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Abstract

We study the sparse phase retrieval problem, which aims to recover a sparse signal
from a limited number of phaseless measurements. Existing algorithms for sparse
phase retrieval primarily rely on first-order methods with linear convergence rate.
In this paper, we propose an efficient second-order algorithm based on Newton
projection, which maintains the same per-iteration computational complexity as
popular first-order methods. The proposed algorithm is theoretically guaranteed
to converge to the ground truth (up to a global sign) at a quadratic convergence
rate after at most O (log(||="||/ xfnin)) iterations, provided a sample complexity of
O(s?logn), where 2 € R™ represents an s-sparse ground truth signal. Numerical
experiments demonstrate that our algorithm not only outperforms state-of-the-art
methods in terms of achieving a significantly faster convergence rate, but also
excels in attaining a higher success rate for exact signal recovery from noise-free
measurements and providing enhanced signal reconstruction in noisy scenarios.

1 Introduction

We study the phase retrieval problem, which involves reconstructing an n-dimensional signal 2"
using its intensity-only measurements:

yi = (@i, 2)?, i=1,2,--,m, )

where each y; represents a measurement, a; denotes a sensing vector, «? is the unknown signal to
be recovered, and m is the total number of measurements. The phase retrieval problem arises in
various applications, including diffraction imaging [1]], X-ray crystallography [2}13]], and optics [4],
where detectors can only record the squared modulus of Fresnel or Fraunhofer diffraction patterns of
radiation scattered from an object. The loss of phase information complicates the understanding of
the scattered object, as much of the image’s structural content may be encoded in the phase.

Although the phase retrieval problem is ill-posed and even NP-hard [5], several algorithms have
been proven to succeed in recovering target signals under certain assumptions. Algorithms can be
broadly categorized into convex and nonconvex approaches. Convex methods, such as PhaseLift
(6} [7], PhaseCut [8], and PhaseMax [9} [10], offer optimal sample complexity but are computationally
challenging in high-dimensional cases. To improve computational efficiency, nonconvex approaches
are explored, including alternating minimization [[L1]], Wirtinger flow [6], truncated amplitude flow
[12], Riemannian optimization [[13]], Gauss-Newton [14}[15]], and Kaczmarz [16} [17]. Despite the
nonconvex nature of its objective function, the global geometric landscape lacks spurious local
minima [18}[19], allowing algorithms with random initialization to work effectively [20} 21].
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The nonconvex approaches previously mentioned can guarantee successful recovery of the ground
truth (up to a global phase) with a sample complexity m ~ O(nlog”n), where a > 0. This
complexity is nearly optimal, as the phase retrieval problem requires m > 2n — 1 for real signals and
m > 4n—4 for complex signals [22]. However, in practical situations, especially in high-dimensional
cases, the number of available measurements is often less than the signal dimension (i.e., m < n),
leading to a need for further reduction in sample complexity.

In this paper, we focus on the sparse phase retrieval problem, which aims to recover a sparse signal
from a limited number of phaseless measurements. It has been established that the minimal sample
complexity required to ensure s-sparse phase retrievability in the real case is only 2s for generic
sensing vectors [23]]. Several algorithms have been proposed to address the sparse phase retrieval
problem [24} 25126 [27, 28]]. These approaches have been demonstrated to effectively reconstruct the
ground truth using O(s? log n) Gaussian measurements. While this complexity is not optimal, it is
significantly smaller than that in general phase retrieval.

1.1 Contributions

Existing algorithms for sparse phase retrieval primarily employ first-order methods with linear
convergence. Recent work [28] introduced a second-order method, while it fails to obtain a quadratic
convergence rate. The main contributions of this paper can be summarized in three key points:

1. We propose a second-order algorithm based on Newton projection for sparse phase retrieval
that maintains the same per-iteration computational complexity as popular first-order methods.
To ensure fast convergence, we integrate second-order derivative information from intensity-
based empirical loss into the search direction; to ensure computational efficiency, we restrict
the Newton update to a subset of variables, setting others to zero in each iteration.

2. We establish a non-asymptotic quadratic convergence rate for our proposed algorithm and
provide the iteration complexity. Specifically, we prove that the algorithm converges to
the ground truth (up to a global sign) at a quadratic rate after at most O( log(|?|/ xfnin))
iterations, provided a sample complexity of O(s?logn). To the best of our knowledge, this is
the first algorithm to establish a quadratic convergence rate for sparse phase retrieval.

3. Numerical experiments demonstrate that the proposed algorithm achieves a significantly faster
convergence rate in comparison to state-of-the-art methods. Furthermore, the experiments
reveal that our algorithm attains a higher success rate in exact signal recovery from noise-free
measurements and provides enhanced signal reconstruction performance in noisy scenarios,
as evidenced by the improved Peak Signal-to-Noise Ratio (PSNR).

Notation: The p-norm ||z||, := (}_;-, |x,~|p)1/p for p > 1. ||z||o denotes the number of nonzero
entries of x, and ||z|| denotes the 2-norm. For a matrix A € R™*™, || A|| is the spectral norm of A.
For any ¢; > 1 and g2 > 1, || Al|4,—4, denotes the induced operator norm from the Banach space
(R™, || - lg2) to (R™, ||  llg)- Amin(A) and Ayax(A) denote the smallest and largest eigenvalues
of the matrix A. |S| denotes the number of elements in S. a ® b denotes the entrywise product
of a and b. For functions f(n) and g(n), we write f(n) < g(n) if f(n) < cg(n) for some
constant ¢ € (0, 4+00). For z, % € R, the distance between x and ! is defined as dist(x, 2°) :=

min {||z — ¥, |z + 2| }. xfnin denotes the smallest nonzero entry in magnitude of .

2 Problem Formulation and Related Works

We first present the problem formulation for sparse phase retrieval, and then review related works.

2.1 Problem formulation
The standard sparse phase retrieval problem can be concisely expressed as finding @ that satisfies
Nai,z)|>=y; Vi=1,...,m, and |[z[o<s, @)

where {a;}™, are known sensing vectors and {y;}7, represent phaseless measurements with
yi = |(a;,x")|?, where 2 is the ground truth signal (||x%|o < s). While sparsity level s is assumed
known a priori for theoretical analysis, our experiments will also explore cases with unknown s.
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Table 1: Overview of per-iteration computational cost, numbers of iterations for convergence, loss
function, and algorithm types for various methods. x” represents the ground truth signal with

dimension n and sparsity s, and 2. denotes the smallest nonzero entry in magnitude of "

min

Methods Per-iteration cost Iteration complexity Loss function Algorithm types
ThWF [23] O(n?logn) O(log(1/¢)) fr(x) Grad. Proj.
SPARTA [26] O(ns*logn) O(log(1/¢)) fa(z) Grad. Proj.
CoPRAM [27] O(ns*logn) O(log(1/¢)) fa(z) Alt. Min.
HTP 28] O((n + s?)s*logn) O(log(s? logn) + log(||l&®|| /=% ..)) fa(z) Alt. Min.
Proposed O((n+ s?)s?logn) O(log(log(1/€))+log(||lz"|| /=5, )) fr(x) Newton Proj.

To address Problem (2)), various problem reformulations have been explored. Convex formulations,
such as the ¢; -regularized PhaseLift method [24], often use the lifting technique and solve the problem
in the n X n matrix space, resulting in high computational costs. To enhance computational efficiency,
nonconvex approaches [25} 26} 128, [29] are explored, which can be formulated as:

minimize f(x), subjectto ||z|p < s. 3)
x

Both the loss function f () and the ¢y-norm constraint in Problem (3) are nonconvex, making it
challenging to solve. Two prevalent loss functions are investigated: intensity-based empirical loss

@) = 1 3 (sl =) @
and amplitude-based empirical loss
1 & 2
falx) = o~ 2 (Kai, )| = z)", ®)
where z; = /y;, ¢ = 1,...,m. The intensity-based loss f1(x) is smooth, while the amplitude-based

loss fa(x) is non-smooth because of the modulus.
2.2 Related works

Existing nonconvex sparse phase retrieval algorithms can be broadly classified into two categories:
gradient projection methods and alternating minimization methods. Gradient projection methods, such
as ThWF [25] and SPARTA [26]], employ thresholded gradient descent and iterative hard thresholding,
respectively. On the other hand, alternating minimization methods, including CoPRAM [27]] and
HTP [28]], alternate between updating the signal and phase. When updating the signal, formulated as
a sparsity-constrained least squares problem, COPRAM leverages the cosamp method [30]], while
HTP applies the hard thresholding pursuit algorithm [31]. In this paper, we introduce a Newton
projection-based algorithm that incorporates second-order derivative information, resulting in a faster
convergence rate compared to gradient projection methods, and, unlike alternating minimization
methods, it eliminates the need for separate signal and phase updates. We note that ThWF and our
algorithm utilize intensity-based loss as the objective function, while SPARTA, CoPRAM, and HTP
employ amplitude-based loss. All these algorithms require a sample complexity of O(s? logn) under
Gaussian measurements for successful recovery.

The majority of sparse phase retrieval algorithms, such as ThWF, SPARTA, and CoPRAM, are first-
order methods with linear convergence rates. While HTP is a second-order method that converges
in a finite number of iterations, it fails to establish a quadratic convergence rate. We propose a
second-order algorithm that attains a non-asymptotic quadratic convergence rate and exhibits lower
iteration complexity compared to HTP. Our algorithm maintains the same computational complexity
per iteration as popular first-order methods when s < 4/n. This condition is always assumed to hold
true; otherwise, the established sample complexity for sparse phase retrieval algorithms, O(s? log n),
would be reduced to that of general phase retrieval methods. Table[I]presents a comparative overview
of the previously discussed methods and our proposed method.
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3 Main Results

In this section, we present our proposed algorithm for sparse phase retrieval. Generally, nonconvex
methods comprise two stages: initialization and refinement. The first stage generates an initial guess
close to the target signal, while the second stage refines the initial guess using various methods,
such as ThWF, SPARTA, CoPRAM, and HTP. Our proposed algorithm adheres to this two-stage
strategy. In the first stage, we employ an existing effective method to generate an initial point. Our
primary focus is on the second stage, wherein we propose an efficient second-order algorithm based
on Newton projection to refine the initial guess.

Before delving into the details of our proposed algorithm, we present a unified algorithmic framework
for addressing the sparsity-constrained optimization problem in Eq. (@), as summarized in [32].
Given the k-th iterate ¥, the next iterate 2z*+! can be obtained through the following steps:

Step 1 (Hard thresholding):

wt =, (¢(ah)), 6)
Step 2 (Debiasing):
" = arg min ¢ (x), subjectto supp(x) C Ski1, @)
Step 3 (Pruning):
e H, (R, ®

where ¢(x*) is typically chosen as either V f(x*) or ¥ — nV f(x*), 11.(z) is designed based on
the objective function f(x) and the iterate ¥, and Sy 1 is usually defined as the support of u**!,
The hard-thresholding operator, denoted by H;, is defined with a sparsity level of s as follows:

H,(w) := arg min ||z — wl||?, subjectto ||z < s. )
x

A variety of well-known algorithms for solving sparsity-constrained optimization problems adhere to
the three-step algorithmic framework mentioned earlier. For instance, the Iterative Hard Thresholding
(IHT) algorithm solely performs Step 1 using H,(x* — nV f(x*)) with 7 the stepsize; the Hard
Thresholding Pursuit (HTP) implements the first two steps by computing u**! via one-step IHT in
Step 1, and then solving the support-constrained problem in Step 2 with Sy 1 = supp(u**1); the
Compressive Sampling Matching Pursuit (CoSaMP) executes all three steps, calculating u*+1 =
Has(V f(x*)) in Step 1, performing Step 2 with S 1 = supp(u**1) U supp(z*), and pruning the
result in Step 3 to ensure an s-sparse level.

Several state-of-the-art methods for sparse phase retrieval share strong connections with the previously
described popular algorithms for sparsity-constrained optimization, and thus relate closely to the
algorithmic framework. SPARTA combines IHT with gradient truncation to eliminate erroneously
estimated signs. HTP merges hard thresholding pursuit with alternating minimization, updating
the signal and phase alternately. COPRAM integrates CoSaMP with alternating minimization. Our
proposed algorithm will also be presented using this algorithmic framework.

3.1 Proposed algorithm

In this subsection, we introduce our proposed algorithm for sparse phase retrieval, which utilizes the
intensity-based loss f; defined in Eq. (@) as the objective function. The algorithm incorporates the
first two steps of the previously discussed algorithmic framework.

Our algorithm is developed based on the Newton projection method. It is worth mentioning that
Newton-type methods typically require solving a linear system at each iteration to determine the
Newton direction. This generally results in a computational cost of O(n?) for our problem, rendering
it impractical in high-dimensional situations. To address this challenge, we categorize variables into
two groups at each iteration: free and fixed, updating them separately. The free variables, consisting
of at most s variables, are updated according to the (approximate) Newton direction, while the fixed
variables are set to zero. This strategy requires solving a linear system of size s X s, substantially
decreasing the computational expense from O(n?) to O(s?).



154

155
156
157

158
159
160

161

162

164

165
166

167

168

169

170

171
172

173

174

175
176

177
178
179
180
181

In the first step, we identify the set of free variables using one-step IHT of the loss f4(x) in (3):

St = supp (Hs(z" —nV fa(zh))),
where 7 is the stepsize. Since f4 is non-smooth, we adopt the generalized gradient [33] as V f4. The
s-sparse hard thresholding limits |Sk.1| to s, implying that there are at most s free variables. We
only update free variables along the approximate Newton direction and set others to zero.

In the second step, we update the free variables in Sy41 by solving a support-constrained problem
in Eq. (7). Note that we adopt the intensity-based loss f; as the objective function. To accelerate
convergence, we choose function ¢y () in (7)) as the second-order Taylor expansion of f7 at z*:

1
V(@) = fr(@") + (Vfr(ah), z —2*) + §<CC -k, V2 fr(2")(x - 2")).
Let * denote the minimizer of Problem (7). For notational simplicity, define gng =
[fo(:vk)]skﬂ, which denotes the sub-vector of Vf(z*) indexed by Spy1, HE, , =

[VQ ff(wk)]skﬂ’ which represents the principle sub-matrix of the Hessian indexed by Si41, and
E
H8k+175;$+1

columns are indexed by Si41 and Sy, , respectively. Following from the first-order optimality
condition of Problem , we obtain that 5. = 0 and x5 satisfies
k+1 k+1

= [vzﬁ(agkﬂsk“ﬁ;“’ denoting the sub-matrix of the Hessian whose rows and

k * k _ rrk k _k
HSk+1 (m3k+1 - m5k+1) - H5k+175;§+1x$,§+1 9Ski1- (10)
As a result, we obtain the next iterate x*+1 by
k+1 _ .k .k k+1
T, | = X5, —PS, and m5£+1 =0, (11)

where p“'gk+1 represents the approximate Newton direction over Si41, which can be calculated by

k k
Sk+1psk+1

k k k

- 7H8k+17jk+1m<]k+1 + 95;41° 12)
— : k cv ook

where Ji 1 := Sk \ Sg41 with [Ji11] < s. In contrast to Eq. (I0), we replace T | with xy ., in

(T2), as Jx1 captures all nonzero elements in z%.  as follows:
k1

k k k
g(wgc ) _ msﬁﬂﬂsk _ LS\ Skt1 _ Lt 7 (13)
e 0 0 0

where operator G arranges all nonzero elements of a vector to appear first, followed by zero elements.
The first equality in (T3)) follows from the fact that supp(z*) C Si. By calculating H, §k+17 Jrir

k . . . .
rather than Hg, sp,, asin (T2), the computational cost is substantially reduced from O(smn) to

O(s?m). The costs for computing H fékﬂ and solving the linear system in (T2) are O(s?m) and

O(s%), respectively. Therefore, the overall computational cost for Step 2 is O(s*m), while the cost
for Step 1 amounts to O(mn), which involves calculating V f4 (x*).

In summary, the computational costs for Steps 1 and 2 are O(mn) and O(s?m), respectively, making
the total cost per iteration O(n + s?)m, with m ~ O(s?logn) that is required for successful
recovery. Since s < /n is always assumed to hold true as discussed in Section the per-iteration
computational complexity of our algorithm is equivalent to that of popular first-order methods, which
is O(ns?logn). The pruning step is omitted as =**! in (TT) is already s-sparse.

Algorithm 1 Proposed algorithm

Input: Data {a;,y;}/",, sparsity s, initial estimate =", and stepsize 7.

1: fork=0,1,2,...do

2:  Identify the set of free variables Sy 1 = supp(Hs(z* — nV fa(xk)));

3:  Compute the approximate Newton direction p§k+1 over Sy1 by solving (12).

4:  Update z**1:
k1 k

ok k+1
g | =X~ PS, and m5£+1 =0.

5: end for
Output: x+1.
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3.2 [Initialization

The nonconvex nature of phase retrieval problems often requires a well-designed initial guess to find
a global minimizer. Spectral initialization is a common approach [6]. In this paper, we adopt a sparse
variant of the spectral initialization method to obtain a favorable initial guess for Algorithm I}
Assuming {a;}", are independently drawn from a Gaussian distribution N'(0, I,,), the expectation
of the matrix £ > y;a;al is M := ||x®||*I, + 2x"(x")”. The leading eigenvector of M is
precisely +a:°. Hence, the leading eigenvector of # 27;1 yia;al canbe close to +2% [6]. However,
this method requires the sample complexity of at least O(n), which is excessively high for sparse
phase retrieval. Leveraging the sparsity of ! is crucial to lower this complexity.

We adopt the sparse spectral initialization method proposed in [27]]. Specifically, we first collect the
indices of the largest s values from {1 3" v, [ai]]z-}?: , and obtain the set S, which serves as an

estimate of the support of the true signal 2. Next, we construct the initial guess ° as follows: mg

is the leading eigenvector of .- 37" | yi[a]gla;]}, and %, = 0. Finally, we scale 2 such that

02 = L 5™ 4,, ensuring the power of 2° closely aligns with the power of 7.

[ m

The study in [27] demonstrates that, given a sample complexity m ~ O(s?log n), the aforementioned
sparse spectral initialization method can produce an initial estimate z° that is sufficiently close to the
ground truth. Specifically, it holds dist(x°, %) < ||%|| for any v € (0, 1), with a probability of at
least 1 — 8m 1.

3.3 Theoretical results

Given the nonconvex nature of both the objective function and the constraint set in the sparse phase
retrieval problem, a thorough theoretical analysis is essential for ensuring the convergence of our
algorithm to the ground truth. In this subsection, we provide a comprehensive analysis of the
convergence of our algorithm for both noise-free and noisy scenarios.

3.3.1 Noise-free case

We begin by the noise-free case, in which each measurement y; = |(a;, %)|2. Starting with an initial
guess obtained via the sparse spectral initialization method, the following theorem shows that our

algorithm exhibits a quadratic convergence rate after at most O ( log(||="||/ 2 )) iterations.

min
Theorem 3.1. Let {a;}™, be i.i.d. random vectors distributed as N(0,1I,), and z* € R"
be any signal with ||z%|o < s. Let {x*}1>1 be the sequence generated by Algorithm [I| with
the input measurements y; = |(a;,x%)|?, i = 1,...,m, and the initial guess x° generated
by the sparse spectral initialization method mentioned earlier. There exists positive constants
0,01, N2, C1, Ca, C3, Cy, Cs such that if the stepsize n € [n1,12] and m > Cys?logn, then with

probability at least 1 — (Co K + C3)m ™1, the sequence {x*} >, converges to the ground truth "
e

at a quadratic rate after at most O (log(||@®||/z%;,)) iterations, i.e.,

dist(zF 1, 2f) < p - dist?(zF, 2%), V> K,

where K < Cy log (||« H/a:h )+ Cs, and 2% . is the smallest nonzero entry in magnitude of x".

min min

The proof of Theorem [3.1]is available in Appendix

Remark 3.2. Theorem [3.T]establishes the non-asymptotic quadratic convergence rate of our algorithm
as it converges to the ground truth, leading to an iteration complexity of O(log(log(1/e)) +

log(||z%||/ xfnm)) for achieving an e-accurate solution. This convergence rate is significantly faster
than those of state-of-the-art methods such as ThWF [25], SPARTA [26l], and CoPRAM [27],
which, as first-order methods, exhibit only linear convergence. Although HTP [28§] is a second-

order approach, it fails to establish a quadratic convergence rate, and its iteration complexity,
O (log(log(n*")) + log(||2¥]| /=% ;,,)), is higher than that of our algorithm.

Remark 3.3. It is worth emphasizing that while the superlinear convergence is extensively established
for Newton-type methods in existing literature, it often holds only asymptotically: the ratio of the
distance to the optimal solution at (k + 1)-th and k-th iterations tends to zero as k goes to infinity.
Consequently, the overall iteration complexity cannot be explicitly characterized. This fact highlights
the significance of establishing a non-asymptotic superlinear convergence rate.
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3.3.2 Noisy case

In real-world scenarios, observations are frequently affected by noise. In what follows, we
demonstrate the robustness of our proposed algorithm in the presence of noise within phaseless
measurements. Building upon [25} [34]], we assume that the noisy measurements are given by:

2 .
yi = [{as, 2> + ¢, for i=1,...,m,
where e represents a vector of stochastic noise that is independent of {a;}7 ;. Throughout this paper,
we assume, without loss of generality, that the expected value of € is 0.

Theorem 3.4. Let {a;}™, be i.i.d. random vectors distributed as N'(0,1,,), and ' € R"™ be
any signal with ||x|o < s. Let {x*};>1 be the sequence generated by Algorithm [I| with noisy
input y; = [{a;, €%)|? + €, i = 1,...,m. There exists positive constants 1y, 1, Cg, Cr,Cs, and
v € (0,1/8], such that if the stepsize n € [n1,m2), m > Cgs*logn and the initial guess z° obeys
dist(xC, %) < 7||x?|| with ||z°||o < s, then with probability at least 1 — (C7 K’ + Cg)m ™1,

dist(x* 1, 2f) < p' - dist(z®, %) + vlle], Y0 <k <K',
where p' € (0,1), v € (0,1), and K' is a positive integer.

The proof of Theorem [3.4]is provided in Appendix B3] Theorem [3.4] validates the robustness of our
algorithm, demonstrating its ability to effectively recover the signal from noisy measurements.

4 Experimental Results

In this section, we present a series of numerical experiments designed to validate the efficiency and
accuracy of our proposed algorithm. All experiments were conducted on a 2 GHz Intel Core i5
processor with 16 GB of RAM, and all compared methods were implemented using MATLAB.

Unless explicitly specified, the sensing vectors {a;}; were generated by the standard Gaussian
distribution. The true signal ! has s nonzero entries, where the support is selected uniformly from
all subsets of [n] with cardinality s, and their values are independently generated from the standard
Gaussian distribution A/ (0, 1). In the case of noisy measurements, we have:

yi:\<ai,w“>|2+asi, fore=1,...,m, (14)

where {e;}1 | follow i.i.d standard Gaussian distribution, and o > 0 determines the noise level.

100 ~—%—CoPRAM 100 o ~%— CoPRAM |
—=—HTP ——HTP
. ThwF ThwF
""" —s—SparTA —a— SparTA
10 S —e— Proposed 10 y |~ Proposed |3
s s
0102 L e ey 0107
H 2
g k<t
& &
108 ¢ 10°
10% ¢ 10
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
(a) Noise free, sparsity s = 80 (b) Noise free, sparsity s = 100
—%— CoPRAM 10° & —7— CoPRAM |4

10°
L e —=—HTP
ThwF
—a—SparTA
—e— Proposed

——HTP
ThwF

—a— SparTA

S, | —o— Proposed

g10* g10?
5 5
$ 2 :
k k- ",
& & -
102 102
3 ‘ ‘ ‘ ‘ 3 ‘ ‘ ‘ ‘
10 10
0 20 40 60 80 100 0 20 40 60 80 100
Iterations Iterations
(c) Noise level o = 0.03, sparsity s = 80 (d) Noise level o = 0.03, sparsity s = 100

Figure 1: Relative error versus iterations for various algorithms, with fixed signal dimension n = 5000
and sample size m = 3000. The results represent the average of 100 independent trial runs.
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We compare our proposed algorithm with state-of-the-art methods, including ThWF [25], SPARTA
[26]], CoPRAM [27]], and HTP [28]]. For ThWF, we set parameters as recommended in [25]. For
SPARTA, we set parameters as follows: 1 = 1 and |Z| = [m/6]. Both HTP and our algorithm use
a step size 1 of 0.95. The maximum number of iterations for each algorithm is 100. The Relative

Error (RE) between the estimated signal 4 and the ground truth x? is defined as RE := %ﬁ-“ﬂ)

A recovery is deemed successful if RE < 1073, We provide additional experimental results on
robustness to noise levels and phase transition with varying sparsity levels in Appendix [A]

Figure [I|compares the number of iterations required for convergence across various algorithms. In
these experiments, we set the number of measurements to m = 3000, the dimension of the true signal
to n = 5000, and the sparsity levels to s = 80 and 100. We consider both noise-free measurements
and noisy measurements with a noise level of ¢ = 0.03. As depicted in Figure[T] all five algorithms
perform well under both noise-free and noisy conditions; however, our algorithm converges with
significantly fewer iterations compared to state-of-the-art methods.

Table 2: Comparison of running times (in seconds) for different algorithms in the recovery of signals
with sparsity levels of 80 and 100 for both noise-free and noisy scenarios.

Methods ThWF SPARTA CoPRAM HTP Proposed
. Sparsity 80 0.3630 1.0059 0.9762 0.0813 0.0530
Noise free (o = 0)
Sparsity 100 0.6262 1.2966 3.3326 0.2212 0.1024
. Sparsity 80 0.2820 1.1082 1.3426 0.1134 0.0803
Noisy (o0 = 0.03)
Sparsity 100 0.4039 1.6368 4.1006 0.2213 0.1187

Table[2) presents a comparison of the convergence running times for various algorithms, corresponding
to the experiments depicted in Figure [T} For noise-free measurements, all algorithms are set to

. . . . .. ist(z® . xf . ..
terminate when the iterate satisfies the following condition: %ﬁ) < 1073, which indicates

a successful recovery. In the case of noisy measurements, the termination criterion is set as
st (k! 2" . . . .

% < 1073, As evidenced by the results in Table our algorithm consistently outperforms

state-of-the-art methods in terms of running time, for both noise-free and noisy cases, highlighting its

superior efficiency for sparse phase retrieval applications.
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Figure 2: Phase transition performance of various algorithms for signals of dimension n = 3000 with
sparsity levels s = 25 and 50. The results represent the average of 100 independent trial runs.

Figure [2]depicts the phase transitions of different algorithms, with the true signal dimension fixed
at n = 3000 and sparsity levels set to s = 25 and 50. The phase transition graph is generated by
evaluating the successful recovery rate of each algorithm over 100 independent trial runs. Figure[2]
shows that the probability of successful recovery for each algorithm transitions from zero to one as
the sample size m increases. Furthermore, our algorithm consistently outperforms state-of-the-art
methods, achieving a higher successful recovery rate across various measurement counts.



279

281
282
283
284
285

286
287
288
289
290
291

292

293
294
295
296
297
298

300
301
302
303
304
305

306
307
308
309
310

In practical applications, natural signals may not be inherently sparse; however, their wavelet
coefficients often exhibit sparsity. Figure [3]illustrates the reconstruction performance of a signal from
noisy phaseless measurements, where the true signal, with a dimension of 30,000, exhibits sparsity
and contains 208 nonzero entries under the wavelet transform, using 20,000 samples. The sampling
matrix A € R20:000x30,000 j5 constructed from a random Gaussian matrix and an inverse wavelet
transform generated using four levels of Daubechies 1 wavelet. The noise level is set to o = 0.03. To

evaluate recovery accuracy, we use the Peak Signal-to-Noise Ratio (PSNR), defined as:

V2
PSNR =10-1
SNR =10 log —— NISE’

where V represents the maximum fluctuation in the ground truth signal, and MSE denotes the mean
squared error of the reconstruction. A higher PSNR value generally indicates better reconstruction
quality. As depicted in Figure |3| our proposed algorithm outperforms state-of-the-art methods in
terms of both reconstruction time and PSNR. It achieves a higher PSNR while requiring considerably
less time for reconstruction. In the experiments, the sparsity level is assumed to be unknown, and the
hard thresholding sparsity level is set to 300 for various algorithms.

M

(a) Original signal ThWF: PSNR =71, SPARTA: PSNR = 66,

(b) Time(s) = 11.586 © Time(s) = 38.379

CoPRAM: PSNR =61, © HTP: PSNR = 62, ® Proposed: PSNR = 78,
Time(s) = 117.685 Time(s) = 6.689 Time(s) = 2.629
Figure 3: Reconstruction of the signal with a dimension of 30,000 from noisy phaseless measurements
by various algorithms. The proposed algorithm requires significantly less time for reconstruction than
state-of-the-art methods while preserving the highest PSNR. Time(s) is the running time in seconds.

5 Conclusions and Discussions

In this paper, we have introduced an efficient Newton projection-based algorithm for sparse phase
retrieval. Our algorithm attains a non-asymptotic quadratic convergence rate while maintaining the
same per-iteration computational complexity as popular first-order methods, which exhibit linear
convergence limitations. Empirical results have demonstrated a significant improvement in the
convergence rate of our algorithm. Furthermore, experiments have revealed that our algorithm excels
in attaining a higher success rate for exact signal recovery with noise-free measurements and provides
superior signal reconstruction performance when dealing with noisy data.

Finally, we discuss the limitations of our paper, which also serve as potential avenues for future
research. Both our algorithm and state-of-the-art methods share the same sample complexity
of O(s?logn) for successful recovery; however, our algorithm requires this complexity in both
the initialization and refinement stages, while state-of-the-art methods require O(s?logn) for
initialization and O(slogn/s) for refinement. Investigating ways to achieve tighter complexity
in our algorithm’s refinement stage is a worthwhile pursuit for future studies.

Currently, the initialization stage exhibits a sub-optimal sample complexity of O(s?logn). A key
challenge involves reducing its quadratic dependence on s. Recent work [27]] attained a complexity of
O(slogn), closer to the information-theoretic limit, but relied on the strong assumption of power law
decay for sparse signals. Developing an initialization method that offers optimal sample complexity
for a broader range of sparse signals is an engaging direction for future research.



3

1

312
313

314
315

316
317
318

319
320
321

322
323

324
325
326

327
328
329

330
331

346
347

348
349

350
351

352
353

References

[1] Andrew M Maiden and John M Rodenburg. An improved ptychographical phase retrieval
algorithm for diffractive imaging. Ultramicroscopy, 109(10):1256—-1262, 2009.

[2] Rick P Millane. Phase retrieval in crystallography and optics. Journal of the Optical Society of
America A, 7(3):394-411, 1990.

[3] Jianwei Miao, Tetsuya Ishikawa, Qun Shen, and Thomas Earnest. Extending x-ray
crystallography to allow the imaging of noncrystalline materials, cells, and single protein
complexes. Annual Review of Physical Chemistry, 59(1):387—410, 2008.

[4] Yoav Shechtman, Yonina C Eldar, Oren Cohen, Henry Nicholas Chapman, Jianwei Miao, and
Mordechai Segev. Phase retrieval with application to optical imaging: a contemporary overview.
IEEE Signal Processing Magazine, 32(3):87-109, 2015.

[5] Matthew Fickus, Dustin G Mixon, Aaron A Nelson, and Yang Wang. Phase retrieval from very
few measurements. Linear Algebra and its Applications, 449:475-499, 2014.

[6] Emmanuel J Candes, Xiaodong Li, and Mahdi Soltanolkotabi. Phase retrieval via wirtinger
flow: Theory and algorithms. IEEE Transactions on Information Theory, 61(4):1985-2007,
2015.

[7] Emmanuel J Candes, Thomas Strohmer, and Vladislav Voroninski. Phaselift: Exact and stable
signal recovery from magnitude measurements via convex programming. Communications on
Pure and Applied Mathematics, 66(8):1241-1274, 2013.

[8] Irene Waldspurger, Alexandre d’ Aspremont, and Stéphane Mallat. Phase recovery, maxcut and
complex semidefinite programming. Mathematical Programming, 149(1):47-81, 2015.

[9] Tom Goldstein and Christoph Studer. Phasemax: Convex phase retrieval via basis pursuit. /[EEE
Transactions on Information Theory, 64(4):2675-2689, 2018.

[10] Paul Hand and Vladislav Voroninski. An elementary proof of convex phase retrieval in the
natural parameter space via the linear program phasemax. arXiv preprint arXiv:1611.03935,
2016.

[11] Praneeth Netrapalli, Prateek Jain, and Sujay Sanghavi. Phase retrieval using alternating
minimization. Advances in Neural Information Processing Systems, 26, 2013.

[12] Gang Wang, Georgios B Giannakis, and Yonina C Eldar. Solving systems of random quadratic
equations via truncated amplitude flow. IEEE Transactions on Information Theory, 64(2):773—
794, 2017.

[13] Jian-Feng Cai and Ke Wei. Solving systems of phaseless equations via riemannian optimization
with optimal sampling complexity. Journal of Computational Mathematics, 2018.

[14] Bing Gao and Zhiqiang Xu. Phaseless recovery using the gauss—newton method. [EEE
Transactions on Signal Processing, 65(22):5885-5896, 2017.

[15] Chao Ma, Xin Liu, and Zaiwen Wen. Globally convergent levenberg-marquardt method for
phase retrieval. IEEE Transactions on Information Theory, 65(4):2343-2359, 2018.

[16] Ke Wei. Solving systems of phaseless equations via Kaczmarz methods: A proof of concept
study. Inverse Problems, 31(12):125008, 2015.

[17] Yuejie Chi and Yue M Lu. Kaczmarz method for solving quadratic equations. IEEE Signal
Processing Letters, 23(9):1183-1187, 2016.

[18] Ju Sun, Qing Qu, and John Wright. A geometric analysis of phase retrieval. Foundations of
Computational Mathematics, 18(5):1131-1198, 2018.

10



354
355
356

357
358
359

360
361

362
363
364

365
366

367
368
369

370
371

372
373
374

375
376
377

378
379
380

382
383

384
385

386
387

388
389

390
391
392

393

395

396
397

[19] Zhenzhen Li, Jian-Feng Cai, and Ke Wei. Toward the optimal construction of a loss function
without spurious local minima for solving quadratic equations. IEEE Transactions on
Information Theory, 66(5):3242-3260, 2019.

[20] Yuxin Chen, Yuejie Chi, Jianqing Fan, and Cong Ma. Gradient descent with random
initialization: Fast global convergence for nonconvex phase retrieval. Mathematical
Programming, 176(1):5-37, 2019.

[21] Irene Waldspurger. Phase retrieval with random gaussian sensing vectors by alternating
projections. IEEE Transactions on Information Theory, 64(5):3301-3312, 2018.

[22] Aldo Conca, Dan Edidin, Milena Hering, and Cynthia Vinzant. An algebraic characterization of
injectivity in phase retrieval. Applied and Computational Harmonic Analysis, 38(2):346-356,
2015.

[23] Yang Wang and Zhigiang Xu. Phase retrieval for sparse signals. Applied and Computational
Harmonic Analysis, 37(3):531-544, 2014.

[24] Henrik Ohlsson, Allen Yang, Roy Dong, and Shankar Sastry. Cprl-an extension of compressive
sensing to the phase retrieval problem. Advances in Neural Information Processing Systems, 25,
2012.

[25] T Tony Cai, Xiaodong Li, and Zongming Ma. Optimal rates of convergence for noisy sparse
phase retrieval via thresholded wirtinger flow. The Annals of Statistics, 44(5):2221-2251, 2016.

[26] Gang Wang, Liang Zhang, Georgios B Giannakis, Mehmet Akcakaya, and Jie Chen. Sparse
phase retrieval via truncated amplitude flow. IEEE Transactions on Signal Processing, 66(2):479—
491, 2017.

[27] Gauri Jagatap and Chinmay Hegde. Sample-efficient algorithms for recovering structured signals
from magnitude-only measurements. IEEE Transactions on Information Theory, 65(7):4434—
4456, 2019.

[28] Jian-Feng Cai, Jingzhi Li, Xiliang Lu, and Juntao You. Sparse signal recovery from phaseless
measurements via hard thresholding pursuit. Applied and Computational Harmonic Analysis,
56:367-390, 2022.

[29] Mahdi Soltanolkotabi. Structured signal recovery from quadratic measurements: Breaking
sample complexity barriers via nonconvex optimization. /IEEE Transactions on Information
Theory, 65(4):2374-2400, 2019.

[30] Deanna Needell and Joel A Tropp. Cosamp: Iterative signal recovery from incomplete and
inaccurate samples. Applied and computational harmonic analysis, 26(3):301-321, 2009.

[31] Simon Foucart. Hard thresholding pursuit: an algorithm for compressive sensing. SIAM Journal
on Numerical Analysis, 49(6):2543-2563, 2011.

[32] Shenglong Zhou. Gradient projection newton pursuit for sparsity constrained optimization.
Applied and Computational Harmonic Analysis, 61:75-100, 2022.

[33] Huishuai Zhang, Yi Zhou, Yingbin Liang, and Yuejie Chi. A nonconvex approach for phase
retrieval: Reshaped wirtinger flow and incremental algorithms. Journal of Machine Learning
Research, 18, 2017.

[34] Yuxin Chen and Emmanuel J Candeés. Solving random quadratic systems of equations is
nearly as easy as solving linear systems. Communications on pure and applied mathematics,

70(5):822-883, 2017.

[35] Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE Transactions on
Information Theory, 51(12):4203-4215, 2005.

11



398
399

400
401

[36] Simon Foucart and Holger Rauhut. An invitation to compressive sensing. In A Mathematical
Introduction to Compressive Sensing, pages 1-39. Springer, 2013.

[37] Thomas Blumensath and Mike E Davies. Iterative hard thresholding for compressed sensing.
Applied and Computational Harmonic Analysis, 27(3):265-274, 2009.

12



402

404
405

406

407
408

410
411
412
413

414
415
416
417
418
419

420
421
422

423

424
425

426
427
428
429

In Appendix [A] we present two additional experimental results, illustrating the robustness of the
proposed algorithm against noise in measurements and offering phase transition comparisons. The
proofs for Theorem [3.1) and Theorem [3.4] are provided in Appendix [B] Auxiliary lemmas can be
found in Appendix[C]

A Additional Experiments

In this section, we carry out experiments to assess the robustness of the proposed algorithm against
noise in measurements and to evaluate its performance in phase transition for signal recovery.

We first investigate the impact of the noise level of measurements on the recovery error of our
proposed algorithm. Noise levels are represented by signal-to-noise ratios (SNR), i.e., ||2%|| /o, where
! is the ground truth signal and o is a parameter determining the standard deviation of Gaussian
noise, as defined in (T4). We set the dimension of the ground truth signal to n = 2000, the sparsity
level to s = 20, and the number of measurements to m = 1500.

Figure [ depicts the relative error of the proposed algorithm as a function of signal-to-noise ratios
(SNR) in dB. We observe a nearly linear decrease in the relative error as the SNR increases, implying
that the recovery error of our algorithm can be controlled by a multiple of the measurement noise level.
This result demonstrates the robustness of our proposed algorithm against noise in measurements.
Additionally, the small error bars shown in Figure ] emphasize the low variability of recovery errors
of our proposed algorithm.

Relative error

5 lb 1‘5 2‘0 2‘5 36 3‘5 4‘0 4‘5 50

SNR (dB)
Figure 4: Robustness of the proposed algorithm against additive Gaussian noise. The y-axis represents
the relative error of the proposed algorithm, while the x-axis corresponds to the signal-to-noise ratios
(SNR) of the measurements. The results are averaged over 100 independent trial runs, with error bars
indicating the standard deviation of the recovery error. We set n = 2000, m = 1500, and s = 20.

Figure [5]illustrates the success rate of various algorithms as a function of varying sparsity levels s
and the number of measurements m. With a fixed signal dimension of n = 3000, we vary the signal
sparsity s from 6 to 120 and the number of measurements m from 150 to 3000. A signal recovery is

st (@
considered successful if the relative error %W) < 1073. The gray level of a block represents the

success rate: black corresponds to a 0% successful recovery, white to a 100% successful recovery,
and gray to a rate between 0% and 100%.

As shown in Figure 5] our proposed algorithm performs better than the state-of-the-art methods when
the sparsity s is large. In contrast, when s is small, our algorithm, along with SPARTA, CoPRAM,
and HTP, exhibits a slightly better performance than ThWEF. These successful recovery rates are
computed by averaging the results over 100 independent trial runs.

13
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Figure 5: Phase transition comparison for various algorithms with a signal dimension of n = 3000.
The successful recovery rates are represented by different grey levels in the corresponding block.
Black signifies a 0% successful recovery rate, white indicates 100%, and grey represents values
between 0% and 100%. All the results are averaged over 100 independent trial runs.

B Proofs

We provide proofs for Theorem 3.1} the recovery guarantee for noise-free measurements, and Theorem
[3.4] the recovery guarantee for noisy measurements. First, we present several essential lemmas in
Appendix Following that, we provide the proofs for Theorem [3.1|and Theorem 3.4]separately in
Appendix [B.Z]and Appendix [B.3] respectively.

For a more concise representation, we arrange the sampling vectors and observations as follows:

A=laras - an)’, Y=y yml', z:=[z122 - 2zm], (15)

where z; = /y;,, i =1,...,m.

B.1 Key Lemmas

In this section, we introduce and prove several essential lemmas that serve as the foundation for
proving Theorem [3.T]and Theorem [3.4]

The first lemma asserts that, given a sufficiently large m, the normalized random Gaussian matrix
A obeys the restricted isometry property (RIP) with overwhelming probability. This conclusion is
well-established in the compressive sensing literature [35, 36l

Lemma B.1. [36] Theorem 9.27] Let A be defined as in (I3) with each vector a; distributed as
the random Gaussian vector a ~ N (0, I,,) independently for i = 1,2, ..., m. There exists some
universal positive constants C', Ch such that for any positive integer v < n and any 6, € (0, 1), if
m > C16, 2rlog (n/r), then \/%A satisfies r-RIP with constant 6., namely

2

(1—6,)z|* < ‘ < (1 +6,)|z|?, VxR with|z|o <, (16)

1
—A
‘ N
with probability at least 1 — e—Cam,
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The next lemma, derived from [25]], asserts that the induced norm of the submatrix of random
Gaussian matrix A is bounded by its size.

Lemma B.2. [25 Lemma A.5] Let {a;}™, C R™ be identically and independently distributed as
N(0, 1,,) and define the matrix A as in (13). Given a support S C [n] with cardinality s, with
probability at least 1 — 4m ™2, there holds

|Asll2ama < (3m)Y* + s1/2 + 21 /log m. (17)

The following lemma serves as an extension of Lemma 7.4 found in [6].

Lemma B.3. For any s-sparse vector €% € R™ with support S* = supp(x?), let {a;}7., C
R™ be identically and independently distributed as N (0, I,,). For any subset S C [n] such that

supp(z®) C S and |S| < 1 for some integer r < n. With probability at least 1 —m~* —c,6~2m ™1 —
Cp exXp (—cc62m/ log m), we have
1 m
|5 L letswPassals - (108t + 25500)7) | <0 am

provided m > C(§)rlog(n/r). Here C(0) is a constant depending on § and c,, ¢, and ¢, are positive
absolute constants.

Proof. If |S| = |S%|, then S = S* and the result is established by Lemma We now focus on the
case where T := S\S? # (). We first define two matrices as follows:
T T h\T
G- | %5 s FisiiT H— [2%]|? (1) 52,52 + Qx ()

)

airals.  aiTalr 0 l2?(|*(L) 7.7

Then we rephrase the term on the left-hand side of (I8) as follows:

1m
2> el afe - H| < HZstm avsals. — (1091 L )snse + 2050507 |
i=1
+ |2 el e saly | + HZI%M arally ~ | (L) r |
=1

The first term can be bounded with overwhelming probability via a direct application of Lemma|C.6|
as below whenever m > ¢;6~2slog(n/s):

me Fa;s:alss — (1252 (E)se s + 25 (k)T ) || < 6/4.

For the other two terms, it is enough to consider 2% = e; because the unitary invariance of the
Gaussian measure and rescaling. Then for a prefixed subset S (thus 7 is also fixed), there exists a
unit vector w € R™ with supp(u) C 7 such that the second term is equal to

o> el = o3 (@) @Fw.
i=1

=1

We emphasize that al v = aZTuT is a random Gaussian variable distributed as N (0, 1) for all
u € R, ||u|| = 1,supp(u) C T and independent of a;(1) for all ¢ € [m]. So for one realization of
{a;(1)}, Lemma|C.1|(Hoeffding-type inequality) implies

1 & 3 com?t?
P{’} * (ai(1)) a?u‘ > t} < eexp ( S
mi3 Z:ll |ai(1)[°

for any ¢ > 0. Define the set W’ to be a collection of all the index set in [n] with cardinality no
larger than r, i.e. W := {S C [n] : |S| < r}. Note that the cardinality of W' can be bounded by
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i (5) < (<2)". Taking t = §/8, together with a union bound on the set W, we obtain for any

subset T = S\S?,
i Ui ' 3 7 com?248?
}P’{Hm Z (a;(1)) a; _—642?;1 s (1)[° + 6rlog(n/r) | .

Now with an application of Chebyshev’s inequality, we have Y. | |a;(1)|® < 20m with probability
at least 1 — cgm ™. Substituting this into the above, we conclude that for any subset S C W7,
whenever m > c46~2r log(n/r) for some sufficiently large c,,

> 6/4} < eexp (

m

|23 @) aly

i=1

<d/4,

1

with probability at least 1 — cgm ™1 — e exp(—c56%m).

Assuming 2% = e; and fixing a subset S C [n] (thus 7 is also fixed), we can simplify the last term
as follows:

1 1 1
|23 lwParaly =@ < |4 30 ) (@sraly — 1) [+ 2 3 Pt
=1

=1 i=1

)

%

for which there exists a unit vector u € R™ with supp(u) C T such that
1 & 9 T 1 & 2|, 1 2
>l (airaly = Iir) | = - > [a)[* |(al7ur)® - 1).
i=1 i=1

Note that {a;(1)} is independent of {a; 7}, an application of Bernstein’s inequality implies

]P’{;L ; la;(1)[? ‘(GZZ:TUT)Z _ 1‘ > t} < 2exp (— cgmin (dy,da) ),

2

_ t _ . _ . .
where d; = TS e (DR and dy = Taking ¢ = /8, together with a union

.t
C7 MaX;e[m] lai (1)[2°
bound on the subset W}, we obtain for any subset S € W',

IE”{ H; f; la;(1)|* (ai,ral+ — 1) H > 5/4} < 2exp (—cg min (ds, ds) + 6rlog(n/r)),

i=

md
8c7 max;e(m) |ai(1)

262
where d3 = —5—2%———and dy =
3 64c3 o7 las(1)[* 4

the union bound, we obtain:

B Applying Chebyshev’s inequality and

Z la;(1)|* < 10m and max|a;(1)|* < 10logm
Py i€[m]

hold with probability at least 1 — cgm ™! — m~*. To conclude, for any subset S € W, when

m > cgd~2rlog(n/r) for some sufficiently large constant cg,

1 m
Hm Z |ai(1)|2 (am-aZT — IIT\) H <4/4
i=1

1

with probability at least 1 — cgm ™ — m ™% — 2exp (—c196%*m/ logm). Finally, an application of

Chebyshev’s inequality implies
’1 i la;(1)]? — 1‘ <5/4
m gt 7 =

with probability at least 1 — ¢116~2m~!. The proof is finished by combining the above bounds and
probabilities. O
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The subsequent result concerning the spectral norm of submatrices of \/%A can be deduced by

employing the restricted isometry property of matrix ﬁA.

Lemma B.4. [300 Proposition 3.1] Assume the matrix A satisfies RIP inequality (I6) with r = s
and r = s'. Then for any disjoint subsets S and T of {1,2,- -+ ,m} satisfying |S| < sand |T| < &,
the following inequalities hold:

1
— ATl <1 1
"%13 < VT3, (19)
1
HA?AT < Ouysrs (20)
m
Vu e RIS, (1-6,)ul| < HlAEAsu < (1482l @)
m

The following lemma is derived through the application of Holder’s inequality and Lemma[B.2}

Lemma B.5. Given two vectors x,z € R™ each with sparsity no larger than s and two subsets
S, T C [n]. Define the subset R := S UT Usupp(x) Usupp(z). Under the event (T7) with support
‘R, there holds

4
V3 fr(@) = Vi fi(2)] < = (Bm)4 4+ (RDV? + 2y/logm) z + 2l — 2] 22)

3
m
Proof. A simple calculation yields

3
Vsrfi(®) = Vsrfi(z) = —AsD(|Az|” - |Az|") AT

There exist unit vectors u, v € R™ with support supp(u) C S and supp(v) C T such that
HV?S,TfI(fB) - V?S,TfI(Z)H
3

=2 || aZD( A - |4zP) A7

3 m
= ; (|a?m\2 — |a;?Fz|2) (GZSUS)(U«ZTUT)’
3 m
= ; (lafrzr|* — |alrzr|?) (agjnuf/z)(afnvn)‘
m
= > l(alr(zr + 2r)) (alr(zr - 2r)) (a] gur)(a] R VR )]
m ’ ’ ) B
i=1
3 m 1 m 1 m 1 m
< (X (alner +20))) (3 (alnlar —20) ") (3 (alpun)") (2 (alevr) )
=1 i=1 i=1 i=1
3
SE”ARH%—AHQZ + zl|[lz — 2]
3

4
1
<= (Bm)t + (IR +2v/logm) [l@ + 2]z - =],

where the second inequality is implied by Holder’s inequality and the fourth inequality is implied by
Lemma O

The following inequalities in Lemma [B.6]can be derived using Lemmas B3] [B:3] [C.3] and [C:4]

Lemma B.6. Let x° € R™ be any signal with sparsity ||z%||o < s and support S*. Let {a;},
be random Gaussian vectors identically and independently distributed as N'(0, I,,). Define A, y
and fr(z) as in (15) and @) respectively. Given two subsets S, T C [n] satisfying |S| < s and
|T| < s. Then if m > 30s?, for any s-sparse vector x € R™ with supp(z) C T and obeying
dist(x, %) < 7||xf| with 0 < v < 0.1, under events (7)) and (I8), the following inequalities hold:

17
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514 (i)
Lllull < ||VEfr(@)ul| < b|ul, YueRS! (23)

si5 where Iy := (2 — 20 — 10v(2 + 7)) ||2%]|? and I3 := (6 4+ 20 4+ 107(2 + 7)) ||=%||2.
516 (ii)
[V3 s fr(@)| <1 = 2425+ 1092 + ) 2 24)

517 Proof. (i) Define R = T US U S%. Then |R| < 3s. Applying Lemmayields that

4
’ %((3m)1/4+(35)1/2+2\/@) |z + |||z — ¥

10[| + @[l — 2],

IN

V% f1(z) — Vi fi1(x?)]

IN

st provided m > 30s2. Furthermore, it follows from Weyl theorem in Lemma the inequalities in
st9  Lemma[B.5)and Lemma [B.3]and the interlacing inequality that

Amin (V3 f1(2)) = Anin (VR f1(2 ))
> Amin (Vi f1(2%)) — | VR f1(2) — Vi f1(")
> Aunin (B [Vsz( )]) — |V fr(2%) — E [V& f1(@5)] || - 10]|2 + 2|2 — zF|
> 2||2"||* — 26]|*(|* — 10|z + = |||@ — |
> (220 - 10y(2+ 7)) =],

s20 where the last inequality is implied by dist(ax, %) < v||?||. Similarly, the upper bound for the
s21  largest eigenvalue of V% f7 () can be bounded as follows:

Anax (V5 f1(@)) < Anax (VR fr (@ ))
< Amax (VR S1(29) + || VR f1(2) — Vi f1 (= H
< Amax (B [V Rfl( )]) + HvaI )~ E [V fr(h)]| + 10[@ + 2| | — 2|
< 6]|@%)? + 28]2"|* + 10]j& + 2F|| | — 2|
< (6+20+107(2+ 7)) |=*>.
s22 (i) Define R = 7 U S U S%. Thus |R| < 3s. For the disjoint subsets S and S*\S, we consider

522 V7§ g\ gf1(2), which is a submatrix of V% f1(z) — 4||2%||2I. We note that the spectral norm of a

524 submatrix never exceeds the norm of the entire matrix. By employing the result from part (i), we can
525 deduce that

|3 snsfr(@)]| < [V fi(@) - 412721
< max {6+ 20 +10v(2 +7) — 4,4 — (220 — 107(2+ 7))} - ||l=°||?
= (2+ 20 + 1072+ 7)) l|l=*%,
s26 completing the proof. O

527 The next lemma is adapted from Lemma 3 in [28].

s2s  Lemma B.7. Let {z", T} }>1 be generated by the Algortthml 1| Let 2% := z © sgn(Azx"). Assume
s ||k — || < b Then under the event (T6) with r = s,2s and the event @1), it holds that

o 4% = A < o5 e ),
530 where C,, = ﬁ(eo + 4/ 25)% with €g = 1073

531 Proof. Define the sets {Gy },>1 as follows:

G = {i|sgn(ala") = sgn(al @), 1 < i < m).
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With z* := 2z ® sgn(Ax"), where z is defined in (T3], we deduce that

2 m
1 1
(\/Fn sz — Azx" H) — Z(sgn(a;mk) — Sgn(a?w”))2|aiTa:u|2
i=1

4
< — Z |a';11mh|2 : 1(aka)(aTzh)<O
™ ege ' o (25)
4 21 2
< = 2752 k _ ..h
< (1_7)2(604-’}/\/20) |a* — ||,
c

where the first inequality follows from [sgn(a}z*) — sgn(alx?)| < 2 and sgn(alz*) —
sgn(alx") = 0 on Gy, and the second inequality follows from Lemmal|C.7 Together with (T9) in
Lemma|[B.4] leads to

% HA%H(zk' - Aazh)H <4/ Cy(1+0s) Hwk — zf

completing the proof. O

)

Given a point z* that is close to the ground truth signal, the following lemma provides an upper
bound on the estimation error for the vector obtained after one iteration of IHT, as described in [37].
To make this paper self-contained, we include the details of the proof for the reader’s convenience.

Lemma B.8. Given an s-sparse estimate x* satisfying |z* — x?|| < 7||x?|. Define the vector
obtained by one iteration of IHT with stepsize 1 to be

ub = H (" — nVfa(2")).
Under the RIP event (10), it holds that

lu® — 2| < ¢fla —a,

where { = 2 (\/ﬁmax{nég,s, 1—n(1 =025} +1/Cy(1+ (525)).

Proof. Define S := supp(z?), Try1 := Spy1 U St and
v =k —Vfa(xh).

Since u” is the best s-term approximation of v*, we have
k_ 0k k
[ — 0| < [l2f — "],
which implies
k k i k
lur,,, — v I <lzg,, — o7l
because of the relation supp(u”) C 7541 and supp(x?) C Ty41. Then, it follows from the triangle
inequality and the inequality above that

k k k k k
b — o = jufy,, - 2%, I = [uh,, — v, + vk, - 2%,
e L I S I

k
< 2||v77c+1 - w’thJrl ||

Define z* := z ® sgn(Az") with z as in (I3). Using the definition of v*, a direct calculation yields
k b |k f N AT k B Uy k b
Hv77c+1 T T = HwTk-H s EATk+1A(x —x) + EAnﬁ-l (2" — Az?)

< |ap e a]

N ,T k
(I - EAE+1AE+1)($7}+1 - wg”f'*'l)

Il I2

AT k
+ HEAmlAn\ml (=" — 27,

I
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We will now proceed to estimate I, I5, and I35 sequentially.

For I1: An application of Lemma[B.7]yields that
|2 aF, (o — azt)|| < /O (1 + 820l — 2. @7)
For I5: Let 7 € (0, 155;-)- It follows from 1) in Lemma as well as Weyl’s inequality that

(L= n(1+020)) lul < || (T L A%, Az, ) ul < (1= = 62)) ull,

for any w € RI7x+1l which deducts

T k k i
H( A77C+1A7—lc+1)($77c+1 - w'h77€+1) ‘ S (1 - 77(1 - 625)) Hwﬁ+1 - $77c+1

For I3: Eq.(20) in Lemma[B.4]implies that

U
HEAT@HATATM (" — 2"\ 7 || < m0sall[E® — 217 -

Combining all terms together, we obtain

bt —ak | <h+L+Is<\203+13)+1s

< V2max{ndss, 1 = (L = 20 }|2* — || + 14/ Oy (1 + 6a) [2* —

_ (\/imax{nass, 1= (1 = 625)} +11/C (1 + 523)) |l — 2.

We complete the proof by using (26)). O

B.2 Proof of Theorem 3.1]

Proof. In this proof, we consider the case where ||z° — z%|| < ||2° + 2%||. Consequently, the distance
between the initial estimate and the true signal is given by dist(x?, %) = ||£° — z||. Note that the
case where ||2° 4 xf|| < ||=° — || can be addressed in a similar manner. For the purpose of this
proof, we assume, without loss of generality, that the true signal has a unit norm, i.e.,

Let 2 represent the k-th iterate generated by Algorithm [1| Given an s-sparse estimate =* with
support Sy, which is close to the target signal, i.e., dist(x*, %) < 7|«!||. Forany 0 < ¢ < 1, denote
x(t) := x + t(x* — ). It is evident that supp(x(t)) C supp(x?) Usupp(x*), and the size of the
support of x(t) is at most 2s, i.e., |supp(x(t))| < 2s. Furthermore, we obtain

ka—a} )| < (1—t)||zF — || < ||=* — =,
and
¥ +z@)| = ||(1+t)z" + (1 — )| < (L+1)[|z"| + (1 — 1) |7
< (L)L + )2 + (1= )2 < 2y + 1)l|2F],
where the last inequality holds because 0 <t < 1.

Assume events (]1_"75]) and (T8) hold, then by (22) in Lemma with z = zF, 2z = z(t),S§ =
Sk+1, T = Sk U S there holds

Hv?s‘k+175kusufl(mk) - v§k+17skushfl(m(t)) H

3
§E<(3m)1/4 +(35) 1/2”@) z* + z(t)||[|z* — ()] (28)
<10||&* + 2(t)|||| 2" — (1)
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where L, := 20(y + 1)||z%||. Also, Eq. (23) in Lemmawith x = ¥ S = Sy, indicates that

—1 -1 1
H (v§k+175k+1 I1 (mk)> = (Amin (v%k+1,5k+1 Ir (mk))) < E (29
Moreover, by the mean value theorem, one has
Vi) - Vfi(z / Vi fi(x — xf)dt. (30)
We also have the following chain of equalities
k+1 _ k+1 h k+1 b 271/2
|t 1 — 2| = [[|lwbtl, -t |F + [l2btt —a [7]

b 31

2 2 /
= |:Hw?9i+1 || + Hw§k+1 o w3k+1 +p§k+1 || ] :
——

I; Iz

We first bound the term [; in (31). Note that ! sg, is a subvector of % — u*. Based on this
observation and applying Lemma[B.8] we deduce that

L= [l Il < o — ]| < ¢f|l2* - 2], (32)

k+1

where ¢ = 2 (ﬂmax{nég,s, 1—n(1 =025} +1/Cy(1+ (525)) with n < ﬁ.

We now proceed to bound the term 75 in (3T). By plugging the expression of p@HI, we obtain that

_ k | k
L= Hmskﬂ L5 T P8

-1
= (73, £r@) T (Vh s, Fr@b)aly - Vs filah)) + a2k, ok

k+1

(33)

We further can deduce that:

1
I, < E HV‘QSkH, kaI( )SE@;H - V3k+1f1(mk) + V‘stJrlfI(wk)(w‘]ngrl o w?skJrl)

1 1 Iy
< /0 [v%k+1,;fl( k) — Vsmf(w(t))] (’”k_‘”h)dtHﬂlH o
< L [P i)~ T s o] o = e S [t — )
I R Sernsusaf1( z @
1
i} 0
= pi1|lz"* — 2",

where the first inequality follows from (29), the second inequality is based on Lemma [B.6]and (30)
together with the fact that V f;(2") = 0, and the third inequality is derived from (32), and the last
inequality is obtained from (28). The equality includes p;, defined as follows:
&H k,mh||+%< 20(1+ )y C(24+20+10v(2+ 7))
2l i —22-2—-10v(2+7)) 2—-20—10y(2+7)
201 +0) +10v(1+v+¢(2+7))

2—26—10v(2+7) '

By substituting the upper bounds of terms I; and I into (31), we obtain:

p1 =

12"+t — 2| < /o + 2l — 2. (34
Let p := +/p? + (2, then p < 1 can be ensured by properly choosing parameters. For example, when

035 < 0.05 and § = 0.001, and set = 0.95, then p < 0.6 < 1 provided that v < 0.01. Therefore,
&kt — || < pllz¥ — 27| < py||2?| for some p € (0, 1).

21



585
586

588

590
591

592

593
594
595

596
597

598

599
600

601

602
603
604

605

Let R =S USp+1 US 4. Assume that the event (T7) with R = Ry, holds for k; iterations. As
stated in Theorem IV.1 of [27], the initial guess x° is guaranteed to satisfy dist(x®, 2%) < ||z
By applying mathematical induction, we can show that for any integer 0 < k£ < k;, there exists a
constant p € (0, 1) such that:

dist(z* 1, xb) < p - dist(zF, z%).

Let K be the minimum integer such that it holds

V™ < 2% (35)

min

We then assert that St C Sy, for all ¥ > K. This is because if it were not the case, there would
exist an index i € S\Sy, # 0, such that ||z* — || > |z%| > 2% . . However, this contradicts our

assumption ||z* — 2% < yl|xf||p* < x| pf < xmm Consequently, based on (33), we derive:
1 by /0
K— og(Yll2™ | /2 min) +1<C,log (||3’3h||/93mm) + .
log(p~")

Note that S, = S for all & > K implies Rj, = Ry 1 for all k > K. As a result, the probability of
event (I7) occurring for all k > 0 can be bounded by 1 — 4K'm 2. To conclude, with probability at
least 1 — (4K + C.)m ™' — Cge~C<™/1°8™ there holds

dist (21, ) < p - dist(z*, ).

with some p € (0,1) provided m > Cys®log(n/s). Moreover, for k > K, utilizing the result the
result S 11 = S* and consequently w?siﬂ = 0, we obtain:

ot~ 2t = |12, - a5,

2 k+1 s 21V k f k
+ stc — CESC = stk-H — x3k+1 +p$k+1

k+1

‘We can further obtain

l2* = af|| <

1
71 V?SkJrl,:fI(wk)wk - V519-*—1 fI(x ) Sk+1 fl( )w3k+1
1 1

< f V?S‘k+1,:f1(mk)($k - mh) - 0 V?Sk+1,:ff(m(t))(mk - :Eh)dt”

< ll /1 V3, i@ = V3, Si(@0)] @ - @ )dtH

1 2
l1/ H skHskushfI( ") - Vsnswusif1(@ H “"tht

L

Dt gz [
1 0

L

o, 12" = I,

| /\

I /\

2l
where the first inequality follows from (29) and (33), and the last inequality follows from (28).
Consequently, the sequence {x*} converges quadratically. O

B.3 Proof of Theorem 3.4

Proof. Owing to the independence between the sensing matrix and noise, along with the assumption
E(e) = 0, Lemma remains valid in the noisy setting. Therefore, by applying Lemma [B.3} if
m > O(slog s), then with overwhelming probability, it holds that

IVEfr(2%) — E[VEf1H)] || < (0 + o)l
Under the assumptions in Lemma[B-6] it follows that
Hlull < |Vifr(@)ul| < Blul, YueRS, (36)
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and
V% s f1()|| < 1, (37)

where If = (2 — 26 — 2¢ — 10y(2 + 7)) [|2%]l, I5 = (6 + 26 + 2¢ + 107(2 + 7)) [ "], and
Iy = (24 26 + 2e + 107(2 + 7)) ||2°||. In the noisy case, {z*}x>0 is given by

F = (|Az")? + €)? ® sgn(Az").
Then using the same argument as the proof of the inequality in Lemma|[B.7} we have

H LAT (- Amh)H =< % HAT (|Az®| © sgn(Az") — Amh)H
77 HATk ) e@sgn(A:l:k))H (38)

C/
</ Co (1 8as) 2 — ¥+ /T4 o]

where the last inequality follows from Lemma [B.7] and (I9) in Lemma Lﬂ Then, we modify
Lemmato estimate || u* — xf|| in the noisy case. All arguments in Lemma|B.8|go except that the
estimation of I in (27) should be replaced by (38). Thus we obtain

!’
o = 2] < Clla* - 2]+ L VTT Bael, 9

where u*, 1) are the same as those in Lemma

We now proceed to prove the convergence property for the noisy case, employing a similar argument
as in the proof of Theorem [3.1] Notably, equality (3T)) remains valid in the presence of noise. As for
the second term in (31, since wg}iH is a subvector of 2% — w*, it follows from (39) that

C/
< flaf ]| < Cllat — ) + /15 Boel
where ( = 2(ﬂmax{n635,1—77(1—525)}—&—77\/07(1—#(525)) with n < 1/(1 + da24).

Furthermore, the first term in (1)) can now be estimated as

Hm«]§'k+1 - "B?S‘;Hl + p§k+1 ||

V%}H,l,:fl(wk):l:k - v%kJrl,:fI(a:k)a:h +V?Sk+1,sg f[( ):BSC

b
Toc
H S

1
- Vs @) + Vs fi@) + - A, (e (4a) |

el

1 1
<z \vaﬂ,:fz(w’“)(w’“ ~at) - [ VA et - oty ]
1 S
i V3, i@ |+ Im HASHI eo (Az))|
1 ! 2 k 2 l/ ] 1+5sHAxh”oo
<o | [T drteh) = T3, drteo)] @ = ahar]| + g o [+ YAl
_l,/ H 3k+1’5kushf1( ) 5k+13kusnf1 H H(L’ —wtht
Cl3 H uH C'lsnvVI + das + 1+ 0 ||Aa: ||<>oH H
I
1
Lhnw —:l:th/ (1—t)dt+<—f3y|w’f—mh|\ CllnV1 1 0o+ VIT S A oo
0 I Iiv/m
C'lnT ¥ 025 + V1 + 05| Az o
—palla — ot 4 TV 02+ VIE AT (40)

m
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where the first inequality follows from (36), together with the equality V f;(z%)+ A7 (e ® (Az")) =
0, and the third inequality is based on (37) and the inequality ||a ® b|| < ||a||«||b] for any two
vectors a, b. The last equality includes ps, defined as follows:
Lo gy P 20(1 + 7)y C(2 420 + 2¢ + 109(2 + 7))
P2 om, ml T 2(2-25—2e—107(2+7)) | 2—20 — 26— 107(2+7)
20(1+8+¢€) +10v(1 +~v+¢(2+7))
2—25—2e—10v(2+7)

Following from (a? + b%)*/? < a + b for ab > 0 and putting the two terms together yields
[zt — 2| < pf|&* — 2| + ole],

C'(l+l; )n\/1+62g+\/1+6

1 m

:
where p' = py + Cand v = lAz"ll Noticing that

— max laTxf| < % HwhH

1
Az = ——  ma
Vm ” H VM €] VM ig[m] jESh

with probability at least 1 — (ms)~2. Consequently, \/% | Az?|| o can be quite small. As a result,

jais] - |2 < 3

properly setting parameters can lead to v € (0,1) and p’ € (0, 1). O

C Auxiliary Lemmas

In this section, we present some auxiliary lemmas.

Lemma C.1. (Hoeffding-type inequality) Let X1,--- , X n be independent centered sub-Gaussian
random variables, and let K = max;c|ny || Xi|,, where the sub-Gaussian norm

Xl == supp™ /2 (B[ X [P])/7.
p>1

Then for every b = [by;- -+ ;bn] € RY and every t > 0, we have
N ct?

k=1
Here c is a universal constant.
Lemma C.2. (Bernstein-type inequality) Let X1, --- , X N be independent centered sub-exponential
random variables, and let K = max; || X;||y,, where the sub-exponential norm

X[y == supp~t (B[ X[P])7.
p>1

Then for every b = [by;--- ;by] € RN and every t > 0, we have
al 2 t
IP’{ b X, Zt} < 2exp <cmin< , >) .
2 K26 Kbl
Here c is a universal constant.
Lemma C.3. (Bernstein’s inequality for bounded distributions) Let X1, - -- , Xy be independent

mean zero random variables, such that | X;| < K for all i. Then, for every t > 0, we have

t2/2

Here 02 = Zfil EX? is the variance of the sum.

i=1

The next lemma is the so-called Weyl Theorem, which is a classical linear algebra result.
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Lemma C4. Suppose M, N € R" "™ are two symmetric matrices. The eigenvalues of M are
denoted as A\ > \o > -+ )\, and the eigenvalues of N are denoted as piy > o > - -+ . Then we
have

|/‘Ll_)‘1|§HM_NH27 VZ:1,2,,77,

The following lemma provides the expectation of the sub-Hessian of the intensity-based loss f; at "
As this result can be easily derived through basic calculations, we will not delve into the details here.

Lemma C.5. For any subset S C [n] such that supp(x?) C S, the expectation of V% f1(x?) is
E[V&fi(@")] =2 (I2%]2(L,)s + 225 (@5)T) |
and it has one eigenvalue of 6||x%||?> and all other eigenvalues are 2| x%||>.

The results presented below have been previously established in [25].
Lemma C.6. [25| Lemma A.6] On an event with probability at least 1 — m™!, we have
imThZ' T b2 2h i \T < Slahl?
— > lalsez Pa;sale — (2] (In)ss + 2%, (25)" ) || <l
i=1
provided m > C(0)slog s. Here C(9) is a constant depending on .

The subsequent lemma, a direct outcome from [29]], plays a crucial role in bounding the term
||AT (2F — Amh)H.

7—k+1

Lemma C.7. [29 Lemma 25] Let {a;}}", be i.i.d. Gaussian random vectors with mean 0 and
variance matrix I. Let -y be any constant in (0, %] Fixing any eq > 0, then for any s-sparse vector x

satisfying dist(x, ") < Xo||2" ||, with probability at least 1 — e~Cs™ there holds that

L 7o 1 21\ 2 a2
g;@“ 'H(a?m)(a?wh)smﬁm €0+ oy 55 ) llz—2f, (41)

provided m > Cfslog(n/s). Here Cf and C§ are some universal positive constants.
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