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A PROOF OF THEOREM 1

A.1 A LEMMA

Lemma 1 Let h be py, - strongly convex and z = prox,yh(z). Then for all = € R? the following
iniqulity holds:

(2t —z,x—2T) > (h(z+) — h(z) + %HzJr - x||2) . (14)
Proof: We use ~p-strong convexity of the function vh (8):

7 (h(@) = h(z*)) = Vh(z*) a = 2%) = Pl o — 2+

With definition of prox and necessary optimality condition: yVh(z") = z — 2™, it completes the
proof.

]

In the next theorem we will use the following notation:

M
vV 1
¢ = F(ub), g+ =@ [M 3 @ (Fu(5112) — Fu(wh) | + F(ub).
m=1
A.2 DETERMINISTIC CASE: THEOREM 1
Proof of Theorem 1: By LemmaEfor ZM/2 = prox ;, (28 — v¢*) and 2FT1 = prox_, (2 —

vg*t1/2) with & = u we get
- Hh
<Zk+1 _ sk Jr,yglc+1/27u — Ry > (h(zk+1) — h(u) + 7szﬂ - qu) ’
(FHU/2 gk g ke k1) s <h(zk+1/2) (Y %sz-&-l _ Zk+1/2||2) )

Then we sum two inequalities and make some rearrangement:
<Zk+1 _ Zk,u _ Zk+1> + <Zk+1/2 _ Ek,zkﬂ _ zk+1/2>

+,Y<gk+1/2 _ gk,zk+1/2 _ Zk+1> + ’y(ng/Q,u _ Zk+1/2>
> 5 ((FH1/2) — ) Bk 22 g B2

Multiplying by 2 and using definition of z*, we have
27 (2R 2Ky — 2Py 121 — ) (2R — b - 2R
+ 2T<Zk+1/2 _ Zk,Zk+1 _ Zk+1/2> + 2(1 o 7_)<Zk+1/2 o wk7zk+1 _ Zk+1/2>
oy (g2 gk RHL/2 k1Y o k12 g k172
> 2y (h(zk+1/2) _ h(u) + %sz+1 . Zk+1/2||2 + %sz‘l’l _ UHQ) )
For the first and second lines we use identity 2(a, b) = ||a + b||*> — ||a]|*> — ||b]|?, and get
7 (125 = ull® = 27 = 2P = [l — u?)
+ (1= 7) (lw” =l = 27— Wb — (]2 —?)
+ 7_(sz+1 _ Zk||2 _ ||Zk+1/2 _ Zk||2 _ HZkJrl _ Zk+1/2||2)
(1= T b2 = 2 = P R k)
oy (gh L2 gk RHL/2 Ly | okt L/2 gy kL2
> 2+ (h(zk+1/2) — h(u) + %”Zk—&-l _ Zk+1/2||2 n %szﬂ _ qu) .
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A small rearrangement gives

(L ypn) |25 =l < 7l =l + (1= 1) =l
=Tl = P = (1= )[R w2 = (1) 2T - 2R

+ 27<gk+1/2 gk k2 Zk+1> _ 2,7<gk+1/2,zk+1/2 ) — 2y (h(zk+1/2> _ h(u)) '

By simple fact: 2(a, b) < n|lal|® + %HbH2 with a = gFt1/2 — gk b = 2FH1/2 _ k41 — 2 we
get
L+ )12 =l < 7128 =l + (1 = 7) w0 — uf?

1
_ 7‘H2k+1/2 _ ZkH2 o (1 _ 7_)sz-i-l/Q _ wk”? _ (2 + ’Yﬂh) ||Zk+1 _ Zk+1/2H2

+ 292 gF 2 — |2 = 2 (gF 2 2 ) — 2y (R(FFV2) — h(w) ) (15)
We now consider the two cases of the theorem separately.

A.3 STRONGLY MONOTONE/CONVEX CASE

Let substitute © = z*, take full mathematical expectation and get

(L4 yun)E 1251 = 2P < 7E I8 = 2"[P] + (1 = 7)E [[lw” — 2*||?]

1
—+E [||Zk+1/2 _ ZkHQ} _ (1 _ T)E [||Zk+1/2 _ wk”ﬂ _ (2 +'7,uh) E [sz-‘rl _ Zk+1/2||2}

+2¢°E [Hgkﬂ/z _ gk||2} ) {<gk+1/2’zk+1/2 e h(zk+1/2> _ h(z*)}
= 7E [[|z* — 2*[*] + (1 = 7)E [|lw® — *||?]

1
— B 2 = 2 |2] - (1= 7)E |15 - )] - (2 +wh) E[[l25+1 — <4172 2]

+29°E [Hgkﬂ/z _ gk||2} —2E [(E [gk'+1/2 | zk+1/2] hHL2 P h(zk+1/2) _ h(z*)} _
(16)

Let us work with E [|[g"1/2 — g¥||2], with (1)) we get

2
E[lg"/2 - ¢)?) =E ‘

M
Q" [;4 > QI (Fn (4172 - Fm<wk‘>>]
m=1

2

qserv M
= WE Z Q‘rirezv(Fm(Zk-i_l/Q) - Fm(wk))
m=1

Serv M

e o ey
m=1

Serv

+ ?\472 Z E [(Q%V(Fm(zk+1/2) - F’m(wk))7 Q‘lleV(Fl(ZkJrl/Q) _ Fvl(wk)»
m#l
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Next we apply (I) and Assumption 2 for the first term and independence and unbiasedness of () for

the second term:

SCFV

2
e 117 - ] < qu e o -t

Fy(wh)?]

wk||2:|
M
VS B[t -t

m=1

am

S R [(Fn(H772) — Bu(wh) ) — Fiwb))]
m;ﬁl
< Z devr2 ||| h+1/2 _ k)
it ||+ —ut]
M2
o S E (1Y) — B + [ F(7) -
m;él
e Z devr2 ||| h+1/2 _ k)
it ||+ ot
M2
Serv
4 §M2 ZE [LQmHZkH/z — w2 +Ll2HZk+1/2 _
m;él
QCI'V 2 QCI'V
— devp2 o k+1/2 k g —1)
= L, Z —w
T 2 ez [fene ]
qSCI‘V M
_ WE [sz+1/2 _ wk”Q} . Z dev 4 Af—1)L2,
m=1

Let us define new constant Cy = 1/ 4 SM (g% + M — 1)L2, and then connect and :

m=1

(14 yun)E [Il25F1 = 27 < 7E [[l2" — 2*||?]

+ 2w203E {||Zk+1/2 _ wk||2:| 9K |:<F(Zk+1/2)’zk+1/2 -~

= 7E [ll2* = 2*)12] + (1= ) E [Jw® - 2|2) — 7B [|I24+1/2 - 2#)2]

+ (1= 7)E [lw* —2*|]

1
— B 2 = 2 |2] - (1= 7)E |15 - b)) - (2 +wh) E [z — <4172 2]

2*) 4+ h(zFT1/2) — h(z*)}

- (; - wh) B[l = 25412)2) — (1= 1) = 22C2) B [} 25412 — wh|?]

~9E [<F(zk+1/2), AFHL2 ) (R 2 - h(z*)} .

The property of the solution (3] gives
(1 +yun)E [[|F —

2] S TR = 2] + (1= 7)E [lw” -

=|12] 7B 14412 -

- (; + wh) B[l = 25412)2) — (1= 1) = 22C2) B [} 25412 — wh|?]

— 29 [(F(F1/2) = P(2%), 244172 = 2]

And by Assumption2]in strong monotone case we have

L+ yun)E 125 = 2P < 7E[[le" = 2] + (1 = 7) E [Jlw” — 2*|*] - 7E [IIZ’““/2 -

= (5 ) B [l = 42 = (- 1) - 22O B [l - ]

7 2’7,LLFE {szJrl/Q o Z*H2:| )
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One the other hand we get
E [[w*™ — 2*|] = (1 = 7)E [||2FT — 2*||*] + 7E [||w® — 2*||?] .
Summing two previous inequalities:

E [”ZkJrl . Z*HQ} +E [”,warl o Z*||2] § K [sz . *”2] + E [”wk o Z*||2]
= 7E [JI2432 = 242] — B[4 = 2] - ( + wh) E [[l2541 = 24 41/2)2]
— (L= 7) = 292C2) B[54/ — b || — 29y [||24172 - 247
We have Lyapunov function in the left side:
E [Vis] = 7E [[|"* = 2%|] + E [l — 2*||?]
< 7E (|2 - 2|2] +E [l - 2*||%] - 7E [ 252 = 24|
1
— 29z [||Z42 = 2¥|2] =y [+ — *)17] — (2 + ’YMh) E |25+ — 222
— (1 =7) =22 CH B[+ — )]
With — |2+ — 2%|2 < = 2| 2FH+1/2 — 2% 2 4 || 2FH1 — 2F+1/2)|2 we deduce:

E [Vigr] < 7E [|25 = 2*%] + E [[lw® — 2*|2] - 7B [[]25+1/2 = 24|?]
— (A=) = 292G E [Jl41/2 - wb|?] - (+wh)1@[||zk+1—z’f+l/2|2}

= (2ne ) T[22 P o (2 ) 0 R R

A simple facts: ||2F+1/2 — 2%||2 > %H B 2%||2 — ||2*1/2 — 2F||2 and ||2FH1/2 — 2%|)2 >
Z*H2 _ ||Zk+1/2 _ wkHQ, gives

E [Vip1] < 7E [[|2* = 2*|°] + E [Jlw® - 2*|°]
— (=) —22C2 = (2ur + 1) - (1= 1)) E 12412 — w2

1
- ( + wh) B[l — 251 2)2) — (1= (20 + 51 ) 7 [|1241/2 - 242

3llw”* —

= (r + B) 7B (112 = 217 = (e + B ) - (L= DB [ = 2] (1)
Next we work with the last line of (18):

—y (e + YRI5 = 217 = (e + 52 ) - (1 = P [Ju* — 2|2

=3 (r + 52) rE {12 = 2*1) = 5 (e + 5 ) B[4 = 2]
— (MF + %) (1= 7E [[lw* - 2*|7]
< =3 (1 + B 7B (15 = =112) = T (ar + B2) 7E [t — =)
+ % (,up + %) TE [sz — wk||2] — (,UF + %) (1-7)E [”wk - Z*||2]
<=3 (pe+ ) B[ =2 1) = 5 (e + 5 ) B[ —2*17]
+ 2 (wp + 1) 7E[IF = b))
<=2 (wr+ B rE 15 - 202 = § (r + B E [t - 2]
(e + B2) 7B (124172 = 242 44 (uF + ) 7B (I ).

17



Under review as a conference paper at ICLR 2022

Substituting this into (18], we get

E [Vesa] < 7E [J12% = 2°[12] + E [Jlw* - 2]
— (=7 = 22C2 = (200 + 51) ) E 11472 — 0¥

2
- <; + ’Y,Uh) E [szﬂ - zk+1/2||2} - (1 — 3y (MF + %)) TE {szH/Q - zk||2}
= (e ) TR (1 = 2] = (e + ) B [l = 27)7) (19)

, OV e s
It remains only to choose v < mm{ ic, 4(MF+%)} and get

+
El] < (1-7- 2556 ) - B ).

Running the recursion completes the proof.

A.4 MONOTONE/CONVEX CASE (up =0, up =0)

We start from (15) with additional notation gap(zF11/2 v) = (F(zF11/2), 2k +1/2 ) 4 p(2F+1/2) —
h(u):

2y - gap(+* 12, ) + 41— ull? < 7| — P+ (1= 1)t =l
=Tl P - (1= )2 — 2 292 g2 — g2

o 2"}/<gk+1/2 _ F(Zk+1/2),zk+l/2 o u>
Adding both sides ||[w**! — u||? and making small rearrangement we have

2 - gap(z" 12, u) < [7)|2F —ull? + [[w” —ulP] = [ = ulf® + ot — ]
= 7lw® =l = (1 =) =l + ot
_ 7_||Zlc+1/2 _ Zk||2 _ (1 _ 7_)||Zk+1/2 _ wk”Q + 2,}/2”gk+1/2 _ gk||2

_ 2’y<gk+1/2 _ F(Zk+1/2),zk+1/2 _ u>

Then we sum up over k = 0,..., K — 1, take maximum of both sides over z € C, after take
expectation and get

K-1
v-F, k+1/2 < 0 _ .2 0 _ .12
gl Iggg;gap(z o) | < max [ —ul” + [lu® — ul?]
K—-1
. E .12 (1 k+1 2 B+l 12
+E [max > [~rfof —uf® = (1 =)l —ul 4wt }]
k=0
K-1
= 37 TR IR < 2] 4 (1= PR [IF2 - k2] 29%E [llgEt 2 - gt
k=0

K—1
k+1/2 k+1/2y . _k+1/2 }
+27E ll}}eaé( Z(:) [(g F(z ), u— 2z ) ] .

18
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Applying for E [||gF+1/2 — g¥ 1], we get

K-1
27E | max kZO gap(F 172, )1 < max [72° — ul® + [Ju® — u|?]
K—1
+E |max »  [=7llw® —ul? = (1= 7)[]25T — ] + [ - U||2]]
ueC =0
K—1 _
_ E [||Zk+1/2 _ Zk”ﬂ + (1 _ T)E [sz-&-l/Q _ wkHQ}
k=0
— 2yC2E [||5+1/2 — w2 |
r K-1
+ 29E |max [(ng/Q — F(2F1/2) oy — zk+1/2>” .
_ueC P
With v < %L C T we get
K—1
oE k41/2 < 0_ 2 0_ 2
7yE | max kz_o gap(z* 1%, u) | <max 7]z — u? + [Juw” — u]?]

K-1
max Z [=7llw® —ul® = (1= )" = + [t~ UIIQ]]

K—1
+2E [ma Z [ RHL/2 o htl/2y Zk+1/2>} (20)
=0
To finish the proof we need to estimate terms in two last lines. We begin with
K—1
E [magc STF(2FHY/2) — ght1/2 k4172 )| Let define sequence v: v° = 20, vFtt =
uel —o
prox_;, (v* — y8y) with 6% = F(2F+1/2) — g"+1/2_ Then we have
K—1 K—1 K—1
Z (6%, K2 _y) = (6%, FHY2Z _ by 4 Z ok — ) (21
k=0 k=0 k=0

By the definition of v**+1 (property of prox), we have for all z € Z
(FTY — ok 6% 2 — 0T > 0.

Rewriting this inequality, we get

('yék,vk —2) < <75k,vk - vk“) + —oF 2= ka)
1
< <,)/5k,,uk . vk+1> + 5”Uk: _ ,Uk+1||2

2
Y k 1o k L Lo L k
e i =] e e ) (U ¥

l\J\H/\

1 k
lo" = 21 = Sl — 2 —

2
¥ 1
= T0HE 4 S = S - 2
With 1) it gives
K-1 K-1 Kl 1 1
Z<5k,zk+1/2 ) < Z Sht1/2 +; Z (2”5k”2+2”vk_u2_2||,Uk+1_u|2)
k=0 =0 =0
K-1 K-1 1
< DR 2 ) £ TSR 4 o
2 2y
k=0 k=0
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We take the maximum on u and get

K—

=

K-1

1
max Y (6%, 2FF1/2 ) < (8%, ZF+1/2 by 4 J [ F(251/2) — gF+ Y22 4 — max ||[0° — w2
uel =~ P 2 P 27 uec
Taking the full expectation, we get
K—-1 K—1
E rgg‘é( <5k’2k+1/2 _ u> Z <5k7zk+1/2 _ Uk)]
=0 k=0
5 K—1
2 E{ F(F+1/2) _ gk+1/2 2] . 0 2
+ 3 2 (A e A > max [[v” — uf
K—1
-F (E [F(Zk+1/2) _ gkt | Sh1/2 _ Uk} k12 vk>‘|
k=0
K—1 1
+ % kz_o E {||F(Zk+1/2) _ gk+1/2”2} + % r731635{”7]0 _ u||2
K—1 1
=5 2 B[IFGHY) — g 2P ma o — (22)

K-1
Now let us estimate E [maé( > [rllwt =l = (1= 7)) 4 )+ [T - u||2]],f0rthis
uel k=0

we note that

K—1
E |max 3 7wt — ull? — (1 - 7)) —ul? 4+ unﬂ
k=0
K—1
= E [may 37 [2((1 - )2 bruk — bt ) — (1= )RR ol 4 |wk+l|ﬂ
k=0
K—1
=E max [—2((1 — 7)2" ! + 7w — Wk, u)]]
=0
K—1
FE |y (=)l - )+ wkﬂzl '
k=0

One can note that by definition w*™': E [(1 — 7)||zF 1|2 + 7||w¥|? — [[w*1||?] =0, then

K-1
E lmax [=rllw® —ul]* = (1= )] = + [t~ UIIQ]]

uel
k=0

=2E lmaéc (1 —71)2" 4 Tk — T u)] .
ue
k=0

N

1
Lk gkt _u>]

NH
>_ko

20
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Further, one can carry out the reasoning similarly to chain for (22):

K—1
E |max »  [r[w® —ul® + (1 —7)[ " —ul]® — Jw**" —u|?]
u€eC —
K—1
< E [||(1 — 7')2’“le +rwh — wk+1||2] + max Hvo — u||2
ueC
k=0
K—1

E [, 1] — w1 7] + max [o° — ]
ue

T
LL

E [ By [0* 1+ By 1)) + mae o° —
u

k=0
K1
= D B[ =)t P 4 (1= ) 4 7]+ ma [0 ulf?
k=0
K-1
= (1= 7)E [[]2" — w"||?] + max [[o° — ul|®. (23)
o u€eC

Substituting (22) and (23) in (20) we get

K-1
k+1/2 2 0 2
2v-E max Z gap(zF+1/ ,u)} < max [(2+7))|2° = ull® + [[w® — ul?]
K—
+ Z [ HZkJrl - wk”Q] + ’)/2E |:||F(Zk+1/2) o ng/QHQ” ) (24)
k=0

Next we work separately with E [||F/(F+1/2) — gh+1/2|12]:

E {|\F(zk+l/2) . gk+1/2”2}
_ o 2
=F HQserv |]\4 mZ:1 Q%V(Fm(zk-&-lﬂ) - Fm(U)k)) + F(wk) _ F(Zk—‘,-l/Q)

- Ny )
~E HQ UW > QR (Ea ) = Buwh) || | +E[IFE2) - Fub)?]
i M
Qserv [ Z dev k+1/2) _ Fm(wk)) ;F(Zk+1/2) _ F(wk)>

With (T7) we get

2
B [HF(quLlﬂ) _ gk+1/2||2} < CSE [szﬂ/z _ wkH } iE [”F(ZkJrl/Q) _ F(wk)Hﬂ

M
FE (7 D0 QBN (Fn(HH/2) = F(wh)); FH2) - F(wk»]
m=1

— C’E [szH/Q - wkHZ} + 28 | F(z4172) — F(u®)?]

q

2 9 M 2
< a5 3 at e o]
m=1

(25)
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M
With new notation L? = Z L2, from and we have
=1

m
K-1

) k+1/2 < 2 0_ 2
27 |y 3 e m)] max [(2 + 7)1z = ull? + [[w” — ]/

+ Z [F(1 = 7B [+ = wh|?] +93(C2 + 2L2)E [ 5412 — wb)?]].

. < _VI7
With v < WY o we deduce to
K-1

. k+1/2 < 2 0 .2
2y E rgggzgap(z M} max [(2+7)[2" = ull® + [lw” - u]?]

K-1

1-n3y [E {25+ — w¥|2) +E [} 2572 - w¥)?]]

< 9 0 .2 0 _ .2
_Iggg[(+)llz e

K-1
1 _ 7_ |: [||Zk:+1 _ Zk+1/2||2:| +E [||Zk+1/2 _ wk”Q:H )
k=0

Let us go back to 1) with pp, =0, up =0,v7 < V4C and get that

E[Visr] SE[VA] = ((1—7) = 292C2) B [[l4+1/2 - wh|?]
1
_lE {szﬂ -~ zk+1/2H2}

<E [Vk] o %E {HZ’CJFI/Q _ wkHﬂ

1—
( . T)E {sz—i-l _ Zk+1/2H2:| )

Hence substituting this we go to the end of the proof:

K—1 K—

kt1/2 0 .2 0o

max » _ gap(» 7u)1 <max [(2+7)[2° = ul® + uw° — ul’] +6 E [Via]]
k=0 k:o

< max [(2—|—7T>HZ u\|2—|—7HwO—u||2]

,_A

2v-E

< max [16] 2 — ul?]

It remains to slightly correct the convergence criterion by monotonicity of F' and Jensen’s inequality
for convex functions:

K-1 T K1
E max Z gap(z" 12 w)| = E max {(F(zkﬂ/z), Y2 ) 4 R(A2) h(u)ﬂ
k=0 k=0
T K1
> E |max [<F(u), ARHL2 ) 4 p(2RY/2) - h(u)w
L“= k=0
>E |K - max [(F(u), 2% —u) + h(z¥) — h(u)]}

—K.E [Gap(z")],

22
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K-1
where we additionally use 2% = = >~ 2#*1/2. This brings us to
k=0

8 max,cc [||zo - u||2]
7K '

E [Gap(z")] <

Theorem 1 is completely proved for deterministic case.

A.5 STOCHASTIC CASE

The case of a finite sum (stochastic) is proved in a similar way. We need to replace F;,, with F,

m,wk, -
B MASHA2: HANDLING CONTRACTIVE COMPRESSORS

Now we present a method for working with biased compression operators — MASHA2. Algorithm 1
and Algorithm 2 are similar. The main and key difference is the error feedback technique Karimireddy
et al. (2019), which is classic for working with biased compressors. To do this, we need to introduce
additional sequences the sequence e,,. The purpose of these sequences is to accumulate error -
something that is not communicated in previous iterations. Additionally, for Algorithm 2, we consider
a simpler setting than for Algorithm 1, namely Z = R¢ and h = 0. In this case prox.,(z) = z. Also,
in the case of comps, we compress the information in one direction - the server makes a full broadcast.

Similarly to Theorem 1 we use Lyapunov function

Vi = 7)l25 = 2% |2 + J* — 2%,

sk o1 Sk k k1 WAk
where 2% = 2% — 57 > ey, 0" = w” — 55 Y ey
m=1 m=1
Theorem 2 Let Assumptionsand (SM ) be satisfied. Then, if v < min ( }1;—;7 —%35_{, %),
the following estimates holds
B [ii] < (1= )" 1o
The proof of the above theorem can be found in Appendix [C]

C PROOF OF THEOREM 2

We first introduce useful notation:
M M

1 1 1
sk k k sk+1/2 k+1/2 k ~k k k
2=z Ems 2 / P i g my W =W i E €m:
m

m=1 =1 m=1

It is easy to verify that

1 M
ék-i-l — Zk+1 _ M § :67]31—1-1
m=1

M

1
_ k172 L d ) k+1/2Y _ A . k k
=z i DOy - Fp(FMH2) =y - B (w?) + €f)

m=1

M
]' A%
— = 3 ey (Y =y B (w) = O (7 Fa(5Y2) =y B (0") + )]
m=1

1 M
— pkt1/2 o7 Py ek — . F(Zk+1/2)
_ 2k+1/2 - (F Zk+1/2) _ F(’wk)) (26)
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Algorithm 2 MASHA2 (handling contractive compressors)

Parameters: Stepsize v > 0, number f iterations K.
Initialization: Choose z° = w° € Z,¢¥ = 0.
Server sends to devices z° = w” and devices compute F},, (w®) and send to server and get F'(w°)
fork=0,1,2,..., K —1 do
for all devices in parallel do
28 =72k 4+ (1 - 7)wh
22 = 7 — oy F(wF)
Generate 7%, from {1,...,r} independently
Compute F,,(z"t1/2) and send to server C% (v - F,,, (2*t1/2) — v . F,,,(w*) 4 ¢F))
et = e+ Fn(2M12) =y By (wh) — O (y - Fin (2871/%) — - i (w?) + e
Compute F,,, . (z*7/2) and send to server % (v-F,,, 1. (2¥T1/2)=~-F,, i (w¥)+el,)
el:nJrl - 65”;1 + - Fm,ﬂ'i‘;z (Zk+1/2) -7 Fm,.wl‘,‘l (/wk) - C;l;\(,\/ : FHL,TF:‘;L (Zk+1/2) -7
Frr:,,Tri”;‘ (Iwk) + ei‘n)
end for
for server do

M
Compute Q%" [Al[ S CUV(yFy, (25H12) — A F (wF) + eﬁl)} & send to devices

m=1
M
Compute Q%" {\11 > OV (yF e (ZFTY2) =y Fpy o (W) + (’]:”):| & send to devices
m=1
Sends to devices one bit by: 1 with probability 1 — 7, 0 with with probability 7

end for
for all devices in parallel do
M = M2 S O (- B (2F1/2) — - B (wF) + )

’.Z]VH - ZA+1/2 - % Em:l Ciqr? (7 : Evl,'/rf;/(zk*»l/z) -7 En,'/rf;'], (/wk) + 6'};71)
if b, = 1 then

Wkl — Lt
Compute F,,,(w**1) and it send to server; and get F'(w**1)
else
W+l — ok
end if
end for

end for

Because of such a beautiful property for hat sequences, we will use them in the proof.

Proof of Theorem 2: We start from these two equalities:

H2k+1 _ Z*||2 — sz+1/2 _ Z*||2 + 2<2k+1 _ Zk+1/2,2:k+1/2 _ Z*> + ||2k+1 _ Zk+1/2H27

sz+1/2 _ Z*||2 — ||2k _ Z*||2 + 2<Zk+1/2 _ 2k7zk+1/2 _ Z*> _ ||Zk+1/2 _ 2k||2.
Summing up, we obtain
||2k+1 _ Z*HQ — Hék _ Z*H2 +2<2k+1 _ 2k,zk+1/2 _ Z*> + ||2k+1 _ Zk+1/2||2 _ ||Zk+1/2 _ ikH?
e2))
Using that ||a + b[|? < 2||a||? + 2||b||* and (26), we get

H2k+1 _ Zk+1/2H2 < 2”2k+1 _ 2k+1/2||2 + 2”2k+1/2 _ Zk+1/2||2

M
e B (= [
m=1

M
< 292L% || 2R 2 — k|2 4 % > |\e§;||2. (28)
m=1
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M
Additionally, here we use that F' is L Lipschitz, where L2 = ﬁ E_: L

Next, 27) with 28) gives

||2k+1 _Z*”Q < ||2k _ Z*”Z +2<2k+1 _ 2k72k+1/2 _ Z*>

M
2 2
272 || k+1/2 k|2 k k+1/2 _ zkj2
+ 29202 |2 HY2 k|| +Mm§ﬂ”6m” — ||2R Y2 = 52, (29)
Now we consider the next inner product (£#+1 — 2% 2*#+1/2 _ »*) Using that
2k+1 _ ZA,k _ 2k+1 _ 2k+1/2 + 2k+1/2 _ ZA,k = —~- (F(zk+1/2) o F(wk)) +Zk+1/2 _ Zk:

= —y - F(ZFH/2) 4 2k ok,
and optimality condition (F(z*), 2F+1/2 — 2*) > 0, we get
2<2k+1 - 2k7zk+1/2 o Z*> _ 2<7’Y . F(Zk+1/2) + Zk . Zk,Zk+1/2 - Z*>
<2y (F(2%) = F(M1/2)), 2812 = 27)

+ 2(2F — 2k, P2y,

C.1 STRONGLY MONOTONE CASE

With Assumption 2 (SM) we obtain
2<2k+1 _ ék,zk+1/2 _ Z*> < 2<’Y . (F(Z*) _ F(Zk+1/2)),zk+1/2 _ Z*> + 2<2k _ Zk’zk+1/2 _ Z*>

< =2upy|| Y2 — 2|12 4 2(1 — ) (@ — 2F, 2R — %) (30)

Additionally we use here definition of Z* and fact that 1* — 2 = w* — 2*. Combining the obtained

inequalities (29) and (30), we have
124 =22 <125 = 2 = 2upy 2R 2P 2(1 - )@ - 2R YR )

M
AR Wl [ ) Eas e
m=1

The inequality 2(a, b) = ||a + b||> — ||a||* — ||b]|* gives
8 = 22 < [ = 2 = 2pap] R 42 — |2
+2(1 — 7) (R — ZFTY2 RHL2 oy

+2(1 = 7)(M 2 = gk 2 o
2 U 2
+ 272[/2 . ||Zk+1/2 _ wk||2 + M Z ||617an _ sz+1/2 _ 2k||2
m=1

= 1% = 217 — 2212 — )2

(= Dllt = 2P = (1= ) — R (1= )|

+ (L= |2 = 22 (1= )Y = - (L - )2 -2
2 U 2
+ 2’)/2L2 X ||Zk+1/2 _wk||2 + M Z HeﬁmH _ sz+1/2 _ 2k||2
m=1
=788 = 2P+ (1= 1) [[@F — 2 = 2upy |22 = 2P - (L - )k - A
M
2
+4’}/2L2||1Z)k _ Zk+1/2||2 +472L2||wk _ ,uA)kHQ + M Z ||€§n||2 _THZkJrl/Z _ 2k||2
m=1
= 785 = I (L ) — P 2y 2 P
M
. 1 2 .
— (=7 = 4P LA)|" — PP 4 2+ 497 L) 1 Y e -l — 2R
m=1

€1y
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We can weight by p* and get

K K
SR =P <Y I - P+ (- ZP 1o — =*(|* — QM’YZP [Elanss
k=0 k=0

k=0

_ (1 —r_ 4’)/2L2) Zpk”wk _ Zk+1/2||2

K M

K
FEAPL) YR Y [P Yo - 2 )
k=0 m=1 k=0

Next we will take an full expectation from the both side of previous inequality. Since w**! is chosen,

2

M
) - 1 . -
E [[|0**! — 2*||°] = 7E w’“+MZ(efn“fe’ﬁn)fz + (1 =7E |25+ — 2*|?]
m=1
M 2
g<1+n>fu«:[||whz*||2} (1+1/n)7E Z Bl _

+ (1= E [l - 27

with weighs it gives

K K
Y PR [0k - 7] < () Yo PE |
k=0

ok = 2 [*] + (1= 7) Zpk]E [l125+1 = 2*)17]

k=0
K 1 M 2
+(1+ UTI)TZp’“E — Z( B gk y
k=0 m=1
K K
S(lJrn)TZpkE[}wkfz H] 1f7)zpk]E 85+ — 2*|12]
k=0 k=0

M

M= 11
3
ﬂ.

*H2
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Summing this one and (32)), we get

K
Zp ||Zk+1 z*HQ + ||1f)k+1 _ z*||2)

K K
<Dl =P e = 2?) = 2y Y w2
k=0 k=0
K K+1 M
— (L= m =412 Y pht — S ”1/" 2.0 ‘S 7 2 el

k=0

K M
4t 21 ) 3o S e R
k=0 m:l =

K K
<Dl =P (L ) @F = 2P = 2y Y PR -
k=0 k=0
K K
_ (1 —r— 4,}/2[12) Zpk”wk _ Zk+1/2||2 _ szkHZk+l/2 _ 2k||2

k=0

K M
N (2+472L2+2<1+ L) + W) SO ek

p

Next we will estimate error term:

M M
S SR = 5 3 ek e Y2 = - Flt) - O (Y2~ 5 -
m=1 m=1

IN

M

1

M Z Helfn +- Fm(zk+1/2) - Fm(wk> _ CSS’V(W . Fm(zk+1/2) . F,
m=1

IN

(1 —]Wl/(;) i”efn‘FW'Fm(zka) —’Y'Fm(wk)HQ

M

1-1/6 9 2

<UL 1) M/ S e e |+ (1 1)y 2| B (512) = B ()|
m=1

Here we use definition ofblased compress10n and inequality |la+b||? < (1+&)[a|*+(1+1/£)|b]?

(for ¢ > 0). With ¢ = 2(5 ) and v < 45L,weget

i gl s%Zu—l/%)Hemn 209 | B (H72) — Bt
o o 2
< 1_1/26Mmgl| eh|” + 2077 || 472 |
1 — 2 2 1 —
1—1/25Mmz::1\ en |l +4672L2~sz+1/2—ﬁ1k‘ +4672L2-Mmz::1\

M
<(1- 1/26+4672L2)% Z He’:nHQ 4464217 sz+1/2 ey ’2

<-1/10 30 b+ 400707 [ - o

LH1/2 i

< 467212 2(1 —1/40)%~

‘2
Jj=0
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? where p such as p* < pi(1 + 1/86)+~J

K M
We weigh the sequence as follows > p* - 4 > |[[ek

k=0 m=1
Then

K 1 M 5 K k—1 ] , 4
Sopt e D ekl <4092 Zpk 3 (1 1/48)F91 Hzﬂ“/? Y
k=0 m=1 — =0

‘ 2

K k-1

4072 L? )= k— 12 ol
< ZZpJ 1+ 1/88)"79(1 — 1/46) IR fwj‘
(1—1/4(5 ==
467212 AL e ey P2
—_— P’ (1 —1/89) _3-‘z]+/ —
~ (1—1/40) kZ:OJZO
< ﬁi k sz+1/2 ok ’2 i(l _ 1/85)j
(1—1/46) &7 ("
k=0 ]:O
K 2
< 1288972 ph - ||4 2 - | (33)
k=0
us to the finish line of proof:
@3 p
K
Zp HZIc+1 *”2 + ”wk+1 o Z*”Q)
K K
<> — 2P+ (L4 ) l0* — 27|1%) = 2upy Y pPlIATE = 22
k=0 k=0
K K
D I Al R Sy Pl
k=0 k=0

‘ 2

21+ 1/n)7 K
+ (2 FAy2L2 421+ 1 )T+ T ) 1285%° L2y ph - sz“/? _ @k
p k=0
Withn = £7, v < ‘%Fandpz 1 we have

K
Do (T =P ot - 27

K
(L= ppy/4) Y " (7]125 = 2| + |lo* — =*|?)
k=0

‘ 2

204852727 L%\ w—
— (1 — 7 — ppy — 8006%~2L? — 5126%4*L45% — 7;@1— i ) . Zpk . szH/Q — "

: : 1-—7 VI-7 pr(l-T7) :
Choice v < min (4uF’ GosL ® 105.257L2 ) &lves

K K
DoP (I =P T = 2P) < (L /) Y0P (IR = ) et -2

Then we just need to take p = 1/(1 — ppy/4) (easy to check that p* < p/ (14 1/88)*~7 works) and
get

(TR =22 4l = 2%1%) < (1= ppy /9T (71|20 = 27|17 + |0 — 27||) .

This ends our proof.
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D MOTIVATING EXAMPLES

Let us motivate the utility of considering VIs in machine learning on a handful of examples.

Lagrangian multipliers and SVM. Lagrange multipliers are a standard approach to solving con-
strained optimization problems. This technique reduces the original problem to a saddle point
problem. This approach is one of the basic and classic for SVM (Shalev-Shwartz & Ben-David,
2014):

mip s 55 Ayl ) +) = 1)+ S o

w,b

where w are the weights of the model, b — some number, {(z,,, y,)}_; are pairs of the training data
and labels, and 5 > 0 is a regularization parameter.

GANSs. A simple GAN setup consists of two parts: the discriminator D aimed at distinguishing
real samples x from adversarial ones by giving probability that a sample is real, and the generator
G trying to fool the discriminator by generating realistic samples from random noise z. Following
Goodfellow et al.|(2014), the value function V' (G, D) used in such a minimax game can be expressed
in a saddle point form as

mén max V(D,G) = Eppyona(@)log D(x)] + E,op_ () [log(1 — D(G(2)))]. (35)

Adversarial loss. To force a model to be more stable and robust, it can be trained in a constructive
way, for example, by introducing adversarial noise (Madry et al.,2017; Nouiehed et al.,|2019). For
example, the approach of [Liu et al. (2020); Zhu et al. (2019) works well in NLP. From the point of
view of theory, this latter approach reduces to the saddle point problem

A B
¥ Zl (@, 0+ p ) + Sl = Sl (36)

min
w \|P1|\<P HﬂNH<P

where w are the weights of the model, {(x,, 3, )}2_, are pairs of the training data and labels, p is
the so-called adversarial noise which introduces a perturbation in the data, and A > 0 and 8 > 0 are
the regularization parameters. The main difference from a standard approach is in explicit training of
p so that the noise from it is harmful, and for w to adapt to this noise.

Online transport and Wasserstein barycenters Online transport or Wasserstein Barycenter (WB)
problem can be rewritten as a saddle point problem (Dvinskikh & Tiapkin,[2021). This representation
comes from the dual view on the transportation polytope.
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