Table 1: [A1] Additional baseline results for APHYNITY and Genetic programming for symbolic regression. APHYNITY is implemented using domain-specific expert models as defined in App H.8 combined with a 3-layer MLP, with the same hyper-parameters from [R2]. Genetic programming is implemented using the implementation and hyper-parameters from [R6]. Reporting the test prediction MSE (T_{MSE}) of the produced system models on held-out test datasets across all benchmark datasets. HDTwinGen achieves the lowest test prediction error. The results are averaged over ten random seeds, with \pm indicating 95% confidence intervals.

Method	Lung Cancer $T_{MSE} \downarrow$	Lung Cancer (with Chemo.) $T_{MSE} \downarrow$	Lung Cancer (with Chemo. & Radio.) $\mathcal{T}_{MSE} \downarrow$	Hare-Lynx $T_{MSE} \downarrow$	Plankton Microcosm $T_{MSE} \downarrow$	$\mathcal{T}_{MSE} \downarrow$
DyNODE	327±5.8	52±47.1	16.3±5.58	439±0	0.00036±0.00078	74±2.36
SINDy	327±5.79	11.8±0.395	13.7±0.573	388±4.29e-14	0.00135±0	93.4±0.458
RNN	1.17e+06±3.08e+04	708±86.1	136±5.6	3.71e+03±3.39e+03	0.0281±0.0406	1.38e+04±1.65e+03
Transformer	7.48 ± 1.06	0.348±0.0618	0.216±0.0345	716±42.5	3.69e-05±1.83e-05	0.309±0.222
APHYNITY	9.06±1.37	81.6±81.3	1.21e+03±1.69e+03	321±12.6	4.21e-05±3.45e-05	88.8±9.97
Genetic programming	184 ± 47	187±30.4	152±30.6	504±34.1	0.00928 ± 0.00539	7.86±1.89
ZeroShot	5.45e+03±6.71e+03	292±80.2	5.81e+03±4.02e+03	338±0	0.325±0.242	2.31e+03±2.24e+03
ZeroOptim	216±172	31.2±45	6.08±7.9	353±0	0.0132±0.00116	7.88±0.0414
HDTwinGen	4.41±8.07	0.0889±0.0453	0.131±0.198	291±30.3	2.51e-06±2.2e-06	$1.72{\pm}2.28$

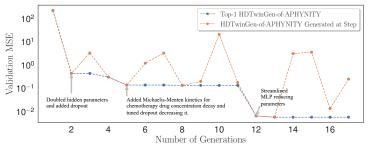


Figure 1: **[A2]** HDTwinGen can effectively evolve an existing hybrid APHYNITY model. Validation MSE of the hybrid model generated in each iteration, showing the Pareto-front of the best generated hybrid model (Top-1 HDTwinGen-of-APHYNITY) and the generated HDTwinGen-of-APHYNITY per generation step—additionally with a few of the hybrid models labeled with their model descriptions. HDTwinGen can efficiently understand, modify, and hence *evolve* the hybrid model to achieve a better-fitting model; this experiment is on the Lung Cancer (with Chemo. & Radio.) dataset.

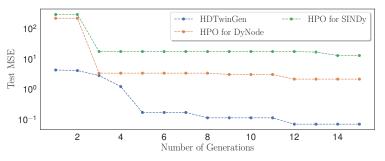


Figure 2: **[A3]** Bayesian Optimization of baseline hyperparameters over the same number of model generations to provide baselines with a comparable compute budget and automated model improvement comparison. Test MSE of the best-performing model against each generation step, up to 15 iterations. HDTwinGen generates better-performing hybrid models for a fixed model budget. The experiment is performed on the Lung Cancer (with Chemo. & Radio.) dataset. Hyper-parameter search space for the baselines is detailed in Table 3, and the Bayesian optimization algorithm used for HPT is a Tree-structured Parzen Estimator.

Table 2: SINDy grid search over polynomial library degree.

1

Table 3: BO HPT Search Space for Figure 2.

0		Method	Hyperparameter Search Space	Best Params
Method	Lung Cancer (with Chemo. & Radio.) $\mathcal{T}_{MSE} \qquad \downarrow$	DyNode learning_rate DyNode weight_decay DyNode hidden_dim DyNode model_activation	[1e-5, 1e-1] [1e-5, 1e-1] [32, 1024] [tanh, silu, ELU]	0.0123 0.00029 788 tanh
SINDy (polynomial_library_degree=1) SINDy (polynomial_library_degree=2) SINDy (polynomial_library_degree=3) SINDy (polynomial_library_degree=4)	$\begin{array}{c} 132{\pm}7.02\\ 13.9{\pm}1.12\\ 14{\pm}1.11\\ 14{\pm}1.13\end{array}$	DyNode model_initialization SINDy polynomial_library_degree SINDy polynomial_library_interaction_only SINDy threshold SINDy hapha	[xavier, normal] [1, 3] [True, False] [1e-5, 1e-1] [1e-5, 1e-1]	normal 2 True 0.0194 0.0015