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Figure R1: Example of the original auxiliary dataset (the first row), their noisy counterparts (the
middle row), and directly construct data without an auxiliary dataset [R11] (the last row). @Re-
viewer iCGz

Table R1: Evaluating mixing unlearned data in the clean dataset on CIFAR10. The results demon-
strate that mixing the unlearned samples into the constructed uploaded data for incremental learning
negatively impacts the unlearning effect, as reflected by the increasing backdoor accuracy, but the
model utility keeps. @Reviewer BZGC

On CIFAR10 Mixed 0% of Unlearned Data 2% 4% 6% 8%

Model Acc. 73.89% 73.85% 73.78% 73.25% 73.03%
Backdoor Acc. 9.40% 13.60% 33.40% 35.40% 43.26%
Running Time 6.63 6.72 6.83 7.01 7.16

Table R2: Evaluating learning rate on MNIST and CIFAR10. The results demonstrate that a larger
learning rate can speed the convergence to achieve unlearning, costing less computation and achiev-
ing a better unlearning effect (low backdoor accuracy by removing). The tradeoff is that it slightly
decreases the model utility at the same time, which is not too much on MNIST but a little worse on
CIFAR10. @Reviewer iCGz, @Reviewer Gp18

Metrics Learning Rate: 0.0001 0.0002 0.0004 0.0006 0.0008

On MNIST
Model Acc. 98.52% 97.84% 96.72% 95.88% 95.37%

On MNIST Backdoor Acc. 9.67% 9.53% 9.17% 8.20% 8.67%
Running Time 3.92 2.72 1.83 1.61 1.56

On Cifar10
Model Acc. 73.89% 72.98% 68.69% 65.23% 62.23%

On Cifar10 Backdoor Acc. 9.40% 6.20% 5.80% 4.00% 2.48%
Running Time 6.63 3.72 2.83 2.51 2.23

Table R3: Membership inference attack accuracy after unlearning by OUbL. The results demonstrate
that OUbL can effectively reduce the MI accuracy, achieving a significant unlearning performance.
@Reviewer 5Whi

Dataset Original Model ASR and CSR, 1% 2% 3% 4%

On MNIST 63.86% 53.87% 53.61% 53.02% 52.86%
On CIFAR10 77.43% 61.47% 61.30% 61.10% 60.92%
On CelebA 58.37% 51.94% 51.32% 51.04% 50.69%
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Table R4: The detailed running time. The results demonstrate that although we put more computa-
tional cost on the user side, it is affordable for users compared to the FL users in BFU. @Reviewer
Ha5f

Dataset Total running time
of OUbL (second)

Unlearning update
estimation (User side)

Unlearning noise generation
(User side)

Unlearning by incremental
learning (Server side)

Total running time
of BFU

On MNIST 3.92 1.06 1.45 1.41 16.03
On CIFAR10 6.64 1.02 2.10 3.52 141.26
On CelebA 2.26 0.72 0.83 0.71 176.86

Table R5: Experimental results on Adult. The task of the Adult dataset is to predict whether an
individual’s income exceeds $50,000 per year, which is a binary classification. We first backdoor
some samples in Adult by setting the “education-num” feature to 2 and changing the corresponding
label. The aim of unlearning is to remove the influence of these backdoored samples, and the
results are presented in the following table. Since the task on the Adult dataset is a binary task,
dropping the backdoor accuracy of around 50% is similar to the random selection. Our method
can effectively degrade the backdoor accuracy to around 50%, guaranteeing the effectiveness of
unlearning. @Reviewer Gp18

On Adult Original ASR and CSR, 1% 2% 3% 4%

Model Acc. 85.32% 81.66% 81.69% 79.93% 80.79%
Backdoor Acc. 100.00% 54.81% 52.81% 50.02% 49.52%
Running Time 15.31 0.54 1.03 1.51 1.93

G SCENARIOS AND THREAT MODEL

@Reviewer BZGC, @Reviewer iCGz, @Reviewer 5Whi, @Reviewer EoYb, @Reviewer
Ha5f,@Reviewer Gp18

Machine Unlearning Service Scenarios. To facilitate understanding, we introduce the problem in
a Machine Learning as a Service (MLaaS) scenario. In the MLaaS setting, there are two key entities:
a ML server that trains models as ML services, and users (data owners) who contribute their data
for ML model training. In such scenarios, machine unlearning occurs when users realize that some
of their previously contributed samples are private and wish to revoke these data contributions from
the trained models.

The ML Server’s Ability. We assume the ML server is honest but curious [R1]: while it honestly
hosts and provides ML services, including model training and updating, it may still be curious
about private information, such as unlearned data and unlearning intentions, if there are other
operations. Informing the server of unlearning intentions to customize unlearning operations is
considered a privacy threat because it reveals users’ unlearning purposes, potentially enabling the
server to prepare targeted unlearning attacks [R1,R2]. Therefore, in our setting, we assume the ML
server has only the learning algorithm A and the model with parameters ✓ to meet strict privacy
requirements. The ML server will not conduct unlearning operations other than training the model
using the learning algorithm A for model updating.

Moreover, we assume the ML server does not store the original training data and cannot access
the erased data, which should not be exposed to the server again due to privacy concerns. This
assumption is reasonable in both real-world and privacy-preserving MLaaS scenarios. In real-world
applications, vast amounts of data are generated daily, leading to the need of prompt model updates.
Consequently, many models are trained using incremental or continual learning techniques [R3,R4].
Therefore, the server does not retain the entire raw data due to its large size [R5,R6]. In privacy-
preserving scenarios, the ML server is restricted from directly accessing private training data from
users due to privacy concerns [R7,R8].

The Users’ Ability. The training data D was collected from all users and was used to train the
model ✓o. The unlearning user has the erased data Du ⇢ D. To estimate the unlearning update as
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the target for unlearning noise generation in our method, we assume the unlearning user can access
the trained model ✓o, which is a common setting even in many privacy-preserving scenarios such
as FL. We assume the unlearning user has auxiliary clean examples Da so that they can synthesize
a new dataset based on it with the unlearning noise, replacing the erased data Du for achieving the
unlearning effect with only incremental learning using the synthesized dataset.

H DISCUSSION ABOUT DISTINGUISHING BENIGN UNLEARNING USERS AND
MALICIOUS USERS @REVIEWER ICGZ

To distinguish a benign user who wants to delete their data from a malicious user and who wants to
upload noisy gradients to sabotage the model performance, we can only propose some possible ways
for the server to distinguish these two kinds of users. The most significant difference is the purposes
of the unlearning user and the malicious user. Unlearning users want to remove some knowledge of
their data from the model, and they also want to preserve the model’s utility. Therefore, most clean
samples and the auxiliary data they choose are in the same distribution as the genuine samples,
and the synthesized noise should not influence the utility of the remaining dataset, as shown in the
second objective of Eq.(4). However, the purpose of the malicious user is to sabotage the model
performance. Their uploaded data will not be consistent with the genuine samples, so they can
degrade model utility. We believe checking the similarity between the uploaded samples and genuine
samples would be a possible solution. However, detailed poisoning attacking methods may need
different solutions, and the problem is valuable to investigate in future work.

I DISCUSSION ABOUT DIFFERENCE BETWEEN EXISTING UNLEARNING
METHODS @REVIEWER GP18

Compared with existing representative approximate unlearning methods [R19, R20, R21], our
method also has the following differences. Specifically, the key techniques used in [R20] are the
Hessian approximation and Fisher information, which is similar to our unlearning update estimation
method that is also based on the Hessian matrix. The difference is that we use Hessian-vector prod-
ucts (HVPs) while [R20] uses the Fisher information to improve the efficiency. The HVPs solution
is more efficient and more suitable to our scenarios in which the unlearning user cannot access the
remaining dataset. [R19] and [R21] are approximate unlearning methods based on techniques called
error maximizing. They generate error-maximizing noise for the unlearned samples to remove the
influence from the model. One significant advantage of [R19] and [R21] is that they do not require
access to the remaining training dataset. Compared with them, we put more effort into designing the
method to further hide the unlearning data and the unlearning intentions from the server.

J ADDITIONAL EXPERIMENTS ON THE MORE PRACTICAL BLACK-BOX
SCENARIOS @REVIEWER HA5F

To prove the feasibility of our method in the more practical black-box scenarios, we conducted addi-
tional experiments on the black-box setting on MNIST and CIFAR10. In this setting, the unlearning
user cannot access the server’s current model. The unlearning user only knows the type of the model
(MLP on MNIST and CNN on CIFAR10 in our experiment), and the user only has the erasing data
and the auxiliary data. We set the size of auxiliary data to 1% of the server-side training data. Other
unlearning settings are the same as the main setting in the paper, where we first backdoor the erasing
data for model training and aim to unlearn these backdoored erasing data.

With these settings, the unlearning user trains a shadow model (✓s) with 94.55% accuracy on MNIST
and 42.57% accuracy on CIFAR10. By contrast, the accuracy of the server’s model (✓o) trained with
the entire dataset is 98.74% on MNIST and 78.80% on CIFAR10. Since both models are optimized
on the erasing dataset, the proposed efficient unlearning update estimation (EUUE) method is effec-
tive for simulating the update of the unlearning data based on the shadow model. Hence, we can
generate effective noise for the incremental learning data to approach the influence of unlearning.
Then, we upload the constructed data to the server side for incremental learning, aiming to achieve
the unlearning effect at the same time. We present the results as follows in Table R6.
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Table R6: Additional experiments on the black-box setting. On both datasets, OUbL achieves effec-
tive unlearning performance, effectively removing the backdoor influence. The backdoor removal
effectiveness in the black-box setting is slightly lower than in the white-box setting. However, the
negative impact on the model utility is also mitigated. These experimental results demonstrate the
feasibility of OUbL in a more practical scenario, which lets the unlearning user not rely on the as-
sumption of white-box access to the trained model in the federated learning scenarios. @Reviewer
Ha5f

Metrics USR = 1% 2% 3% 4% 5%

Model Acc.(white-box) 98.52% 98.55% 98.15% 98.19% 95.43%
On MNIST Model Acc. (black-box) 98.26% 98.20% 98.31% 98.27% 98.54%

Backdoor Acc. (white-box) 9.67% 10.08% 9.83% 10.42% 10.57%
Backdoor Acc. (black-box) 12.33% 9.58% 11.67% 10.64% 11.83%

Model Acc.(white-box) 73.89% 74.57% 74.50% 75.15% 75.99%
On Cifar10 Model Acc. (black-box) 76.06% 75.98% 74.93% 75.06% 74.68%

Backdoor Acc. (white-box) 9.40% 7.30% 7.87% 8.70% 7.24%
Backdoor Acc. (black-box) 13.20% 10.20% 8.40% 10.25% 8.28%
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