 yields that551 ∥∥∥ η
m
AT

Tk+1
(zk −Ax♮)

∥∥∥ ≤ η
√
Cγ(1 + δ2s)∥xk − x♮∥. (27)

For I2: Let η ∈
(
0, 1

1+δ2s

)
. It follows from (21) in Lemma B.4 as well as Weyl’s inequality that552

(1− η(1 + δ2s)) ∥u∥ ≤
∥∥∥(I − η

m
AT

Tk+1
ATk+1

)
u
∥∥∥ ≤ (1− η(1− δ2s)) ∥u∥,

for any u ∈ R|Tk+1|, which deducts553 ∥∥∥(I − η

m
AT

Tk+1
ATk+1

)(xkTk+1
− x♮Tk+1

)
∥∥∥ ≤ (1− η(1− δ2s))

∥∥∥xkTk+1
− x♮Tk+1

∥∥∥ .
For I3: Eq.(20) in Lemma B.4 implies that554 ∥∥∥ η

m
AT

Tk+1
ATk\Tk+1

[xk − x♮]Tk\Tk+1

∥∥∥ ≤ ηδ3s∥[xk − x♮]Tk\Tk+1
∥.

Combining all terms together, we obtain555

∥vk+1
Tk+1

− x♮Tk+1
∥ ≤ I1 + I2 + I3 ≤

√
2(I21 + I22 ) + I3

≤
√
2max{ηδ3s, 1− η(1− δ2s)}∥xk − x♮∥+ η

√
Cγ(1 + δ2s)∥xk − x♮∥

=
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
∥xk − x♮∥.

We complete the proof by using (26).556

B.2 Proof of Theorem 3.1557

Proof. In this proof, we consider the case where ∥x0−x♮∥ ≤ ∥x0+x♮∥. Consequently, the distance558

between the initial estimate and the true signal is given by dist(x0,x♮) = ∥x0 − x♮∥. Note that the559

case where ∥x0 + x♮∥ ≤ ∥x0 − x♮∥ can be addressed in a similar manner. For the purpose of this560

proof, we assume, without loss of generality, that the true signal has a unit norm, i.e., ∥x♮∥ = 1.561

Let xk represent the k-th iterate generated by Algorithm 1. Given an s-sparse estimate xk with562

support Sk, which is close to the target signal, i.e., dist(xk,x♮) ≤ γ∥x♮∥. For any 0 ≤ t ≤ 1, denote563

x(t) := x♮ + t(xk − x♮). It is evident that supp(x(t)) ⊆ supp(x♮) ∪ supp(xk), and the size of the564

support of x(t) is at most 2s, i.e., |supp(x(t))| ≤ 2s. Furthermore, we obtain565 ∥∥xk − x(t)
∥∥ ≤ (1− t)∥xk − x♮∥ ≤ ∥xk − x♮∥,

and566 ∥∥xk + x(t)
∥∥ =

∥∥(1 + t)xk + (1− t)x♮
∥∥ ≤ (1 + t)∥xk∥+ (1− t)∥x♮∥

≤ (1 + t)(1 + γ)∥x♮∥+ (1− t)∥x♮∥ ≤ 2(γ + 1)∥x♮∥,

where the last inequality holds because 0 ≤ t ≤ 1.567

Assume events (17) and (18) hold, then by (22) in Lemma B.5 with x = xk, z = x(t),S =568

Sk+1, T = Sk ∪ S♮ there holds569 ∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥
≤ 3

m

(
(3m)1/4 + (3s)1/2 + 2

√
logm

)4

∥xk + x(t)∥∥xk − x(t)∥

≤10∥xk + x(t)∥∥xk − x(t)∥
≤Lh∥xk − x♮∥,

(28)
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where Lh := 20(γ + 1)∥x♮∥. Also, Eq. (23) in Lemma B.6 with x = xk,S = Sk+1 indicates that570 ∥∥∥∥(∇2
Sk+1,Sk+1

fI(x
k)
)−1

∥∥∥∥ =
(
λmin

(
∇2

Sk+1,Sk+1
fI(x

k)
))−1

≤ 1

l1
. (29)

Moreover, by the mean value theorem, one has571

∇fI(xk)−∇fI(x♮) =
∫ 1

0

∇2fI(x(t))(x
k − x♮)dt. (30)

We also have the following chain of equalities572 ∥∥xk+1 − x♮
∥∥ =

[∥∥xk+1
Sk+1

− x♮Sk+1

∥∥2 + ∥∥xk+1
Sc
k+1

− x♮Sc
k+1

∥∥2]1/2
=

[ ∥∥x♮Sc
k+1

∥∥2︸ ︷︷ ︸
I1

+
∥∥xkSk+1

− x♮Sk+1
+ pkSk+1

∥∥2︸ ︷︷ ︸
I2

]1/2
.

(31)

We first bound the term I1 in (31). Note that x♮Sc
k+1

is a subvector of x♮ − uk. Based on this573

observation and applying Lemma B.8, we deduce that574

I1 =
∥∥x♮Sc

k+1

∥∥ ≤
∥∥x♮ − uk

∥∥ ≤ ζ
∥∥xk − x♮

∥∥, (32)

where ζ = 2
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
with η < 1

1+δ2s
.575

We now proceed to bound the term I2 in (31). By plugging the expression of pkSk+1
, we obtain that576

I2 =
∥∥∥xkSk+1

− x♮Sk+1
+ pkSk+1

∥∥∥
=

∥∥∥(∇2
Sk+1

fI(x
k)
)−1

(
∇2

Sk+1,Sc
k+1

fI(x
k)xkSc

k+1
−∇Sk+1

fI(x
k)
)
+ xkSk+1

− x♮Sk+1

∥∥∥ . (33)

We further can deduce that:577

I2 ≤ 1

l1

∥∥∥∇2
Sk+1,Sc

k+1
fI(x

k)xkSc
k+1

−∇Sk+1
fI(x

k) +∇2
Sk+1

fI(x
k)
(
xkSk+1

− x♮Sk+1

)∥∥∥
≤ 1

l1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥+
l3
l1

∥∥∥x♮Sc
k+1

∥∥∥
≤ 1

l1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt+ ζl3

l1

∥∥xk − x♮
∥∥

≤ Lh
l1

∥xk − x♮∥2
∫ 1

0

(1− t)dt+
ζl3
l1

∥∥xk − x♮
∥∥

= ρ1∥xk − x♮∥,

where the first inequality follows from (29), the second inequality is based on Lemma B.6 and (30)578

together with the fact that ∇fI(x♮) = 0, and the third inequality is derived from (32), and the last579

inequality is obtained from (28). The equality includes ρ1, defined as follows:580

ρ1 :=
Lh
2l1

∥xk − x♮∥+ ζl3
l1

≤ 20(1 + γ)γ

2(2− 2δ − 10γ(2 + γ))
+
ζ(2 + 2δ + 10γ(2 + γ))

2− 2δ − 10γ(2 + γ)

=
2ζ(1 + δ) + 10γ(1 + γ + ζ(2 + γ))

2− 2δ − 10γ(2 + γ)
.

By substituting the upper bounds of terms I1 and I2 into (31), we obtain:581

∥xk+1 − x♮∥ ≤
√
ρ21 + ζ2∥xk − x♮∥. (34)

Let ρ :=
√
ρ21 + ζ2, then ρ < 1 can be ensured by properly choosing parameters. For example, when582

δ3s ≤ 0.05 and δ = 0.001, and set η = 0.95, then ρ ≤ 0.6 < 1 provided that γ ≤ 0.01. Therefore,583

∥xk+1 − x♮∥ ≤ ρ∥xk − x♮∥ ≤ ργ∥x♮∥ for some ρ ∈ (0, 1).584
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Let Rk = Sk ∪ Sk+1 ∪ S♮. Assume that the event (17) with R = Rk holds for k1 iterations. As585

stated in Theorem IV.1 of [27], the initial guess x0 is guaranteed to satisfy dist(x0,x♮) ≤ γ∥x♮∥.586

By applying mathematical induction, we can show that for any integer 0 ≤ k ≤ k1, there exists a587

constant ρ ∈ (0, 1) such that:588

dist(xk+1,x♮) ≤ ρ · dist(xk,x♮).

Let K be the minimum integer such that it holds589

γ∥x♮∥ρK < x♮min. (35)

We then assert that S♮ ⊆ Sk for all k ≥ K. This is because if it were not the case, there would590

exist an index i ∈ S♮\Sk ̸= ∅, such that ∥xk − x♮∥ ≥ |x♮i | ≥ x♮min. However, this contradicts our591

assumption ∥xk − x♮∥ ≤ γ∥x♮∥ρk ≤ γ∥x♮∥ρK < x♮min. Consequently, based on (35), we derive:592

K =

⌊
log(γ∥x♮∥/x♮min)

log(ρ−1)

⌋
+ 1 ≤ Ca log

(
∥x♮∥/x♮min

)
+ Cb.

Note that Sk = S♮ for all k ≥ K implies Rk = Rk+1 for all k ≥ K. As a result, the probability of593

event (17) occurring for all k ≥ 0 can be bounded by 1− 4Km−2. To conclude, with probability at594

least 1− (4K + Cc)m
−1 − Cde

−Cem/ logm, there holds595

dist(xk+1,x♮) ≤ ρ · dist(xk,x♮).

with some ρ ∈ (0, 1) provided m ≥ Cfs
2 log(n/s). Moreover, for k ≥ K, utilizing the result the596

result Sk+1 = S♮ and consequently x♮Sc
k+1

= 0, we obtain:597

∥∥xk+1 − x♮
∥∥ =

[∥∥∥xk+1
Sk+1

− x♮Sk+1

∥∥∥2 + ∥∥∥xk+1
Sc
k+1

− x♮Sc
k+1

∥∥∥2]1/2 =
∥∥∥xkSk+1

− x♮Sk+1
+ pkSk+1

∥∥∥ .
We can further obtain598 ∥∥xk+1 − x♮

∥∥ ≤ 1

l1

∥∥∥∇2
Sk+1,:

fI(x
k)xk −∇Sk+1

fI(x
k)−∇2

Sk+1
fI(x

k)x♮Sk+1

∥∥∥
≤ 1

l1

∥∥∥∥∇2
Sk+1,:

fI(x
k)(xk − x♮)−

∫ 1

0

∇2
Sk+1,:

fI(x(t))(x
k − x♮)dt

∥∥∥∥
≤ 1

l1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥
≤ 1

l1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt

≤ Lh
l1

∥xk − x♮∥2
∫ 1

0

(1− t)dt

=
Lh
2l1

∥xk − x♮∥2,

where the first inequality follows from (29) and (33), and the last inequality follows from (28).599

Consequently, the sequence {xk} converges quadratically.600

B.3 Proof of Theorem 3.4601

Proof. Owing to the independence between the sensing matrix and noise, along with the assumption602

E(ϵ) = 0, Lemma C.5 remains valid in the noisy setting. Therefore, by applying Lemma B.3, if603

m ≥ O(s log s), then with overwhelming probability, it holds that604 ∥∥∇2
SfI(x

♮)− E
[
∇2

SfI(x
♮)
]∥∥ ≤ (δ + ϵ)∥x♮∥2.

Under the assumptions in Lemma B.6, it follows that605

l′1∥u∥ ≤
∥∥∇2

SfI(x)u
∥∥ ≤ l′2∥u∥, ∀u ∈ R|S|, (36)

22



and606 ∥∥∇2
T ,SfI(x)

∥∥ ≤ l′3, (37)

where l′1 =
(
2 − 2δ − 2ϵ − 10γ(2 + γ)

)
∥x♮∥, l′2 =

(
6 + 2δ + 2ϵ + 10γ(2 + γ)

)
∥x♮∥, and607

l′3 =
(
2 + 2δ + 2ϵ+ 10γ(2 + γ)

)
∥x♮∥. In the noisy case, {zk}k≥0 is given by608

zk = (|Ax♮|2 + ϵ)
1
2 ⊙ sgn(Axk).

Then using the same argument as the proof of the inequality in Lemma B.7, we have609 ∥∥∥ η
m
AT

Tk+1
(zk −Ax♮)

∥∥∥ ≤ η

m

∥∥∥AT
Tk+1

(
|Ax♮| ⊙ sgn(Axk)−Ax♮

)∥∥∥
+
C ′η

m

∥∥∥AT
Tk+1

(
ϵ⊙ sgn(Axk)

)∥∥∥
≤ η

√
Cγ(1 + δ2s)∥xk − x♮∥+ C ′η√

m

√
1 + δ2s∥ϵ∥,

(38)

where the last inequality follows from Lemma B.7 and (19) in Lemma B.4. Then, we modify610

Lemma B.8 to estimate ∥uk − x♮∥ in the noisy case. All arguments in Lemma B.8 go except that the611

estimation of I1 in (27) should be replaced by (38). Thus we obtain612

∥uk − x♮∥ ≤ ζ∥xk − x♮∥+ C ′η√
m

√
1 + δ2s∥ϵ∥, (39)

where uk, η are the same as those in Lemma B.8.613

We now proceed to prove the convergence property for the noisy case, employing a similar argument614

as in the proof of Theorem 3.1. Notably, equality (31) remains valid in the presence of noise. As for615

the second term in (31), since x♮Sc
k+1

is a subvector of x♮ − uk, it follows from (39) that616 ∥∥∥x♮Sc
k+1

∥∥∥ ≤
∥∥x♮ − uk

∥∥ ≤ ζ∥xk − x♮∥+ C ′η√
m

√
1 + δ2s∥ϵ∥,

where ζ = 2
(√

2max{ηδ3s, 1− η(1− δ2s)}+ η
√
Cγ(1 + δ2s)

)
with η < 1/(1 + δ2s).617

Furthermore, the first term in (31) can now be estimated as618 ∥∥xkSk+1
− x♮Sk+1

+ pkSk+1

∥∥
≤ 1

l′1

∥∥∥∥∇2
Sk+1,:

fI(x
k)xk −∇2

Sk+1,:
fI(x

k)x♮ +∇2
Sk+1,Sc

k+1
fI(x

k)x♮Sc
k+1

−∇Sk+1
fI(x

k) +∇Sk+1
fI(x

♮) +
1

m
AT

Sk+1
(ϵ⊙

(
Ax♮)

) ∥∥∥∥
≤ 1

l′1

∥∥∥∥∇2
Sk+1,:

fI(x
k)(xk − x♮)−

∫ 1

0

∇2
Sk+1,:

fI(x(t))(x
k − x♮)dt

∥∥∥∥
+

1

l′1

∥∥∥∇2
Sk+1,Sc

k+1
fI(x

k)x♮Sc
k+1

∥∥∥+
1

l′1m

∥∥∥AT
Sk+1

(ϵ⊙
(
Ax♮)

)∥∥∥
≤ 1

l′1

∥∥∥∥∫ 1

0

[
∇2

Sk+1,:
fI(x

k)−∇2
Sk+1,:

fI(x(t))
]
(xk − x♮)dt

∥∥∥∥+
l′3
l′1

∥∥∥x♮Sc
k+1

∥∥∥+

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

≤ 1

l′1

∫ 1

0

∥∥∥∇2
Sk+1,Sk∪S♮fI(x

k)−∇2
Sk+1,Sk∪S♮fI(x(t))

∥∥∥∥∥xk − x♮
∥∥ dt

+
ζl′3
l′1

∥∥xk − x♮
∥∥+

C ′l′3η
√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

≤Lh
l′1

∥xk − x♮∥2
∫ 1

0

(1− t)dt+
ζl′3
l′1

∥∥xk − x♮
∥∥+

C ′l′3η
√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥

=ρ2∥xk − x♮∥+ C ′l′3η
√
1 + δ2s +

√
1 + δs∥Ax♮∥∞

l′1
√
m

∥ϵ∥, (40)
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where the first inequality follows from (36), together with the equality ∇fI(x♮)+AT
(
ϵ⊙ (Ax♮)

)
=619

0, and the third inequality is based on (37) and the inequality ∥a ⊙ b∥ ≤ ∥a∥∞∥b∥ for any two620

vectors a, b. The last equality includes ρ2, defined as follows:621

ρ2 :=
Lh
2m′

s

∥xk − x♮∥+ ζh′s
m′
s

≤ 20(1 + γ)γ

2(2− 2δ − 2ϵ− 10γ(2 + γ))
+
ζ(2 + 2δ + 2ϵ+ 10γ(2 + γ))

2− 2δ − 2ϵ− 10γ(2 + γ)

=
2ζ(1 + δ + ϵ) + 10γ(1 + γ + ζ(2 + γ))

2− 2δ − 2ϵ− 10γ(2 + γ)
.

Following from (a2 + b2)1/2 ≤ a+ b for ab ≥ 0 and putting the two terms together yields622

∥xk+1 − x♮∥ ≤ ρ′∥xk − x♮∥+ υ∥ϵ∥,

where ρ′ = ρ2 + ζ and υ =
C′(l′1+l

′
3)η

√
1+δ2s+

√
1+δs∥Ax♮∥∞

l′1
√
m

. Noticing that623

1√
m
∥Ax♮∥∞ =

1√
m

max
i∈[m]

|aTi x♮| ≤
1√
m

max
i∈[m],j∈S♮

|aij | ·
∥∥x♮∥∥ ≤ 3

√
log(ms)

m

∥∥x♮∥∥
with probability at least 1 − (ms)−2. Consequently, 1√

m
∥Ax♮∥∞ can be quite small. As a result,624

properly setting parameters can lead to υ ∈ (0, 1) and ρ′ ∈ (0, 1).625

C Auxiliary Lemmas626

In this section, we present some auxiliary lemmas.627

Lemma C.1. (Hoeffding-type inequality) Let X1, · · · , XN be independent centered sub-Gaussian628

random variables, and let K = maxi∈[N ] ∥Xi∥ψ2
, where the sub-Gaussian norm629

∥Xi∥ψ2
:= sup

p≥1
p−1/2 (E [|X|p])1/p .

Then for every b = [b1; · · · ; bN ] ∈ RN and every t ≥ 0, we have630

P
{∣∣∣∣ N∑

k=1

bkXk

∣∣∣∣ ≥ t

}
≤ e exp

(
− ct2

K2∥b∥2

)
.

Here c is a universal constant.631

Lemma C.2. (Bernstein-type inequality) Let X1, · · · , XN be independent centered sub-exponential632

random variables, and let K = maxi ∥Xi∥ψ1
, where the sub-exponential norm633

∥Xi∥ψ1 := sup
p≥1

p−1 (E [|X|p])1/p .

Then for every b = [b1; · · · ; bN ] ∈ RN and every t ≥ 0, we have634

P
{∣∣∣∣ N∑

k=1

bkXk

∣∣∣∣ ≥ t

}
≤ 2 exp

(
−cmin

(
t2

K2∥b∥2
,

t

K∥b∥∞

))
.

Here c is a universal constant.635

Lemma C.3. (Bernstein’s inequality for bounded distributions) Let X1, · · · , XN be independent636

mean zero random variables, such that |Xi| ≤ K for all i. Then, for every t ≥ 0, we have637

P
{∣∣∣∣ N∑

i=1

Xi

∣∣∣∣ ≥ t

}
≤ 2 exp

(
− t2/2

σ2 +Kt/3

)
.

Here σ2 =
∑N
i=1 EX2

i is the variance of the sum.638

The next lemma is the so-called Weyl Theorem, which is a classical linear algebra result.639

24



Lemma C.4. Suppose M , N ∈ Rn×n are two symmetric matrices. The eigenvalues of M are640

denoted as λ1 ≥ λ2 ≥ · · ·λn and the eigenvalues of N are denoted as µ1 ≥ µ2 ≥ · · ·µn. Then we641

have642

|µi − λi| ≤ ∥M −N∥2, ∀i = 1, 2, · · · , n.

The following lemma provides the expectation of the sub-Hessian of the intensity-based loss fI at x♮.643

As this result can be easily derived through basic calculations, we will not delve into the details here.644

Lemma C.5. For any subset S ⊆ [n] such that supp(x♮) ⊆ S, the expectation of ∇2
SfI(x

♮) is645

E
[
∇2

SfI(x
♮)
]
= 2

(
∥x♮∥2(In)S + 2x♮S(x

♮
S)
T
)
,

and it has one eigenvalue of 6∥x♮∥2 and all other eigenvalues are 2∥x♮∥2.646

The results presented below have been previously established in [25].647

Lemma C.6. [25, Lemma A.6] On an event with probability at least 1−m−1, we have648 ∥∥∥∥ 1

m

m∑
i=1

|aTi,S♮x
♮|2ai,S♮aTi,S♮ −

(
∥x♮∥2(In)S♮ + 2x♮S♮(x

♮
S♮)

T
)∥∥∥∥ ≤ δ∥x♮∥2,

provided m ≥ C(δ)s log s. Here C(δ) is a constant depending on δ.649

The subsequent lemma, a direct outcome from [29], plays a crucial role in bounding the term650 ∥∥AT
Tk+1

(zk −Ax♮)
∥∥.651

Lemma C.7. [29, Lemma 25] Let {ai}mi=1 be i.i.d. Gaussian random vectors with mean 0 and652

variance matrix I . Let γ be any constant in (0, 18 ]. Fixing any ϵ0 > 0, then for any s-sparse vector x653

satisfying dist(x,x♮) ≤ λ0∥x♮∥, with probability at least 1− e−C
′
6m there holds that654

1

m

m∑
i=1

|aTi x♮|2 · 1{(aT
i x)(aT

i x♮)≤0} ≤ 1

(1− λ0)2

(
ϵ0 + λ0

√
21

20

)2

∥x− x♮∥2, (41)

provided m ≥ C ′
5s log(n/s). Here C ′

5 and C ′
6 are some universal positive constants.655
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