
A Baseline Implementation
Simple Baseline. As stated above, the simple baseline is constructed by training the feature extrac-
tor on base class with standard cross-entropy loss, which yield the objective function:

Lsimple = Lclas(✓, ;Db) =
1

Nb

NbX

i=0

|Cb|X

j=0

yij log p (j|f✓(xi)) (5)

where ✓ and  represent parameters of feature extractor and the linear classification, respectively.

Rotation Baseline. For SSL, we implement the "rotation baseline” (Rot baseline). In detail, during
global classification training, we rotate each image with all predefined angles: xr

i = T (xi, r)8r 2 R
with R = {0�, 90�, 180�, 270�} and enforce the encoder to recognize the correct translation. Thus,
the combined objective function of this baseline can be defined as:

Lrot = Lsimple + �sslLssl(✓,�;Db,R) (6)

Precisely, we utilize a seperate classifier g� on top of feature extractor f✓ to predict the pertubation of
images via cross-entropy loss with four classes corresponding to four possible translations similar to
Gidaris et al. [18]. Accordingly, the SSL loss function Lssl is given by:

Lssl(✓,�;Db,R) =
1

Nb|R|

NbX

i=0

X

j2R

|R|X

k=0

I(k = j) log p�(k|f✓(xj
i )) (7)

Here, I(·) is the indicator function and p�(·|f✓) denotes the (predicted) probability of rotation angle.

Rotation + KD Baseline. The "rotatiton + kd baseline” (Rot + KD baseline) is constructed by
combining knowledge distillation [23] with rotation classification. Explicitly, we first train the feature
extractor following the configuration of rotation baseline, and then exert the born-again strategy [17]
to perform knowledge distillation for T generations. The loss function of this baseline is given by:

Lrot+kd = Lrot + �kd_clasLkd_clas(✓t, t;Db, ✓t�1, t�1, ⌧)+

�kd_sslLkd_ssl(✓t,�t;Db,R, ✓t�1,�t�1, ⌧) (8)

The above objectives optimize Lclas and Lssl with both groundtruth labels along with the prediction
from teacher models i.e., the model (of the same architecture) trained from the previous generation:

Lkd_clas(✓t, t;Db, ✓t�1, t�1, ⌧) =
1
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NbX

i=0

|Cb|X

j=0

p t�1(j|f✓t�1(xi), ⌧) log p t(j|f✓t(xi), ⌧) (9)

Lkd_ssl(✓t,�t;Db,R, ✓t�1,�t�1, ⌧) =
1
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(10)

Following Tian et al. [53], we distill the network for T = 2 generations and use the last checkpoint
of previous generation as the teacher for next generation. For simplicity, we set the hyperparameters
�ssl = �kd_ssl = �kd_clas = 1 and ⌧ = 4 for all experiments.

B On the importance of stop-gradient operator

In this section, we elaborate the bleak outcome when removing the stop-gradient operator of loss
function in Equation 3. As discussed before, the soft-weight in “pull/push” loss terms should be used
to guide the degree of force. Directly optimize these soft weights would lead to different underlying
objective that jointly maximizing conditional entropy as we show below.

First, we define the objective function (for each positive/negative term) in Equation 3 as weighted

distance loss:

Lwd =
KX

k=1

� · d(wk,xi)SG[ p(k|xi,W)] (11)
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Furthermore we define the log-sum-exp loss function as:

Llse = � log
KX

k=1

exp(�� · d(wk,xi)) (12)

Lemma B.1. The two loss function Lwd and Llse have same set of solutions.

Proof. This can be proved by taking the gradient of two terms w.r.t. jth prototype. Particularly, the
gradient of Llse w.r.t. wj is given by:
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(13)
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On the other hand, the gradient of Lwd term w.r.t. to wj is given by:
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Thus, both loss function should optimize the same underlying objective.

Corollary B.1.1. Taking out the stop-gradient operator in “weighted distance” loss results in a

objective that jointly minimizing conditional entropy of label given raw features and weighted distance

(i.e., the old loss function).

Proof: We refer to this objective function as “Expected Distance” loss. We can prove above corollary
by rewriting the objective function as below:
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(21)

Using the Lemma B.1 and Equation 21, we can observe that without the stop-gradient operator,
underlying objective combining empirical (Monte-Carlo) estimate of conditional entropy of label
given extracted features and “weighted” distance (i.e., “old” loss).

Discussion. As noted by Boudiaf et al. [2], optimizing the conditional entropy loss requires special
scrutiny, since the optima could result in trivial solutions on the simplex vertices i.e., assigning all
samples to a single class. Particularly, a small value of learning rate and fine-tuning the whole network
(similar to [10]) are crucial to prevent dramatical deterioration in performance. In their experiments
[2], they found that training the classifier with conditional entropy and cross-entropy loss signficant
decrease the performance of few-shot learner. Beside, utilizing the conditional entropy for “push”
loss does not affect the performance of classifier since it does not lead to collapsed solutions.
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C Pseudo Code

We provide the pseudo-code of POODLE in a coding style similar to Pytorch as in Algorithm 1.

Algorithm 1: PyTorch-style pseudocode for POODLE.

# f: classifier

# support: support images

# support_labels: labels of support images

# query: query images

# alpha: weight of positive term

# beta: weight of negative term

# sample negative data

neg_data = sample_from_train_set ()

# construct positive data

if transductive:

n_support = support.size (0)

pos_data = concatenate ([support , query])

else:

pos_data = support

for i in range(n_steps ):

# compute logits

pos_out = f(pos_data)

neg_out = f(neg_data)

# compute POODLE loss

pull_loss = sum(pos_out * softmax(pos_out ). detach ())

push_loss = sum(neg_out * softmax(neg_out ). detach ())

poodle_loss = alpha * pull_loss - beta * push_loss

# compute CE loss

ce_loss = sum(support_label * log_softmax(pos_out [: n_support ]))

loss = ce_loss + poodle_loss

# optimization step

loss.backward ()

optimizer.step()

D Additional results

In this section, we provide more experimental results when applying POODLE for various network
architectures and conducting ablation study to verify its effectiveness under numerous configurations.
Note that by POODLE, we refer to POODLE-B i.e., negative samples are drawn from base classes,
unless otherwise state.

D.1 Dataset

In this section, we briefly describe the datasets used for evaluating performance of cross-domain FSL
below.

• iNatural-2017 [60]: This heavy-tailed dataset consists of 859, 000 images from over 5, 000 species
of plants and animals. For disjoint negative sampling, we follow the meta-iNat benchmark [60, 58]
i.e., splitting the dataset to 908 classes for sampling negative samples and 227 classes for evaluation.

• EuroSAT [22]: This dataset covers total 27, 000 labeled images of Sentinel-2 satellite images,
which consist of 10 classes and the patches measure 64 ⇥ 64 pixels.

• ISIC-2018 (ISIC) [7]: This dataset covers dermoscopic images of skin lesions. Precisely, we use
the training set for task 3 (i.e., lesion disease classification), which contains 10, 015 images with 7
ground truth classification labels.
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It is worth mentioning that, for the sake of simplicity, we apply the same image transformation
as in mini-Imagenet to these cross-domain datasets. Thus, the resolution of processed images of
cross-domain datasets are 84 ⇥ 84 in our implementation. In contrast, the benchmark protocol using
the image resolution of 224 ⇥ 224 [21]. A higher image resolution helps improve the performance of
classifier significantly as we demonstrate in Section D.5.4. Nevertheless, POODLE successfully boosts
the performance of all baselines in cross-domain FSL by a large margin.

D.2 Standard FSL

In this section, we provide the experimental results of backbones other than Resnet-12. Specifically,
we consider widely adopted architectures, namely Conv-4-512 [56], WideResnet [63], Mobilenet [25],
and Densenet [27]. Particularly:

• Conv-4-512: We follow [56] to implement this architecture. More concretely, it is consisted of 4
convolutional layers with hidden channels of 64 and the output dimension is 512.

• WRN-28-10 [63]: We follow [49, 58] and use the wide residual network with 28 convolutional
layers and widening factor of 10.

• DenseNet-121 [27]: Similar to [58], we adopt the 121-layers architecture while removing the first
two-down sampling layers and using the kernel size of 3 ⇥ 3 for the first convolutional layer.

• MobileNet [25]: We follow [58] and use the standard MobileNet for ImageNet [25] but remove
the first two down-sampling layers of the network.

For all aforementioned architectures, we adopt the same training configuration of Resnet-12 as
described in Section 5, excepts for WRN-28-10 we use the batch size of 32 for all datasets. Beside
that, we use the negative samples from base classes i.e., POODLE-B in all experiments unless otherwise
stated.

Table 7 shows the improvement of POODLE with various backbones of different network architectures
on mini-Imagenet. We can see that our approach consistently enhance the accuracy of all baselines
by a large margin i.e., 2 � 4% in 1-shot protocol and 0.5 � 1% in 5-shot protocol.

In Table 8, we present the comparison between performance achieved by WRN-28-10 with our
approach and other algorithms on mini- and tiered-Imagenet. It can be observed that combining
POODLE with other techniques such as SSL and KD achieves comparable or outperform state-of-the-art
techniques for both inductive/transductive inference on two datasets.

D.3 Results of reimplemented transductive algorithms

In this section, we report the accuracy of our reimplemented of transductive algorithms and their
originally reported performance (balanced query set). In Table 9, we present the performance of our
reproduced transductive algorithms (on Resnet-12). We can see that our implementation achieve
comparable or higher accuracy than the original work even though we adopt the more efficient
architecture (i.e., Resnet-12 compared to Densenet).

D.4 Imbalanced query set

So far, prior works in (transductive) FSL mainly concern with balanced query samples i.e., numbers
of query images for each class are equal. However, in practice, there is no guarantee that this setting is
hold. In this section, we conduct experiments to benchmark the performance of different transductive
algorithms under class-skew i.e., imbalanced query data. We simulate the long-tail distribution of
the query samples through the Dirichlet distribution. Precisely, for each novel task, we sample the
number of queries for every category from a Dirichlet distribution with concentration  for all classes
so that the total number of query images is always 75 (similar to the experiments in the previous
section).

In the “pull” loss term, we employ a “soft” weights for minimizing distance between prototypes and
samples without any explicit regularization for distance between prototypes. In conventional setup for
transductive learning, the number of query samples of each category are uniformly distributed, hence,
the positive samples of each category implicitly constrains the prototype by “pulling” corresponding
prototype. Under an extremely imbalanced query set, the positive samples from the dominated class
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Table 7: Comparison to different baselines for the standard FSL (a.k.a in-domain FSL) on mini-
ImageNet with various network architectures. The results are evaluated with 10, 000 random sampled
tasks. The 95% confidence interval of 1-shot and 5-shot classification are roughly 0.2 and 0.1,
respectively.

Inductive Transductive
Network Baseline Variant 1-shot 5-shot 1-shot 5-shot

WRN-28-10

Simple CE Loss 61.23 81.08 61.23 81.08
POODLE 64.94 81.88 71.49 83.48

Rot CE Loss 64.77 83.66 64.77 83.66
POODLE 68.27 84.45 75.24 85.95

Rot + KD CE Loss 67.12 84.15 67.12 84.15
POODLE 69.67 84.84 77.30 86.34

DenseNet-121

Simple CE Loss 64.88 81.99 64.88 81.99
POODLE 66.53 82.55 75.55 84.62

Rot CE Loss 66.51 83.92 66.51 83.92
POODLE 68.68 84.52 77.85 86.49

Rot + KD CE Loss 68.66 84.17 68.66 84.17
POODLE 70.29 84.80 78.57 84.49

Conv-4-512

Simple CE Loss 50.90 70.44 50.90 70.44
POODLE 53.60 71.08 58.61 72.78

Rot CE Loss 51.36 70.81 51.36 70.81
POODLE 54.04 71.69 58.84 73.24

Rot + KD CE Loss 51.46 70.42 51.46 70.42
POODLE 53.87 71.36 58.50 72.87

MobileNet

Simple CE Loss 60.99 77.45 60.99 77.45
POODLE 61.75 77.87 70.63 80.04

Rot
CE Loss 64.57 80.86 64.57 80.86
POODLE 65.45 81.37 74.81 83.50

Rot + KD
CE Loss 65.41 80.60 65.41 80.60
POODLE-I 66.02 81.18 74.55 83.09

might pull all the prototypes to their region by learning similar features of samples from different
classes. In that case, increasing the value of � to prevent the collapsed solution is necessary.

Table 10 presents the results of different transductive learning algorithms under the imbalanced query
set. The detailed performance of the reproduced algorithms compared to the original papers are
reported in Section D.3. The coefficient of “push” term is set to ↵ = 1. Since TIM [2] explicitly use
the uniform distribution information of samples in the query set, its performance drastically drops in
the imbalanced FSL. Other variants of K-means are more robust to the long-tail distribution, but they
are far inferior to POODLE with � = 0.75.

D.5 Ablation study

D.5.1 Removing stop-gradient operator

As discussed before in Section B, the stop-gradient operator is of paramount important to avoid trivial
solutions. In this section, we consider different choice of usage of the stop-gradient operator namely
not using it in both “push/pull” terms, use only with one of two term, and use it for both terms in
Table 11.

From the table, we can see that the stop-gradient operator does not affect the performance much
in inductive inference. It can be explained as the posterior distribution of support data already has
a high probability for “correct” classes and the conditional entropy term does not affect much. In
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Table 8: Comparison to the state-of-the-art methods on mini-ImageNet, and tiered-Imagenet using
inductive and transductive settings on WRN-28-10. The results obtained by our models (pear-
shaded) are averaged over 10, 000 episodes.

mini-ImageNet tiered-ImageNet
Method Transd. 1-shot 5-shot 1-shot 5-shot
LEO [49]

7

61.8 77.6 66.3 81.4
SimpleShot [58] 63.5 80.3 69.8 85.3
MatchNet [56] 64.0 76.3 - -
CC+rot+unlabeled [18] 64.0 80.7 70.5 85.0
FEAT [62] 65.1 81.1 70.4 84.4
Simple 61.23 81.08 67.63 83.93
Simple + POODLE 64.94 81.88 70.25 84.64
Rot + KD 67.12 84.15 - -
Rot + KD + POODLE 69.67 84.84 - -

AWGIM [20]

3

63.1 78.4 67.7 82.8
Ent-min [10] 65.7 78.4 73.3 85.5
SIB [26] 70.0 79.2 - -
BD-CSPN [38] 70.3 81.9 78.7 86.92
LaplacianShot [66] 74.9 84.1 80.2 87.6
TIM-ADM [2] 77.5 87.2 82.0 89.7
TIM-GD [2] 77.8 87.4 82.1 89.8
Simple + POODLE 71.49 83.48 76.27 85.83
Rot + KD + POODLE 77.30 86.34 - -

Table 9: Results of our implementations of various transductive methods compared to original works
on mini-ImageNet. The results of our implementations (pear-shaded) are evaluated on Resnet-12 +
Rot + KD baseline with 2,000 random sampled tasks.

Methods Network 1-shot 5-shot
Mean-shift Resnet-12 73.49 ± 0.55 84.24 ± 0.32
Mean-shift [36] DenseNet-121 71.39 ± 0.27 82.67 ± 0.15
Bayes k-means Resnet-12 71.40 ± 0.50 83.79 ± 0.31
Bayes k-means [36] DenseNet-121 72.05 ± 0.24 80.34 ± 0.17
Soft k-means Resnet-12 74.55 ± 0.49 84.53 ± 0.30
Soft k-means [46] Conv-4-64 50.09 ± 0.45 64.59 ± 0.28
CAN_T Resnet-12 71.04 ± 0.53 84.21 ± 0.30
CAN_T [24] Resnet-12 67.19 ± 0.55 80.64 ± 0.35
TIM Resnet-12 77.69 ± 0.55 87.40 ± 0.29
TIM [2] Resnet-18 73.90 ± n/a 85.00 ± n/a

transductive inference, removing the stop-gradient operator on “pull” term results in noticeable
decrease in accuracy as we articulate in Section B. On the other hand, taking out stop-gradient
operator on “push” term does not worsen the performance since it does not lead to trivial solutions.

D.5.2 Sensitive to ↵ and �

So far, we only fixed the coefficient of “push/pull” loss with ↵ = 1 and � = 0.5, we now consider
different configurations of these parameters to understand the sensitive of POODLE to these hyper-
parameters. Precisely, we report the accuracy gain of POODLE with different combination of ↵ and �
taken from the list [0.0, 0.25, 0.5, 0.75, 1.0, 2.0, 5.0] as in Figure 3.

We can observe from Figure 3 that POODLE is robust to the change of ↵ and �: the accuracy of
network is improved as long as the value of ↵ is larger than �. Furthermore, the improvement in
accuracy usually does not change much when varying ↵ and �.
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Table 10: Results of transductive learning on imbalance query data of mini-ImageNet. The re-
sults obtained by our models (blue pearl-shaded) are averaged over 2,000 episodes.  denotes the
concentration parameter of the Dirichlet distribution.

 = 0.5  = 1  = 2  = 5
Methods 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot. 1-shot 5-shot
Inductive 66.91 82.75 66.16 82.62 66.10 83.01 66.23 83.16
Mean-shift [36] 68.88 80.54 70.31 81.82 71.78 83.16 72.92 83.98
Bayes k-means [36] 69.69 82.86 69.91 82.95 70.64 83.54 71.39 83.83
Soft k-means [46] 65.31 75.65 68.61 78.90 71.56 81.58 73.45 83.33
CAN_T [24] 72.30 83.53 71.28 83.62 71.09 84.06 71.18 84.25
TIM [2] 47.65 52.79 54.86 61.32 61.84 68.73 68.74 76.39
POODLE-B � = 0.00 61.16 76.40 66.02 79.88 70.03 82.43 73.03 84.23
POODLE-B � = 0.50 64.56 81.01 69.14 83.63 72.91 85.14 75.79 85.78
POODLE-B � = 0.75 75.20 86.51 74.06 86.17 74.77 86.48 74.74 86.34
POODLE-B � = 1.00 75.48 88.36 71.14 86.31 70.20 85.53 68.94 84.31

Table 11: Results of different settings of stop-gradient in push and pull terms. The results are evaluated
with 2, 000 random sampled tasks on Resnet-12 with Rot + KD baseline. The 95% confidence interval
of 1-shot and 5-shot classification are roughly 0.45 and 0.3 for inductive setting and 0.6 and 0.4 for
transductive, respectively. Results of inductive baseline for 1-shot and 5-shot are 65.91 ± 0.44 and
82.95 ± 0.30, respectively.

Stop-grad Inductive Transductive
Method Pull Push 1-shot 5-shot 1-shot 5-shot

POODLE-B

3 3 67.52 83.71 77.58 85.87
7 3 67.50 83.56 62.04 82.87
3 7 67.37 83.73 78.51 86.28
7 7 67.37 83.64 72.04 85.08

POODLE-R

3 3 67.80 83.50 77.25 85.52
7 3 67.80 83.39 66.55 83.65
3 7 67.77 83.43 78.11 85.83
7 7 67.77 83.36 73.29 84.77

D.5.3 Number of sampled negative data

Intuitively, a larger number of negative samples will provide more informative cues to the classifer,
however, they might require a notable memory footprint and have significant latency. We conduct
experiment to quantify the impact of number of negative samples to the accuracy of POODLE in
Table 12. These results indicate that higher number of negative samples consistently leads to better
performance, however, the gain in accuracy is relatively small.

Table 12: Results of our methods with different number of out-of-distribution samples per task.
The results are evaluated with 10, 000 random sampled tasks on Resnet-12 with Rot + KD baseline.
The 95% confidence interval of 1-shot and 5-shot classification are roughly 0.20 and 0.10 for
both inductive and transductive inference. Results of inductive baseline for 1-shot and 5-shot are
66.32 ± 0.20 and 82.99 ± 0.13, respectively.

Number of 1-shot 5-shot
negative samples POODLE-I POODLE-T POODLE-I POODLE-T

50 67.61 77.38 83.54 85.56
100 67.71 77.61 83.62 85.64
200 67.77 77.69 83.69 85.70
500 67.84 77.73 83.71 85.73
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(d) 5-shot Transductive Inference

Figure 3: Ablation study on the affect of positive and negative coefficient of POODLE (i.e., ↵ and �)
to accuracy gain of (simple baseline) Resnet-12 on mini-Imagenet compared to no fine-tuning at all
with 10, 000 random tasks. The baseline where we directly assign the prototype of each class to the
mean of its support images obtains accuracy of 61.63 ± 0.20 and 80.78 ± 0.11 for 1-shot and 5-shot
classification, respectively.

D.5.4 Higher image resolution

Existed works in FSL usually employ the standard image pre-processing schemes such as resizing to
84 ⇥ 84 pixels. We consider using a slightly different setup where we resize the image to a higher
resolution than 84 during training and testing. We keep all other hyper-parameters and configurations
as in simple baseline. We report the accuracy of these models with POODLE in both inductive and
transductive inference in Table 13. It can be observed that the higher resolution usually leads to
better performance. Nevertheless, POODLE successfully raises the accuracy in all cases up to 5% in
inductive 1-shot classification.

D.5.5 Different number of finetuning steps

In previous experiments, we fixed the number of fine-tuning steps when employing POODLE with
T = 250 steps. We now consider different numbers of fine-tuning steps and evaluate its impact on the
final performance of the classifier. Particularly, we report the accuracy of the classifier fine-tuned with
POODLE and standard cross-entropy loss with various number of steps in Table 14. In our experiments,
we find that POODLE is not sensitive to number of gradient updates and do not requires a high number
of steps to achieves good performance. This finding allows us to accelerate the fine-tuning steps and
reduce the computational cost for inference phase.
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Table 13: Comparing the performance of simple baseline on mini-Imagenet with different image reso-
lutions. POODLE-I and POODLE-T indicate the result of our algorithm in inductive and transductive
inference. The results are evaluated with 10, 000 random sampled tasks. The 95% confidence interval
of 1-shot and 5-shot classification are roughly 0.2 and 0.1, respectively. Bold numbers indicate
significant improvement (i.e., p-value  0.05) compared to weakest corresponding entries.

1-shot 5-shot
Network Resolution CE Loss POODLE-I POODLE-T CE Loss POODLE-I POODLE-T

Resnet-12

84 ⇥ 84 61.63 64.08 74.46 80.78 81.41 83.70
140 ⇥ 140 62.66 65.90 75.08 82.06 82.89 84.88
180 ⇥ 180 64.85 67.05 76.17 82.52 83.19 85.31
224 ⇥ 224 62.90 67.22 74.46 82.59 83.61 85.23

WRN-28-10
84 ⇥ 84 61.23 64.94 71.49 81.08 81.88 83.48

140 ⇥ 140 61.76 66.27 71.23 81.73 82.70 84.05
180 ⇥ 180 61.72 66.34 70.61 81.67 82.65 83.90

Table 14: Results of our methods with different number of update iterations. The results are evaluated
with 2, 000 random sampled tasks on Resnet-12 with Rot + KD baseline. The 95% confidence interval
of 1-shot and 5-shot classification are roughly 0.45 and 0.3 for inductive setting and 0.5 and 0.3 for
transductive, respectively. Results of inductive baseline for 1-shot and 5-shot are 65.91 ± 0.44 and
82.95 ± 0.30, respectively. Bold numbers indicate significant improvement (i.e., p-value  0.05)
compared to weakest corresponding entries.

1-shot 5-shot
Finetuning steps CE Loss POODLE-I POODLE-T CE Loss POODLE-I POODLE-T

50 66.18 67.61 74.75 83.05 83.72 85.57
100 66.17 67.54 77.03 82.94 83.71 85.78
250 66.17 67.52 77.58 82.76 83.69 85.87
400 66.17 67.49 77.63 82.68 83.70 85.87
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