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A Proof of Proposition 1

Proof. Consider the observation o and the action a = 7(0), let a* = a + ¢*. By the definition of
the noise prediction function €, we have

ek = g(o,m(0) + &, k). )
Applying g € SO(2) to o we have
ek = e(go, m(go) + ¥, k). (3)
Since T is equivariant,
" = (g0, ga+ ", k). )

Since the noise prediction function predicts the noise as long as ¥ is the same on both sides of the
equation, we can substitute ek with gsk

ge* = e(go, ga + ge* k). (5)

By linearity, ga + ge* = g(a + £¥) = ga* and thus
ge® = e(go, ga” k). (6)
Replacing ¥ with £(o0, a*, k) gives ge(o,a*, k) = e(go, ga*, k) as desired. O

B Decomposing Group Representation in Relative Pose Control into
Irreducible Representations

In Section 4.2, we want to find a linear action pa that satisfies ga; = pa(g)Vec,.(A;) =
Ve, (Ty,A,T,; ). solving for ps € R'*!6 we have the group action of SO(2) on Vec,(A;)
as

2 -2 00 -2 s 0 0
2 022 00 —322 -2 0 0
0 0 ¢ 0 0 0 —-s 0
0 0 0 ¢ O 0 0 -—s
S—% —-s2 00 ¢ -2 0 0
s 2 0 0 = c 0 O
PAS1o 6 s0 0 0 ¢ o0 7 ™
0 0 0 s O 0 0 c
p1(g)
I
p1(g)
L I}
where ¢ = cos g, s = sin g, ca = cos 2g, So = sin 2¢g. Define P as
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‘We then have
Is
p1(g) )
-1 _ pP1{g
Ppab ™= p1(9) ' 2
p1(9)

p2(9)
C Simplifying Group Action in Relative Pose Control

In Section 4.2, we want to find a linear action pa that satisfies

pa(g)Vec,.(Ay) = VecT(TgAtTgl), (10)

To simplify the problem, we decompose A; = [Rof Dlt ] where Ry is the SO(3) rotation and D; =
[z,y, 2]" is the translation. Define R, as the rotation matrix in 7},

cosg —sing 0
R, = |sing cosg 0] - {pl(g) ( )]. (11)

Since the conjugate does not apply to translation, we can write gD; = R;D; = [p1(z,9), po(2)]"

For rotation, similar as before, we need to find the representation pg that satisfies

pr(g)Vec, (Ry) = Vec,(RgR¢R, ). (12)
Solving for pr(g) € R9*? we have
> —cs 0 —cs  s2 0O 0 0 0
es 2 0 —s2 —es 0 0 0 O
0 0 ¢ O 0 —-s 0 0 O
cs —s2 0 ¢ —es 0 0 0 O
pPR= |52 ¢ 0 cs c? o o0 0 0}, (13)
0 0 S 0 0 c 0 0 O
0 0 0 O 0 0 ¢ —-s O
0 0 0 0 0 0 s ¢ O
L0 0 0 O 0 0O 0 0 1]

where ¢ = cosg,s = sing. To decompose it into the irreducible representations of SO(2), we
define

T 0 0 0 1 0 0 0 O

0 -1 01 0 00 0O

0O 0 00 0 O0O0O01

0 0 1 0 00 O0O0O
P=(0 0 0O0O0T1O0O0O (14)

0 0 00 O0O0T1O0O0

0O 0 00 O0O0O0OT1TO0

0 1 010 0O0O0O

-1 0 0 0 1 0 0 0 O]

Such that Ppr P~ is a block diagonal matrix consisting of irreducible representations
po(9)
po(9) 9
-1 _ polg
Forb p(9) ' (1)
p1(9)

p2(9)
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Figure 7: The detailed network architecture of our Equivariant Diffusion Policy in the simulation
experiments.

We can then use p(g) = PprP ™' = p3(g) & p3(g) ® p2(g) € R2*? as the group representation
of the output of the equivariant network, then construct the 3 x 3 rotation matrix R; using P.
Specifically, let V' € R? be the output of the network associated with the representation p(g) (i.e., g
acts on V through p(g)V). Define

Vec, (Ry) = P7V. (16)
Applying p(g) on V will lead to
P~ p(g)V amn
=P 'Ppr PV (18)
=prVec,(R), (19)

which is the desired property in the equivariant network.

In the end, adding the group action for the translation (p1 & pg) and gripper open width (pg), we
have p, = pg @© pi © pa.

D Network Architecture Detail

In the image version, we implement the equivariant observation encoder with an equivariant
ResNet [51] for the agent view image, a standard ResNet [52] for the eye-in-hand image, and an
equivariant MLP for the robot states. We implement the equivariant layers in the group Cg. Figure 7
shows the detailed network architecture of our Equivariant Diffusion Policy in the simulation exper-
iments. The network is defined under group Cs. First, in the encoding phase, the agent view image
is processed with an equivariant ResNet-18, whose output is a 128 x 8-dimensional regular repre-
sentation vector of group. A non-equivariant ResNet-18 with a spatial maxpool at the end processes
the eye-in-hand image and outputs a 128-dimensional representation vector that uses the trivial in-
variance representation. Those two vectors are concatenated with the gripper position (represented
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Figure 8: The experimental environments from MimicGen [11]. The left image in each sub figure
shows an initial state of the environment; the right image shows the goal state.
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(b) Coffee Preparation D1

Figure 9: Illustration of an episode of Kitchen D1 task and Coffee Preparation D1 task.

using p; @ po), gripper orientation (in the format of 6D rotation, represented using p3), and the
gripper finger position (represented using p3). The concatenated mixed-representation vector is sent
to an equivariant linear layer, whose output is a 128 x 8-dimensional regular representation obser-
vation embedding. The noisy action is also encoded using an equivariant linear layer, whose output
is a 64 x 8-dimensional regular representation action embedding. Second, in the denoising phase,
we process each part of the observation embedding and the action embedding that corresponds to
the same group element with a 1D Temporal UNet with hidden dimensions of [512, 1024, 2048] to
get a 64-dimensional vector. Doing so for each pair, we will recover a 64 x 8-dimensional regular
representation noise embedding. In the end, an equivariant linear layer will decode the noise.

In the voxel version, the agent view image is replaced with a voxel grid, and we replace the equiv-
ariant ResNet with an 8-layer 3D equivariant convolutional encoder. The 1D Temporal UNet has a
hidden dimensions of [256, 512, 1024]. The other part of the network stays the same. In the real-
world, we remove the eye-in-hand image and only use the voxel grid as vision input (the gripper
state vector stays the same).

E Simulation Environments
Figure 8 shows the initial and goal states of each tasks. Figure 9 shows an example trajectory for

finishing the Kitchen and Coffee Preparation tasks. The RGB observation is an agent-view image
and an eye-in-hand image with a size of 3 x 84 x 84. The voxel grid observation has a size of
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Task Max Steps ~ Max Out of Plane Rot in Demo

Stack D1 400 11.2

Stack Three D1 400 13.2
Square D2 400 14.7
Threading D2 400 134
Coffee D2 400 14.1
Three Piece Assembly D2 500 16.2
Hammer Cleanup D1 500 16.4
Mug Cleanup D1 500 13.0
Kitchen D1 800 16.2

Nut Assembly DO 500 15.5
Pick Place DO 1000 18.0
Coffee Preparation D1 800 59.0

Table 4: The maximum number of time steps and the maximum out of plane rotation (in degrees) in
the demo for each simulation environments. The maximum out of plane rotation in the demo is the
maximum angular difference between the SO(3) rotation and the SO(2) rotation (i.e., only rotating
around the z axis) over all demonstration steps, averaged over 1000 demonstration episodes.

Method Obs Obs Step  Action Pred. Step ~ Action Exec. Step
Equi. DiffPo (Vo) Voxel Grid, Eye-In-Hand Image, Gripper State 1 16 8

Equi. DiffPo (Im)  Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-C Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-T Agent View Image, Eye-In-Hand Image, Gripper State 2 10 8

DP3 Point Cloud, Gripper State 2 16 8

ACT Agent View Image, Eye-In-Hand Image, Gripper State 1 10 10
BC-RNN Agent View Image, Eye-In-Hand Image, Gripper State 1 1 1

Table 5: The observation format, observation step, action prediction step, and action execution step
for all methods. The gripper state is a vector including a 3 dimensional position vector, a rotation
vector in the format of 6D rotation representation or 4D quaternion, and a 2 dimensional finger
position.

4 x 64 x 64 x 64 where the first channel is binary occupancy and the remaining three channels are
RGB. The point cloud observation has a size of 1024 x 6 (i.e, xyzrgb). The point cloud only contains
points above the table, as suggested in [20]. All tasks have a full 6 DoF SE(3) action space. Table 4
shows the maximum number of time steps (following [11]) and the maximum out of plane rotation
in the demo, calculated by taking the maximum angular difference between the SO(3) rotation and
the SO(2) rotation (i.e., only rotating around the z axis) across the entire demonstration episode.
Results averaged for 1000 demonstrations.

F Training Detail

In the simulation experiments, we follow the hyper-parameters of the prior work [1] for the image
version of our method, where the only change is that we increase the batch size to 128 for faster
training. Specifically, the observation contains two steps of history observation, and the output of
the denoising process is a sequence of 16 action steps. We use all 16 steps for training but only
execute eight steps in evaluation. We train our models with the AdamW [53] optimizer (with a
learning rate of 10~# and weight decay of 10~%) and Exponential Moving Average (EMA). We use
a cosine learning rate scheduler with 500 warm-up steps. We use DDPM [14] with 100 denoising
steps for both training and evaluation. For each different number of demos (100, 200, 1000), we
maintain roughly the same number of training steps by the training for 50000/n epochs where n is
the number of demos. Evaluations are conducted every 1000/n epochs (50 evaluations in total). In
the voxel version, we use only one step of history observation, and keep the other hyper-parameters
the same.

The hyper-parameters for the diffusion policy and BC RNN baselines exactly follow [1]. We follow
the original work [20] for the hyper-parameters of DP3, except that we use the same action sequence
length (16 for training and 8 for evaluation) as [1] and our method. For the ACT baseline, we follow
the hyper-parameters provided in the prior work [45], except that we use a chunk size of 10, KL
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Stack D1 Stack Three D1 Square D2 Threading D2

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000
- Equi. DiffPo (Vo) Voxel 99 100 100 75 91 91 39 48 63 39 53 55
No Voxel Equi. DiffPo (Im) Abs RGB 93 100 100 55 77 96 25 41 60 22 40 59
No Equi. DiffPo-C (Vo) S Voxel 87 99 100 33 79 94 10 24 60 19 43 54
No Voxel No Equi.  DiffPo-C [1] RGB 76 97 100 38 72 94 8 19 46 17 35 59
Coffee D2 Three Pc. Asse. D2 Hammer Cleanup D1 Mug Cleanup D1
Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000
- Equi. DiffPo (Vo) Voxel 65 73 76 37 58 71 70 66 73 53 65 68
No Voxel Equi. DiffPo (Im) Abs RGB 60 79 76 15 39 69 65 63 77 49 64 67
No Equi. DiffPo-C (Vo) Voxel 50 72 75 2 5 50 54 64 76 47 58 66
No Voxel No Equi. DiffPo-C [1] RGB 44 66 79 4 6 30 52 59 73 43 59 65
Kitchen D1 Nut Assembly DO Pick Place DO Coffee Prep. D1
Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000
- Equi. DiffPo (Vo) Voxel 85 89 88 67 77 83 58 69 82 80 83 85
No Voxel Equi. DiffPo (Im) Ab RGB 67 77 81 74 85 94 42 74 92 77 83 85
No Equi. DiffPo-C (Vo) > Voxel 82 87 87 66 77 84 41 67 84 65 75 77
No Voxel No Equi. DiffPo-C [1] RGB 67 85 87 55 68 83 35 65 83 65 62 58

Table 6: The ablation study that ablates the voxel input and the equivariant structure in our method.
We experiment with 100, 200, and 1000 demos in each environment and report the maximum task
success rate among 50 evaluations throughout training. Results averaged over three seeds.

Average over 12 Environments

Ablation Method Ctrl 100 200 1000
- Equi. DiffPo (Vo) 63.9 726 779
No Voxel Equi. DiffPo (Im) - 53.7(-103) 685 (4.1) 79.7(+18)
No Equi. DiffPo-C (Vo) S 463 (-17.6) 625(-10.1) 75.6(-2.3)
No Voxel No Equi.  DiffPo-C [1] 420 (21.9) 57.8(-148) 714(-6.5)

Table 7: The average performance over 12 tasks of the ablation study. Number in parenthesis shows
the performance difference after removing different components in our Equivariant Diffusion Policy
with voxel input.

weight of 10, batch size of 64 with learning rate of 5 x 10~°, and no temporal aggregation, following
the tuning tips provided by the authors. See Table 5 for the observation format, observation step,
action prediction step, and action execution step for all methods.

In the real-world experiments, we use a batch size of 64, one step of observation, and disable the
EMA. We use DDIM [49] with 100 denoising steps for training and 16 denoising steps for evalua-
tion. The other hyper-parameters stay the same as in simulation.

G Ablation Study

We perform an ablation study regarding the equivariant structure and the voxel input in our method.
We consider the following four candidates: 1) Ours: our Equivariant Diffusion Policy with voxel
input; 2) Ours no Voxel: our Equivariant Diffusion Policy with RGB input; 3) Ours no Equi.: the
baseline Diffusion Policy with voxel input; 4) Ours no Voxel no Equi.: the baseline Diffusion Policy
with RGB input, same as [1]. Table 6 shows the result and Table 7 shows the average over all 12 en-
vironments. Though both the equivariant structure and the voxel input contribute to the performance
improvement of our method, the equivariant structure plays a more important rule, as removing it
(No Equi.) lead to a more significant performance drop compared with removing the voxel input
(No Voxel). Note that by using the voxel input, Diffpo-C (Vo) is marginally better than the original
Diffusion Policy (DiffPo-C), thus we use Diffpo-C (Vo) as the baseline in our robot experiment in
Section 5.3.
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Stack Three DI~ Threading D2 Coffee Preparation D1

Equi. DiffPo (Im), SE(3) Action 77.3 40.0 85.3
Equi. DiffPo (Im), SE(2) Action 75.3 127 0.0

Table 8: Performance of Equivariant Diffusion Policy in SE(2) action space compared with SE(3)
action space. 200 demos are used in this experiment.

H SE(2) Action Space Variation

In this section, we evaluate a variation of our Equivariant Diffusion Policy in an SE(2) (with z trans-
lation) action space to demonstrate the necessity of leveraging an SE(3) action space. Specifically,
the SE(2) agent only learns the top-down rotation and the out-of-plane rotations will be constantly
set to 0. As is shown in Table 8, the SE(2) variation achieves a similar performance as the SE(3)
version in Stack Three, as the demonstration data in this task has the least amount of out-of-plane
rotation (as shown in Table 4). On the other hand, the SE(2) variation significantly underperforms in
Threading, since the ability of wiggling the out-of-plane rotation helps the agent to precisely insert
the tool. In the end, the SE(2) agent cannot solve Coffee Preparation at all, because the task requires
a significant amount of out-of-plane rotation (as shown in Figure 9b).

I Real-Robot Environment Details

Figure 6 shows the five tasks in this experiment. In Oven Opening, the oven is randomly initialized
at one of the four borders of the workspace. In Banana in Bowl, the initial poses of the banana
and the bowl are both randomly sampled. In Trash Sweeping, the robot needs to use a tool brush
to sweep two pieces of crumpled paper out of its workspace. The initial poses of the objects are
randomly sampled. In Letter Alignment, the robot needs to align the letters to form “AI”. The
letter A is randomly initialized at one of the four corners of the workspace, and the pose of the I
is randomly sampled. In Hammer to Drawer, the robot needs to open a drawer, pick up a hammer,
place it inside the drawer, and close the drawer. The drawer is initialized at one of the four borders
of the workspace, and the hammer is randomly initialized at the opposite side of the drawer. Lastly,
we also evaluate a Bagel Baking task with an extremely long time horizon, where the robot needs to
open the oven, pull out the tray inside the oven, pick up the bagel, place it inside the tray, close the
tray, and close the oven. In this task, the oven is randomly initialized at one of the three borders of
the workspace (where we eliminate the side that is furthest from the robot to avoid joint limits of the
robot), and the bagel is randomly initialized along the opposite side of the oven. The observation is
a voxel grid with a resolution of 64 x 64 x 64 and the gripper pose and open width. The voxel grid
covers the (0.4m)? workspace. During training, we apply a random crop augmentation to crop the
voxel grid to 58 x 58 x 58. In Banana in Bowl and Trash Sweeping, we train the model with an
additional random rotation augmentation. The baseline is trained with the same data augmentation
as our method.
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