
A Value-based methods in a cooperative setting438

Value-based methods consist of learning a Q function. Formally, in SARL, this corresponds to439

learning Q
⇡⇤
(s, u) = max⇡ Q

⇡(s, u) 8(s, u) 2 S ⇥ U . The optimal policy is a greedy selection:440

u
⇤ = argmaxu Q

⇡⇤
(s, u). Q-learning [Watkins and Dayan, 1992] showed that it is possible, when441

interacting with MDPs, to learn the exact Q functions using simple update rules depending only on442

the information collected by the agent. However, when S ⇥ U is very large or continuous, these443

methods can become intractable and function approximators are used to model the Q function. A444

neural network, parametrised by ✓, can be used to learn a Q function approximation by minimising445

the objective defined in Equation 1 where B is the experience replay and ✓
0 parametrises a target446

network.447

L(✓) = Ehst,ut,rt,st+1i⇠B

�
rt + �max

u2U
Q(st+1, u; ✓

0)�Q(st, ut; ✓)
�2
�

(1)

The experience replay stores transitions hst, ut, rt, st+1i and the target network is a copy of ✓ that is448

periodically updated. In DQN [Mnih et al., 2015], ✓ parametrises a convolutional network while in449

DRQN [Hausknecht and Stone, 2015], ✓ parametrises a recurrent network (RNN), which has been450

shown to achieve better performance in partially observable environments. When ✓ is a recurrent451

network, B stores sequences of contiguous transition as the update of recurrent networks is performed452

on sequences.453

When considering value-based methods in a Dec-POMDP, one possible method to consider is454

Independent Q-Learning (IQL) [Tan, 1993]. With IQL, agents independently learn their Q function,455

as in SARL, without considering the existence of other learning agents in their environment. One456

problem with IQL is that agents must select actions which maximise Q(st,ut) while ignoring, at any457

time, actions taken by other agents.458

This is where CTDE becomes useful. It is possible to approximate Q(st,ut) as a factorisation of459

individual Qa functions during training such that ut maximises both the joint and the individual Qa460

functions. To ensure this, individual Qa functions must satisfy the Individual-Global-Max condition461

(IGM)[Son et al., 2019] presented in Equation 2.462

argmaxut
Q(st,ut) =

[

a

argmaxua
t
Qa(st, u

a
t) (2)

A.1 QMIX463

QMIX [Rashid et al., 2018] is a CTDE method where the factorisation of Q(st,ut), denoted as464

Qmix(st,ut), is performed as a function of the individual Qa functions and the state during training.465

It is defined in Equation 3.466

Qmix = Mixer (Qa1(st, u
a1
t), .., Qan(st, u

an
t), st) (3)

The mixer satisfies IGM by enforcing @Qmix(st,ut)
@Qa(st,ua

t)
� 0 8a 2 {a1, .., an} by constraining a hypernet-467

work [Ha et al., 2016] to produce positive weights in order to factorise Q(st,ut). Formally, this is de-468

fined by a hypernetwork hp(.) : S ! R|�|+ which takes the state st as input and computes the strictly469

positive parameters2
� of a main network hm(.). This main network takes as input all individual Qa470

to compute Qmix with the positive weights and the offsets defined by �. Together, hp(.) and hm(.)471

defines the mixer such that hm(.) : Rn ⇥ � ! R and Qmix(st,ut) = hm (Qa1(), .., Qan(), hp(st)).472

QMIX architecture is presented in Figure 4a.473

The monotonicity of Qmix with respect to the individual Qa functions is satisfied because a neural474

network comprised of monotonic functions (hm) and strictly positive weights (hp) is monotonic with475

respect to its inputs (Qa). Because of partial observability, individual Qa networks are RNNs made476

of GRU [Chung et al., 2014]. The optimisation procedure follows the same principles of the DQN477

algorithm and the loss is applied to Qmix(st,ut) and defined in Equation 4.478

2To be exact, the offsets defined by hp() are not constrained to be positive, only the weights.

12

L(✓) = Ehst,ut,rt,st+1i⇠B

�
rt + �max

u2U
Qmix(st+1,u; ✓

0)�Qmix(st,ut; ✓)
�2
�

(4)

Since this method trains recurrent networks, the replay buffer does not store isolated transitions479

hst,ut, rt, st+1i but instead stores sequences of contiguous transitions. Individual Qa networks are480

copied as well was as the mixer to produce target networks represented by ✓
0.481

In QMIX implementation, as in QVMix, individual Qa architecture follows the architecture presented482

in Figure 4b and takes as input the previous action in addition to the observation. Note that the hidden483

states of the recurrent network are represented by ht and their objective is to encode the agent’s484

history ⌧t.485

Qmix(st,ut)

Mixer

Qa1

Qa1(st, u
1
t)

Qan

Qan(st, u
n
t)

hm hp

o
a1
t , u

a
t�1

. . .

o
an
t , u

a
t�1

st
|.|

(a) QMIX architecture. Individual Qa are repre-
sented in red and the mixing network is represented
in blue.

{Qa(st, ua
j)8ua

j 2 Ua}

FC layer

Reccurent
layer

FC layer

o
a
t , u

a
t�1

ht�1 ht

(b) Individual Qa network implementation in
QMIX and QVMix. The action space size defines
the number of outputs of each agent network.

Figure 4: Details of the QMIX and QVMix architecture.

A.2 MAVEN486

Mahajan et al. [2019] defined the class of state-joint-action value functions that cannot be represented487

by QMIX due to its monotonicity constraint. They demonstrated the existence of payoff matrices in488

an n-player game with more than three actions per agent for which QMIX learns a suboptimal policy489

for any training duration, and for epsilon greedy and uniform exploration. To tackle this problem,490

in the former QMIX architecture, they added a latent space that conditions individual Qa function491

networks with the objective of influencing agent behaviour. This allows one to learn an ensemble492

of approximations and therefore an ensemble of policies to improve the exploration capabilities.493

The latent variable is the input of a hypernetwork, such as hp in QMIX, that computes parameters494

for the fully connected layer linking recurrent cells to outputs in the individual Qa networks. This495

latent variable z is generated per episode and by a hierarchical policy network, taking as input the496

initial state of the environment together with a random variable (typically discrete and sampled497

from a uniform distribution). The latent variable maps the different learnt strategies and the goal498

of the hierarchical policy network is to select the best strategy based on the initial state s0 which499

is hypothetically known at testing. The architecture of the individual Qa network of MAVEN is500

represented in Figure 5a.501

MAVEN’s network objective function comprises three parts. To optimise the two hypernetworks502

(the mixer and the latent space hypernetwork) and the individual recurrent networks, a part of the503

objective is the loss of QMIX defined in Equation 4. This loss is computed by fixing the hierarchical504

policy network and therefore the latent variable z. To optimise the hierarchical policy network, any505

policy optimisation, such as policy gradient [Sutton et al., 1999], computed with the total sum of506

13

{Qa(st, ua
j)8ua

j 2 Ua}

FC layer

Reccurent
layer

FC layer

o
a
t , u

a
t�1

ht�1 ht

Hypernetwork

z

Hierarchical
policy network

st0 x ⇠ P (x)

(a) MAVEN modification of the individual Qa network.

Vmix(st)

Mixer

Va1

Va1(st)

Van

Van(st)

ho hp

o
a1
t , u

a
t�1

. . .

o
an
t , u

a
t�1

st
|.|

(b) Architecture of the Vmix network.

Figure 5: Details of the MAVEN and QVMix architecture.

rewards per episode can be used. This second objective is computed by fixing both hypernetworks507

and the individual networks. To enforce that different values of z imply different behaviours, a mutual508

information loss between the latent variable and consecutive transitions is added as the third part of509

the objective. This third part of the objective requires the introduction of a variational distribution510

and for further details on the MAVEN optimisation procedure and especially on the construction of511

the mutual information objective, we refer the reader to Mahajan et al. [2019].512

A.3 QVMix513

QVMix [Leroy et al., 2020] is an extension of the Deep Quality-Value (DQV) family of algorithms514

[Sabatelli et al., 2018, 2020] to the cooperative MARL setting. The principle of DQV is to learn both515

the Q function, Q(s, u; ✓), and the V function, V (s;�), simultaneously.516

In SARL, following the principles of DQN, both networks are trained with the losses defined in517

Equations 5 and 6.518

L(�) = Ehst,ut,rt,st+1i⇠B

�
rt + �V (st+1;�

0)� V (st;�)
�2
�

(5)

L(✓) = Ehst,ut,rt,st+1i⇠B

�
rt + �V (st+1;�

0)�Q(st, ut; ✓)
�2
�

(6)

In QVMix, the V network is updated with the loss defined in Eq. 5 and has the same architecture519

as the Q network of QMIX, except that actions are not considered. The architecture is presented in520

Figure 5b. The Qmix network remains the same as in QMIX but is now updated with the loss defined521

in Eq. 6. Again, B stores sequences of contiguous transitions instead of single transitions to train522

recurrent networks.523

B Elo score524

The purpose of the Elo rating system [Elo, 1978] is to assign each player of a population with a rating525

R to rank them. From these ratings, one can compute the probability that a player will win when526

facing another one. Let RA and RB be the ELO scores of player A and B, respectively. In such a527

context, the probability that player A (B) wins over player is B (A) is computed using Equation 7 (8)528

given below.529

14

EA =
10RA/400

10RA/400 + 10RB/400
(7)

EB =
10RB/400

10RA/400 + 10RB/400
(8)

One can see that EA + EB = 1. The number 400 can be considered as a parameter. It determines530

that if the Elo score of a player A is 400 points above that of B, it has a ten-times greater chance of531

defeating B. In order to update the rating of player A after a game, we take into account its score532

SA which is equal to 1 for a win, 0 for a loss and 0.5 for a draw. The updated score R
0
A is defined533

in Equation 9 where cst is a constant that defines the maximum possible update of the Elo score.534

Typically, cst is 32 but for our experiments, we set it to 10 to decrease the amplitude of oscillations535

in the Elo score during tests.536

R
0
A = RA + cst ⇤ (SA � EA) (9)

C Competitive SMAC537

(a) 3m (b) 3s5z

Figure 6: Overview of the 3m and 3s5z SMAC maps seen in StarCraft.

In SMAC, agents have partial observability defined by a sight range, a surrounding circle inside which538

they can observe allies and enemies and their shooting range is smaller than the sight range. There539

are different components in the observation of the state. An agent observes information about itself:540

its remaining hit points and shield points, its relative position with respect to the centre of the map541

and four Booleans representing the direction it can move in (NSWE). It also observes information542

about other agents that are within its sight range: the relative distance, relative x, relative y and the543

remaining hit points and shield points. If the other agent is an ally, it also observes the last action544

performed by the allied agent. If the other agent is an enemy, it observes if the enemy agent is within545

its shooting range.546

In the 3m map, six marines compete in teams of three. A marine has 45 hit points and shoots at547

range, inflicting 6 damage points to an opponent for each attack. In the 3s5z map, six stalkers and548

ten zealots compete in teams of eight. Both units have shield points in addition to hit points. A shield549

receives a different amount of damage and regenerates over time if the unit is not attacked for a550

given period of time. A stalker has 80 hit points and 80 shield points. It shoots at range, inflicting 13551

damage points to the shield, 12 damage points to a zealot’s hit points and 17 to a stalker’s hit points.552

A zealot has 100 hits points and 50 shield points. It attacks in melee and inflicts 16 damage points to553

the shield and 14 damage points to the hit points of a zealot or a stalker. On both maps, there are two554

possible starting positions for the teams (see Figure 6) and agents initially do not see their opponents.555

Within the both maps, the agent has the choice of eight actions: do nothing, move in one of four556

directions (NSWE) or attack one of its three opponents. Some actions are forbidden in SMAC, such557

as an attack action if the opponent is not within shooting range. Therefore, before choosing an action,558

agents must consider which ones are available.559

At each timestep, the agent receives a zero or positive reward, common to each agent of the same560

team. This reward is the sum of a zero or positive reward for the damage dealt, a positive reward if an561

enemy unit’s hit points reach zero, and a positive reward if all enemy units are defeated. Maximising562

the reward forces the team to neutralise every unit of the opposing team.563

15

D Training parameters564

Learning parameters of the three methods were determined by default configurations provided by565

their different authors. They are the same as the ones used in QVMix implementation [Leroy et al.,566

2020]. We hereafter provide a description of some of these training parameters.567

Individual networks are 64 cells GRU enclosed with fully-connected layers (see Fig 4b). The mixer568

network is the same as in [Rashid et al., 2018] with an embedded size of 32. The individual and mixer569

networks are the same for the three methods. We used the default parameters of MAVEN policy570

networks provided by [Mahajan et al., 2019]. For QVMix, the V network is a copy of the QMIX571

network with only one output for each V network.572

For each learning scenario, networks are updated regardless of how episodes have been generated.573

Networks are updated from a replay buffer that collects the 5000 latest played episodes and 32 of them574

are sampled from it to update the network. The network update is performed every eight episodes in575

the 3m map and every episode in the 3s5z map. The difference is justified by the desire to increase576

the number of network updates for 3s5 to improve performance, especially against the heuristic.577

The epsilon greedy exploration starts with an epsilon equal to 1 decreasing linearly to 0.05 during578

2 million timesteps. This is perhaps the main difference with respect to the provided parameters579

that decreases the epsilon only during 0.5 million timesteps. The discount factor is � = 0.99 and580

the learning rate is 0.0005. Target networks are updated every 200 episodes. We refer the reader to581

[Mahajan et al., 2019] for further parameter definitions for MAVEN optimisation.582

E Training time583

Figure 7: Training duration, in days, for the different training scenarios tested in this paper. The
different colours represent the different CPUs that have been used to perform the experiments.

Experiments were performed with CPUs only because small recurrent networks do not arguably584

benefit from GPU. We had access to several types of computer with different numbers of CPUs585

accessible at the same time. Training times for each experiment performed are presented in Figure586

7. With all these different hardware configurations, it is not possible to rigorously compare the587

time efficiency of the experiments. However, it is to present the time complexity. As explained in588

Section 3, training in self-play requires five-times fewer environment timesteps than training within589

a population, but also five-times fewer network updates. Furthermore, when training a population,590

networks are updated sequentially, which also increases the time. Finally, SC2 processes are prone591

to bugs and therefore sometimes need to be restarted. As the actions of all agents in the different592

running environments are performed simultaneously, these restarts are time-consuming operations as593

the processes have to wait for the faulty one.594

16

F Additional Elo score boxplots595

(a) 3m

(b) 3s5z

Figure 8: Elo score box plots of two test populations, in 3m at the top and in 3s5z at the bottom,
composed of teams trained using three methods and three learning scenarios. The training method is
either QVMix (red), MAVEN (blue) or QMIX (black). Box plots represent the distribution of the Elo
scores of teams trained either against the heuristic (H), in self-play (S), within a population (P) or
the best of each population (BP). Box plots present the median, the first quantile (Q1) and the third
quantile (Q3). The reach of whiskers is defined by 1.7 ⇤ (Q3�Q1).

Boxplots of the test populations composed of all methods without the heuristic for both maps are596

presented in Figure 8.597

17

	Introduction
	Background
	Learning scenarios, performance criteria and training parameters
	Performance of learning scenarios
	Conclusion and future works
	Value-based methods in a cooperative setting
	QMIX
	MAVEN
	QVMix

	Elo score
	Competitive SMAC
	Training parameters
	Training time
	Additional Elo score boxplots

