Appendix

1 Synthetic Benchmark Functions

1.1 Branin Function

The input is two dimensional, $\mathbf{x} = [x_1, x_2] \in [-5, 10] \times [0, 15]$. We have three fidelities to evaluate the function, which, from high to low, are given by

$$f_3(\mathbf{x}) = -\left(\frac{-1.275x_1^2}{\pi^2} + \frac{5x_1}{\pi} + x_2 - 6\right)^2 - \left(10 - \frac{5}{4\pi}\right)\cos(x_1) - 10,$$

$$f_2(\mathbf{x}) = -10\sqrt{-f_3(x-2)} - 2(x_1 - 0.5) + 3(3x_2 - 1) + 1,$$

$$f_1(\mathbf{x}) = -f_2(1.2(\mathbf{x} + 2)) + 3x_2 - 1.$$
(1)

We can see that between fidelities are nonlinear transformations, nonuniform scaling, and shifts.

1.2 Levy Function

The input is two dimensional, $\mathbf{x} = [x_1, x_2] \in [-10, 10]^2$. We have two fidelities,

$$f_2(\mathbf{x}) = -\sin^2(3\pi x_1) - (x_1 - 1)^2 [1 + \sin^2(3\pi x_2)] - (x_2 - 1)^2 [1 + \sin^2(2\pi x_2)],$$

$$f_1(\mathbf{x}) = -\sqrt{1 + f_2^2(\mathbf{x})}.$$
(2)

2 Details about Physics Informed Neural Networks

Burgers' equation is a canonical nonlinear hyperbolic PDE, and widely used to characterize a variety of physical phenomena, such as nonlinear acoustics (Sugimoto, 1991), fluid dynamics (Chung, 2010), and traffic flows (Nagel, 1996). Since the solution can develop discontinuities (i.e., shock waves) based on a normal conservation equation, Burger's equation is often used as a nontrivial benchmark test for numerical solvers and surrogate models (Kutluay et al., 1999; Shah et al., 2017; Raissi et al., 2017).

We used physics informed neural networks (PINN) to solve the viscosity version of Burger's equation,

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} = \nu \frac{\partial^2 u}{\partial x^2},\tag{3}$$

where u is the volume, x is the spatial location, t is the time, and ν is the viscosity. Note that the smaller ν , the sharper the solution of u. In our experiment, we set $\nu = \frac{0.01}{\pi}$, $x \in [-1, 1]$, and $t \in [0, 1]$. The boundary condition is given by

$$u(0,x) = -\sin(\pi x), \ u(t,-1) = u(t,1) = 0.$$

We use an NN $u_{\mathcal{W}}$ to represent the solution. To estimate the NN, we collected N training points in the boundary, $\mathcal{D} = \{(t_i, x_i, u_i)\}_{i=1}^N$, and M collocation (input) points in the domain, $\mathcal{C} = \{(\hat{t}_i, \hat{x}_i)\}_{i=1}^M$. We then minimize the following loss function to estimate $u_{\mathcal{W}}$,

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} (u_{W}(t_{i}, x_{i}) - u_{i})^{2} + \frac{1}{M} \sum_{i=1}^{M} (|\psi(u_{W})(\hat{t}_{i}, \hat{x}_{i})|^{2}),$$

where $\psi(\cdot)$ is a functional constructed from the PDE,

$$\psi(u) = \frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} - \nu \frac{\partial^2 u}{\partial x^2}.$$

Obviously, the loss consists of two terms, one is the training loss, and the other is a regularization term that enforces the NN solution to respect the PDE.

References

Chung, T. (2010). Computational fluid dynamics. Cambridge university press.

Kutluay, S., Bahadir, A., and Özdecs, A. (1999). Numerical solution of one-dimensional burgers equation: explicit and exact-explicit finite difference methods. *Journal of Computational and Applied Mathematics*, 103(2):251–261.

Nagel, K. (1996). Particle hopping models and traffic flow theory. *Physical review E*, 53(5):4655.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2017). Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. *arXiv* preprint arXiv:1711.10561.

Shah, A., Xing, W., and Triantafyllidis, V. (2017). Reduced-order modelling of parameter-dependent, linear and nonlinear dynamic partial differential equation models. *Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences*, 473(2200):20160809.

Sugimoto, N. (1991). Burgers equation with a fractional derivative; hereditary effects on nonlinear acoustic waves. *Journal of fluid mechanics*, 225:631–653.