
Estimating the intrinsic dimensionality using
Normalizing Flows - Supplementary

A Theoretical appendix

A.1 Singular value evolution under normal space noise

In [4], it was shown that if noise is only added in the manifold’s normal space, then we have
that qσ2(x) = q(x|x)p(x) where q(x|x) is the normalization constant of a (D − d)−dimensional
Gaussian random variable with co-variance matrix σ2ID. However, σ2 needs to be sufficiently small,
a condition formalized as Q−normal reachability. With these conditions, a direct consequence is that
the singular values in on-manifold directions will not depend on σ2. We adapt notations from the
proof of the main Theorem in [4].

Proposition 1 LetM be a d−dimensional, C2 manifold. For each x ∈ M, let qσ2(·|x) denote a
noise distribution with support in the normal space Nx of x. Assume that there exists σ2

min and
σ2
max with 0 ≤ σ2

min < σ2
max such that we can learn the inflated distribution qσ2(x̃) exactly for all

σ2 ∈ [σ2
min, σ

2
max] using an NF f̃σ2 with standard Gaussian as reference distribution. Denote by

λ(i)(σ2) the i−th singular value of the Jacobian of fσ2 evaluated at a given point x ∈M. Then for
all x ∈ M for all σ2 ∈ (σ2

min, σ
2
max) it holds that dλ

(i)

dσ2 = 0 if and only if λ(i) is a singular value
associated to on-manifold direction.

Proof of Proposition 1

Let x ∈M and σ2 ∈ (σ2
min, σ

2
max). SinceM is a d−dimensional C2 manifold, there exists an open

neighborhood Bx of x inM, an open set Ux in Rd, and an invertible map f : Ux 7→ Bx, Ux ⊂ Rd,
such that f and f−1 are twice continuously differentiable. It follows that the Gram determinant of
Jf is non-zero for all x ∈ Bx, i.e. det Jf (f−1(x))TJf (f−1(x)) 6= 0 ∀x ∈ Bx. We exploit this by
constructing a local diffeomorphism f̃ in the following.

For that we denote by Au the matrix with columns consisting of normal vectors spanning the normal
space in x = f(u), u ∈ Ux. With Vx ⊂ RD−d, we define f̃ : Ux × Vx ⊂ Rd × RD−d → B̃x for
some B̃x ⊂ X̃ as follows:

f̃(u, v) = f(u) + σAuv. (1)

Since the Gram determinant of f(u) is non-zero, f̃ is a diffeomorphism which follows from the
inverse function theorem, see proof of the main Theorem in [4]. Note that qσ2 is uniquely determined
by the latent distribution and the embedding f̃ . Hence, if we fix the latent distribution to be
standard Gaussian, we have that the NF used to learn qσ2 must be f̃ for all (u, v), i.e. f̃σ2(u, v) =

f̃(u, v),∀(u, v) ∈ Ux × Vx.

The Jacobian of f̃ is given by

Jf̃ (u, v) =
[
Jf (u) + σ ∂

∂uAuv σ Au
]

(2)

where ∂
∂u denotes the Jacobian of a function depending on u, and the dashed line seperates two block

matrices. Evaluated at (u, 0), we have that
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Jf̃ (u, 0) = [ Jf (u) σAu ] (3)

with the columns of Jf (u) spanning the tangent space at x and the columns of Au the normal space.
The singular values of Jf̃ (u, 0) are given by the eigenvalues of

Jf̃ (u, 0)TJf̃ (u, 0) =

(
Jf (u)TJf (u) σJf (u)T ·Au
σATu · Jf (u)T σ2ATuAu

)
=

(
Jf (u)TJf (u) 0d×D−d

0D−d×d σ2ATuAu

)
(4)

(5)

where in the last step we have exploited that the columns of Jf and Au are orthogonal. Therefore,
the eigenvalues of Jf̃ (u, 0)TJf̃ (u, 0) consists of the d eigenvalues of Jf (u)TJf (u) and the (D − d)

eigenvalues of σ2ATuAu. Therefore, we have that dλ(i)

dσ2 = 0 if and only if λ(i) is an eigenvalue
of Jf (u)TJf (u). However, these eigenvalues are exactly in direction of large variability, i.e. in
on-manifold direction. This was to be shown.

A.2 Complexity of Algorithm 1

The complexity of the algorithm depends on a) the complexity to train N NFs, b) calculating the
Jacobian of K samples, and c) calculating the singular value decomposition of the Jacobian.

The complexity of a) depends on the choosen architecture for the NFs. It is important to note that for
bounded data, such as images, N = 3.

The complexity of b) depends on the operational complexity of the NF i.e. the number of operations
needed for one forward pass, see [10].

The complexity of c) is given by O(D3).

A.3 Convergence of Algorithm 1

Let p(x) = N (0,Σ) be a Gaussian in Rd and denote the ordered eigenvalues of Σ as σ2
1 ≤ . . . . ≤ σ2

d.
Now, we embedd Rd into RD by padding the missing (D − d) coordinates with zeros, and add
isotropic Gaussian noise with co-variance σ2ID. Then, as we have seen in Section 4 of the main text,
the true NF f transforming x̃ ∼ q(x̃) into u = f−1(x̃) distributed according toN (0, ID) is given by

f−1(x) = Σ̄−
1
2 (x− µ) (6)

with Jacobian
Jf−1(x) = Σ̄−

1
2 = STD−

1
2S (7)

where D
1
2 = diag(

√
σ2
1 + σ2, . . . ,

√
σ2
d + σ2, σ, . . . , σ) and S is orthonormal and consists of the

eigenvectors of Σ̄. Thus, the eigenvalues of Jf−1(x) are given by

λ(i)(σ2) =

{
1√

σ2
i+σ

2
, for i = 1, . . . , d

1
σ , else.

(8)

Note that the function to learn these trajectories, λ̂ = β√
α2+σ2

, is convex in α. Therefore, we assume
without loss of generality that αi = σi for all i = 1, . . . , d, and αi = 0 for all i = d + 1, . . . , D .
Remember that

F (α) = #
{
i ∈ {1, . . . , D} s.t. α(i) ≤ α

}
, (9)

thus F (α) counts the number of eigenvalues with decay onset ≤ α, and we want to find the
manifesting plateau.

Let us assume that σ2
1 = · · · = σ2

d in the following. Then, F (α) is the sum of two step functions
where one step is at α = 0 with height (D − d), and the other step is at α = σ1 with height d. Note
that a single step function can be learned arbitrarily well with a sigmoid function sigmoid1(σ2),
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sigmoid1(α) =
a1

1 + e−b1(α−c1)
, (10)

if b1 → ∞, see [7]. Thus, in the case where σ2
1 = · · · = σ2

d, we can learn F (α) arbitrarily well
with the sum of two sigmoid functions sigmoid1(α) + sigmoid2(α). Since the optimization problem
can be easily turned into an optimazation problem which is convex in a1 and a2, we have that
a1 = (D − d) and a2 = d.

Now if ∆i := σ2
i+1 − σ2

i ≥ 0 is smaller than the length of the plateau, ∆i � σ1, a1 must still be
D − d and thus a2 = d as needed. Even if have some variation in the off-manifold directions, the
same holds true as long as the differences are much smaller that the length of the plateau.

A.4 Computing σmax

Our proposed method to estimate the intrinsic dimensionality for bounded data critically depends on
the threshold σmax. Indeed all the eigenvalues having an onset α larger than σmax are declared as
eigenvalues associated to eigenvectors corresponding to directions of large variability (i.e. manifold
directions). In this section, we compute this threshold in the presence of lower and upper bounds for
the variable x. Loosely speaking, we want to compute the maximal amount of noise we can add to a
bounded variable before it has a chance of 50% of hitting the bounds.

Practically, let us assume that the variable x is bounded, i.e. x ∈ [0, 1] (e.g. a pixel has a minimal
and a maximal intensity). Adding a zero-mean Gaussian noise with standard deviation σ to x is not
possible as such without some rectification. The noisy version x̃ of a pixel with value x is given by

x̃ = max (min (x+ ε, 1) , 0) ε ∼ N (0, σ2) (11)

For a given x, the probability that x̃ hits one of the bounds is given by

p(x̃ = 0 or x̃ = 1|x) = 1−
∫ 1

0

N
(
x̃;x, σ2

)
dx̃

= 1− 1

2

(
erf

(
1− x√

2σ

)
− erf

(
− x√

2σ

))
x (12)

where erf(z) = 2√
π

∫ z
0

exp(−t2)dt is the error function. If p(x) denotes the distribution of pixel
values, then the probability that a noisy pixel hits a bound is given by

f(σ) =

∫ 1

0

p(x̃ = 0 or x̃ = 1|x)p(x)dx (13)

If we assume that p(x) = Uniform([0, 1]), we get

f(σ) = 1− erf

(
1√
2σ

)
−
√

2

π

(
exp

(
− 1

2σ2

)
− 1

)
σ (14)

σmax is defined as the value of σ such that 50% of noisy pixels hit the bound, i.e.

σmax = f−1
(

1

2

)
' 0.68 (15)

B Additional Experiments

B.1 Lolipop

In [11], a manifold consisting of regions of different ID was considered - a 1 dimensional line
segment, and a two dimensional disk such that the overall manfiold resembles a lolipop. The aim
was to show that the LIDL method can esitmate the ID locally, although it was trained globally on
all samples. We repeat this experiment and report the result in Figure S2. There, we display the
estimated ID of 30 randomly selected examples together with 1000 samples from the dataset. The
local ID is estimated correctly for both regions. However, note that by construction our estimate will
never estimate d = D. Therefore, we embed the lolipop in R3 before training.
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Figure S1: Fraction of pixels hitting the bound as a function of the noise level σ. σmax is chosen
such that f(σ) = 0.5.

B.2 OOD detection

OOD detection: Having trained on a sepcific dataset, such as the StyleGan 2d image manifold, how
does the ID changes for an out-of-distribution (OOD) sample? In table S1, we report the average
ID estimated on K = 50 samples from different datasets. The rows show the datasets we trained
on, while the columns represent the datasets on which we estimate the ID. As we can see, for the
StyleGan2d and Stylegan64d the ID of OOD samples is significantly different than for in-distribution
samples (note that StyleGan2d is included in StyleGan 64d). Thus, the ID could be used as a OOD
detection method where samples with an ID different than the estimated one for in-distribution
samples are classified as OOD. However, for the CelebA dataset as in-distribution, the difference is
not significant anymore (though on average OOD samples have a higher ID). This is not suprising as
it was already obseved in [6] that certain flow’s architecture lead to learning local pixel correlations
rather than semantic structure. Therefore, NFs trained on complex data will yield a similar likelihood
value when evaluating on less complex data.

Datasets / OOD StyleGan2d StyleGan64d CelebA
StyleGan2d 4.06± 1.75 151.72± 54.04 272.14± 261.71
StyleGan64d − 62.24± 18.64 137.04± 37.1

CelebA 144.08± 15.22 160.66± 30.97 126.62± 26.5
Table S1: Average ID estimates for 50 samples using our method trained and evaluated on different
datasets (rows and columns, respectively).

C Training details

C.1 Low-dimensional syntehtic datasets

We evaluate our method on different manifolds and distributions as proposed in [4], see Figure S3
,S4 and S5 for a depiction of the different distributions (left column), evolution of singular values
(middle column) and our estimate based on F (α) (right column). We refer to the Appendix B in [4]
for technical details of the distributions. All the intrinsic dimensionalities are correctly retrieved. We
repeated the experiments using uniform instead of Gaussian noise but did not find any significant
difference. Though, when the flow is not expressive enough, we failed to estimate the true ID.
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Figure S2: Samples from the lolipop dataset. In black: Test points on which the ID was estimated
together with the value of the estimator.

As in [4], we use a Block Neural Autoregressive Flow (BNAF) [2] with 3 hidden layers consisting of
210 hidden dimensions each to train qσ2 for σ2 ∈ [σ2

1 , σ
2
N ] using Adam optimizer [5]. We train for

N = 26 different σ2, with σ2
1 = 10−9 and σ2

N = 10.

C.2 High-dimensional synthetic datasets

We use a BNAF, see Table C.2, to train qσ2 for σ2 ∈ [σ2
1 , σ

2
N ] using Adam optimizer. We train

for N = 20 different σ2, with σ2
1 = 10−9 and σ2

N = 2.0. In Figure S6, we show the evolution of
singular values together with our estimate based on F (α) as described in the main text for D = 400.
The estimated dimensionality d̂ = 200.7 is very close to the ground truth ID (d = 199).
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Data dimension hidden layers hidden dimension total parameters epochs
20 3 200 210,440 500
40 5 200 218,480 500
60 5 240 319,800 500
80 5 320 567,200 500

100 5 300 513,800 500
120 5 280 474,040 500
140 5 300 474,040 500
160 5 320 618,560 500
180 5 360 782,280 500
200 5 400 965,200 500
300 4 600 1,806,600 200
400 4 800 3,208,800 200

Table S2: BNAF details for circle experiments.

C.3 StyleGan image manifolds

We use rational-quadratic splines [3] to train qσ2 for σ ∈ [σ1, σN ] using AdamW optimizer [9] and
cosine annealing [8]. We use the same settings as in [1] which also trained an NF on the StyleGan
2d and 64d manifolds. We train for N = 3 different σ2, with σ1 = 10−9, σ1 = 255 · 0.68 and
σN = 255 · 102.
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Figure S3: Mixture and correlated on sphere and torus (left column). Singular values as a function of
σ2 in log-log scale (middle column). F (α) in orange and F̂ (α) in dashed green (right column). In
all the 4 examples the intrinsic dimension is correctly retrieved (i.e. d̂ = 2).
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Figure S4: Mixture/unimodal and correlated on swiss roll/ hyperboloid (left column). Singular values
as a function of σ2 in log-log scale (middle column). F (α) in orange and F̂ (α) in dashed green (right
column). Here also, in all the 4 examples the intrinsic dimension is correctly retrieved (i.e. d̂ = 2).
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Figure S5: Exponential on thin spiral and the latent distribtuion used to generate points on the stiefel
manifold (left column). Singular values as a function of σ2 in log-log scale (middle column). F (α)

in orange and F̂ (α) in dashed green (right column). The intrinsic dimension is correctly retrieved
(i.e. d̂ = 1) for those two examples

d=200

Figure S6: Left: Singular values as a function of σ2 in log-log scale (middle column). Right: F (α)

in orange and F̂ (α) in dashed green (right column).
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