
VeriBench-FTP: A Formal Theorem Proving
Benchmark in Lean 4 for Code Verification

Anonymous Author(s)
Affiliation
Address
email

Abstract

Theorem proving in Lean 4 offers a promising avenue for advancing the reasoning1

capabilities of LLMs. Evaluating current provers is crucial, as many achieve near-2

perfect accuracy on existing benchmarks such as MiniF2F, highlighting the need3

for more novel tasks. We introduce VERIBENCH-FTP, a benchmark designed to4

assess formal code verification knowledge in Lean 4. The task requires models5

to generate proofs for theorems that capture key aspects of program verification.6

Our benchmark consists of 857 theorems derived from 140 problems across five7

difficulty levels: 56 HumanEval problems, 41 foundational programming exercises,8

10 classical algorithms, 28 security-critical programs adapted from real-world9

vulnerabilities, and 5 problems from the Python standard library. On our bench-10

mark, DeepSeek-Prover-V2-8B [4] achieves 28% Pass@1, highlighting both the11

novelty and difficulty of the tasks . VERIBENCH provides a rigorous alternative to12

existing datasets, enabling more realistic evaluation of formal provers in Lean 4 on13

problems that go beyond their training distribution. VERIBENCH-FTP translates14

‘theorem-proving ability’ into a measurable route toward trustworthy code, making15

progress oward secure, dependable software infrastructure16

1 Introduction17

Large language models (LLMs) have demonstrated remarkable success in automated theorem proving18

(ATP), achieving near-saturation performance on established mathematical benchmarks like MiniF2F19

[6] and ProofNet [7]. This progress signals a new frontier in formal reasoning [5]. This progress20

signals a new frontier in formal reasoning. However, this success also masks a critical gap: the21

predominant focus on competition-style mathematics leaves the capabilities of these models on22

software verification—a domain with profound real-world implications—largely untested. The23

saturation of existing benchmarks necessitates new, more challenging datasets that evaluate a different24

and arguably more practical kind of reasoning.25

We introduce VERIBENCH-FTP, a new benchmark in Lean 4 designed specifically for formal26

code verification. The dataset contains 857 theorems derived from 140 problems spanning five27

categories: HumanEval puzzles, foundational exercises, classical algorithms, real-world security28

vulnerabilities, and selected Python standard library programs. Each theorem captures correctness or29

safety properties of Lean functions corresponding to Python code, pushing models to reason about30

invariants, algorithmic behavior, and bug-prone implementations. On this benchmark, state-of-the-art31

provers—including DeepSeek-Prover and Claude with Draft Sketch Prove (DSP) pipelines—achieve32

only 18–28% pass@1 accuracy, underscoring both the novelty and difficulty of the task [8]. By33

shifting the focus from competition math to program reasoning, VERIBENCH-FTP offers a comple-34

mentary and realistic testbed for advancing the capabilities of next-generation theorem provers.35

Our contributions are:36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

1. Realistic proving challenges. We release 857 theorems from a diverse set of 140 problems37

across five splits (HumanEval, Easy, CS, Security, RealCode), targeting correctness and38

safety properties.39

2. Establish strong baselines and headroom. We conduct a thorough empirical evaluation of40

state-of-the-art provers, revealing their significant limitations (<29% pass@1) and exposing41

a critical gap between mathematical and formal code-reasoning capabilities.42

3. Broaden the evaluation landscape. We broaden the evaluation landscape for automated43

reasoning by establishing formal software verification as a vital, complementary domain to44

traditional mathematical benchmarks.45

2 Related Work46

Formal theorem proving Benchmarks in Lean Recent works have introduced a variety of47

benchmarks for evaluating automated theorem proving in Lean, spanning mathematical competition48

problems, undergraduate-level mathematics, and large-scale formalizations. MINIF2F (Zheng et al.,49

2021) provides a formal-to-formal benchmark of 488 competition problems from AMC, AIME, and50

IMO, split evenly between validation and test sets. FIMO (Liu et al., 2023) contains 149 Lean 351

problems formalized from IMO statements using GPT-4 and human verification. ProofNet (Azerbayev52

et al., 2023) contributes 371 undergraduate-level theorem statements in Lean 3. PutnamBench53

(Tsoukalas et al., 2024) comprises 657 college-level mathematics problems across algebra, analysis,54

geometry, combinatorics, probability, and set theory, derived from the William Lowell Putnam55

Mathematical Competition. LeanDojo (Yang et al., 2023) extracts proofs directly from Lean’s56

mathlib (Mathlib Community, 2020) and introduces a test set to evaluate retrieval-augmented provers.57

Recently, MathOlympiadBench (Lin et al., 2025) formalizes 360 Olympiad-level problems from58

Compfiles and the IMOSL Lean 4 repository. FormalMATH (Yu et al., 2025) offers 5,560 formalized59

problems from high school competitions and undergraduate mathematics. ProverBench (Ren et al.,60

2025) introduces 325 problems, including 15 AIME-style statements and additional problems from61

tutorials spanning high school to undergraduate mathematics.62

Formal Benchmarks for Code Generation The closest work to ours is VERIBENCH, a benchmark63

designed to evaluate the end-to-end code verification capabilities of large language models, requiring64

them to generate complete Lean 4 artifacts from reference Python programs or their docstrings.65

We used the VERIBENCH implementation and files in our data collection process. However, the66

VERIBENCH paper does not address theorem proving, while our benchmark includes a larger set of67

problems. VERIBENCH-FTP thus provides a distinct platform to evaluate the ability of LLMs to68

generate Lean proofs on problems unseen during training.69

3 VeriBench-FTP70

Overview. VERIBENCH-FTP is a benchmark designed to assess the theorem proving capabilities71

of large language models in Lean 4, specifically in the context of code verification. The theorems in72

our benchmark aim to verify one or more properties of a Lean function that corresponds to a Python73

implementation, ensuring that the function behaves as intended. In contrast to benchmarks such as74

MiniF2F, which focus primarily on mathematical problems formalized from competition-level tasks,75

VERIBENCH-FTP offers a complementary perspective by evaluating proof generation in Lean for76

code verification.77

Concretely, VERIBENCH-FTP consists of 857 theorems divided into five subsets:78

1. HumanEval – 387 theorems derived from 56 standard programming puzzles from ?;79

2. EasySet – 278 theorems extracted from 41 introductory logic and programming tasks;80

3. CSSet – 68 theorems drawn from 10 classical data-structure and algorithm problems;81

4. SecuritySet – 121 theorems taken from 28 examples of buffer overflows, privilege escalation,82

and race condition labs based on real code;83

5. RealCodeSet – 12 theorems extracted from 5 Python standard library programs, used to test84

model performance on production-grade code.85

2

This design covers a spectrum of tasks, from simple correctness theorems to more complex invariants,86

algorithmic properties, and real-world code verification.87

Construction. To construct the benchmark, we based our work on VERIBENCH files, specifically88

the gold Lean implementation of their theorems [9]. The files contain unproved theorems with a set89

of definitions, examples, and variable declarations. The theorems in the files are generally unproved90

and contain the sorry symbol.91

The construction process is divided into two phases. We extracted the theorems from the original files92

and isolate them. For each theorem, we kept only the necessary definitions and declarations, removing93

other theorems, examples, and comments. Our goal was to assume a minimal context to make the94

evaluation efficient and the data as clear as possible. A final human verification was performed. We95

formatted all the theorems uniformly, ensuring that each theorem ends with := sorry on the same96

line as the final tokens of the example.97

Finally, we compiled the entire dataset in Lean using Mathlib and Aeosp as the only imports, to98

ensure that our benchmark is syntactically correct.99

Examples. We provide some examples from the dataset; more examples can be found in Ap-100

pendix A.101

102
def myAdd : Nat →Nat →Nat := Nat.add103
infixl:65 "++ "=> myAdd104
def Pre (a b : Nat) : Prop := (0 ≤a) ∧(0 ≤b)105
def right_identity_prop (n : Nat) : Prop := myAdd n 0 = n106

107
theorem right_identity_thm (n : Nat) : right_identity_prop n := sorry108109

Listing 1: Example theorem statement from the VeriBench-FTP EasySet dataset.

110
open List111
def min3 (a b c : Nat) : Nat :=112
min (min a b) c113

def editDistanceAux [DecidableEq α] : List α→List α→Nat114
| [], [] => 0115
| [], ys => ys.length -- insertions116
| xs, [] => xs.length -- deletions117
| x :: xs, y :: ys =>118
if x = y then119
editDistanceAux xs ys120

else121
1 + min3122
(editDistanceAux xs (y :: ys)) -- deletion123
(editDistanceAux (x :: xs) ys) -- insertion124
(editDistanceAux xs ys) -- substitution125

def editDistance [DecidableEq α] (s1 s2 : List α) : Nat :=126
editDistanceAux s1 s2127

def Pre {α : Type*} (s1 s2 : List α) : Prop := True128
def reflexivity_prop {α : Type*} [DecidableEq α] (s : List α) : Prop := editDistance s s = 0129

130
theorem reflexivity_thm {α : Type*} [DecidableEq α] (s : List α) : reflexivity_prop s := sorry131132

Listing 2: Example theorem statement from the VeriBench-FTP CS Set dataset.

4 Evaluation133

Models We evaluated two types of methods: dedicated provers using prompting, and DSP134

(Draft–Sketch–Prove) with the model Claude family [10].135

• DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-RL: Trained on proofs collected136

via expert iteration over a combination of public datasets.137

• DeepSeek-Prover-V2: Trained using curriculum reinforcement learning, leveraging subgoal138

data extracted with DeepSeek-V3 [11].139

• Godel-Prover-V2: A family of models trained with scaffolded data synthesis, a self-140

correction loop, and model averaging. In our evaluation, we used the variant without the141

self-correction loop. We employed the 7B model.142

3

• STP: A model trained with self-play while simultaneously training a prover–conjecturer143

(generator of new statements).144

• Claude Series: We evaluated three models from the Claude Sonnet release. These were145

used with the DSP approach, which first drafts an informal solution, then generates a proof146

sketch, and finally attempts a complete proof.147

Lean Compilation For the evaluation, we used PyPantograph [12] as the Lean interface to verify148

theorems and to apply the DSP method with Claude.149

Results The results in Table 1 show that the models struggle to resolve most of the challenges,150

even with Pass@32. The best model achieved 28% on Pass@1 and 38% on Pass@32. Overall, the151

prover models outperformed the combination of Claude and DSP. Among the DeepSeek models, V2152

performed better than V1.5-RL, which in turn outperformed the SFT model, with small differences.153

This ranking is consistent with the results reported on MiniF2F for the same models [TO DO].154

Performance varies across splits. As expected, the Easy set achieved the highest success rates,155

as it contains comparatively simpler problems. In contrast, the Advanced CS set includes highly156

challenging questions. None of the models succeeded in proving theorems on real code problems.157

Model + Prompting Easy CS Real HE Security Pass@1

Claude-3.5 Sonnet v1
(2024-06-20) + DSP 31/278 0/68 0/12 14/387 0/112 45/857

5.25%
Claude-3.7 Sonnet
(2025-02-19) + DSP 81/278 2/68 0/12 67/387 6/112 156/857

18.2%
DeepSeek-ProverV1.5-SFT
(?) + prompting 59/278 2/68 0/12 57/387 15/112 133/857

15.55%
DeepSeek-ProverV2-7B
(?) + prompting 114/278 6/68 0/12 85/387 43/112 248/857

28.94%
Goedel-Prover V2-8B
(?)+ prompting 109/278 9/68 0/12 76/387 31/112 225/857

26.25%
Table 1: Performance of different models on VERIBENCH theorem-proving tasks. The table shows
results for LLMs evaluated under the Draft, Sketch, and Prove (DSP) protocol (+ DSP) (?) and
dedicated provers evaluated using a standard single prompt (+ prompting). All results are reported
at pass@1. VERIBENCH-FTP splits : Easy Set (Easy), CS Set (CS), Real Python Code (Real),
HumanEval Set (HE), Security Set (Security).

Model Easy CS Real HE Security Pass@32

DeepSeek-ProverV1.5-SFT 130/278 9/68 0/12 105/387 56/112 300/857
35.00%

DeepSeek-ProverV1.5-RL 132/278 8/68 0/12 107/387 57/112 304/857
35.47%

DeepSeek-ProverV2-7B 144/278 9/68 0/12 113/387 66/112 332/857
38.74%

STP 139/278 9/68 0/12 113/387 59/112 320/857
37.34%

Goedel-Prover V2-8B 156/278 9/68 0/12 –/387 61/112 226+/857
TODO%

Table 2: Performance of different models on VERIBENCH theorem-proving tasks. The table shows
results for LLMs evaluated on Veribench-FTP at pass@32. VERIBENCH-FTP splits : Easy Set
(Easy), CS Set (CS), Real Python Code (Real), HumanEval Set (HE), Security Set (Security).

4

5 Discussion, Limitations, and Future Work158

While VERIBENCH-FTP provides a novel testbed for theorem proving in code verification, it also159

has several limitations. First, the dataset is derived from a fixed set of problems, many of which160

are relatively short programs; this limits coverage of larger-scale software verification tasks such161

as modular reasoning, concurrency, or higher-order specifications. Second, our current evaluation162

focuses on pass@k accuracy with Lean compilation, which, while rigorous, does not fully capture163

proof quality, proof length, or generalization to novel proof styles.164

These limitations suggest several promising directions for future work. Expanding the dataset to165

include larger and more diverse codebases—such as system libraries or verified kernels—would166

provide a stronger measure of scalability. Integrating richer property types, including temporal167

logic and probabilistic guarantees, could more closely reflect real-world verification needs. Finally,168

community-driven contributions and standardized leaderboards will be essential to track progress and169

stimulate advances in this emerging intersection of formal verification and AI.170

References171

[1] Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z.172

F., Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D., Ruan, C. (2025). DeepSeek-Prover-V2: Advancing173

Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition. arXiv preprint174

arXiv:2504.21801. Available at: https://arxiv.org/abs/2504.21801175

[2] Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu, B., Zhang, L., Lu, X., Du, Q., Gao, W.,176

Zhu, Q., Yang, D., Gou, Z., Wu, Z. F., Luo, F., Ruan, C. (2024). DeepSeek-Prover-V1.5: Harnessing Proof177

Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search. arXiv preprint arXiv:2408.08152.178

Available at: https://arxiv.org/abs/2408.08152179

[3] Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li, J., Xia, M., Chen, D., Arora, S., Jin, C. (2025). Goedel-180

Prover: A Frontier Model for Open-Source Automated Theorem Proving. arXiv preprint arXiv:2502.07640.181

Available at: https://arxiv.org/abs/2502.07640182

[4] Yu, A., et al. (2025). FormalMATH: A Large-Scale Dataset for Formal Mathematical Reasoning. arXiv183

preprint.184

[5] Xin, B., Zhang, C., Wang, Y., et al. (2025). BFS-Prover: Mastering MiniF2F through Iterative Re-185

inforcement Learning with Backward-Forward Search. arXiv preprint arXiv:2509.06493. Available at:186

https://arxiv.org/abs/2509.06493187

[6] Zheng, K., Chen, Z., Han, J., Wu, Y. (2021). MiniF2F: A cross-system benchmark for formal theorem188

proving. Advances in Neural Information Processing Systems (NeurIPS).189

[7] Azerbayev, Z., Polu, S., Selsam, D., et al. (2023). ProofNet: Autoformalizing and Formally Proving190

Undergraduate-Level Mathematics. International Conference on Learning Representations (ICLR).191

[8] Jiang, A.Q., Cui, C., Zhang, Z., Shao, Z., Abhyankar, A., Chi, Y., Srinivasan, S., Wang, W., Chen, W., Yang,192

Y., Li, C., Dai, Y., Wang, Z., Lin, J., Liu, J., Xiong, C., Yasunaga, M., Le, Q., Liang, P., Zhou, D. (2023). Draft,193

Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs. arXiv preprint arXiv:2305.18058.194

Available at: https://arxiv.org/abs/2305.18058195

[9] Miranda, B., Zhou, Z., Nie, A., Obbad, E., Aniva, L., Fronsdal, K., Kirk, W., Soylu, D., Yu, A., Li, Y.,196

Koyejo, S. (2025). VeriBench: End-to-End Formal Verification Benchmark for AI Code Generation in Lean 4.197

In *Workshop: AI for Math @ ICML 2025*.198

[10] Anthropic. (2023). Claude: A family of large language models. Available at https://www.anthropic.com199

[11] DeepSeek-AI. (2025). DeepSeek-V3: Scaling Open-Source Language Models with Mixture-of-Experts.200

arXiv preprint arXiv:2412.19437. Available at: https://arxiv.org/abs/2412.19437201

[12] Miranda, B. (2025). PyPantograph: A Python Library for Evaluating Language Models on Lean 4 Proof202

Synthesis. GitHub repository. Available at: https://github.com/brando90/pypantograph203

[13] Dong, K., Ma, T. (2025). STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving.204

arXiv preprint arXiv:2502.00212. Available at: https://arxiv.org/abs/2502.00212205

[14] Zheng, K., Chen, Z., Han, J., Wu, Y. (2021). MiniF2F: A cross-system benchmark for formal206

theorem proving. Advances in Neural Information Processing Systems (NeurIPS).207

5

[15] Liu, J., et al. (2023). FIMO: A Challenge Formal Dataset of Mathematical Olympiad Problems.208

arXiv preprint.209

[16] Azerbayev, Z., Polu, S., Selsam, D., et al. (2023). ProofNet: Autoformalizing and Formally210

Proving Undergraduate-Level Mathematics. International Conference on Learning Representations211

(ICLR).212

[17] Tsoukalas, S., et al. (2024). PutnamBench: Evaluating Neural Theorem-Provers on the Putnam213

Mathematical Competition. arXiv preprint.214

[18] Yang, K., et al. (2023). LeanDojo: Theorem Proving with Retrieval-Augmented Language215

Models. arXiv preprint.216

[19] Mathlib Community. (2020). The Lean mathematical library. Available at: https://leanprover-217

community.github.io/218

A Dataset examples219

220
def gcd_fun (a b : Nat) : Nat :=221
if b = 0 then a else gcd_fun b (a % b)222

termination_by b223
decreasing_by224
have h : b > 0 := Nat.pos_of_ne_zero (by assumption)225
have : a % b < b := Nat.mod_lt a h226
exact this227

def myGcd : Nat →Nat →Nat228
| 0, b => b229
| a, 0 => a230
| a + 1, b + 1 =>231
if a < b then232
myGcd (a + 1) (b - a)233

else234
myGcd (a - b) (b + 1)235

def Pre (a b : Nat) : Prop := True236
def gcd_self_prop (a : Nat) : Prop := gcd_fun a a = a237

238
theorem gcd_self_thm (a : Nat) : gcd_self_prop a := sorry239240

Listing 3: An example of theorem from HumanEval Set .

241
structure ProgramSpec where242
name : String243
description : String244
deriving Repr, DecidableEq245

structure SafeProgramExecution where246
prog : String247
args : List String248
deriving Repr, DecidableEq249

def program_whitelist : List ProgramSpec := [250
{ name := "cat", description := "Safe file reading" },251
{ name := "ls", description := "Safe directory listing" },252
{ name := "echo", description := "Safe text output" },253
{ name := "wc", description := "Safe word/line counting" }254

]255
def is_program_whitelisted (prog_name : String) : Bool :=256
program_whitelist.any (fun spec => spec.name = prog_name)257

def tokenize_arguments (args : String) : List String :=258
if args.trim.isEmpty then []259
else args.splitOn ""|>.filter (· ̸="")260

def execute_program_safe (prog_name : String) (args : String) : Option SafeProgramExecution :=261
if is_program_whitelisted prog_name then262
let user_args := tokenize_arguments args263
some { prog := prog_name, args := user_args }264

else265
none -- Program not whitelisted266

def Pre (_ _ : String) : Prop := True267
def whitelist_enforcement_prop (prog_name : String) (args : String) : Prop :=268
(∃ exec, execute_program_safe prog_name args = some exec) →is_program_whitelisted prog_name = true269

270
theorem whitelist_enforcement_thm (prog_name : String) (args : String) : whitelist_enforcement_prop271

prog_name args := sorry272273

Listing 4: An example of theorem from Security set.

6

274
def _siftdown (heap : Array Int) (startpos pos : Nat) : Array Int :=275
let newitem := heap[pos]!276
let rec loop (h : Array Int) (pos : Nat) : Array Int :=277
if pos > startpos then278
let parentpos := (pos - 1) >>> 1279
let parent := h[parentpos]!280
if newitem < parent then281
let h’ := h.set! pos parent282
loop h’ parentpos283

else284
h.set! pos newitem285

else286
h.set! pos newitem287

loop heap pos288
def heappush (heap : Array Int) (item : Int) : Array Int :=289
let heap1 := heap.push item290
_siftdown heap1 0 (heap1.size - 1)291

def checkInvariant (h : Array Int) : Bool :=292
let n := h.size293
let rec go (i : Nat) : Bool :=294
if i ≥n then295
true296

else if i = 0 then297
go (i + 1)298

else299
let parentpos := (i - 1) >>> 1300
if h[parentpos]! ≤h[i]! then301
go (i + 1)302

else303
false304

go 0305
def Pre (heap : Array Int) : Prop :=306
checkInvariant heap = true307

def prop_invariant (heap : Array Int) (item : Int) : Prop :=308
checkInvariant (heappush heap item) = true309

310
theorem invariant_thm (heap : Array Int) (item : Int) (hPre : Pre heap) :311
prop_invariant heap item := sorry312313

Listing 5: An example of theorem from Real code.

B Prompts314

We used vanilla prompts for provers and a chat-template prompt when required by the model. For315

Claude + DSP evaluation, we employed specific prompts for sketching and drafting.316

317
Complete the following Lean 4 code:318

319
‘‘‘lean4320
{}321
‘‘‘322

323
Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan324

outlining the main proof steps and strategies.325
The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the326

construction of the final formal proof.327328

Listing 6: Prompt for evaluating LLM provers with chat templates.

329
Complete the following Lean 4 code :330

331
‘‘‘lean4332333

Listing 7: Prompt for evaluating LLM provers without chat templates.

334
Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal335

proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:336
337

Informal:338
(*### Problem339

340
Prove that for any natural number n, n + 0 = n.341

342
Solution343

7

344
Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,345

n + 0 = n.*)346
347

Informal:348
(*### Problem349

350
Prove that for any natural number n, n + (m + 1) = (n + m) + 1.351

352
Solution353

354
Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the355

same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)356
357

Informal:358
(*### Problem359

360
Prove that for any natural number n and m, n + m = m + n.361

362
Solution363

364
Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of365

addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m +366
(n + 1). Thus, by induction, n + m = m + n, qed.*)367

368
Informal:369
(*### Problem370

371
Solution372373

Listing 8: Prompt template for the drafting phase using the DSP framework.

374
Translate the informal solution into a sketch in the formal Lean 4 proof. Add <TODO_PROOF_OR_HAMMER> in375

the formal sketch whenever possible. <TODO_PROOF_OR_HAMMER> will be used to call a automated theorem376
prover or tactic in Lean 4. Do not use any lemmas.Provide only one theorem in your formal sketch.377
Here are some examples:378

379
Informal:380
(*### Problem381

382
Prove that for any natural number n, n + 0 = n.383

384
Solution385

386
Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,387

n + 0 = n.*)388
389

Formal:390
import Mathlib.Data.Nat.Basic391
import Aesop392

393
theorem n_plus_zero_normal : ∀n : Nat, n + 0 = n := by394

-- We have the fact of addition n + 0 = n, use it to show left and right are equal.395
have h_nat_add_zero: ∀n : Nat, n + 0 = n := <TODO_PROOF_OR_HAMMER>396
-- Combine facts with to close goal397
<TODO_PROOF_OR_HAMMER>398

399
Informal:400
(*### Problem401

402
Prove that for any natural number n, n + (m + 1) = (n + m) + 1.403

404
Solution405

406
Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the407

same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.*)408
409

Formal:410
import Mathlib.Data.Nat.Basic411
import Aesop412

413
theorem plus_n_Sm_proved_formal_sketch : ∀n m : Nat, n + (m + 1) = (n + m) + 1 := by414

-- We have the fact of addition n + (m + 1) = (n + m) + 1, use it to show left and right are equal.415
have h_nat_add_succ: ∀n m : Nat, n + (m + 1) = (n + m) + 1 := <TODO_PROOF_OR_HAMMER>416
-- Combine facts to close goal417
<TODO_PROOF_OR_HAMMER>418

419
Informal:420
(*### Problem421

422

8

Prove that for any natural number n and m, n + m = m + n.423
424

Solution425
426

Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + 0 by properties of427
addition. Inductive step, we have n + m = m + n. Then (n + 1) + m = (n + m) + 1 = (m + n) + 1 = m +428

(n + 1). Thus, by induction, n + m = m + n, qed.*)429
430

Formal:431
import Mathlib.Data.Nat.Basic432
import Aesop433

434
theorem add_comm_proved_formal_sketch : ∀n m : Nat, n + m = m + n := by435

-- Consider some n and m in Nats.436
intros n m437
-- Perform induction on n.438
induction n with439
| zero =>440
-- Base case: When n = 0, we need to show 0 + m = m + 0.441
-- We have the fact 0 + m = m by the definition of addition.442
have h_base: 0 + m = m := <TODO_PROOF_OR_HAMMER>443
-- We also have the fact m + 0 = m by the definition of addition.444
have h_symm: m + 0 = m := <TODO_PROOF_OR_HAMMER>445
-- Combine facts to close goal446
<TODO_PROOF_OR_HAMMER>447

| succ n ih =>448
-- Inductive step: Assume n + m = m + n, we need to show succ n + m = m + succ n.449
-- By the inductive hypothesis, we have n + m = m + n.450
have h_inductive: n + m = m + n := <TODO_PROOF_OR_HAMMER>451
-- 1. Note we start with: Nat.succ n + m = m + Nat.succ n, so, pull the succ out from m + Nat.succ n452

on the right side from the addition using addition facts Nat.add_succ.453
have h_pull_succ_out_from_right: m + Nat.succ n = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>454
-- 2. then to flip m + S n to something like S (n + m) we need to use the IH.455
have h_flip_n_plus_m: Nat.succ (n + m) = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>456
-- 3. Now the n & m are on the correct sides Nat.succ n + m = Nat.succ (n + m), so let’s use the def457

of addition to pull out the succ from the addition on the left using Nat.succ_add.458
have h_pull_succ_out_from_left: Nat.succ n + m = Nat.succ (n + m) := <TODO_PROOF_OR_HAMMER>459
-- Combine facts to close goal460
<TODO_PROOF_OR_HAMMER>461

462
Informal:463
(*### Problem464

465
{nl_problem}466

467
Solution468

469
{nl_solution}*)470

471
Formal:472

473
Problem474

475
476

Solution477478

Listing 9: Prompt template for sketch generation using the DSP framework.

9

	Introduction
	Related Work
	VeriBench-FTP
	Evaluation
	Discussion, Limitations, and Future Work
	Dataset examples
	Prompts

