
A Proof of Proposition 1436

Proof. Consider the observation o and the action a = ⇡(o), let ak = a + "k. By the definition of437

the noise prediction function ", we have438

"k = "(o,⇡(o) + "k, k). (2)

Applying g 2 SO(2) to o we have439

"k = "(go,⇡(go) + "k, k). (3)

Since ⇡ is equivariant,440

"k = "(go, ga+ "k, k). (4)
Since the noise prediction function predicts the noise as long as "k is the same on both sides of the441

equation, we can substitute "k with g"k442

g"k = "(go, ga+ g"k, k). (5)

By linearity, ga+ g"k = g(a+ "k) = gak and thus443

g"k = "(go, gak, k). (6)

Replacing "k with "(o,ak, k) gives g"(o,ak, k) = "(go, gak, k) as desired.444

B Decomposing Group Representation in Relative Pose Control into445

Irreducible Representations446

In Section 4.2, we want to find a linear action ⇢A that satisfies gat = ⇢A(g)Vecr(At) =447

Vecr(TgAtT�1
g ). solving for ⇢A 2 R16⇥16 we have the group action of SO(2) on Vecr(At)448

as449

⇢A =

2

66666666666666664

c2 � s2
2 0 0 � s2

2 s2 0 0
s2
2 c2 0 0 �s2 � s2

2 0 0

0 0 c 0 0 0 �s 0

0 0 0 c 0 0 0 �s
s2
2 �s2 0 0 c2 � s2

2 0 0

s2 s2
2 0 0

s2
2 c2 0 0

0 0 s 0 0 0 c 0

0 0 0 s 0 0 0 c
⇢1(g)

I2
⇢1(g)

I2

3

77777777777777775

, (7)

where c = cos g, s = sin g, c2 = cos 2g, s2 = sin 2g. Define P as450

P =

2

666666666666666666666664

1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

�1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

3

777777777777777777777775

, (8)
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We then have451

P⇢AP�1
=

2

666664

I6
⇢1(g)

⇢1(g)
⇢1(g)

⇢1(g)
⇢2(g)

3

777775
. (9)

C Simplifying Group Action in Relative Pose Control452

In Section 4.2, we want to find a linear action ⇢A that satisfies453

⇢A(g)Vecr(At) = Vecr(TgAtT
�1
g ), (10)

To simplify the problem, we decompose At =
⇥
Rt Dt
0 1

⇤
where Rt is the SO(3) rotation and Dt =454

[x, y, z]T is the translation. Define Rg as the rotation matrix in Tg ,455

Rg =

"
cos g � sin g 0

sin g cos g 0

0 0 1

#
=


⇢1(g)

⇢0(g)

�
. (11)

Since the conjugate does not apply to translation, we can write gDt = RgDt = [⇢1(x, y), ⇢0(z)]T456

For rotation, similar as before, we need to find the representation ⇢R that satisfies457

⇢R(g)Vecr(Rt) = Vecr(RgRtR
�1
g ). (12)

Solving for ⇢R(g) 2 R9⇥9 we have458

⇢R =

2

66666666664

c2 �cs 0 �cs s2 0 0 0 0

cs c2 0 �s2 �cs 0 0 0 0

0 0 c 0 0 �s 0 0 0

cs �s2 0 c2 �cs 0 0 0 0

s2 cs 0 cs c2 0 0 0 0

0 0 s 0 0 c 0 0 0

0 0 0 0 0 0 c �s 0

0 0 0 0 0 0 s c 0

0 0 0 0 0 0 0 0 1

3

77777777775

, (13)

where c = cos g, s = sin g. To decompose it into the irreducible representations of SO(2), we459

define460

P =

2

66666666664

1 0 0 0 1 0 0 0 0

0 �1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 1 0 1 0 0 0 0 0

�1 0 0 0 1 0 0 0 0

3

77777777775

. (14)

Such that P⇢RP�1 is a block diagonal matrix consisting of irreducible representations461

P⇢RP�1
=

2

666664

⇢0(g)
⇢0(g)

⇢0(g)
⇢1(g)

⇢1(g)
⇢2(g)

3

777775
. (15)
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Figure 7: The detailed network architecture of our Equivariant Diffusion Policy in the simulation
experiments.

We can then use ⇢(g) = P⇢RP�1
= ⇢30(g) � ⇢21(g) � ⇢2(g) 2 R9⇥9 as the group representation462

of the output of the equivariant network, then construct the 3 ⇥ 3 rotation matrix Rt using P .463

Specifically, let V 2 R9 be the output of the network associated with the representation ⇢(g) (i.e., g464

acts on V through ⇢(g)V ). Define465

Vecr(Rt) = P�1V. (16)
Applying ⇢(g) on V will lead to466

P�1⇢(g)V (17)
=P�1P⇢RP�1V (18)
=⇢RVecr(R), (19)

which is the desired property in the equivariant network.467

In the end, adding the group action for the translation (⇢1 � ⇢0) and gripper open width (⇢0), we468

have ⇢a = ⇢50 � ⇢31 � ⇢2.469

D Network Architecture Detail470

In the image version, we implement the equivariant observation encoder with an equivariant471

ResNet [51] for the agent view image, a standard ResNet [52] for the eye-in-hand image, and an472

equivariant MLP for the robot states. We implement the equivariant layers in the group C8. Figure 7473

shows the detailed network architecture of our Equivariant Diffusion Policy in the simulation exper-474

iments. The network is defined under group C8. First, in the encoding phase, the agent view image475

is processed with an equivariant ResNet-18, whose output is a 128 ⇥ 8-dimensional regular repre-476

sentation vector of group. A non-equivariant ResNet-18 with a spatial maxpool at the end processes477

the eye-in-hand image and outputs a 128-dimensional representation vector that uses the trivial in-478

variance representation. Those two vectors are concatenated with the gripper position (represented479
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(a) Stack D1 (b) Stack Three D1 (c) Square D2 (d) Threading D2

(e) Coffee D2 (f) Three Pc. Assembly D2 (g) Hammer Cleanup D1 (h) Mug Cleanup D1

(i) Kitchen D1 (j) Nut Assembly D0 (k) Pick Place D0 (l) Coffee Preparation D1

Figure 8: The experimental environments from MimicGen [11]. The left image in each sub figure
shows an initial state of the environment; the right image shows the goal state.

(a) Kitchen D1

(b) Coffee Preparation D1

Figure 9: Illustration of an episode of Kitchen D1 task and Coffee Preparation D1 task.

using ⇢1 � ⇢0), gripper orientation (in the format of 6D rotation, represented using ⇢31), and the480

gripper finger position (represented using ⇢20). The concatenated mixed-representation vector is sent481

to an equivariant linear layer, whose output is a 128 ⇥ 8-dimensional regular representation obser-482

vation embedding. The noisy action is also encoded using an equivariant linear layer, whose output483

is a 64 ⇥ 8-dimensional regular representation action embedding. Second, in the denoising phase,484

we process each part of the observation embedding and the action embedding that corresponds to485

the same group element with a 1D Temporal UNet with hidden dimensions of [512, 1024, 2048] to486

get a 64-dimensional vector. Doing so for each pair, we will recover a 64 ⇥ 8-dimensional regular487

representation noise embedding. In the end, an equivariant linear layer will decode the noise.488

In the voxel version, the agent view image is replaced with a voxel grid, and we replace the equiv-489

ariant ResNet with an 8-layer 3D equivariant convolutional encoder. The 1D Temporal UNet has a490

hidden dimensions of [256, 512, 1024]. The other part of the network stays the same. In the real-491

world, we remove the eye-in-hand image and only use the voxel grid as vision input (the gripper492

state vector stays the same).493

E Simulation Environments494

Figure 8 shows the initial and goal states of each tasks. Figure 9 shows an example trajectory for495

finishing the Kitchen and Coffee Preparation tasks. The RGB observation is an agent-view image496

and an eye-in-hand image with a size of 3 ⇥ 84 ⇥ 84. The voxel grid observation has a size of497
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Task Max Steps Max Out of Plane Rot in Demo

Stack D1 400 11.2
Stack Three D1 400 13.2

Square D2 400 14.7
Threading D2 400 13.4

Coffee D2 400 14.1
Three Piece Assembly D2 500 16.2

Hammer Cleanup D1 500 16.4
Mug Cleanup D1 500 13.0

Kitchen D1 800 16.2
Nut Assembly D0 500 15.5

Pick Place D0 1000 18.0
Coffee Preparation D1 800 59.0

Table 4: The maximum number of time steps and the maximum out of plane rotation (in degrees) in
the demo for each simulation environments. The maximum out of plane rotation in the demo is the
maximum angular difference between the SO(3) rotation and the SO(2) rotation (i.e., only rotating
around the z axis) over all demonstration steps, averaged over 1000 demonstration episodes.

Method Obs Obs Step Action Pred. Step Action Exec. Step

Equi. DiffPo (Vo) Voxel Grid, Eye-In-Hand Image, Gripper State 1 16 8
Equi. DiffPo (Im) Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-C Agent View Image, Eye-In-Hand Image, Gripper State 2 16 8
DiffPo-T Agent View Image, Eye-In-Hand Image, Gripper State 2 10 8
DP3 Point Cloud, Gripper State 2 16 8
ACT Agent View Image, Eye-In-Hand Image, Gripper State 1 10 10
BC-RNN Agent View Image, Eye-In-Hand Image, Gripper State 1 1 1

Table 5: The observation format, observation step, action prediction step, and action execution step
for all methods. The gripper state is a vector including a 3 dimensional position vector, a rotation
vector in the format of 6D rotation representation or 4D quaternion, and a 2 dimensional finger
position.

4⇥ 64⇥ 64⇥ 64 where the first channel is binary occupancy and the remaining three channels are498

RGB. The point cloud observation has a size of 1024⇥6 (i.e, xyzrgb). The point cloud only contains499

points above the table, as suggested in [20]. All tasks have a full 6 DoF SE(3) action space. Table 4500

shows the maximum number of time steps (following [11]) and the maximum out of plane rotation501

in the demo, calculated by taking the maximum angular difference between the SO(3) rotation and502

the SO(2) rotation (i.e., only rotating around the z axis) across the entire demonstration episode.503

Results averaged for 1000 demonstrations.504

F Training Detail505

In the simulation experiments, we follow the hyper-parameters of the prior work [1] for the image506

version of our method, where the only change is that we increase the batch size to 128 for faster507

training. Specifically, the observation contains two steps of history observation, and the output of508

the denoising process is a sequence of 16 action steps. We use all 16 steps for training but only509

execute eight steps in evaluation. We train our models with the AdamW [53] optimizer (with a510

learning rate of 10�4 and weight decay of 10�6) and Exponential Moving Average (EMA). We use511

a cosine learning rate scheduler with 500 warm-up steps. We use DDPM [14] with 100 denoising512

steps for both training and evaluation. For each different number of demos (100, 200, 1000), we513

maintain roughly the same number of training steps by the training for 50000/n epochs where n is514

the number of demos. Evaluations are conducted every 1000/n epochs (50 evaluations in total). In515

the voxel version, we use only one step of history observation, and keep the other hyper-parameters516

the same.517

The hyper-parameters for the diffusion policy and BC RNN baselines exactly follow [1]. We follow518

the original work [20] for the hyper-parameters of DP3, except that we use the same action sequence519

length (16 for training and 8 for evaluation) as [1] and our method. For the ACT baseline, we follow520

the hyper-parameters provided in the prior work [45], except that we use a chunk size of 10, KL521
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Stack D1 Stack Three D1 Square D2 Threading D2

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- Equi. DiffPo (Vo)

Abs

Voxel 99 100 100 75 91 91 39 48 63 39 53 55
No Voxel Equi. DiffPo (Im) RGB 93 100 100 55 77 96 25 41 60 22 40 59
No Equi. DiffPo-C (Vo) Voxel 87 99 100 33 79 94 10 24 60 19 43 54
No Voxel No Equi. DiffPo-C [1] RGB 76 97 100 38 72 94 8 19 46 17 35 59

Coffee D2 Three Pc. Asse. D2 Hammer Cleanup D1 Mug Cleanup D1

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- Equi. DiffPo (Vo)

Abs

Voxel 65 73 76 37 58 71 70 66 73 53 65 68
No Voxel Equi. DiffPo (Im) RGB 60 79 76 15 39 69 65 63 77 49 64 67
No Equi. DiffPo-C (Vo) Voxel 50 72 75 2 5 50 54 64 76 47 58 66
No Voxel No Equi. DiffPo-C [1] RGB 44 66 79 4 6 30 52 59 73 43 59 65

Kitchen D1 Nut Assembly D0 Pick Place D0 Coffee Prep. D1

Ablation Method Ctrl Obs 100 200 1000 100 200 1000 100 200 1000 100 200 1000

- Equi. DiffPo (Vo)

Abs

Voxel 85 89 88 67 77 83 58 69 82 80 83 85
No Voxel Equi. DiffPo (Im) RGB 67 77 81 74 85 94 42 74 92 77 83 85
No Equi. DiffPo-C (Vo) Voxel 82 87 87 66 77 84 41 67 84 65 75 77
No Voxel No Equi. DiffPo-C [1] RGB 67 85 87 55 68 83 35 65 83 65 62 58

Table 6: The ablation study that ablates the voxel input and the equivariant structure in our method.
We experiment with 100, 200, and 1000 demos in each environment and report the maximum task
success rate among 50 evaluations throughout training. Results averaged over three seeds.

Average over 12 Environments

Ablation Method Ctrl 100 200 1000

- Equi. DiffPo (Vo)

Abs

63.9 72.6 77.9
No Voxel Equi. DiffPo (Im) 53.7 (-10.3) 68.5 (-4.1) 79.7 (+1.8)
No Equi. DiffPo-C (Vo) 46.3 (-17.6) 62.5 (-10.1) 75.6 (-2.3)
No Voxel No Equi. DiffPo-C [1] 42.0 (-21.9) 57.8 (-14.8) 71.4 (-6.5)

Table 7: The average performance over 12 tasks of the ablation study. Number in parenthesis shows
the performance difference after removing different components in our Equivariant Diffusion Policy
with voxel input.

weight of 10, batch size of 64 with learning rate of 5⇥10
�5, and no temporal aggregation, following522

the tuning tips provided by the authors. See Table 5 for the observation format, observation step,523

action prediction step, and action execution step for all methods.524

In the real-world experiments, we use a batch size of 64, one step of observation, and disable the525

EMA. We use DDIM [49] with 100 denoising steps for training and 16 denoising steps for evalua-526

tion. The other hyper-parameters stay the same as in simulation.527

G Ablation Study528

We perform an ablation study regarding the equivariant structure and the voxel input in our method.529

We consider the following four candidates: 1) Ours: our Equivariant Diffusion Policy with voxel530

input; 2) Ours no Voxel: our Equivariant Diffusion Policy with RGB input; 3) Ours no Equi.: the531

baseline Diffusion Policy with voxel input; 4) Ours no Voxel no Equi.: the baseline Diffusion Policy532

with RGB input, same as [1]. Table 6 shows the result and Table 7 shows the average over all 12 en-533

vironments. Though both the equivariant structure and the voxel input contribute to the performance534

improvement of our method, the equivariant structure plays a more important rule, as removing it535

(No Equi.) lead to a more significant performance drop compared with removing the voxel input536

(No Voxel). Note that by using the voxel input, Diffpo-C (Vo) is marginally better than the original537

Diffusion Policy (DiffPo-C), thus we use Diffpo-C (Vo) as the baseline in our robot experiment in538

Section 5.3.539
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Stack Three D1 Threading D2 Coffee Preparation D1

Equi. DiffPo (Im), SE(3) Action 77.3 40.0 85.3
Equi. DiffPo (Im), SE(2) Action 75.3 12.7 0.0

Table 8: Performance of Equivariant Diffusion Policy in SE(2) action space compared with SE(3)

action space. 200 demos are used in this experiment.

H SE(2) Action Space Variation540

In this section, we evaluate a variation of our Equivariant Diffusion Policy in an SE(2) (with z trans-541

lation) action space to demonstrate the necessity of leveraging an SE(3) action space. Specifically,542

the SE(2) agent only learns the top-down rotation and the out-of-plane rotations will be constantly543

set to 0. As is shown in Table 8, the SE(2) variation achieves a similar performance as the SE(3)544

version in Stack Three, as the demonstration data in this task has the least amount of out-of-plane545

rotation (as shown in Table 4). On the other hand, the SE(2) variation significantly underperforms in546

Threading, since the ability of wiggling the out-of-plane rotation helps the agent to precisely insert547

the tool. In the end, the SE(2) agent cannot solve Coffee Preparation at all, because the task requires548

a significant amount of out-of-plane rotation (as shown in Figure 9b).549

I Real-Robot Environment Details550

Figure 6 shows the five tasks in this experiment. In Oven Opening, the oven is randomly initialized551

at one of the four borders of the workspace. In Banana in Bowl, the initial poses of the banana552

and the bowl are both randomly sampled. In Trash Sweeping, the robot needs to use a tool brush553

to sweep two pieces of crumpled paper out of its workspace. The initial poses of the objects are554

randomly sampled. In Letter Alignment, the robot needs to align the letters to form “AI”. The555

letter A is randomly initialized at one of the four corners of the workspace, and the pose of the I556

is randomly sampled. In Hammer to Drawer, the robot needs to open a drawer, pick up a hammer,557

place it inside the drawer, and close the drawer. The drawer is initialized at one of the four borders558

of the workspace, and the hammer is randomly initialized at the opposite side of the drawer. Lastly,559

we also evaluate a Bagel Baking task with an extremely long time horizon, where the robot needs to560

open the oven, pull out the tray inside the oven, pick up the bagel, place it inside the tray, close the561

tray, and close the oven. In this task, the oven is randomly initialized at one of the three borders of562

the workspace (where we eliminate the side that is furthest from the robot to avoid joint limits of the563

robot), and the bagel is randomly initialized along the opposite side of the oven. The observation is564

a voxel grid with a resolution of 64⇥ 64⇥ 64 and the gripper pose and open width. The voxel grid565

covers the (0.4m)
3 workspace. During training, we apply a random crop augmentation to crop the566

voxel grid to 58 ⇥ 58 ⇥ 58. In Banana in Bowl and Trash Sweeping, we train the model with an567

additional random rotation augmentation. The baseline is trained with the same data augmentation568

as our method.569
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