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1. Introduction
Over the years, the benefits and challenges sur-

rounding satellite operation at very low Earth orbit
(VLEO) are becoming better understood, and tech-
nological progress has gradually enabled its feasible
implementation [1]. At such lowaltitudes (< 500km),
the influence of atmospheric density is no longer
negligible. As satellites are progressively deployed to
operate in VLEO, the assumption of a constant drag
will not hold up well.
While accurate force estimations can be realized

through numerical simulations, the costs can be
steep. In satellite mission planning and design, nu-
merous sequential evaluations are required to ac-
complish orbit propagation over an operational life-
time. Conducting iterative shape and structural de-
sign over a single operating condition, or even op-
timized over the entire trajectory, compounds the
computational demands. Various approaches have
been explored to circumvent this, such as simplify-
ing the geometry [2], optimizing in two-dimensions
[3], selectively omitting physics [4], or developing
general shaping strategies [5], with each presenting
some form of trade-off in accuracy.
Although surrogate modelling can relieve these

costs, sufficient data is still required to construct
accurate and generalizable prediction models. As
such, a pre-training strategy is explored to improve
model accuracy under such data-scarce conditions.
The use of machine-learning in enhancing physi-
cal analysis has been demonstrated to be achievable
through careful integration [6, 7, 8]. In particular,
pre-training strategies that tap on transfer-learning
between related distributions have shown to be par-
ticularly effective in scientific tasks [9].
In this work, a baseline model is pre-trained

on theoretical approximations to support the
predictions of the ground truth satellite aerody-
namic forces. The pre-training procedure involves
residual-learning on the theory of free-molecular
flat plates, in which the aerodynamic forces are
approximated in a low-fidelity context and with-
out any simulation data. The embedding of this
theoretical baseline enables a simple corrector to
be learned from sparse simulation samples. As
such, the full model is inductively-biased towards
physically reasonable predictions. The proposed
approach is visualized in Figure 1.

Fig. 1: Schematic of the proposed embedding of a
theoretical baseline to estimate surface forces of
a satellite.

2. Methods
2.1 Theory of free-molecular flat plates
The forces acting on the satellite can be approxi-

mated using the theory of free-molecular flow. The
atmosphere at high orbital altitudes can be highly
rarefied with mean free path of the gas particles
being significantly greater than the characteristic
length of the satellite, thereby justifying a colli-
sionless environment (negligible inter-particle colli-
sions). The forces imparted on the satellite are ef-
fectively determined by the interaction of the undis-
turbed flow with the surface. From these simplifica-
tions, the rarefied aerodynamics of flat surfaces can
be described theoretically [10], which includes an α-
parameterization of its gas-surface interactions [11].
Thus, any satellite geometry can be discretized into
a compilation of flat panels, each oriented at angles θ
towards the flow (of temperature T∞ and speed V∞)
with individual force contributions of
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The Boltzmann constant is defined as k and the mo-
lar gas constant defined as R. The contributions to
the surface-normal pressure and surface-tangential
shear stress coefficients are reconstructed from the
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local panel’s theoretical lift and drag properties as
Cp̃i = Cd̃i

cos θ + Cl̃i
sin θ and Cτ̃i = Cd̃i

sin θ −
Cl̃i

cos θ.

2.2 Pre-training the Baseline Model on theory
The Baseline Model (Base) is pre-trained with

this theoretical approximation through residual-
learning of fp̃ := Ĉp̃ −

∑4
i miCp̃i

and fτ̃ := Ĉτ̃ −∑4
i miCτ̃i , where Ĉp̃ and Ĉτ̃ are the output predic-

tions by Base for each theoretical panel, while mi

is the mass fraction of each constituent gas species.
The loss function defined as L = ExBase∼P

[
fp̃

2 + fτ̃
2
]

is minimized, in which model inputs are xBase =
{θ, T∞, V∞,mN,mO,mN2

,mO2
}. From the position

of each panel relative to the global satellite geome-
try, masking (M{s,b,f}) is conducted [13, 14] to pro-
vide an improved estimate of surface pressure Ĉp̃∗

and shear stress Ĉτ̃∗ .

2.3 Limitations of theory
In the absence of simulation data, a theoretical

free-molecular flow can provide a physically-
grounded approximation for the aerodynamic
forces. While useful, there are apparent short-
comings arising from these simplifications. For
instance, the influence of surface concavity is
absent as every particle is reflected only once; local
Knudsen numbers can be small at VLEO, hence
the frequency of inter-particle collisions can be
considerable; the flow may not be hyperthermal
depending on the environment; and the lack of
flow-shielding modelling.

2.4 Training the Corrector Model from sparse datasets
The ground truth satellite forces are defined

using Direct Simulation Monte Carlo (DSMC) [15].
The prediction of the ground truth is expressed
as a sum of the outputs from Base and a Cor-
rector Model (Corr), i.e., Cp = Cp̃∗ + ∆Cp and
Cτ = Cτ̃∗ + ∆Cτ . By randomly sampling from the
full satellite flight path, a sparse representation of
the ground truth can be established. These sparse
samples are used to learn the corrections ∆Cp and
∆Cτ as a non-linear mapping from the inputs x =
{θ, T∞, V∞,mN,mO,mN2

,mO2
,M{s,b,f}, c, φ, κ}, in

which the panel baricenter c serves as a global
identifier across various pitch φ and yaw κ satellite
rotations. The full prediction model, Base+Corr, is
formed as shown in Figure 1.

3. Results and Discussion
3.1 Set-up
As a toy problem, the satellite is projected on a

circular, sun-synchronous orbit with a mean orbital
altitude of 200 km, approximately 16 orbits per day,
and inclination of 96.3° estimated using the J2 algo-
rithm [16]. Only 24 hours of the flight path is used in
the present analysis, and discretized into Nt = 1440
minutes of simulation data. Of which, only 3% and

10% of the full flight path is randomly sampled to
form the training and test set, respectively. As vi-
sualized in Figure 2, four arbitrary maneuvers are
prescribed onto the flight path consisting of pitch
φ and yaw κ rotations towards ±40° with each last-
ing around 35 minutes. No simulation data is re-
quired for the theoretical pre-training, and has a
compute cost equivalent to ∼2.5 converged simula-
tion instances, which would correspond to 0.17% of
the full flight path dataset. Fully data-drivenmodels,
Direct, are developed without pre-training using the
same training sets.

3.2 Performance Comparison
In Figure 2, the local force coefficients of Cp and

Cτ are integrated to obtain the satellite drag coeffi-
cientsCD across the entire 24-hour flight path. Base
tends to over-predict the drag while Direct under-
predicts, withboth exhibiting substantial deviations.
Notably, the latter performs much worse than the
former in modelling the maneuvers, under data-
scarce conditions. The Base+Corr reconciles the
twomodels to best reflect the ground truth. In Table
1, the mean absolute percentage error is computed
as E

[
|(CD − ĈD) / CD| × 100%

]
over ten randomly-

initialized states, of which the flight path on and off
maneuvers (MVR.) are also considered separately.
Based on the full flight path, the proposed approach
achieved error reductions by approximate factors of
0.5× and 0.4× from the models trained using only
data and only theory, respectively. However, the ex-
tension of Corr reveals a trade-off in accuracy when
on and off maneuvers.

Fig. 2: Evaluation of satelliteCD predictions over the
full 24-hour flight path. In general, the proposed
approach (Base+Corr) better reflects the ground
truth than the theoretical baseline (Base) and the
model without pre-training (Direct).

Table 1: Absolute percentage error in CD predic-
tions (%)

Satellite Path

Model Full On MVR. Off MVR.

Direct 7.64± 2.40 35.66± 31.08 4.57± 3.25
Base 5.75± 0.26 5.47± 0.07 5.78± 0.29
Base+Corr 2.93± 0.09 8.85± 3.29 2.29± 0.11
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