© O N O o A~ W N =

17

VeriBench-FTP: A Formal Theorem Proving
Benchmark in Lean 4 for Code Verification

Anonymous Author(s)
Affiliation
Address

email

Abstract

Theorem proving in Lean 4 offers a promising avenue for advancing the reasoning
capabilities of LLMs. Evaluating current provers is crucial, as many achieve near-
perfect accuracy on existing benchmarks such as MiniF2F, highlighting the need
for more novel tasks. We introduce VERIBENCH-FTP, a benchmark designed to
assess formal code verification knowledge in Lean 4. The task requires models
to generate proofs for theorems that capture key aspects of program verification.
Our benchmark consists of 857 theorems derived from 140 problems across five
difficulty levels: 56 HumanEval problems, 41 foundational programming exercises,
10 classical algorithms, 28 security-critical programs adapted from real-world
vulnerabilities, and 5 problems from the Python standard library. On our bench-
mark, DeepSeek-Prover-V2-8B [4] achieves 28% Pass@1, highlighting both the
novelty and difficulty of the tasks . VERIBENCH provides a rigorous alternative to
existing datasets, enabling more realistic evaluation of formal provers in Lean 4 on
problems that go beyond their training distribution. VERIBENCH-FTP translates
‘theorem-proving ability’ into a measurable route toward trustworthy code, making
progress oward secure, dependable software infrastructure

1 Introduction

Large language models (LLMs) have demonstrated remarkable success in automated theorem proving
(ATP), achieving near-saturation performance on established mathematical benchmarks like MiniF2F
[6] and ProofNet [7]. This progress signals a new frontier in formal reasoning [5]. This progress
signals a new frontier in formal reasoning. However, this success also masks a critical gap: the
predominant focus on competition-style mathematics leaves the capabilities of these models on
software verification—a domain with profound real-world implications—Ilargely untested. The
saturation of existing benchmarks necessitates new, more challenging datasets that evaluate a different
and arguably more practical kind of reasoning.

We introduce VERIBENCH-FTP, a new benchmark in Lean 4 designed specifically for formal
code verification. The dataset contains 857 theorems derived from 140 problems spanning five
categories: HumanEval puzzles, foundational exercises, classical algorithms, real-world security
vulnerabilities, and selected Python standard library programs. Each theorem captures correctness or
safety properties of Lean functions corresponding to Python code, pushing models to reason about
invariants, algorithmic behavior, and bug-prone implementations. On this benchmark, state-of-the-art
provers—including DeepSeek-Prover and Claude with Draft Sketch Prove (DSP) pipelines—achieve
only 18-28% pass@1 accuracy, underscoring both the novelty and difficulty of the task [8]. By
shifting the focus from competition math to program reasoning, VERIBENCH-FTP offers a comple-
mentary and realistic testbed for advancing the capabilities of next-generation theorem provers.

Our contributions are:

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

38
39

40
41
42

43
44
45

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63
64
65
66
67
68
69

70

71
72
73
74
75
76
77

78

79

80

81

82
83

84
85

1. Realistic proving challenges. We release 857 theorems from a diverse set of 140 problems
across five splits (HumanEval, Easy, CS, Security, RealCode), targeting correctness and
safety properties.

2. Establish strong baselines and headroom. We conduct a thorough empirical evaluation of
state-of-the-art provers, revealing their significant limitations (<29% pass@1) and exposing
a critical gap between mathematical and formal code-reasoning capabilities.

3. Broaden the evaluation landscape. We broaden the evaluation landscape for automated
reasoning by establishing formal software verification as a vital, complementary domain to
traditional mathematical benchmarks.

2 Related Work

Formal theorem proving Benchmarks in Lean Recent works have introduced a variety of
benchmarks for evaluating automated theorem proving in Lean, spanning mathematical competition
problems, undergraduate-level mathematics, and large-scale formalizations. MINIF2F (Zheng et al.,
2021) provides a formal-to-formal benchmark of 488 competition problems from AMC, AIME, and
IMO, split evenly between validation and test sets. FIMO (Liu et al., 2023) contains 149 Lean 3
problems formalized from IMO statements using GPT-4 and human verification. ProofNet (Azerbayev
et al., 2023) contributes 371 undergraduate-level theorem statements in Lean 3. PutnamBench
(Tsoukalas et al., 2024) comprises 657 college-level mathematics problems across algebra, analysis,
geometry, combinatorics, probability, and set theory, derived from the William Lowell Putnam
Mathematical Competition. LeanDojo (Yang et al., 2023) extracts proofs directly from Lean’s
mathlib (Mathlib Community, 2020) and introduces a test set to evaluate retrieval-augmented provers.
Recently, MathOlympiadBench (Lin et al., 2025) formalizes 360 Olympiad-level problems from
Compfiles and the IMOSL Lean 4 repository. FormalMATH (Yu et al., 2025) offers 5,560 formalized
problems from high school competitions and undergraduate mathematics. ProverBench (Ren et al.,
2025) introduces 325 problems, including 15 AIME-style statements and additional problems from
tutorials spanning high school to undergraduate mathematics.

Formal Benchmarks for Code Generation The closest work to ours is VERIBENCH, a benchmark
designed to evaluate the end-to-end code verification capabilities of large language models, requiring
them to generate complete Lean 4 artifacts from reference Python programs or their docstrings.
We used the VERIBENCH implementation and files in our data collection process. However, the
VERIBENCH paper does not address theorem proving, while our benchmark includes a larger set of
problems. VERIBENCH-FTP thus provides a distinct platform to evaluate the ability of LLMs to
generate Lean proofs on problems unseen during training.

3 VeriBench-FTP

Overview. VERIBENCH-FTP is a benchmark designed to assess the theorem proving capabilities
of large language models in Lean 4, specifically in the context of code verification. The theorems in
our benchmark aim to verify one or more properties of a Lean function that corresponds to a Python
implementation, ensuring that the function behaves as intended. In contrast to benchmarks such as
MiniF2F, which focus primarily on mathematical problems formalized from competition-level tasks,
VERIBENCH-FTP offers a complementary perspective by evaluating proof generation in Lean for
code verification.

Concretely, VERIBENCH-FTP consists of 857 theorems divided into five subsets:

1. HumanEval — 387 theorems derived from 56 standard programming puzzles from ?;

2. EasySet — 278 theorems extracted from 41 introductory logic and programming tasks;
3. CSSet — 68 theorems drawn from 10 classical data-structure and algorithm problems;
4

. SecuritySet — 121 theorems taken from 28 examples of buffer overflows, privilege escalation,
and race condition labs based on real code;

5. RealCodeSet — 12 theorems extracted from 5 Python standard library programs, used to test
model performance on production-grade code.

86
87

88
89
90
91

92
93
94
95
96
97

98
99

100
101
102
103
104
105
106
107

168

110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130

13

133

134
135

136
137

138
139

140
141
142

This design covers a spectrum of tasks, from simple correctness theorems to more complex invariants,
algorithmic properties, and real-world code verification.

Construction. To construct the benchmark, we based our work on VERIBENCH files, specifically
the gold Lean implementation of their theorems [9]. The files contain unproved theorems with a set
of definitions, examples, and variable declarations. The theorems in the files are generally unproved
and contain the sorry symbol.

The construction process is divided into two phases. We extracted the theorems from the original files
and isolate them. For each theorem, we kept only the necessary definitions and declarations, removing
other theorems, examples, and comments. Our goal was to assume a minimal context to make the
evaluation efficient and the data as clear as possible. A final human verification was performed. We
formatted all the theorems uniformly, ensuring that each theorem ends with := sorry on the same
line as the final tokens of the example.

Finally, we compiled the entire dataset in Lean using Mathlib and Aeosp as the only imports, to
ensure that our benchmark is syntactically correct.

Examples. We provide some examples from the dataset; more examples can be found in Ap-
pendix [A]

def myAdd : Nat —Nat —Nat := Nat.add

infix1:65 "++ "=> myAdd

def Pre (a b : Nat) : Prop := (0 <a) A(0 <b)

def right_identity_prop (n : Nat) : Prop := myAdd n O = n

theorem right_identity_thm (n : Nat) : right_identity_prop n := sorry

Listing 1: Example theorem statement from the VeriBench-FTP EasySet dataset.

open List
def min3 (a b ¢ : Nat) : Nat :=
min (min a b) ¢
def editDistanceAux [DecidableEq «] : List a—List a—Nat

I, 0=>0

| [0, ys => ys.length -- insertions
| xs, [1 => xs.length -- deletions
| x :: xs, y :: ys =>

if x = y then
editDistanceAux xs ys

else
1 + min3
(editDistanceAux xs (y :: ys)) -- deletion
(editDistanceAux (x :: xs) ys) -- insertion
(editDistanceAux xs ys) -- substitution

def editDistance [DecidableEq a] (sl s2 : List «) : Nat :=
editDistanceAux sl s2
def Pre {a : Typex} (sl s2 : List «) : Prop := True
def reflexivity_prop {a : Typex} [DecidableEq o] (s : List «) : Prop := editDistance s s = 0

theorem reflexivity_thm {« : Typex} [DecidableEq ol (s : List «) : reflexivity_prop s := sorry

Listing 2: Example theorem statement from the VeriBench-FTP CS Set dataset.

4 Evaluation

Models We evaluated two types of methods: dedicated provers using prompting, and DSP
(Draft—Sketch—Prove) with the model Claude family [10].

* DeepSeek-Prover-V1.5-SFT and DeepSeek-Prover-V1.5-RL: Trained on proofs collected
via expert iteration over a combination of public datasets.

* DeepSeek-Prover-V2: Trained using curriculum reinforcement learning, leveraging subgoal
data extracted with DeepSeek-V3 [11].

* Godel-Prover-V2: A family of models trained with scaffolded data synthesis, a self-
correction loop, and model averaging. In our evaluation, we used the variant without the
self-correction loop. We employed the 7B model.

143
144

145
146
147

148
149

150
151
152
153
154

155
156
157

* STP: A model trained with self-play while simultaneously training a prover—conjecturer
(generator of new statements).

* Claude Series: We evaluated three models from the Claude Sonnet release. These were
used with the DSP approach, which first drafts an informal solution, then generates a proof
sketch, and finally attempts a complete proof.

Lean Compilation For the evaluation, we used PyPantograph [12] as the Lean interface to verify
theorems and to apply the DSP method with Claude.

Results The results in Table [1| show that the models struggle to resolve most of the challenges,
even with Pass@32. The best model achieved 28% on Pass@1 and 38% on Pass@32. Overall, the
prover models outperformed the combination of Claude and DSP. Among the DeepSeek models, V2
performed better than V1.5-RL, which in turn outperformed the SFT model, with small differences.
This ranking is consistent with the results reported on MiniF2F for the same models [TO DO].

Performance varies across splits. As expected, the Easy set achieved the highest success rates,
as it contains comparatively simpler problems. In contrast, the Advanced CS set includes highly
challenging questions. None of the models succeeded in proving theorems on real code problems.

Model + Prompting Easy CS Real HE Security Pass@1
a0 Bsh 31278 068 012 14387 0112 gasd!
eiSarioebse SIS 65 012 T 6112 g5
3‘)’?5;21;;;;“‘” SSFT son7g /68 0112 STB8T 15112 (rase)
O vompng TS 665 012 BT 4012 gy
?z?idlfﬁglfﬁ;’fii;vm 109278 /68 O/12 765387 31112 sesy

Table 1: Performance of different models on VERIBENCH theorem-proving tasks. The table shows
results for LLMs evaluated under the Draft, Sketch, and Prove (DSP) protocol (+ DSP) (?) and
dedicated provers evaluated using a standard single prompt (+ prompting). All results are reported
at pass@1. VERIBENCH-FTP splits : Easy Set (Easy), CS Set (CS), Real Python Code (Real),
HumanEval Set (HE), Security Set (Security).

Model Easy CS Real HE Security Pass@32
DeepSeek-ProverV1.5-SFT 130/278 9/68 0/12 105/387 56/112 gg(zgzz
DeepSeek-ProverV1.5-RL 132/278 8/68 0/12 107/387 57/112 gg‘ﬁg/z
DeepSeek-ProverV2-7B 144/278 9/68 0/12 113/387 66/112 ;3;27/2?73
. A L B 1
Goedel-Prover V2-8B 156/278 968 /12 387 61112 1 SES]

Table 2: Performance of different models on VERIBENCH theorem-proving tasks. The table shows
results for LLMs evaluated on Veribench-FTP at pass@32. VERIBENCH-FTP splits : Easy Set
(Easy), CS Set (CS), Real Python Code (Real), HumanEval Set (HE), Security Set (Security).

158

159
160
161
162
163
164

165
166
167
168

170

171

172
173
174
175

176
177
178
179

180
181
182

183
184

185
186
187

188

190
191

192
193
194
195

196
197
198

199

200
201

202
203

204
205

206
207

5 Discussion, Limitations, and Future Work

While VERIBENCH-FTP provides a novel testbed for theorem proving in code verification, it also
has several limitations. First, the dataset is derived from a fixed set of problems, many of which
are relatively short programs; this limits coverage of larger-scale software verification tasks such
as modular reasoning, concurrency, or higher-order specifications. Second, our current evaluation
focuses on pass@k accuracy with Lean compilation, which, while rigorous, does not fully capture
proof quality, proof length, or generalization to novel proof styles.

These limitations suggest several promising directions for future work. Expanding the dataset to
include larger and more diverse codebases—such as system libraries or verified kernels—would
provide a stronger measure of scalability. Integrating richer property types, including temporal
logic and probabilistic guarantees, could more closely reflect real-world verification needs. Finally,
community-driven contributions and standardized leaderboards will be essential to track progress and
stimulate advances in this emerging intersection of formal verification and Al

References

[1] Ren, Z. Z., Shao, Z., Song, J., Xin, H., Wang, H., Zhao, W., Zhang, L., Fu, Z., Zhu, Q., Yang, D., Wu, Z.
F., Gou, Z., Ma, S., Tang, H., Liu, Y., Gao, W., Guo, D., Ruan, C. (2025). DeepSeek-Prover-V2: Advancing
Formal Mathematical Reasoning via Reinforcement Learning for Subgoal Decomposition. arXiv preprint
arXiv:2504.21801. Available at: https://arxiv.org/abs/2504.21801

[2] Xin, H., Ren, Z. Z., Song, J., Shao, Z., Zhao, W., Wang, H., Liu, B., Zhang, L., Lu, X., Du, Q., Gao, W.,
Zhu, Q., Yang, D., Gou, Z., Wu, Z. F,, Luo, F.,, Ruan, C. (2024). DeepSeek-Prover-V1.5: Harnessing Proof
Assistant Feedback for Reinforcement Learning and Monte-Carlo Tree Search. arXiv preprint arXiv:2408.08152.
Available at: https://arxiv.org/abs/2408.08152

[3]Lin, Y., Tang, S., Lyu, B., Wu, J., Lin, H., Yang, K., Li, J., Xia, M., Chen, D., Arora, S., Jin, C. (2025). Goedel-
Prover: A Frontier Model for Open-Source Automated Theorem Proving. arXiv preprint arXiv:2502.07640.
Available at: https://arxiv.org/abs/2502.07640

[4] Yu, A., et al. (2025). FormalMATH: A Large-Scale Dataset for Formal Mathematical Reasoning. arXiv
preprint.

[5] Xin, B., Zhang, C., Wang, Y., et al. (2025). BFS-Prover: Mastering MiniF2F through Iterative Re-
inforcement Learning with Backward-Forward Search. arXiv preprint arXiv:2509.06493. Available at:
https://arxiv.org/abs/2509.06493

[6] Zheng, K., Chen, Z., Han, J., Wu, Y. (2021). MiniF2F: A cross-system benchmark for formal theorem
proving. Advances in Neural Information Processing Systems (NeurIPS).

[7] Azerbayev, Z., Polu, S., Selsam, D., et al. (2023). ProofNet: Autoformalizing and Formally Proving
Undergraduate-Level Mathematics. International Conference on Learning Representations (ICLR).

[8] Jiang, A.Q., Cui, C., Zhang, Z., Shao, Z., Abhyankar, A., Chi, Y., Srinivasan, S., Wang, W., Chen, W., Yang,
Y., Li, C, Dai, Y., Wang, Z., Lin, J., Liu, J., Xiong, C., Yasunaga, M., Le, Q., Liang, P., Zhou, D. (2023). Draft,
Sketch, and Prove: Guiding Formal Theorem Provers with Informal Proofs. arXiv preprint arXiv:2305.18058.
Available at: https://arxiv.org/abs/2305.18058

[9] Miranda, B., Zhou, Z., Nie, A., Obbad, E., Aniva, L., Fronsdal, K., Kirk, W., Soylu, D., Yu, A., Li, Y.,
Koyejo, S. (2025). VeriBench: End-to-End Formal Verification Benchmark for AI Code Generation in Lean 4.
In *Workshop: Al for Math @ ICML 2025%*.

[10] Anthropic. (2023). Claude: A family of large language models. Available at https://www.anthropic.com

[11] DeepSeek-Al. (2025). DeepSeek-V3: Scaling Open-Source Language Models with Mixture-of-Experts.
arXiv preprint arXiv:2412.19437. Available at: https://arxiv.org/abs/2412.19437

[12] Miranda, B. (2025). PyPantograph: A Python Library for Evaluating Language Models on Lean 4 Proof
Synthesis. GitHub repository. Available at: https://github.com/brando90/pypantograph

[13] Dong, K., Ma, T. (2025). STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving.
arXiv preprint arXiv:2502.00212. Available at: https://arxiv.org/abs/2502.00212

[14] Zheng, K., Chen, Z., Han, J., Wu, Y. (2021). MiniF2F: A cross-system benchmark for formal
theorem proving. Advances in Neural Information Processing Systems (NeurIPS).

208
209

210
211
212

213
214

215
216

217
218

219

220
221

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

248

241
242

243
244
245
246
247
248
249

251
252
253
254
255
256
257
258
259
260
261
262

264
265
266
267
268
269
270
271

873

[15] Liu, J., et al. (2023). FIMO: A Challenge Formal Dataset of Mathematical Olympiad Problems.

arXiv preprint.

[16] Azerbayev, Z., Polu, S., Selsam, D., et al. (2023). ProofNet: Autoformalizing and Formally
Proving Undergraduate-Level Mathematics. International Conference on Learning Representations
(ICLR).

[17] Tsoukalas, S., et al. (2024). PutnamBench: Evaluating Neural Theorem-Provers on the Putnam
Mathematical Competition. arXiv preprint.

[18] Yang, K., et al. (2023). LeanDojo: Theorem Proving with Retrieval-Augmented Language
Models. arXiv preprint.

[19] Mathlib Community. (2020). The Lean mathematical library. Available at: https://leanprover-
community.github.io/

A Dataset examples

def gcd_fun (a b : Nat) : Nat :=
if b = 0 then a else gcd_fun b (a % b)
termination_by b
decreasing_by
have h : b > 0 := Nat.pos_of_ne_zero (by assumption)
have : a % b < b := Nat.mod_1lt a h
exact this
def myGed : Nat —Nat —Nat
0, b=>b
a, 0 => a
a+1, b+1=>
if a < b then
myGed (a + 1) (b - a)
else
myGed (a - b) (b + 1)
def Pre (a b : Nat) : Prop := True
def gcd_self_prop (a : Nat) : Prop := gcd_fun a a = a

theorem gcd_self_thm (a : Nat) : gcd_self_prop a := sorry

Listing 3: An example of theorem from HumanEval Set .

structure ProgramSpec where

name : String

description : String

deriving Repr, DecidableEq
structure SafeProgramExecution where

prog : String

args : List String

deriving Repr, DecidableEq

def program_whitelist : List ProgramSpec := [
{ name := "cat", description := "Safe file reading" },
{ name := "ls", description := "Safe directory listing" 1},
{ name := "echo", description := "Safe text output" },
{ name := "wc", description := "Safe word/line counting" }
1

def is_program_whitelisted (prog_name : String) : Bool :=
program_whitelist.any (fun spec => spec.name = prog_name)
def tokenize_arguments (args : String) : List String :=
if args.trim.isEmpty then []
else args.splitOn ""|>.filter (- #"")
def execute_program_safe (prog_name : String) (args : String) : Option SafeProgramExecution :=
if is_program_whitelisted prog_name then
let user_args := tokenize_arguments args
some { prog := prog_name, args := user_args }
else
none -- Program not whitelisted
def Pre (_ _ : String) : Prop := True
def whitelist_enforcement_prop (prog_name : String) (args : String) : Prop :=
(3 exec, execute_program_safe prog_name args = some exec) —is_program_whitelisted prog_name = true

theorem whitelist_enforcement_thm (prog_name : String) (args : String) : whitelist_enforcement_prop
prog_name args := SOITy

Listing 4: An example of theorem from Security set.

274
275

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311

813

314

315
316
317
318
319
320
321
322
323
324
325
326

328

329
330

331

38

334
335

336
337
338
339
340
341
342
343

def _siftdown (heap : Array Int) (startpos pos : Nat) : Array Int :=
let newitem := heap[pos]!
let rec loop (h : Array Int) (pos : Nat) : Array Int :=
if pos > startpos then
let parentpos := (pos - 1) >>> 1
let parent := h[parentpos]!
if newitem < parent then
let h’ := h.set! pos parent
loop h’ parentpos
else
h.set! pos newitem
else
h.set! pos newitem
loop heap pos
def heappush (heap : Array Int) (item : Int) : Array Int :=
let heapl := heap.push item
_siftdown heapl O (heapl.size - 1)
def checkInvariant (h : Array Int) : Bool :=
let n := h.size
let rec go (i : Nat) : Bool :=
if i >n then
true
else if i = O then
go (i + 1)
else
let parentpos := (i - 1) >>> 1
if h[parentpos]! <h[i]! then
go (i + 1)
else
false
go O
def Pre (heap : Array Int) : Prop :=
checkInvariant heap = true
def prop_invariant (heap : Array Int) (item : Int) : Prop :=
checkInvariant (heappush heap item) = true

theorem invariant_thm (heap : Array Int) (item : Int) (hPre : Pre heap)
prop_invariant heap item := sorry

Listing 5: An example of theorem from Real code.

B Prompts

We used vanilla prompts for provers and a chat-template prompt when required by the model. For
Claude + DSP evaluation, we employed specific prompts for sketching and drafting.

Complete the following Lean 4 code:

¢¢¢leand

{3

[XX3

Before producing the Lean 4 code to formally prove the given theorem, provide a detailed proof plan
outlining the main proof steps and strategies.

The plan should highlight key ideas, intermediate lemmas, and proof structures that will guide the
construction of the final formal proof.

Listing 6: Prompt for evaluating LLM provers with chat templates.

Complete the following Lean 4 code :

¢¢¢leand

Listing 7: Prompt for evaluating LLM provers without chat templates.

Draft an informal solution similar to the one below. The informal solution will be used to sketch a formal
proof in the Lean 4 Proof Assistant. Here are some examples of informal problem solutions pairs:

Informal:
(*### Problem

Prove that for any natural number n, n + O = n.

Solution

344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369

371
§73

374
375

376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422

Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,
n+ 0 =n.%)

Informal:
(x### Problem

Prove that for any natural number n, n + (m + 1) = (n + m) + 1.
Solution

Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the
same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.%)

Informal:
(x### Problem

Prove that for any natural number n and m, n + m = m + n.

Solution

Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m = m + O by properties of
addition. Inductive step, we have n + m =m + n. Then (n + 1) +m= (n +m) +1 = (m+1n) +1=m +

(n + 1). Thus, by induction, n + m = m + n, ged.*)

Informal:
(*### Problem

Solution

Listing 8: Prompt template for the drafting phase using the DSP framework.

Translate the informal solution into a sketch in the formal Lean 4 proof. Add <TODO_PROOF_OR_HAMMER> in
the formal sketch whenever possible. <TODO_PROOF_OR_HAMMER> will be used to call a automated theorem
prover or tactic in Lean 4. Do not use any lemmas.Provide only one theorem in your formal sketch.
Here are some examples:

Informal:
(*### Problem

Prove that for any natural number n, n + 0 = n.
Solution

Consider any natural number n. From properties of addition, adding zero does not change its values. Thus,
n+ 0 =n.%)

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem n_plus_zero_normal : Vn : Nat, n + 0 = n := by
-- We have the fact of addition n + O = n, use it to show left and right are equal.
have h_nat_add_zero: Vn : Nat, n + 0 = n := <TODO_PROOF_OR_HAMMER>
-- Combine facts with to close goal
<TODO_PROOF_OR_HAMMER>

Informal:
(x### Problem

Prove that for any natural number n, n + (m + 1) = (n + m) + 1.
Solution

Consider any natural numbers n and m. From properties of addition, adding 1 to the sum of n and m is the
same as first adding m to n and then adding 1. Thus, n + (m + 1) = (n + m) + 1.%)

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem plus_n_Sm_proved_formal_sketch : Vnm : Nat, n + (m + 1) = (n + m) + 1 := by
-- We have the fact of addition n + (m + 1) = (n + m) + 1, use it to show left and right are equal.
have h_nat_add_succ: Vanm : Nat, n + (m + 1) = (n + m) + 1 := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF_OR_HAMMER>

Informal:
(*### Problem

423
424
425
426
427
428
429
430
431
432
433
434
435

437
438
439
440
441

444

448

454

468

474
475
476

476

Prove that for any natural number n and m, n + m = m + n.
Solution
Consider any natural numbers n and m. We will do induction on n. Base case: 0 + m

addition. Inductive step, we have n + m =m + n. Then (n + 1) + m = (n + m) +
(n + 1). Thus, by induction, n + m = m + n, qed.*)

m + O by properties of
1=(m+mn) +1=m+

Formal:
import Mathlib.Data.Nat.Basic
import Aesop

theorem add_comm_proved_formal_sketch : Vnm: Nat, n+m=m+n := by
-- Consider some n and m in Nats.
intros n m
-- Perform induction on n.
induction n with
zero =>
-- Base case: When n = 0, we need to show O + m = m + O.
-- We have the fact 0 + m = m by the definition of addition.
have h_base: 0 + m = m := <TODO_PROOF_OR_HAMMER>
-- We also have the fact m + O = m by the definition of addition.
have h_symm: m + 0 = m := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF _OR_HAMMER>
succ n ih =>
-- Inductive step: Assume n + m = m + n, we need to show succ n + m = m + succ n.
-- By the inductive hypothesis, we have n + m = m + n.
have h_inductive: n + m = m + n := <TODO_PROOF_OR_HAMMER>
-- 1. Note we start with: Nat.succ n + m = m + Nat.succ n, so, pull the succ out from m + Nat.succ n
on the right side from the addition using addition facts Nat.add_succ.
have h_pull_succ_out_from_right: m + Nat.succ n = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>
-- 2. then to flip m + S n to something like S (n + m) we need to use the IH.
have h_flip_n_plus_m: Nat.succ (n + m) = Nat.succ (m + n) := <TODO_PROOF_OR_HAMMER>
-- 3. Now the n & m are on the correct sides Nat.succ n + m = Nat.succ (n + m), so let’s use the def
of addition to pull out the succ from the addition on the left using Nat.succ_add.
have h_pull_succ_out_from_left: Nat.succ n + m = Nat.succ (n + m) := <TODO_PROOF_OR_HAMMER>
-- Combine facts to close goal
<TODO_PROOF _OR_HAMMER>

Informal:
(*### Problem

{nl_problem}
Solution
{nl_solution}*)
Formal:

Problem

Solution

Listing 9: Prompt template for sketch generation using the DSP framework.

	Introduction
	Related Work
	VeriBench-FTP
	Evaluation
	Discussion, Limitations, and Future Work
	Dataset examples
	Prompts

