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SUPPLEMENTAL MATERIALS: CONTINUAL LEARNING IN

OPEN-VOCABULARY CLASSIFICATION WITH COMPLEMENTARY

MEMORY SYSTEMS

S-1 ALGORITHMIC DESCRIPTIONS OF TREEPROBE

Algorithm 1: Training Procedure of
TreeProbe
Input: Training set X , Tree T , Leaf

capacity  
Output: Trained classifiers in each leaf

node of T

foreach vi 2 X do

l = NEARESTLEAF(vi, T )
if COUNT(l) <  then

l = INSERTDATA(vi, l)
TRAINCLASSIFIER(l)

end

else

SPLITNODE(l, vi)
l = NEARESTLEAF(vi, T )
l = INSERTDATA(vi, l)
TRAINCLASSIFIER(l)

end

end

Algorithm 2: Inference Procedure of
TreeProbe
Input: Image embedding vI , Tree T ,

Number of nearest nodes k, Exemplar
set M ,

Output: Exemplar embedding ve for vI

vK = FINDNEARESTSAMPLES(vI , M )
v = list()
foreach vi 2 vK do

l = NEARESTLEAF(vi, T )
c = GETCLASSIFIER(l)
v CLASSIFY(vI , c)

end

ve = COMPUTEEMBEDDING(v, vI )

Algorithm 1 and Algorithm 2 contain psuedocode for the training and inference of our TreeProbe
method. Definitions of the involved functions are provided below:

• NEARESTLEAF(vi, T ): Returns the nearest leaf node to the data point xi in tree T .
• COUNT(l): Returns the current number of data points in leaf node l.
• INSERTDATA(vi, l): Inserts data point vi into leaf node l and returns the updated node.
• SPLITNODE(l, vi): Splits leaf node l into two child nodes when it reaches capacity,

distributes data points using KMeans clustering, and adds new data point vi to the appropriate
child node.

• TRAINCLASSIFIER(l): Trains a linear classifier on the data points in leaf node l.
• FINDNEARESTSAMPLES(vI , M ): Finds the k nearest neighbors in the exemplar set to the

image embedding vI .
• GETCLASSIFIER(l): Return the classifier for node l.
• CLASSIFY(vi, c): Classifies vi using the linear classifier c, returning the label embedding

of the most likely label.
• COMPUTEEMBEDDING(v, vI ): Computes the exemplar embedding for vI by applying a

similarity-weighted average of the text embeddings of the most likely class labels from a
temporal list v.

The notation of Algorithm 1 and Algorithm 2 may differ from the main paper.

S-2 IMPLEMENTATION DETAILS

We conduct our experiments on a setup featuring an RTX 3090 GPU and an AMD Ryzen 9 5950X
CPU, using PyTorch as our primary framework. We adhere to the CLIP code example, using sklearn
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LogisticRegression to implement linear classifiers and setting the sklearn regularization
strength to 0.316. The maximum iteration is set to 5k. Our tree probe’s node capacity is set at 50k.
For efficient retrieval from large-scale exemplar sets, we use FAISS Johnson et al. (2019), specifically
using the IndexFlatIP class for its precision and performance. Model performances are gauged via
Top-1 accuracy, with the officially released ViT-B/32 CLIP checkpoint serving as our memory or
zero-shot model. We select k = 9 based on a hyperparameter sweep. Our approach is not sensitive to
k, with very similar performance in a range from 6 to 30.

S-3 MORE EXPERIMENT SETTING DETAILS
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Figure S1: Illustration of continual learning scenarios. Data incremental learning includes seven
stages, each comprising 2%, 4%, 8%, 16%, 32%, 64%, and 100% of task data respectively. Class in-
cremental learning divides a task into five stages, each containing 20% of classes. In task incremental
learning, each task is considered a stage.

We present an illustration of data, class, and task incremental learning scenarios in Fig. S1. When
evaluating different methods in data and class incremental learning scenarios, we ensure fairness by
randomly selecting an identical portion of data/class for all methods, achieved by setting the same
seed. Models are separately built for each target task. The performance of each stage is averaged
across all target tasks. In task-incremental learning, each stage is embodied by a distinct task. The
task order is randomly arranged as CIFAR100, SUN397, FGVCAircraft, EuroSAT, OxfordIIITPets,
StanfordCars, Food101, and Flowers102, consistent for all methods for fair comparison. As shown in
ZSCL Zheng et al. (2023), task order has little impact on the relative performance comparison of
different models. For all learning scenarios, we make the assumption that training data accumulates
across all stages in all scenarios, with a similar spirit to Prabhu et al. (2023). This assumption is based
on the fact that real-world applications are often more limited by computational and time budgets
than by storage. If data privacy is not a concern, building a continual learning system without losing
data access is more effective than assuming past data is non-accessible. Furthermore, we enhance
storage efficiency by saving samples as condensed feature vectors, a significant improvement over
some earlier works.

S-4 DESCRIPTIONS OF TASKS

We perform experiments on various commonly used visual datasets to demonstrate the generalization
capabilities of our method. These datasets encompass a broad range of image categories and
application scenarios, including both fine-grained and generalized datasets. We briefly introduce all
used tasks in this paper in the following.

S-4.1 GENERAL TASKS

ImageNet ImageNet Russakovsky et al. (2015) contains 1,281,167 training images, 50,000 validation
images and 100,000 test images. The categories represent a wide variety of objects, animals, scenes,
and even abstract concepts. This dataset has served as a fundamental dataset to evaluate performances
of classification models, or as a pretraining dataset.

15



Under review as a conference paper at ICLR 2024

CIFAR100 The CIFAR100 dataset Krizhevsky & Hinton (2009) consists of object images and is a
subset of the 80 million tiny images dataset. It contains 60,000 32⇥32 color images from 100 object
categories, with 600 images per category. The dataset has 100 fine-grained classes, grouped into 20
coarse-grained classes.

SUN397 The SUN397 dataset Xiao et al. (2010) consists of scene images, containing 108,754 images
across 397 scene categories, with each category having between 100 and 500 images. This dataset is
commonly used for scene understanding tasks. Since there is no official dataset split for this dataset,
we randomly select 60% of images as training data, 20% as validation data, and the rest as test data.
We use NumPy random permutation to split with the seed set to 0.

S-4.2 FINE-GRAINED TASKS

FGVCAircraft The FGVCAircraft dataset Maji et al. (2013) serves as a benchmark for fine-grained
visual categorization of aircraft. It contains 10,200 images from 102 distinct categories. Each category
includes approximately 100 images, annotated with the aircraft model, variant, and manufacturer.

DTD The Describable Textures Dataset (DTD) Cimpoi et al. (2014) consists of 5,640 images across
47 texture categories, with each category featuring 120 real-world texture images such as fabrics,
rocks, and surfaces. The dataset poses a challenge for texture classification due to subtle differences
between textures within the same category and large variations in texture appearance caused by scale,
orientation, and lighting.

Food101 The Food-101 dataset Bossard et al. (2014) comprises 101,000 images across 101 food
categories, each with 1,000 images. This dataset challenges fine-grained image classification due to
high intra-class variation and visual similarities across categories. It serves as a rigorous benchmark
for evaluating computer vision models in food recognition and provides a robust platform for training
machine learning models in understanding culinary aesthetics and preferences.

StanfordCars The StanfordCars dataset Krause et al. (2013) is a benchmark dataset containing
16,185 images from 196 different car classes, divided into a 50-50 training and testing split. The
classes correspond to specific car makes, models, and years, such as the 2012 Tesla Model S or 2012
BMW M3 coupe.

Flowers102 The 102 Category Flower Dataset Nilsback & Zisserman (2008) is a compilation of
flower images. It includes 8,189 images across 102 flower categories, with each category containing
between 40 and 258 images. The dataset’s images vary in size and aspect ratio, captured using
different cameras, lighting conditions, and backgrounds.

OxfordIIITPets The OxfordIIITPets dataset Parkhi et al. (2012) is a collection of pet images,
featuring 7,349 images from 37 different cat and dog breeds. Each breed has between 100 and 200
images. The dataset is challenging because the appearance of the same breed can vary significantly,
and different breeds may have similar-looking features.

EuroSAT The EuroSAT dataset Helber et al. (2019) is a remote sensing image dataset comprising
Sentinel-2 satellite data. It contains 27,000 images that cover 13 spectral bands and consist of 10
different land use and land cover categories, including forests, urban areas, and water bodies. This
dataset is commonly employed for remote sensing and land cover classification tasks. Since there is
no official dataset split for this dataset, we randomly select 70% of images as training data and the
rest as validation data. We use NumPy random permutation to perform splitting with the seed set to 0.

UCF101 The UCF101 dataset Soomro et al. (2012) is a commonly used benchmark for action
recognition. It consists of 13,320 videos from 101 action categories, with each category containing at
least 100 videos. The actions include a wide range of human activities such as basketball shooting,
horse riding, and juggling. The dataset is unique in its focus on complex, naturalistic action sequences,
with videos varying in length from a few seconds to a minute. Since there is no official dataset split
for this dataset, we randomly select 70% of images as training data and the rest as validation data.
We use NumPy random permutation to perform splitting with the seed set to 0.
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S-4.3 LONG-TAILED TASK

Places365LT Places365LT Liu et al. (2019) a synthetic long-tail derivative of Places2 dataset Zhou
et al. (2018). The image resolution is 256⇥256. It contains 365 scene classes with at least 5 samples
each. The classes are not uniformly distributed, forming a long-tailed distribution. It contains some
label noises, making classification even harder on this dataset.

S-5 PROMPT TEMPLATES FOR TASKS

Task(s) Prompt template

ImageNet Russakovsky et al. (2015), CIFAR100 Krizhevsky & Hinton (2009), SUN397 Xiao et al. (2010) “a photo of a {label}.”
FGVCAircraft Maji et al. (2013) “a photo of a {label}, a type of aircraft.”
DTD Cimpoi et al. (2014) “a photo of a {label} texture.”
StanfordCars Krause et al. (2013) “a photo of a {label}, a type of car.”
Food101 Bossard et al. (2014) “a photo of {label}, a type of food.”
Flowers102 Nilsback & Zisserman (2008) “a photo of a {label}, a type of flower.”
OxfordIIITPets Parkhi et al. (2012) “a photo of a {label}, a type of pet.”
EuroSAT Helber et al. (2019) “a centered satellite photo of {label}.”
UCF101 Parkhi et al. (2012) “a video of a person doing {label}.”
Places365LT Liu et al. (2019) “a photo of the {label}, a type of place.”

Table 1: Prompts of tasks

CLIP Radford et al. (2021) suggests utilizing a sentence template (e.g., ‘‘A photo of a

{label}.’’), as input to the text decoder instead of a plain text label, due to its training data being
primarily full sentences describing images. Consistent with this paper’s focus, we employ a simple
prompt template for each task. Most of these templates are based on CLIP’s recommendations3 and
are summarized in Tab. 1.

S-6 ZERO-SHOT PERFORMANCES ON DIFFERENT TASKS

Task Zero-shot Acc (%) Official ZS Acc (%)

ImageNet Russakovsky et al. (2015) 59.7 63.2
CIFAR100 Krizhevsky & Hinton (2009) 62.3 65.1
SUN397 Xiao et al. (2010) 59.2 63.2
FGVCAircraft Maji et al. (2013) 18.1 21.2
DTD Cimpoi et al. (2014) 42.0 44.5
StanfordCars Krause et al. (2013) 58.6 59.4
Food101 Bossard et al. (2014) 82.6 84.4
Flowers102 Nilsback & Zisserman (2008) 67.9 66.7
OxfordIIITPets Parkhi et al. (2012) 87.5 87.0
EuroSAT Helber et al. (2019) 45.4 49.4
UCF101 Parkhi et al. (2012) 60.1 64.5
Places365LT Liu et al. (2019) 40.0 /

Table 2: Zero-shot performances of CLIP ViT-B/32 pretrained model on different tasks. “ZS” is for
zero-shot and “Acc” is for accuracy. Results of column “Official ZS Acc” are taken from the CLIP
original paper Radford et al. (2021). “/” represents lack of official results.

Tab. 2 shows the zero-shot performance of our implementation in different tasks. We conjecture
that the main difference of official zero-shot performances comes from the ensemble prompt trick
as mentioned in CLIP Radford et al. (2021) and randomness in dataset splits of several tasks (e.g.,
SUN397).
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(a) Zero-shot performance of data incremental learning (b) Zero-shot performance of class incremental learning (c) Zero-shot performance of task incremental learning

Zero-shot task performances on three
scenarios

Figure S2: Zero-shot performances on data (a), class (b), and task (c) incremental learning scenarios.
x-axis represents stages when the evaluation is performed.

S-7 ADDITIONAL RESULTS

S-7.1 ZERO-SHOT TASK PERFORMANCES OF EVERY STAGE

We further append the results of zero-shot tasks evaluated after each stage on the data, class, and
task incremental learning in Fig. S2. Across all scenarios, AIM-Emb helps maintain the zero-shot
performances on all stages.

S-7.2 MORE RESULTS OF THE COMPARISON TO PREVIOUS METHODS

Method Transfer 4 Avg. 4 Last 4

CLIP Zero-shot 69.4 0.0 65.3 0.0 65.3 0.0
LwF Li & Hoiem (2016) 56.9 -12.5 64.7 -0.6 74.6 +9.3
iCaRL Rebuffi et al. (2017) 50.4 -19.0 65.7 +0.4 80.1 +14.8
WiSE-FT Wortsman et al. (2022a) 52.3 -17.1 60.7 -4.6 77.7 +12.4
ZSCL Zheng et al. (2023) 68.1 -1.3 75.4 +10.1 83.6 +18.3
KNN 69.3 -0.1 72.7 +7.4 78.4 +13.1
LinProbe 69.3 -0.1 77.1 +11.8 86.0 +20.7
TreeProbe (50k) 69.3 -0.1 75.9 +10.6 85.5 +20.2

Table 3: Comparison of different methods on MTIL in Order I from ZSCL Zheng et al. (2023). KNN,
LinProbe , and TreeProbe (50k) are complementary methods with AIM-Emb as the fusing approach.

We also supplement the results obtained by KNN and LinProbe while comparing to previous methods
in Tab. 3. As shown, all of the approaches of complementary systems with AIM-Emb achieve good
Transfer, reiterating the effectiveness of AIM. LinProbe excels at all metrics with the cost of efficiency,
which is predictable from the results shown in our main manuscript.

To give more details on the accuracies we achieve on every task under all stages for TreeProbe (50k),
we follow ZSCL Zheng et al. (2023) to give all numbers in Tab. 4 for further reference.

S-8 ADDITIONAL ABLATION EXPERIMENTS

Effect of different fusing operations. We describe several forms of the fusing operations in Sec. 3.3,
including: Avg-Prob, AIM-Prob, Avg-Emb, and AIM-Emb. We compare using TreeProbe (50k)
under the task incremental learning scenario. Fig. S3 shows the results on target and zero-shot tasks.
The figure shows that AIM-Emb and AIM-Prob have similar performance on target tasks, surpassing
the other two fusing operations. Combined with the zero-shot performance, the results suggest the
effectiveness of AIM in adaptively choosing the better prediction model. The probabilistic prediction
is better than the embedding prediction when performing averaging in both target tasks and zero-shot
tasks. But when combined with AIM, the embedding version has a reasonably better performance in
zero-shot tasks. Therefore, we choose AIM-Emb as the default fusing operation.

3
https://github.com/openai/CLIP/blob/main/data/prompts.md
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Transfer 87.90 68.22 45.32 54.61 71.08 88.86 59.45 89.07 64.61 64.05 69.3

Aircraft 52.45 87.90 68.22 45.32 54.61 71.08 88.86 59.45 89.07 64.61 64.05
Caltech101 52.48 96.89 68.22 45.32 54.61 71.08 88.86 59.45 89.07 64.61 64.05
CIFAR100 52.48 96.89 68.22 45.32 54.61 71.08 88.86 59.45 89.07 64.61 64.05
DTD 52.42 96.83 81.98 70.32 54.61 71.08 88.86 59.45 89.07 64.61 64.05
EuroSAT 52.45 89.92 81.99 66.65 95.74 71.08 88.86 59.45 89.07 64.61 64.05
Flowers 52.51 90.55 81.93 66.44 95.74 54.12 88.86 59.45 89.07 64.61 64.05
Food 52.48 90.78 81.94 67.23 95.78 65.49 92.25 59.45 89.07 64.61 64.05
MNIST 52.09 93.95 81.96 69.73 94.33 95.69 92.27 98.59 89.07 64.61 64.05
OxfordPet 52.63 95.10 82.05 70.05 95.63 95.69 92.29 98.58 92.91 64.61 64.05
Cars 52.54 95.22 81.94 67.98 94.15 95.59 92.29 98.58 93.02 86.27 64.05
SUN397 52.48 95.56 81.94 66.91 95.59 95.59 92.21 98.60 93.19 86.15 81.76 85.5

Avg. 52.45 93.59 79.47 61.93 80.49 77.96 90.40 73.68 90.15 68.53 65.66 75.9

Table 4: Accuracy (%) of our TreeProbe (50k) model on the MTIL benchmark with order-I. Each
row represents the performance on every dataset of the model trained after the corresponding task.
Transfer, Avg., and Last metrics are shown in color. We follow the same table arrangement as in
ZSCL Zheng et al. (2023).

Fusing operation

Figure S3: Target (left) and zero-shot (right) accuracies of different fusing operations.

Different versions of KNN and choice of k. As indicated in Sec. 3.2, we can get the embedding by
taking the one attached to the most likely label (MV-KNN), or averaging the text embeddings of the
k nearest neighbors (AVG-KNN), or performing a weighted-averaging over the embeddings of all k
nearest neighbors where weights come from the similarities between the image embedding and the
k neighbors’ image embeddings (WAVG-KNN). We also compare these approaches under different
ks to further choose a suitable k for experiments. As indicated in Fig. S4, from the curve, k = 9
gives reasonable performances of all approaches on both the target and zero-shot tasks. Compared to
AVG-KNN, larger k is more beneficial for MV-KNN since larger k is more stable for MV-KNN, and
it is more likely to include more mismatches from the nearest neighbors forAVG-KNN . From the
plot, we can clearly read that WAVG-KNN is consistently better than AVG-KNN and MV-KNN across
different ks, making it our default option of the prediction approach for fast learning system.

Effect of ensemble classifiers in TreeProbe inference. Referencing Sec. 3.2, we observe that ensem-
ble predictions from multiple classifiers associated with k retrievals slightly enhance performance.
Fig. S5 presents these results under the task incremental learning setting for eight target tasks. Our
final model, TreeProbe, is better than its variant without the ensemble classification function in both
target and zero-shot performance. The additional inference cost for ensemble predictions is negligible,
so we choose it as the default setting for its better performance.
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Figure S4: Results of different versions of KNN on target tasks after finishing all stages under the
task incremental learning scenario. We further ablate on k selection so choose k as the x-axis. The
vertical dashed line represents k = 9.

Ensemble classifier

Figure S5: Target and zero-shot task performance comparison w.r.t. ensemble classifiers. “TreeProbe
w/o ensem. cls.” is the version of TreeProbe by finding the cluster most similar to the input and using
the corresponding classifier to predict labels. The reported accuracy is the average across tasks after
incrementally receiving training data from the datasets shown on the x-axis.

S-9 EVALUATION ON LONG-TAILED CLASSIFICATION

Method CLIP Zero-shot KNN LinProbe TreeProbe KNN* LinProbe* TreeProbe* PaCo RAC

Accuracy (%) 40.0 35.5 37.0 30.5 40.4 42.7 41.3 41.2 47.2

Table 5: Comparison of long-tailed classification on Places365LT Liu et al. (2019). * means +
AIM-Emb. For this experiment, we use CLIP ViT-L/14@336px as the backbone network.

In long-tailed classification, some test labels are rare or unobserved in training, so blending exemplar-
based models with consolidated models can be beneficial, as shown by Long et al. (2022). To
accommodate this setting, we adjust our AIM-Emb method by considering the 2/3 rarest labels
as not being present in the exemplar set and the remainder as being present, to calculate vout. In
this experiment, the node capacity of TreeProbe methods is 10k. In Tab. 5, we present results on
the Places365LT dataset Liu et al. (2019). Our AIM-Emb method with LinProbe and TreeProbe
outperform the zero-shot baseline. We also compare to PaCo Cui et al. (2021) and RAC Long et al.
(2022), which are specifically designed for long-tail classification. PaCo incorporates learnable
class centers to account for class imbalance in a contrastive learning approach. RAC trains an
image encoder augmented with label predictions from retrieved exemplars. Although not specifically
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designed for long-tailed classification, our method performs similar to PaCo, but RAC performs best
of all.
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Bolei Zhou, Àgata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE TPAMI, 40(6):1452–1464, 2018.

13


	Introduction
	Related works
	Instance-based learning (IBL)
	Open-vocabulary image classification
	Continual learning

	Method
	Slow-learning system: zero-shot model
	Fast-learning system: exemplar-based model
	Fusing predictions of the two models

	Experimental Setup
	Tasks
	Evaluation scenarios
	Experimental Results
	Effectiveness of complementary system and AIM
	Comparison of Efficiency and Accuracy for Fast-Learning Approaches
	Comparison to previous methods
	Scaling to larger zero-shot models

	Conclusion and limitations
	Algorithmic descriptions of TreeProbe 

	Implementation details
	More experiment setting details
	Descriptions of tasks
	General tasks
	Fine-grained tasks
	Long-tailed task
	Prompt templates for tasks
	Zero-shot performances on different tasks
	Additional results
	Zero-shot task performances of every stage
	More results of the comparison to previous methods

	Additional ablation experiments
	Evaluation on long-tailed classification





