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ABSTRACT

In this paper, we consider zero-order optimization setting, in which it is not pos-
sible to return the function values; instead, the oracle is only capable of compar-
ing these values. In order to address this formulation, one can utilize the well-
established stochastic three-point method, which is able to select the minimum
from the three points under consideration at each iteration. Furthermore, in this
setting, we assume that the oracle produces inaccurate and random results. In
particular, we consider strategies in which the probability of selecting the correct
value is either constant (determined by a coin flip) or dependent on the differ-
ence between the values of the function at the current point and the minimum of
the three points selected at this iteration. In a further strategy, we consider the
possibility that the difference value may be subject to noise, whether random or
deterministic. These settings aim to obtain a more approximate description of the
real-world problems that arise, for instance, in human feedback systems. We se-
lect parameters in the stochastic three-point method for all considered strategies in
the different cases and evaluated the convergence rates for strongly convex, con-
vex and non-convex optimization problems. The obtained results are verified on
practical examples.
Keywords: zero-order optimization · derivative-free optimization · stochastic op-
timization · stochastic three-point method · human feedback

1 INTRODUCTION

One of the most significant challenges in optimization is the availability of oracles, which are infor-
mation sources that provide important data such as function values and gradients (Gasnikov et al.,
2023). In many real-world applications, obtaining gradients is a major challenge. This is especially
true for the following cases: ”black-box” functions (Liao et al., 2024), (Lobanov, 2024), for which
we do not have access to their internal structure or how they are computed, and consequently can
not obtain gradients for them; or complex simulators, where the computational cost makes gradient
acquisition extremely expensive and impractical. Such problems frequently arise in the context of
real-world applications, including, for example, classical machine learning (Chen et al., 2023), deep
learning (Zhang et al., 2020), reinforcement learning (Yani et al., 2021), natural language process-
ing (Munos et al., 2023) or emerging signal processing (Liu et al., 2020).

In instances where the gradient of a function is unavailable, gradient-free optimization methods may
be employed as an alternative solution. The field of zero-order methods (Nesterov & Spokoiny,
2017) represents a significant area of research that has been developing for a considerable period of
time, resulting in a substantial body of literature (Alarie et al., 2021), (Nocedal & Wright, 2006),
(Conn et al., 2009). Nowadays, zero-order methods, which approximate the gradient through fi-
nite differences, occupy a distinctive position within the optimization community. Additionally,
there are other well-known approaches, such as Monte Carlo methods (Mohamed et al., 2020), di-
chotomy methods, and the ellipsoid method (Nemirovski). Gradient-free methods perform well on
low-dimensional problems; however, they converge more slowly and require more careful tuning
(Sudharshan & Jeyakumar, 2021).

The development of the theory of gradient-free optimization has a long history, but modern real-
ities require the investigation of novel formulations that are also zero-order (Borghi et al., 2024),
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(Hutchinson & Alizadeh, 2024), (Sahinoglu & Shahrampour, 2024). To illustrate, there are issues
that require input from human beings, such as the ranking data that is displayed in search engines
or social media feeds. Such tasks frequently arise in the context of reinforcement learning (Ouyang
et al., 2022), (Bai et al., 2022), (Tang et al., 2023). Settings described above include a more complex
model in which the oracle can no longer return function values, but is instead capable of comparing
them with each other and output the point at which the value is smaller. Such examples are evident
in the work of (Lobanov et al., 2024). However, a significant limitation of these results is that it is
more theoretical than practical. This approach necessitates the sampling of a substantial number of
points along a single direction, which yields favourable theoretical convergence.

A more practical approach would be to change the direction at each iteration, which may yield faster
results for some problems. That is the reason in our paper we consider one of the classical direct
search methods: the stochastic three-point method (STP) (Bergou et al., 2020) in a more complex
model of oracle described above.

1.1 CONTRIBUTIONS

Different concepts of the oracle: In this study, we examine a zero-order oracle that is susceptible to
errors in the comparison of function values. A number of settings of this inexactness is considered,
including the following:

∙ The oracle’s output is randomly generated with a constant probability, and in the event of an
incorrect response, the current value is returned. In the context of human feedback, this corresponds
to the situation that the user sometimes sees no difference between some options to choose from and
leaves the current option unchanged.

∙ The previous setting but the probability is equal to a sigmoid depending on the difference of
function values between the next 𝑥𝑘+1 and the current 𝑥𝑘 value of the argument. This setting
reflects the sensitivity of the system, whereby a greater difference will result in a greater perception
of dissimilarity by the user.

∙ And more complex, in addition to the probability with sigmoid dependence, the oracle responses
are subject to noise, comprising both random and deterministic components, which are added to the
difference.

The impact of our concepts of the oracle on the original algorithmic complexities: Similarly
to the paper of (Bergou et al., 2020), the convergence of the algorithm is evaluated for three cases
of the 𝐿-smooth target function, namely non-convex, convex and strongly convex. We analyse
how convergence differs between different concepts of the oracle and the original deterministic
algorithm from (Bergou et al., 2020). In light of the increased complexity of the productions, a
modified analysis is required for each of the aforementioned items. We also present the parameters
that should be selected for the methods to obtain the convergence estimates described above.

Experiments: We conduct experiments on convex and strongly convex target functions, with pa-
rameters selected to align with these classes. The experiments illustrate the impact of the problem
formulation on the convergence of the method, particularly evident in the formulations with the
sigmoid function.

2 PROBLEM STATEMENT
2.1 NOTATION

By E [·] is denoted the mathematical expectation and by E [·|𝐴] – the conditional mathematical
expectation (subject to condition 𝐴). We denote by 𝒟 a probability distribution over R𝑛. The
Euclidean norm is denoted by ‖ · ‖2.

For the next notation, it is essential to make the following assumption as in the paper of (Bergou
et al., 2020), which can be interpreted as a definition of a norm dependent on 𝒟, denoted by ‖ · ‖𝒟.
Assumption 1. The probability distribution 𝒟 on R𝑛 is characterised by the following properties:

1. 0 < 𝛾𝒟 := E𝑠∼𝒟 ‖𝑠‖22 < ∞.

2. ∃ a constant 𝜇𝒟 > 0 and norm ‖ · ‖𝒟 on R𝑛 such ∀𝑔 ∈ R𝑛,

E𝑠∼𝒟 |⟨𝑔, 𝑠⟩| ≥ 𝜇𝒟‖𝑔‖𝒟. (1)
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2.2 ASSUMPTIONS

In this subsection, we introduce several assumptions that we use in the paper.
Assumption 2. The objective function 𝑓 is said to have a Lipschitz continuous gradient with a
constant 𝐿 > 0 (it is 𝐿-smooth), i.e. the following conditions are met:

‖∇𝑓(𝑥)−∇𝑓(𝑦)‖2 ≤ 𝐿‖𝑥− 𝑦‖2, ∀𝑥, 𝑦 ∈ R𝑛

Additionally, the function 𝑓 is bounded from below by 𝑓* = 𝑓(𝑥*) ∈ R, 𝑥* ∈ R𝑛 and 𝑓(𝑥) ≥
𝑓(𝑥*) for all 𝑥 ∈ R𝑛.

This is one of the most fundamental assumptions for analyzing a function.

In order to proceed, it is necessary to consider one of the gradient-free methods that can be employed
in conjunction with the oracle that we use: the Stochastic Three Points (STP) method (Bergou et al.,
2020). At iteration 𝑘 of STP, a random direction 𝑠𝑘 is generated by sampling from the selected
distribution 𝒟. The subsequent iteration is as follows:

𝑥𝑘+1 = argmin
{︀
𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥

𝑘 − 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘)
}︀
, (2)

where 𝛼𝑘 > 0 is an appropriately chosen stepsize. We make the same assumption regarding the
function 𝑓 and the probability law 𝒟 as in the paper of (Bergou et al., 2020).
Assumption 3. The probability distribution 𝒟 on R𝑛 is such that it generates points that lie on the
unit hypersphere. In other words, every point 𝑠 sampled from 𝒟 has a Euclidean norm of 1. Given
that all norms in R𝑛 are equivalent, there exists a positive constant 𝐶𝒟 such that for all 𝑥 ∈ R𝑛:
‖𝑥‖2 ≤ 𝐶𝒟‖𝑥‖𝒟.

Note also several options for the distribution law 𝒟, which are discussed in the STP paper (see
Lemma 3.4 from the paper of (Bergou et al., 2020)).
Lemma 4. Let 𝑔 ∈ R𝑛. If the distribution law 𝒟 is

1. the uniform distribution on the unit sphere in R𝑛, then

𝛾𝒟 = 1, E𝑠∼𝒟|⟨𝑔, 𝑠⟩| ∼ 1√
2𝜋𝑛

‖𝑔‖2, ‖ · ‖𝒟 = ‖ · ‖2 and 𝜇𝒟 ∼ 1√
2𝜋𝑛

.

2. the uniform distribution on {𝑒1, . . . , 𝑒𝑛}, then

𝛾𝒟 = 1, E𝑠∼𝒟 |⟨𝑔, 𝑠⟩| = 1
𝑛‖𝑔‖1, ‖ · ‖𝒟 = ‖ · ‖1 and 𝜇𝒟 = 1

𝑛 .

The next assumptions are used in only a few sections. At the beginning of these sections there are
references to the assumptions used.
Assumption 5. The objective function 𝑓 is said to be convex, i.e. the following condition is met:

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩, ∀𝑥, 𝑦 ∈ R𝑛.

Moreover, the function 𝑓 has a minimizer 𝑥* and a bounded level set at 𝑥0, i.e. the following
condition is satisfied:

𝑅0 := max{‖𝑥− 𝑥*‖*𝒟 : 𝑓(𝑥) ≤ 𝑓(𝑥0)} < +∞, ∀𝑥 ∈ R𝑛,

where ‖𝜉‖*𝒟 := max{⟨𝜉, 𝑥⟩ | ‖𝑥‖𝒟 ≤ 1} defines the dual norm to ‖ · ‖𝒟.
Assumption 6. The objective function 𝑓 is said to be 𝜆-strongly convex with respect to the norm
‖ · ‖𝒟, i.e. the following condition is fulfilled:

𝑓(𝑦) ≥ 𝑓(𝑥) + ⟨∇𝑓(𝑥), 𝑦 − 𝑥⟩+ 𝜆
2 ‖𝑥− 𝑦‖2𝒟, ∀𝑥, 𝑦 ∈ R𝑛.

2.3 THE DESCRIPTION OF THE MODEL UNDER CONSIDERATION

In this paper, we consider the problem of minimizing a given smooth objective function 𝑓 : R𝑛 → R
over the real vector space R𝑛

min
𝑥∈R𝑛

𝑓(𝑥). (3)

As previously stated, it is assumed that we do not have access to the derivatives of 𝑓 and only have
access to a function evaluation oracle: it is only capable of comparing points with each other, but
not of counting the difference between the values of the function at those points. Formally, the
oracle can only return a minimum of several values, including an error, which are described further
in several ways.
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3 THREE MODIFICATIONS OF THE ORACLE FOR THE STP METHOD

As mentioned above, in the context of real-world tasks, such as recommender systems, issues related
to metrics arise. Metrics such as click-through rate (CTR) or precision are discrete and may not
change with minor alterations to the model parameters. Consequently, even when utilizing smooth
functions to model recommendations, gradient-free optimization methods may become ”stuck” due
to the discrete nature of the metrics. However, the STP method does not take into account the ”stuck”
problem described above. This is the issue that we seek to address in the proposed modification of
the oracle for the STP method.

As mentioned above, the oracle gives an inexact solution, i.e. the equation (2) is obtained only with
some probability:

𝑥𝑘+1 =

{︂
argmin

{︀
𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥

𝑘 − 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘)
}︀
, with probability 𝑝𝑘,

𝑥𝑘, with probability 1− 𝑝𝑘
, (4)

where the probability 𝑝𝑘 depends on the model considered.

Strategies for obtaining this probability can be different, and we consider them in the next three
subsections.

3.1 THE INITIAL MODIFICATION OF THE ORACLE FOR STP (WITH A CONSTANT
PROBABILITY)

In our initial modification of the oracle for STP, we assume that with a constant probability 𝑝, a
method step is taken, and with probability 1− 𝑝, the value of 𝑥𝑘 remains unchanged. Consequently,
the iteration is represented in the equation (4), where 𝑝 ∈ [0, 1] is a constant.

The following theorem gives the expressions that we use later on for convergence estimates.
Lemma 7. If Assumptions 1 and 2 hold, then for all 𝑘 ≥ 0,

E
[︀
𝑓(𝑥𝑘+1) | 𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 𝑝𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐿𝑝

2 𝛼2
𝑘, (5)

and
𝜃𝑘+1 ≤ 𝜃𝑘 − 𝑝𝜇𝒟𝛼𝑘𝑔𝑘 + 𝐿𝑝

2 𝛼2
𝑘, (6)

where 𝜃𝑘 = E[𝑓(𝑥𝑘)] and 𝑔𝑘 = E[‖∇𝑓(𝑥𝑘)‖𝒟].

See the proof in Appendix A.1.

As can be observed, the results obtained are comparable to those obtained for the STP method (see
Lemma 3.5 from (Bergou et al., 2020)). The only difference is that the final two summands are
multiplied by the constant 𝑝.

3.2 THE PRINCIPAL MODIFICATION OF THE ORACLE FOR STP AND ITS SPECIAL CASE (WITH
A SIGMOID PROBABILITY DISTRIBUTION INCORPORATING NOISE)

In this section, we set the main challenge of our study. In real-world problems, it is not uncommon
for the desired result to be obtained with some probability, and for the influence of noise on the
obtained result to be significant. Therefore, in our theoretical formulation, we attempt to take into
account the aforementioned aspects of practical challenges.

As in the previous modification, we assume that with a probability 𝑝𝑘, a method step is taken, and
with probability 1 − 𝑝𝑘, the method remains in place (see the equation (4)). The difference is that
here 𝑝𝑘 is a sigmoid function with noise:

𝑝𝑘 = (1 + exp (−𝑓(𝑥𝑘) + min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)}+∆𝑘))

−1.

In order to clarify the nature of the noise ∆𝑘, it is necessary to make the following assumption.
Assumption 8. ∆ represents random noise, which can be broken down into the following sum:

∆ = 𝜉 + 𝛿,

where |𝛿| < ∞, E [𝜉] = 0, and E
[︀
𝜉2
]︀
= 𝜎2.
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We also assume that the noise ∆ can be equal to 0, this special case is considered further. The
step there is as in the equation (4), but unlike the principal modification of the oracle, this one
does not take noise into account. Subsequently, we evaluate the convergence of this modification.
Before the lemma, we need an assumption for the proof (it is not needed for the special case under
consideration).

Assumption 9. 𝜉 is a sub-Gaussian random variable, i.e. E[𝑒𝑐𝜉2 ] < ∞ for some constant 𝑐 > 0.
Using that E[𝜉] = 0, this is equivalent to the statement that

E[𝑒𝑞𝜉] ≤ 𝑒𝜎
2𝑞2/2,

where 𝑞 ∈ R, E[𝜉2] ≤ 𝜎2.

The following lemma can now be formulated:
Lemma 10. If Assumptions 1, 2, 8 and 9 hold, then for all 𝑘 ≥ 0,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 1

1+𝑒𝜎2/2𝑒𝛿
· 𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐿

2 𝛼
2
𝑘, (7)

and
𝜃𝑘+1 ≤ 𝜃𝑘 − 1

1+𝑒𝜎2/2𝑒𝛿
· 𝜇𝒟𝛼𝑘𝑔𝑘 + 𝐿

2 𝛼
2
𝑘, (8)

where 𝜃𝑘 = E[𝑓(𝑥𝑘)] and 𝑔𝑘 = E[‖∇𝑓(𝑥𝑘)‖𝒟].

We also present a special case of Lemma 10, where the noise ∆ is equal to 0.
Lemma 11. If Assumptions 1, 2 and 8 hold and ∆ = 0, then for all 𝑘 ≥ 0,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 1

2𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐿
4 𝛼

2
𝑘, (9)

and
𝜃𝑘+1 ≤ 𝜃𝑘 − 1

2𝜇𝒟𝛼𝑘𝑔𝑘 + 𝐿
4 𝛼

2
𝑘, (10)

where 𝜃𝑘 = E[𝑓(𝑥𝑘)] and 𝑔𝑘 = E[‖∇𝑓(𝑥𝑘)‖𝒟].

The proof for both Lemmas 10 and 11 is in Appendix A.1.

The result differs from that of the analogous result for STP (see Lemma 3.5 from (Bergou et al.,
2020)) only in that the negative summand is multiplied by the constant 1

1+𝑒𝜎2/2𝑒𝛿
≤ 1, and for

special case last two summands are multiplied by 1
2 .

4 THE SELECTION OF PARAMETERS AND ESTIMATION OF CONVERGENCE

This section presents the convergence estimates that can be obtained for the proposed methods by
selecting the parameters in question. Three classes of target functions are considered in this study:
non-convex, convex, and strongly convex. The parameters selected are either fixed or dependent on
the iteration number.

The proofs proposed next depend on the equations (5), (6), (7), and (8) obtained for each method.
In order to avoid the repetition of similar proofs, we prove the inequalities in general form.

The general form of the equations (5) and (7) is as follows:

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 𝐶1

𝑘 · 𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐶2
𝑘 · 𝐿

2 𝛼
2
𝑘, (11)

while for (6) and (8), the form is:

𝜃𝑘+1 ≤ 𝜃𝑘 − 𝐶1
𝑘 · 𝜇𝒟𝛼𝑘𝑔𝑘 + 𝐶2

𝑘 · 𝐿
2 𝛼

2
𝑘, (12)

where the constants 𝐶1
𝑘 , 𝐶2

𝑘 are assumed to be positive.

Thus the main differences from the key lemma of the original paper are in constants, which have
estimates: 0 ≤ 𝐶1

𝑘 ≤ 𝐶2
𝑘 ≤ 1, in the considered cases.

The following three sections discuss the selection of the stepsize for different classes of functions.
We make all the same assumptions as in similar sections for the initial modification of the oracle for
STP and prove similar theorems.
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4.1 NON-CONVEX

In this section, we present our most general complexity result. We make no assumptions regarding
the smoothness or boundedness of the function 𝑓 (see Assumption 2).
Lemma 12 (Monotonicity). STP produces a monotonic sequence of iterates, i.e., 𝑓(𝑥𝑘+1) ≤ 𝑓(𝑥𝑘)
for all 𝑘 ≥ 0. As a consequence,

E[𝑓(𝑥𝑘+1) | 𝑥𝑘] ≤ 𝑓(𝑥𝑘). (13)

The following theorem considers a method in which the stepsize 𝛼𝑘 is chosen to decrease with the
iteration number. The convergence of this method is evaluated in light of this parameter choice.
Theorem 13 (Decreasing stepsize). Let Assumptions 1, 2, 8, 9 and Lemma 12 hold. Choose 𝛼𝑘 =

𝛼0√
𝑘+1

, where 𝛼0 > 0. If

𝐾 ≥
2

(︃√
2(𝑓(𝑥0)−𝑓*)

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

)︃2

𝜇2
𝒟𝜀2

, (14)

then min
𝑘=0,1,...,𝐾

E
[︀
‖∇𝑓(𝑥𝑘)‖𝒟

]︀
≤ 𝜀.

See the proof in Appendix A.1.

Although the stepsize 𝛼𝑘 obtained in this case is identical to that obtained in the same case for STP,
the estimate for the number of iterations 𝐾 increased slightly.

It should be noted that the complexity of the problem is dependent on the value of 𝛼0.
Corollary 14. The optimal choice, which minimizes the complexity bound, is

𝛼* = 81/4
√︂

𝑓(𝑥0)−𝑓*

𝐶2
𝑘𝐿

,

in which case the complexity bound from the equation (14) takes the form
4
√
2𝐶2

𝑘(𝑓(𝑥0)−𝑓*)𝐿

(𝐶1
𝑘)

2𝜇2
𝒟𝜀2

. (15)

Furthermore, since 𝑓 is 𝐿-smooth, and it is necessary ∇𝑓(𝑥*) = 0, the optimal stepsize is no greater
than

𝛼* ≤ 21/4√
𝐶2

𝑘

‖𝑥0 − 𝑥*‖2.

Moreover, it is possible to select a fixed step size for this particular case. It can be also observed that
the estimated values have undergone a slight increase.
Theorem 15 (Fixed stepsize). Let 𝑓 satisfy Assumption 2, Lemma 12. Choose a fixed stepsize
𝛼𝑘 = 𝛼0 with 0 < 𝛼0 <

2𝐶1
𝑘𝜇𝒟𝜀

𝐶2
𝑘𝐿

. If

𝐾 ≥ 𝑘(𝜀) :=

⎡⎢⎢⎢⎢ 𝑓(𝑥0)−𝑓*(︃
𝐶1

𝑘𝜇𝒟𝜀−
𝐶2

𝑘𝐿
2 𝛼0

)︃
𝛼0

⎤⎥⎥⎥⎥− 1, (16)

then min
𝑘=0,1,...,𝐾

E
[︀
‖∇𝑓(𝑥𝑘)‖𝒟

]︀
≤ 𝜀. In particular, if 𝛼 =

𝐶1
𝑘𝜇𝒟𝜀

𝐶2
𝑘𝐿

, then 𝑘(𝜀) =
⌈︁
2𝐶2

𝑘𝐿(𝑓(𝑥0)−𝑓*)

(𝐶1
𝑘)

2𝜇2
𝒟𝜀2

⌉︁
−

1.

See the proof in Appendix A.1.

It should be noted that if the constants 𝐶1
𝑘 and 𝐶2

𝑘 are identical, as is the case with the initial iteration
of the STP method, then the step size 𝛼𝑘 remains unchanged.

4.2 CONVEX

In this section, we estimate the complexity of the modification of the oracle for STP in the case of
a convex 𝑓 (see Assumption 5). It should be noted that if the aforementioned assumption is valid,
then for any value of 𝑥 such that 𝑓(𝑥) ≤ 𝑓(𝑥0), we obtain 𝑓(𝑥) − 𝑓(𝑥*) ≤ ⟨∇𝑓(𝑥), 𝑥− 𝑥*⟩ ≤
‖∇𝑓(𝑥)‖𝒟‖𝑥− 𝑥*‖*𝒟 ≤ 𝑅0‖∇𝑓(𝑥)‖𝒟. That is,

‖∇𝑓(𝑥)‖𝒟 ≥ 𝑓(𝑥)−𝑓(𝑥*)
𝑅0

. (17)
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In the following theorem we present our primary result on complexity. We commence our analysis
with the examination of the first modification of the oracle for STP algorithm with constant stepsizes.

Theorem 16 (Constant stepsize). Let Assumptions 1, 2 and 5 be satisfied. Let 0 < 𝜀 <
𝐶2

𝑘𝐿𝑅2
0

(𝐶1
𝑘)

2𝜇2
𝒟

and choose constant stepsize 𝛼𝑘 = 𝛼 =
𝐶1

𝑘𝜀𝜇𝒟
𝐶2

𝑘𝐿𝑅0
. If

𝐾 ≥ 𝐶2
𝑘𝐿𝑅2

0

(𝐶1
𝑘)

2𝜇2
𝒟𝜀

log
(︁

2(𝑓(𝑥0)−𝑓(𝑥*))
𝜀

)︁
, (18)

then E
[︀
𝑓(𝑥𝐾)− 𝑓(𝑥*)

]︀
≤ 𝜀.

See the proof in Appendix A.1.

The following theorem demonstrates the optimal selection of a variable step for the proposed modi-
fication of the oracle for STP.
Theorem 17 (Variable stepsize). Let Assumptions 1, 2 and 5 be satisfied.

Let 𝛼𝑘 = 𝛼0

(︀
𝑓(𝑥𝑘)− 𝑓(𝑥*)

)︀
, where 0 < 𝛼0 <

2𝐶1
𝑘𝜇𝒟

𝐶2
𝑘𝐿𝑅0

. Define 𝑎 =
𝐶1

𝑘𝜇𝒟𝛼0

𝑅0
− 𝐶2

𝑘𝐿𝛼2
0

2 > 0. If

𝑘 ≥ 𝑘(𝜀) := 1
𝑎

(︁
1
𝜀 − 1

𝑟0

)︁
, then E

[︀
𝑓(𝑥𝑘)− 𝑓(𝑥*)

]︀
≤ 𝜀.

See the proof in Appendix A.1.

In the previous theorem, the stepsize 𝛼𝑘 was dependent on 𝑓(𝑥*), but it is not always possible to
obtain the value of 𝑓(𝑥*). Therefore, let us formulate the following theorem.
Theorem 18 (Solution-free stepsize). Let Assumptions 1, 2, 3 and 5 be satisfied. Let 𝛼𝑘 =
𝐶1

𝑘|𝑓(𝑥
𝑘+𝑡𝑠𝑘)−𝑓(𝑥𝑘)|
𝐶2

𝑘𝐿𝑡
, where

0 < 𝑡 ≤
√
2𝐶1

𝑘𝜇𝒟E[𝑓(𝑥𝐾−1)−𝑓*]
𝐶2

𝑘𝐿𝑅0
.

Define 𝑎 =
(𝐶1

𝑘)
2𝜇2

𝒟
4𝐶2

𝑘𝐿𝑅2
0
. If 𝐾 ≥ 𝑘(𝜀) := 1

𝑎

(︁
1
𝜀 − 1

𝑟0

)︁
, then E

[︀
𝑓(𝑥𝐾)− 𝑓(𝑥*)

]︀
≤ 𝜀.

See the proof in Appendix A.1.

4.3 STRONGLY CONVEX

In this subsection, we define 𝑥* as the unique minimizer of 𝑓 . The function 𝑓 is 𝜆-strongly convex
(see Assumption 6). As in the previous subsections, we find the appropriate stepsize 𝛼𝑘.
Theorem 19. Let Assumptions 1, 2 and 6 be satisfied. Let stepsize 𝛼𝑘 =
𝐶1

𝑘𝜇𝒟
𝐶2

𝑘𝐿

√︀
2𝜆(𝑓(𝑥𝑘)− 𝑓(𝑥*)). If

𝐾 ≥ 𝐶2
𝑘𝐿

(𝐶1
𝑘)

2𝜆𝜇2
𝒟
log
(︁

𝑓(𝑥0)−𝑓(𝑥*)
𝜀

)︁
, (19)

then E
[︀
𝑓(𝑥𝐾)− 𝑓(𝑥*)

]︀
≤ 𝜀.

See the proof in Appendix A.1.

5 THE FINAL CONVERGENCE TABLE

Several tables illustrating the convergence results obtained for the various proposed methods and the
parameters chosen are presented below.

For simplicity, we present the values of the constants for each concept of the oracle are presented in
tabular form (see Table 5).

It is crucial to acknowledge that despite the introduction of ”unproductive” steps, which have led
to some estimates becoming less favourable, these steps are computationally cost-effective. This is
because we are not required to compute two additional points (𝑥𝑘±𝛼𝑘𝑠𝑘) and the values of the target
function in them. Furthermore, the value at the current point is already known from the previous
iteration.

7
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Fixed stepsize Variable stepsize

NC 𝐾 ≥
⌈︂
2 𝑓(𝑥0)−𝑓*

(2𝐶1
𝑘𝜇𝒟𝜀−𝐶2

𝑘𝐿𝛼0)𝛼0

⌉︂
− 1 𝐾 ≥ 2

𝜇2
𝒟𝜀2

(︁√
2(𝑓(𝑥0)−𝑓*)

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

)︁2
C 𝐾 ≥ 𝐶2

𝑘𝐿𝑅2
0

(𝐶1
𝑘)

2𝜇2
𝒟𝜀

log
(︁

2(𝑓(𝑥0)−𝑓(𝑥*))
𝜀

)︁
𝐾 ≥ 1

𝑎

(︁
1
𝜀 − 1

𝑟0

)︁
, 𝑎 =

𝐶1
𝑘𝜇𝒟𝛼0

𝑅0
− 𝐶2

𝑘𝐿𝛼2
0

2 > 0

SC – 𝐾 ≥ 𝐶2
𝑘𝐿

(𝐶1
𝑘)

2𝜆𝜇2
𝒟
log
(︁

𝑓(𝑥0)−𝑓(𝑥*)
𝜀

)︁
Table 1: Convergence estimates for the general case

Oracle’s modification 𝐶1
𝑘 𝐶2

𝑘 Lemma

Constant 𝑝 𝑝 𝑝 7

Sigmoid 𝑝 1
2

1
2 11

Sigmoid with noise 𝑝 1
1+𝑒𝜎2/2𝑒𝛿

1 10

Table 2: Values of constants for modifications

5.1 WHY SIGMOID CAN BE BETTER

Let us consider the function 𝑓(𝑥) = 𝑥2, where 𝑥 ∈ R. We determine the number of iterations
required by the modifications for this function to achieve 𝜀 accuracy. Let the parameters be as
follows: 𝜀 = 0.5, 𝑥0 = 10, 𝛼𝑘 = 1√

1+𝑘
.

Note that 𝑠𝑘 in the one-dimensional case is equal to ±1. At each step, the method selects
argmin{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 ± 𝛼𝑘𝑠𝑘)}, hence we assume 𝑠𝑘 = 1.

Further reasoning can be found in the Appendix A.2. Please refer to the Appendix for some expla-
nations and experiments using 𝛼𝑘 from Theorem 19.

𝜀 = 0.5 𝜀 = 0.05 𝜀 = 0.005 𝜀 = 0.5 𝜀 = 0.5

𝑥0 = 10 𝑥0 = 10 𝑥0 = 10 𝑥0 = 50 𝑥0 = 100

𝑝 = 1/2 99 109 113 2501 10004

Sigmoid 46 59 64 1073 4259

Sigmoid + noise ∈ 𝒩 (0.1, 0.5) 56 80 90 1337 5332

Table 3: The number of iterations required to achieve accuracy 𝜀

6 EXPERIMENTS

In this section, we describe the experiments performed.
6.1 TOY PROBLEM

The experiments for the function 𝑓(𝑥) = 𝑥2 were conducted under the same parameters for which
the theoretical results are obtained (see Subsection 5.1). Each method is executed 100 times, and the
resulting iteration count was taken as the mean value. The theoretical results are in close alignment
with the practical outcomes.

The plots below illustrate the number of iterations required by each method to achieve a specified
level of accuracy defined as 𝜀.

The following conclusions may be drawn:

∙ The convergence with constant probability differs from the original STP for this problem by no
more than an order of magnitude.

8



Under review as a conference paper at ICOMP 2024

Figure 1: The number of iterations needed to achieve accuracy 𝜀

∙ The sigmoid function makes convergence with respect to 𝑝 = 1
2 for ”large steps”, which is typical

for the initial iterations.

∙ In this problem, the addition of noise to the sigmoid function resulted in a deterioration of the
results. However, even the theoretical estimates of convergence for the sigmoid with noise demon-
strate superior outcomes in comparison to those of the constant 𝑝 = 1

2 .

6.2 MORE COMPLEX EXPERIMENTS

We considered the convex:

𝑓(𝑥) = 1
2 (𝑥

2
1 +

𝑛−1∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)
2 + 𝑥2

𝑛)− 𝑥1

and strongly convex target functions:
𝑓(𝑥) = 𝜇

2 (𝑥
2
1 +

𝑛−1∑︁
𝑖=1

(𝑥𝑖+1 − 𝑥𝑖)
2 − 2𝑥1 + ‖𝑥‖2).

Figure 2: Convergence of STP in the context of different or-
acle’s modifications

The targets functions and its lower
bounds were taken from (Nesterov,
2013). The stepsizes 𝛼𝑘 were se-
lected in accordance with Theorem
18 and Theorem 19. The remaining
parameters are labelled in the legend
or taken from those selected in the
STP paper: 𝑡 = 10−4, 𝐿 = 1. All
methods were run 100 times, with
the resulting values averaged at each
iteration.

The STP sigmoid modification rep-
resents a modification of the oracle
for the STP method with a sigmoidal
probability distribution. Its conver-
gence is analogous to that of the ini-
tial modification of the oracle for
STP with 𝑝 = 0.5.

In the legend, the 𝑝 value is speci-
fied to the initial modification of the
oracle for STP method and the vari-
ables 𝛿 and 𝒟[𝜉] are specified to the
principal modification.

For an understanding of the impact
of the sigmoid function in experimental contexts, please refer to the Appendix A.3. Please refer to
the Appendix A.4 for some additional results on the convergence of different productions.
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A APPENDIX

Claim 20 (Jensen’s inequality). Let 𝑓 be a convex function and 𝑋 a random variable. Then

E[𝑓(𝑋)] ≥ 𝑓(E[𝑋]),

if both mathematical expectations exist.

A.1 PROOFS

Proof of Lemma 7. The proof is analogous to that of a similar theorem for the STP method; there-
fore, certain calculations are not detailed here.

Firstly, it should be noted that the 𝐿-smoothness of 𝑓 implies that

𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘) ≤ 𝑓(𝑥𝑘) + 𝛼𝑘⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩+ 𝐿
2 𝛼

2
𝑘‖𝑠𝑘‖22,

and

𝑓(𝑥𝑘 − 𝛼𝑘𝑠𝑘) ≤ 𝑓(𝑥𝑘)− 𝛼𝑘⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩+ 𝐿
2 𝛼

2
𝑘‖𝑠𝑘‖22.

Then,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
= 𝑝min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥

𝑘 − 𝛼𝑘𝑠𝑘)}+ (1− 𝑝)𝑓(𝑥𝑘)

≤ 𝑝min{𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)}+ 𝑓(𝑥𝑘)− 𝑝𝑓(𝑥𝑘)

≤ 𝑝(𝑓(𝑥𝑘)− 𝛼𝑘|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|+ 𝐿
2 𝛼

2
𝑘‖𝑠𝑘‖22) + 𝑓(𝑥𝑘)− 𝑝𝑓(𝑥𝑘)

= 𝑝(−𝛼𝑘|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|+ 𝐿
2 𝛼

2
𝑘‖𝑠𝑘‖22) + 𝑓(𝑥𝑘).

To conclude the equation (5), we need to take the expectation in the above inequality with respect
to 𝑠𝑘 ∼ 𝒟, conditional on 𝑥𝑘, and use (1). By taking the expectation in (5) we get the equation
(6).

Proof of Lemmas 10 and 11. Similarly to the proof of the similar lemma (see Lemma 7):

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
= 𝑝min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥

𝑘 − 𝛼𝑘𝑠𝑘)}+ (1− 𝑝)𝑓(𝑥𝑘),

11
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where

𝑝 = (1 + exp (−𝑓(𝑥𝑘) + min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)}+∆𝑘))

−1.

Substituting, we obtain

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
=

min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)} − 𝑓(𝑥𝑘)

1 + exp (min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥𝑘 − 𝛼𝑘𝑠𝑘)} − 𝑓(𝑥𝑘) + ∆𝑘)
+ 𝑓(𝑥𝑘).

Let us denote 𝑡 := min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)} − 𝑓(𝑥𝑘). Notice, that 𝑡 ≤ 0 and it

tends to 0 as 𝑘 increases.

Then,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
=

𝑡

1 + 𝑒𝑡+Δ𝑘
+ 𝑓(𝑥𝑘).

Let us estimate from above E
[︁

𝑡
1+𝑒𝑡+Δ𝑘

]︁
. Since 𝑡 ≤ 0,

𝑡 ≤ 0 ⇒ 𝑡

1 + 𝑒𝑡+Δ𝑘
≤ 𝑡

1 + 𝑒Δ𝑘
.

We get

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥

𝑘 − 𝛼𝑘𝑠𝑘)} − 𝑓(𝑥𝑘)

1 + 𝑒Δ𝑘
+ 𝑓(𝑥𝑘).

It has previously been proven that

min{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 + 𝛼𝑘𝑠𝑘), 𝑓(𝑥
𝑘 − 𝛼𝑘𝑠𝑘)} ≤ 𝑓(𝑥𝑘)− 𝛼𝑘|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|+ 𝐿

2 𝛼
2
𝑘‖𝑠𝑘‖22.

Hence,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 𝛼𝑘

1+𝑒Δ𝑘
|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|+ 𝐿

2(1+𝑒Δ𝑘 )
𝛼2
𝑘‖𝑠𝑘‖22.

Taking the expectation of the above inequality with respect to 𝑠𝑘 ∼ 𝒟, conditional on 𝑥𝑘, and to
apply the equation (1), we obtain

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− E

[︁
1

1+𝑒Δ𝑘
|𝑥𝑘
]︁
𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + E

[︁
𝐿

2+2𝑒Δ𝑘
|𝑥𝑘
]︁
𝛼2
𝑘. (20)

By taking the expectation in (20), we obtain

𝜃𝑘+1 ≤ 𝜃𝑘 − E
[︁

1
1+𝑒Δ𝑘

]︁
𝜇𝒟𝛼𝑘𝑔𝑘 + E

[︁
𝐿

2+2𝑒Δ𝑘

]︁
𝛼2
𝑘. (21)

Note, that for the special case in which the noise ∆ = 0, we obtain

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 𝛼𝑘|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|

2
+ 𝐿

4 𝛼
2
𝑘‖𝑠𝑘‖22,

where one is able to take the expectation and get (10), finalizing the proof for Lemma 11.

We proceed only for Lemma 10 to evaluate the upper and lower limits of E
[︁

1
1+𝑒Δ𝑘

]︁
.

Using the Jensen’s inequality (20), as 1
1+𝑦 is a convex function for 𝑦 > 0,

E[ 1
1+𝑒Δ𝑘

] ≥ 1
1+E[𝑒Δ𝑘 ]

. (22)

It remains to evaluate the upper limit of E[𝑒Δ𝑘 ], given that 𝛿 is a small random noise. It is not
possible to make any statements about the distribution of this noise, that is the reason we evaluate
only E[𝑒𝜉].

12
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In accordance with Assumption 9,
E
[︀
𝑒𝜉
]︀
≤ 𝑒𝜎

2/2.

The equation (22) can be rewritten in the following form:

E[ 1
1+𝑒Δ𝑘

] ≥ 1
1+E[𝑒𝜉+𝛿]

≥ 1
1+𝑒𝜎2/2𝑒𝛿

. (23)

The upper limit of E
[︁

1
1+𝑒Δ𝑘

]︁
derived from 1

1+𝑒Δ𝑘
< 1:

E[ 1
1+𝑒Δ𝑘

] < 1. (24)

Given (23) and (24), it is possible to rewrite the equation (20):

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 1

1+𝑒𝜎2/2𝑒𝛿
· 𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐿

2 𝛼
2
𝑘. (25)

By taking the expectation in (25), we obtain the equation (8).

Proof of Theorem 13. As in the analogous theorem for STP, the proof is based on the analysis of the
equation (12), rewrote in the following form:

E[‖∇𝑓(𝑥𝑘)‖𝒟] ≤ 1
𝜇𝒟

(︁
𝜃𝑘−𝜃𝑘+1

𝐶1
𝑘𝛼𝑘

+
𝐶2

𝑘𝐿

2𝐶1
𝑘
𝛼𝑘

)︁
= 1

𝜇𝒟

(︁
(𝜃𝑘−𝜃𝑘+1)

√
𝑘+1

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

√
𝑘+1

)︁
. (26)

From (13) and the boundness of 𝑓 : 𝑓* ≤ 𝜃𝑘+1 ≤ 𝜃𝑘 ≤ 𝑓(𝑥0) for all 𝑘. Choosing 𝑙 = ⌊𝐾/2⌋, we
get

2𝑙∑︁
𝑗=𝑙

(𝜃𝑗 − 𝜃𝑗+1) = 𝜃𝑙 − 𝜃2𝑙+1 ≤ 𝑓(𝑥0)− 𝑓* := 𝐶 ⇒ ∃𝑗 ∈ {𝑙, . . . , 2𝑙} : 𝜃𝑗 − 𝜃𝑗+1 ≤ 𝐶/(𝑙 + 1).

It is now possible to make an estimate of the expectation of the gradient norm.

E[‖∇𝑓(𝑥𝑗)‖𝒟]
(26)

≤ 1
𝜇𝒟

(︁
(𝜃𝑗−𝜃𝑗+1)

√
𝑗+1

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

√
𝑗+1

)︁
≤ 1

𝜇𝒟

(︁
𝐶
√
𝑗+1

𝐶1
𝑘𝛼0(𝑙+1)

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

√
𝑗+1

)︁
≤ 1

𝜇𝒟

(︁
𝐶
√
2𝑙+1

𝐶1
𝑘𝛼0(𝑙+1)

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

√
𝑙+1

)︁
≤ 1

𝜇𝒟
√
𝑙+1

(︁ √
2𝐶

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

)︁
≤ 1

𝜇𝒟
√

𝐾/2

(︁ √
2𝐶

𝐶1
𝑘𝛼0

+
𝐶2

𝑘𝐿𝛼0

2𝐶1
𝑘

)︁ (14)

≤ 𝜀.

Proof of Theorem 15. If 𝑔𝑘 ≤ 𝜀 for some 𝑘 ≤ 𝑘(𝜀), then the theorem is proven.

If not, assume by contradiction that 𝑔𝑘 > 𝜀 for all 𝑘 ≤ 𝑘(𝜀). We use (12)

𝜃𝑘+1 ≤ 𝜃𝑘 − 𝐶1
𝑘 · 𝜇𝒟𝛼𝑔𝑘 + 𝐶2

𝑘 · 𝐿
2 𝛼

2,

where 𝜃𝑘 = E [𝑓(𝑥𝑘)] and 𝑔𝑘 = E [‖∇𝑓(𝑥𝑘)‖𝒟]. Consequently,

𝑓* ≤ 𝜃𝐾+1 < 𝜃0 − (𝐾 + 1)
(︁
𝐶1

𝑘𝜇𝒟𝛼0𝜀− 𝐶2
𝑘𝐿
2 𝛼2

0

)︁ (16)

≤ 𝜃0 − (𝑓(𝑥0)− 𝑓*) = 𝑓*,

which is a contradiction.

Proof of Theorem 16. In order to proceed, we substitute (17) into the equation (12):

𝜃𝑘+1 ≤ 𝜃𝑘 − 𝐶1
𝑘𝜇𝒟𝛼
𝑅0

(𝜃𝑘 − 𝑓(𝑥*)) +
𝐶2

𝑘𝐿
2 𝛼2. (27)

13
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Let 𝑟𝑘 = 𝜃𝑘−𝑓(𝑥*) and 𝑐 = 1− 𝐶1
𝑘𝜇𝒟𝛼
𝑅0

∈ (0, 1). Subtracting 𝑓(𝑥*) from both sides of the equation
(27), we obtain

𝑟𝐾 ≤ 𝑐𝑟𝐾−1 +
𝐶2

𝑘𝐿
2 𝛼2 ≤ 𝑐𝐾𝑟0 +

𝐶2
𝑘𝐿
2 𝛼2

𝐾−1∑︁
𝑖=0

𝑐𝑖

≤ exp(−𝐶1
𝑘𝜇𝒟𝛼𝐾/𝑅0)𝑟0 +

𝐶2
𝑘𝐿𝛼2

2(1−𝑐) = exp(−𝐶1
𝑘𝜇𝒟𝛼𝐾/𝑅0)𝑟0 +

𝜀
2

(18)

≤ 𝜀.

Proof of Theorem 17. Let us substitute (17) into the equation (11), and then substrate 𝑓(𝑥*) from
both sides:

E
[︀
𝑓(𝑥𝑘+1) | 𝑥𝑘

]︀
− 𝑓(𝑥*) ≤ 𝑓(𝑥𝑘)− 𝑓(𝑥*)− 𝐶1

𝑘𝜇𝒟𝛼𝑘
𝑓(𝑥𝑘)−𝑓(𝑥*)

𝑅0
+

𝐶2
𝑘𝐿
2 𝛼2

𝑘.

Let 𝑟𝑘 = E
[︀
𝑓(𝑥𝑘)

]︀
− 𝑓(𝑥*).

By utilising the selected value of 𝛼𝑘 in the preceding equation and subsequently calculating the
expectation, the following result is obtained: 𝑟𝑘+1 ≤ 𝑟𝑘 −

(︁
𝐶1

𝑘𝜇𝒟𝛼0

𝑅0
− 𝐶2

𝑘𝐿𝛼2
0

2

)︁
𝑟2𝑘 = 𝑟𝑘 − 𝑎𝑟2𝑘.

Therefore,
1

𝑟𝑘+1
− 1

𝑟𝑘
= 𝑟𝑘−𝑟𝑘+1

𝑟𝑘𝑟𝑘+1
≥ 𝑟𝑘−𝑟𝑘+1

𝑟2𝑘
≥ 𝑎 ⇒ 1

𝑟𝑘
≥ 1

𝑟0
+ 𝑘𝑎 ⇒ 𝑟𝑘 ≤ 1

1
𝑟0

+𝑘𝑎
.

For 𝑘 ≥ 1
𝑎

(︁
1
𝜀 − 1

𝑟0

)︁
we have 𝑟𝑘 ≤ 1

1
𝑟0

+𝑘𝑎
≤ 𝜀.

Proof of Theorem 18. From Lemmas 7 and 10 we have

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 𝐶1

𝑘𝛼𝑘|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|+ 𝐶2
𝑘𝐿𝛼2

𝑘

2 . (28)

In 𝛼opt
𝑘 =

𝐶1
𝑘|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|

𝐶2
𝑘𝐿

, that minimizes the right-hand side of (28), we can replace unknown

∇𝑓(𝑥𝑘) with the the directional derivative of 𝑓 , which can be approximated by finite differences of
the function values of 𝑓 .

𝛼𝑘 =
𝐶1

𝑘|𝑓(𝑥
𝑘+𝑡𝑠𝑘)−𝑓(𝑥𝑘)|
𝐶2

𝑘𝐿𝑡
=

𝐶1
𝑘|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|

𝐶2
𝑘𝐿

+
𝐶1

𝑘|𝑓(𝑥
𝑘+𝑡𝑠𝑘)−𝑓(𝑥𝑘)|
𝐶2

𝑘𝐿𝑡
− 𝐶1

𝑘|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|
𝐶2

𝑘𝐿
:= 𝛼opt

𝑘 + 𝛿𝑘.

Therefore,

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− (𝐶1

𝑘)
2|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|2

𝐶2
𝑘𝐿

− 𝐶1
𝑘𝛿𝑘|⟨∇𝑓(𝑥𝑘), 𝑥𝑘⟩|+ (𝐶1

𝑘)
2|⟨∇𝑓(𝑥𝑘),𝑥𝑘⟩|2

2𝐶2
𝑘𝐿

+𝐶1
𝑘𝛿𝑘|⟨∇𝑓(𝑥𝑘), 𝑥𝑘⟩|+ 𝐶2

𝑘𝐿
2 (𝛿𝑘)

2

= 𝑓(𝑥𝑘)− (𝐶1
𝑘)

2|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|2
2𝐶2

𝑘𝐿
+

𝐶2
𝑘𝐿
2 (𝛿𝑘)

2.

Using 𝐿-smoothness of 𝑓 :

|𝛿𝑘| = 1
𝐿𝑡

⃒⃒
|𝑓(𝑥𝑘 + 𝑡𝑠𝑘)− 𝑓(𝑥𝑘)| − |⟨∇𝑓(𝑥𝑘), 𝑡𝑠𝑘⟩|

⃒⃒
≤ 1

𝐿𝑡

⃒⃒
𝑓(𝑥𝑘 + 𝑡𝑠𝑘)− 𝑓(𝑥𝑘)− ⟨∇𝑓(𝑥𝑘), 𝑡𝑠𝑘⟩

⃒⃒
≤ 1

𝐿𝑡 ·
𝐿
2 ‖𝑡𝑠𝑘‖

2
2 = 𝑡

2 .

Then
E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− (𝐶1

𝑘)
2|⟨∇𝑓(𝑥𝑘),𝑠𝑘⟩|2

2𝐶2
𝑘𝐿

+
𝐶2

𝑘𝐿𝑡2

8 .

By taking the mathematical expectation for all randomnesses from the previous inequality, we obtain

E[𝑓(𝑥𝑘+1)]− 𝑓*⏟  ⏞  
𝑟𝑘+1

(*)
≤ E[𝑓(𝑥𝑘)]− 𝑓*⏟  ⏞  

𝑟𝑘

− (𝐶1
𝑘)

2𝜇2
𝒟

2𝐶2
𝑘𝐿

E[‖∇𝑓(𝑥𝑘)‖2𝒟] +
𝐶2

𝑘𝐿𝑡2

8

(**)
≤ 𝑟𝑘 − (𝐶1

𝑘)
2𝜇2

𝒟
2𝐶2

𝑘𝐿𝑅2
0
𝑟2𝑘 +

𝐶2
𝑘𝐿𝑡2

8 ,
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where (*) is due to tower property of mathematical expectation and (1):

E[|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|2] = E
[︀
E[|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩|2 | 𝑥𝑘]

]︀
≥ E

[︁(︀
E[|⟨∇𝑓(𝑥𝑘), 𝑠𝑘⟩| | 𝑥𝑘]

)︀2]︁
(1)

≥ 𝜇2
𝒟E[‖∇𝑓(𝑥𝑘)‖2𝒟];

(**) follows from the Assumption 5: E[‖∇𝑓(𝑥𝑘)‖2𝒟] ≥
E
[︁
(𝑓(𝑥𝑘)−𝑓*)

2
]︁

𝑅2
0

≥ (E[𝑓(𝑥𝑘)−𝑓*])
2

𝑅2
0

=
𝑟2𝑘
𝑅2

0
.

Considering the monotonicity of {𝑓(𝑥𝑘)}𝑘≥0:

1
𝑟𝑘+1

− 1
𝑟𝑘

≥ 𝑟𝑘+1−𝑟𝑘
𝑟𝑘𝑟𝑘+1

≥
(𝐶1

𝑘)
2𝜇2

𝒟
2𝐶2

𝑘𝐿𝑅2
0
𝑟2𝑘−

𝐶2
𝑘𝐿𝑡2

8

𝑟2𝑘
≥ (𝐶1

𝑘)
2𝜇2

𝒟
2𝐶2

𝑘𝐿𝑅2
0
− 𝐶2

𝑘𝐿
8

(︁
𝑡
𝑟𝑘

)︁2
.

If 𝑘 ≤ 𝐾 − 1 and 0 < 𝑡 ≤
√
2𝐶1

𝑘𝜇𝒟𝑟𝐾−1

𝐶2
𝑘𝐿𝑅0

, then

1
𝑟𝑘+1

− 1
𝑟𝑘

≥ (𝐶1
𝑘)

2𝜇2
𝒟

4𝐶2
𝑘𝐿𝑅2

0
= 𝑎,

since 𝑟𝑘 ≤ 𝑟𝐾−1. Finally, 1
𝑟𝑘

≥ 1
𝑟0

+𝑘𝑎 ⇒ 𝑟𝑘 ≤ 1
1
𝑟0

+𝑘𝑎
for all 𝑘 ≤ 𝐾. Thus, if 𝐾 ≥ 1

𝑎

(︁
1
𝜀 − 1

𝑟0

)︁
,

then 𝑟𝐾 ≤ 1
1
𝑟0

+𝐾𝑎
≤ 𝜀.

Proof of Theorem 19. By introducing the variable 𝛼𝑘 into the equation (11) and then applying the
substrate 𝑓(𝑥*) to both sides, we obtain

E[𝑓(𝑥𝑘+1) | 𝑥𝑘]− 𝑓(𝑥*) ≤ 𝑓(𝑥𝑘)− 𝑓(𝑥*)− (𝐶1
𝑘)

2𝜇2
𝒟

√
2𝜆(𝑓(𝑥𝑘)−𝑓(𝑥*))‖∇𝑓(𝑥𝑘)‖𝒟

𝐶2
𝑘𝐿

+
(𝐶1

𝑘)
2𝜇2

𝒟𝜆(𝑓(𝑥𝑘)−𝑓(𝑥*))

𝐶2
𝑘𝐿

.

𝑓 is strongly convex, then ‖∇𝑓(𝑥𝑘)‖2𝒟 ≥ 2𝜆(𝑓(𝑥𝑘)− 𝑓(𝑥*)) and

E[𝑓(𝑥𝑘+1)|𝑥𝑘]− 𝑓(𝑥*) ≤ 𝑓(𝑥𝑘)− 𝑓(𝑥*)− 2(𝐶1
𝑘)

2𝜇2
𝒟𝜆(𝑓(𝑥𝑘)−𝑓(𝑥*))

𝐶2
𝑘𝐿

+
(𝐶1

𝑘)
2𝜇2

𝒟𝜆(𝑓(𝑥𝑘)−𝑓(𝑥*))

𝐶2
𝑘𝐿

≤ 𝑓(𝑥𝑘)− 𝑓(𝑥*)− (𝐶1
𝑘)

2𝜇2
𝒟𝜆(𝑓(𝑥𝑘)−𝑓(𝑥*))

𝐶2
𝑘𝐿

.

Let 𝑟𝑘 = E
[︀
𝑓(𝑥𝑘)

]︀
− 𝑓(𝑥*). By taking the expectation of the last inequality we get 𝑟𝑘+1 ≤(︁

1− (𝐶1
𝑘)

2𝜇2
𝒟𝜆

𝐶2
𝑘𝐿

)︁
𝑟𝑘, and therefore

𝑟𝑘 ≤
(︁
1− (𝐶1

𝑘)
2𝜇2

𝒟𝜆

𝐶2
𝑘𝐿

)︁𝑘
𝑟0.

Hence if 𝐾 satisfies (19), we get 𝑟𝐾 ≤ 𝜀.

A.2 THE DISCUSSION ON THE NUMBER OF ITERATIONS REQUIRED

Let us calculate the number of iterations for the STP method.

The stepsize 𝛼𝑘 is such that argmin{𝑓(𝑥𝑘), 𝑓(𝑥𝑘 ± 𝛼𝑘)} is equal to 𝑥𝑘 − 𝛼𝑘 as long as 𝑥𝑘 ≤ 𝛼𝑘.
Let us write this as an inequality:

𝑓

(︃
𝑥0 −

𝐾∑︁
𝑘=0

𝛼𝑘

)︃
≤ 𝜀,

𝐾∑︁
𝑘=0

𝛼𝑘 ≤ 𝑥0. (29)

The second inequality in (29) is required to verify that the method does not bypass the solution.

Let us estimate
𝐾∑︀

𝑘=0

𝛼𝑘 on both sides:

2
√
𝐾 + 2− 2 =

𝐾+1∫︁
0

1√
𝑥+1

𝑑𝑥 ≤
𝐾∑︁

𝑘=0

𝛼𝑘 ≤
𝐾+1∫︁
1

1√
𝑥
𝑑𝑥+ 1 = 2

√
𝐾 + 1− 1. (30)
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Now we can take that 𝐾 = 31.

Next, we find the number of iterations for the initial modification. The estimation algorithm is
analogous to the algorithm for the STP method, but, in this instance, the variable ̃︀𝑝𝑘 is introduced.
This is necessary to indicate whether the method is taking a step or remaining in a fixed position:

̃︀𝑝𝑘 =

{︂
1, with probability 𝑝,

0, with probability 1− 𝑝

Then similar to the equation (29)

𝑓

(︃
𝑥0 −

𝐾∑︁
𝑘=0

̃︀𝑝𝑘𝛼𝑘

)︃
≤ 𝜀,

𝐾∑︁
𝑘=0

̃︀𝑝𝑘𝛼𝑘 ≤ 𝑥0. (31)

It can be observed that if all the values of ̃︀𝑝𝑘 are set to the same value, 𝑝, the result is the same. The
equation (31) is transformed into the following equation:

𝑓

(︃
𝑥0 − 𝑝

𝐾∑︁
𝑘=0

𝛼𝑘

)︃
≤ 𝜀.

Using the equation (30), we find the required number of iterations for the initial modification of the
oracle for STP.

For the last two modifications we get

𝑓

(︃
𝑥0 −

𝐾∑︁
𝑘=0

̃︀𝑝𝑘𝛼𝑘

)︃
≤ 𝜀,

𝐾∑︁
𝑘=0

̃︀𝑝𝑘𝛼𝑘 ≤ 𝑥0, (32)

where ̃︀𝑝𝑘 =

{︂
1, with probability 𝑝𝑘,

0, with probability 1− 𝑝𝑘

The variable 𝑝𝑘 depends on the iteration:

𝑝𝑘 = 1
1+exp (𝑓(𝑥𝑘−𝛼𝑘)−𝑓(𝑥𝑘))

or 𝑝𝑘 = 1
1+exp (𝑓(𝑥𝑘−𝛼𝑘)−𝑓(𝑥𝑘)+Δ𝑘)

,

respectively.

For the first formulation, let us consider the special case of the step

E[𝑥𝑘+1|𝑥𝑘] = (1− 𝑝𝑘)𝑥𝑘 + 𝑝𝑘(𝑥𝑘 − 𝛼𝑘)

= 𝑥𝑘 − 1√
1+𝑘

1
(1+exp ((𝑥𝑘−𝛼𝑘)2−𝑥2

𝑘))
= 𝑥𝑘 − 1

√
1+𝑘(1+exp (

1
1+𝑘− 2𝑥𝑘√

1+𝑘
))
.

In order to evaluate the second summand from above, we evaluate 𝑥𝑘 from below, ̃︀𝑥𝑘 = 𝑥0 −
𝑘∑︀

𝑛=0

1√
1+𝑛

, for the usual STP. Next, we use the same evaluation by the integral. Thus we obtain:

𝑥𝑘 ≥ 𝑥0 −
𝑘∑︁

𝑛=0

1√
1 + 𝑛

> 𝑥0 −
𝑘+1∫︁
1

𝑑𝑥√
𝑥
− 1 = 𝑥0 − 2

√
𝑘 + 1 + 1

Now we get the final result:

E[𝑥𝑘+1|𝑥𝑘] > 𝑥𝑘 − 1
√
1 + 𝑘(1 + exp ( 1

1+𝑘 − 2(𝑥0+1)√
1+𝑘

+ 4))

Thus obtained an estimate for one iteration such that the second summand is independent of 𝑥𝑘.
This will allow us to estimate the required number of iterations:

16
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If 𝑓

⎛⎝𝑥0 −
𝐾∑︀

𝑘=0

1
√
1 + 𝑘(1 + exp ( 1

1+𝑘 − 2(𝑥0+1)√
1+𝑘

+ 4))

⎞⎠ ≤ 𝜀,

then E(𝑓(𝑥0 −
𝐾∑︀

𝑘=0

̃︀𝑝𝑘𝛼𝑘)) ≤ 𝜀.

In the case of noise, we exploit the fact that this random variable is distributed according to the
sub-Gaussian distribution, which introduces an additional summand in the exponent in the afore-
mentioned setting:

E[𝑥𝑘+1|𝑥𝑘] > 𝑥𝑘 − 1
√
1 + 𝑘(1 + exp ( 1

1+𝑘 − 2(𝑥0+1)√
1+𝑘

+ 4 + 𝜎2/2 + 𝛿))

This subsection concludes with the last result:

If 𝑓

⎛⎝𝑥0 −
𝐾∑︀

𝑘=0

1
√
1 + 𝑘(1 + exp ( 1

1+𝑘 − 2(𝑥0+1)√
1+𝑘

+ 4 + 𝜎2/2 + 𝛿))

⎞⎠ ≤ 𝜀,

then E(𝑓(𝑥0 −
𝐾∑︀

𝑘=0

̃︀𝑝𝑘𝛼𝑘)) ≤ 𝜀.

We also consider the simpler case where the step size 𝛼𝑘 is taken from the theorem for strongly
convex target functions (see Subsection 4.3). Given that 𝛼𝑘 =

𝐶1
𝑘𝜇𝒟
𝐶2

𝑘𝐿

√︀
2𝜆(𝑓(𝑥𝑘)− 𝑓(𝑥*)) (see

Theorem 19), moreover, in our case 𝛼𝑘 ∼ 𝑥𝑘, it can be demonstrated that the STP will converge in
two iterations. Furthermore, if a step is taken with some probability, then the number of iterations
required to achieve accuracy 𝜀 is inversely proportional to the probability of taking the step.

Figure 3: The number of iterations needed to achieve accuracy 𝜀, 𝛼𝑘 for SC problem

A.3 THE IMPACT OF THE SIGMOID PROBABILITY

The impact of the sigmoid is illustrated in the plot below. It can be observed that as the degree
exponent decreases, the probability of undertaking a method step increases.

Figure 4: The impact of the sigmoid probability function
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A.4 SOME ADDITIONAL RESULTS FOR THE PRINCIPAL MODIFICATION OF THE ORACLE FOR
STP

In order to provide some estimates on the mathematical expectation of 1
1+𝑒Δ𝑘

, we attempt to make
assumptions about the distribution of the random variable ∆𝑘. This is done in accordance with the
principles set out in Lemma 10.

If ∆ is uniformly distributed on the segment [−𝑎, 𝑎], 𝑎 ∈ R:

E
[︁

1
1+𝑒𝑥

]︁
=

∞∫︁
−∞

1
1+𝑒𝑥

1[−𝑎,𝑎](𝑥)

2𝑎 𝑑𝑥 = 1
2𝑎

𝑎∫︁
−𝑎

1
1+𝑒𝑥 𝑑𝑥 = 𝑎−ln(𝑒𝑎+1)+𝑎+ln(𝑒−𝑎+1)

2𝑎 = 1
2 .

If ∆ is normally distributed:

E
[︁

1
1+𝑒𝑥

]︁
=

∞∫︁
−∞

1
1+𝑒𝑥

1√
2𝜋𝜎2

𝑒−
1
2 (

𝑥
𝜎 )2𝑑𝑥 = 1√

2𝜋𝜎2

∞∫︁
−∞

𝑑𝑥
𝑒𝑥2/2𝜎2 (1+𝑒𝑥)

= 1√
2𝜋𝜎2

√︁
𝜋𝜎2

2 = 1
2 .

With all of the above written, let us rewrite equation (20).
Claim 21. If the variable ∆ is uniformly distributed on the segment [−𝑎, 𝑎] or if it is normally
distributed, then the equation (7) from the Lemma 10 takes the following form:

E
[︀
𝑓(𝑥𝑘+1)|𝑥𝑘

]︀
≤ 𝑓(𝑥𝑘)− 1

2𝜇𝒟𝛼𝑘‖∇𝑓(𝑥𝑘)‖𝒟 + 𝐿
4 𝛼

2
𝑘. (33)

Moreover, if ∆ random variable is distributed in such a way that its distribution function is symmet-
ric, as, for example, for normal or uniform distributions, then for it equation (20) takes the form of
equation (33).
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