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A EXTENDED RELATED WORKS: FAIRNESS IN REGRESSION

Our results are part of a growing body of work evaluating model fairness (Mehrabi et al., 2022). In
the field of machine learning, the concept of fairness aims to mitigate biased outcomes affecting
individuals or groups. Past works have defined individual fairness, which requires similar performance
for similar individuals (Dwork et al., 2011), or group fairness (Dwork & Ilvento, 2019; Hardt et al.,
2016) which seeks similar performance across different groups. Within machine learning fairness
literature, the majority of methods, metrics, and analyses are predominantly intended for classification
tasks, where labels take values from a finite set of values (Pessach & Shmueli, 2022). Among fair
regression literature, multiple authors focus on designing fair learning methods rather than developing
metrics for measuring fairness in existing models (Berk et al., 2017; Fukuchi et al., 2013; Pérez-Suay
et al., 2017; Calders et al., 2013). Complimentary contributions focus on defining fairness criteria and
establishing methods to evaluate fairness for regression tasks (Gursoy & Kakadiaris, 2022; Agarwal
et al., 2019).

B EMPIRICAL DEFINITIONS

B.1 COST

Definition 8 (Group Cost). The empirical group cost, Ĉs(h, s), is defined as:

Ĉs(h, s) ≜

{ 1
ns

∑
i:si=s cost (h (xi) , yi) if h : X → Y (generic model)

1
ns

∑
i:si=s cost (h (xi, si) , yi) if h : X × S → Y (personalized model)

(15)
where ns refers to the number of samples in group s.

Definition 9 (Individual Cost). The empirical individual cost, of a model h for subject i with respect
to a cost function, cost : Y × Y → R is defined as:

Ĉi(h, si) ≜

{
cost(h(xi), yi) if h : X → Y (generic model)
cost(h(xi, si), yi) if h : X × S → Y (personalized model)

(16)

C BOP

Definition 10 (BoP). The empirical BoP is defined as:

ˆBoP(h0, hp) ≜ Ĉ(h0,X, Y )− Ĉ(hp,X,S, Y ). (17)

Definition 11 (Group BoP). The empirical group BoP is defined as:

ˆBoPs(h0, hp, s) ≜ Ĉs(h0,X, Y )− Ĉs(hp,X, s, Y ). (18)

Definition 12 (Minimal Group BoP). Empirical Minimal Group BoP

γ̂ (h0, hp;D) ≜ min
s∈S

( ˆBoPs(h0, hp, s)) (19)

Definition 13 (Individual BoP). The gain any individual sample benefits from using personalized
attributes is empirically written as:

ˆBoPi(h0, hp) = Ĉi(h0, xi, yi)− Ĉi(hp, xi, si, yi). (20)

D BOP FOR EXPLAINABILITY - INCOMPREHENSIVENESS

Classification Using the 0-1 loss function cost function defined for incomprehensiveness, the
Minimal Group BoP is:

γ (h0, hp;D) = min
s∈S

(
Pr
(
hp(X, s) ̸= hp(X\J , s\J) | S = s

)
− Pr

(
h0(X) ̸= h0(X\J) | S = s

))
, where γ ∈ [−1, 1].
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Regression Using the square error loss function, the Minimal Group BoP for incomprehensiveness
is:

γ (h0, hp;D) = min
s∈S

(
E
[
∥hp(X, s)− hp(X\J , s\J)∥2 | S = s

]
− E

[
∥h0(X)− h0(X\J)∥2 | S = s

])
, where γ ∈ [−∞,+∞].

E PROOF OF THEOREMS ON LOWER BOUNDS FOR THE PROBABILITY OF
ERROR

As in (Monteiro Paes et al., 2022), we will prove every theorem for the flipped hypothesis test defined
as:

H0 : γ(h0, hp;D) ≤ ϵ ⇔ Personalized hp performs worst: yields ϵ < 0 disadvantage
H1 : γ(h0, hp;D) ≥ 0 ⇔ Personalized hp performs at least as good as generic h0.

where we emphasize that ϵ < 0.

As shown in (Monteiro Paes et al., 2022), proving the bound for the original hypothesis test is
equivalent to proving the bound for the flipped hypothesis test, since estimating γ is as hard as
estimating −γ. In every section that follows, H0, H1 refer to the flipped hypothesis test.

Here, we first prove a proposition that is valid for all of the cases that we consider in the next sections.

Proposition 1. Consider PX,S,Y is a distribution of data, for which the generic model h0 performs
better, i.e., the true γ is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for
which the personalized model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0. Consider
a decision rule Ψ that represents any hypothesis test. We have the following bound on the probability
of error Pe:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q),

for any well-chosen P ∈ H0 and any well-chosen Q ∈ H1. Here TV refers to the total variation
between probability distributions P and Q.

Proof. Consider h0 and hp fixed. Take one decision rule Ψ that represents any hypothesis test.
Consider a dataset such that H0 is true, i.e., D ∼ P0 and a dataset such that H1 is true, i.e., D ∼ P1.

It might seem weird to use two datasets to compute the same quantity Pe, i.e., one dataset to compute
the first term in Pe, and one dataset to compute the second term in Pe. However, this is just a
reflection of the fact that the two terms in Pe come from two different settings: H0 true or H0 false,
which are disjoint events: in the same way that H0 cannot be simultaneously true and false, yet each
term in Pe consider one or the other case; then we use one or the other dataset.

We have:

Pe = Pr(Rejecting H0|H0 true) + Pr(Failing to reject H0|H1 true)
= Pr(Ψ(h0, hp,D, ϵ) = 1|D ∼ P0) + Pr(Ψ(h0, hp,D, ϵ) = 0|D ∼ P1)

= Pr(Ψ(D) = 1|D ∼ P0) + Pr(Ψ(D) = 0|D ∼ P1) simplifying notations
= 1− Pr(Ψ(D) = 0|D ∼ P0) + Pr(Ψ(D) = 0|D ∼ P1) complementary event
= 1− P0(EΨ) + P1(EΨ) writing EΨ the event Ψ(D) = 0

= 1− (P0(EΨ)− P1(EΨ))

15
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Now, we will bound this quantity:

min
Ψ

max
P0∈H0
P1∈H1

Pe = min
Ψ

max
P0∈H0
P1∈H1

1− (P0(EΨ)− P1(EΨ))

≥ max
P0∈H0
P1∈H1

min
Ψ

[1− (P0(EΨ)− P1(EΨ))] using minmax inequality

= max
P0∈H0
P1∈H1

[
1−max

Ψ
(P0(EΨ)− P1(EΨ))

]
to get min over Ψ, we want (P0(EΨ)− P1(EΨ)) that is largest.

≥ max
P0∈H0
P1∈H1

[
1− max

events A
(P0(A)− P1(A))

]
because the max is now over all possible events A

The maximization is broadened to consider all possible events A. This increases the set over which
the maximum is taken. Because Ψ is only a subset of all possible events, maximizing over all events
A (which includes Ψ) will result in a value that is at least as large as the maximum over Ψ. In other
words, extending the set of possible events can only make the maximum greater or the same.

= max
P0∈H0
P1∈H1

[1− TV (P0 ∥ P1)] by definition of the total variation (TV)

= 1− min
P0∈H0
P1∈H1

TV (P0 ∥ P1)

≥ 1− TV (P ∥ Q) for any P ∈ H0 and Q ∈ H1.

This is true because the total variation distance TV (P ∥ Q) for any particular pair P and Q cannot
be smaller than the minimum total variation distance across all pairs. We recall that, by definition,
the total variation of two probability distributions P,Q is the largest possible difference between the
probabilities that the two probability distributions can assign to the same event A.

Next, we prove a lemma that will be useful for the follow-up proofs.
Lemma 3. Consider a random variable a such that E[a] = 1. Then:

E[(a− 1)2] = E[a2]− 1 (21)

Proof. We have that:

E[(a− 1)2] = E[a2 − 2a+ 1]

= E[a2]− 2E[a] + 1 (linearity of the expectation)

= E[a2]− 2 + 1(E[a] = 1 by assumption)

= E[a2]− 1.

E.1 PROOF FOR CATEGORICAL BOP

Here, we redo the proof from Monteiro Paes (Monteiro Paes et al., 2022), to find a tighter bound.
Theorem 4 (Lower bound for categorical individual BoP (Monteiro Paes et al., 2022)). The lower
bound writes:

min
Ψ

max
PX,S,Y ∈H0

QX,S,Y ∈H1

Pe ≥ 1− 1

2
√
d

(
1 + 4ϵ2

)m/2
(22)

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) ≥ ϵ. Dataset D is drawn from an
unknown distribution and has d groups where d = 2k, with each group having m = ⌊N/d⌋ samples.

16
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By recognizing that the variance of a Bernouilli distribution of parameter p is σ2 = p(1 − p) =
1
2 (1−

1
2 ) =

1
4 , we see that the lower bound can equivalently be written:

L = 1− 1

2
√
d

(
1 + 4ϵ2

)m/2
= 1− 1

2
√
d

(
1 +

ϵ2

σ2

)m/2

(23)

This equivalent formulation is interesting to compare this bound to the bound obtained for the
Gaussian case in the next section. In particular, we see that both bounds enjoy a very similar structure,
where the key variable controlling the bound is ϵ

σ which is the minimum benefit of personalization ϵ
at the scale of the variance of the benefits across groups.

Proof. By Proposition 1, we have:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

for any well-chosen P ∈ H0 and any well-chosen Q ∈ H1.

We will design two probability distributions P,Q defined on the N data points
(X1, G1, Y1), ..., (XN , GN , YN ) of the dataset D to compute an interesting right hand side
term. An “interesting” right hand side term is a term that makes the lower bound as tight as possible,
i.e., it relies on distributions P,Q for which TV (P ∥ Q) is small, i.e., probability distributions that
are similar. To achieve this, we will first design the distribution Q ∈ H1, and then propose P as a
very small modification of Q, just enough to allows it to verify P ∈ H0.

Mathematically, P , Q are distributions on the dataset D, i.e., on N i.i.d. realizations of the random
variables X,S, Y where X is continuous, S is categorical (binary), and Y is binary (classification
framework). Thus, we wish to design probability distributions on (X1, S1, Y1), ..., (XN , SN , YN ).

However, we note that the dataset distribution is only meaningful in terms of how each triplet
(Xi, Si, Yi) impacts the value of the estimated BOP. Thus, we design probability distributions P,Q
on N i.i.d. realizations of an auxiliary random variable B, with values in R, defined as:

B = ℓ(h0(X), Y )− ℓ(hp(X,S), Y ). (24)

Intuitively, Bi represents how much the triplet (Xi, Si, Yi) contributes to the value of the BOP. bi > 0
means that the personalized model provided a better prediction than the generic model on the triplet
(xi, si, yi) corresponding to the data point i.

In the case of classification, prediction or explainability approach, ℓ(h0(X), Y ) and ℓ(hp(X,S), Y )
are Bernouilli random variables, taking values in {0, 1}, while their difference B is a categorical
random variable taking values in {−1, 0, 1}.

Consider the event b = (b1, ..., bN ) ∈ RN of N realizations of B. For simplicity in our computations,
we divide this event into the d groups, i.e., we write instead: bj = (b

(1)
j , ..., b

(m)
j ), since each group

j has m samples. Thus, we have: b = {b(k)j }j=1...d,k=1...m indexed by j, k where j = 1...d is the
group in which this element is, and k = 1...m is the index of the element in that group.

In what follows, we denote Cat(p1, 1 − p1 − p2, p2) the ternary categorical distribution, i.e.,
Cat(p1, 1 − p1 − p2, p2) = −1 with probability p1,Cat(p1, 1 − p1 − p2, p2) = 1 with proba-
bility p2, and Cat(p1, 1− p1 − p2, p2) = 0 with probability 1− p1 − p2.

Design Q. Consider p = Cat( 12 , 0,
1
2 ) a centered Categorical distribution, we propose the following

distribution for Q:

Qj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d

Q(b) =

d∏
j=1

Qj(bj).
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Design P . Next, we design P as a small modification of the distribution Q, that will just be enough
to get P ∈ H0. We recall that P ∈ H0 means that γ ≤ ϵ where ϵ < 0 in the flipped hypothesis test.
This means that, under H0, there is one group that suffers a decrease of performance of |ϵ| because of
the personalized model.

Given p = Cat( 12 , 0,
1
2 ) a centered categorical distribution, and pϵ = Cat( 12+ϵ, 0, 1

2−ϵ) a categorical
distribution with negative mean ϵ < 0, we have:

Pj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d,

P ϵ
j (bj) =

m∏
k=1

pϵ(b
(k)
j ), for every group j = 1....d,

P (b) =
1

d

d∑
j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′).

Compute total variation TV (P ∥ Q). Given P and Q, we can compute their total variation:

TV(P∥Q) =
1

2

∑
b1,...,bd

|P (b1, . . . , bad)−Q (b1, . . . , bd)| (TV for probability mass functions)

=
1

2

∑
b1,...,bd

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′ (bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ (definition of P,Q)

=
1

2

∑
b1,...,bd

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj (bj)

d∏
j′=1

Pj′ (bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ (adding missing j′ = j)

=
1

2

∑
b1,...,bd

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj (bj)

d∏
j′=1

Qj′ (bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ (Pj = Qj by construction)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj (bj)
− 1

∣∣∣∣∣∣
 (recognizing an expectation with respect to Q)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏m
k=1 p

ϵ(b
(k)
j )∏m

k=1 p(b
(k)
j )

− 1

∣∣∣∣∣∣
 (definition of Pj and P

(ϵ)
j )

Plug in the categorical assumption Under the assumption of a categorical distribution for the
random variable B, we have:

TV(P∥Q) =
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

m∏
k=1

(1 + 2ϵ)
1−bkj

2 (1− 2ϵ)
1+bkj

2 − 1

∣∣∣∣∣∣
 (definition of p and p(ϵ))

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

m∏
k=1

(1 + 2ϵ)b̂
k

(1− 2ϵ)1−b̂k − 1

∣∣∣∣∣∣
 (Define b̂j ≜ (1− bj) /2, element wise)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

(1 + 2ϵ)
∑m

k=1 b̂k(1− 2ϵ)m−
∑m

k=1 b̂k − 1

∣∣∣∣∣∣
 (property of power)

Given that each bj is distributed as a Bernouilli distribution Ber(1/2), we have that each entry of
b̂i is also distributed as a Bernoulli distribution with parameter 1/2. Define zj ≜

∑m
k=1 b̂

k
j . By

18
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definition, a binomial random variable Bin(m, p) is a sum of m Bernouilli random variables of
probability p. Thus, as a sum of m Bernouilli random variables Ber(1/2), zj is distributed as a
Binomial distribution Bin(m, 1/2).

TV(P∥Q) =
1

2
E

∣∣∣∣∣∣1d
d∑

j=1

(1 + 2ϵ)zj (1− 2ϵ)m−zj − 1

∣∣∣∣∣∣


≤ 1

2
E


1

d

d∑
j=1

(1 + 2ϵ)zj (1− 2ϵ)m−zj − 1

2

1/2

(by Cauchy-Schwarz: E[|X|] ≤
√
E[X2] )

This last inequality is where our proof differs from (Monteiro Paes et al., 2022). Indeed, while the
authors drop the factor 1

2 , by contrast, here, we choose to keep it.

Auxiliary computation to apply Lemma 3 Next, we will apply Lemma 3. For this, we need
to prove that the expectation of the first term is 1. We perform this auxiliary computation here.
We recall that the moment generating function (MGF) of a binomial Bin(m, p) is, by definition,
M(t) = (q + pet)

m where q = 1− p. We have that:

E

[
1

d

d∑
i=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi

]
=

1

d
(1− 2ϵ)m

d∑
i=1

E
[(

1 + 2ϵ

1− 2ϵ

)zi]
(extracting (1− 2ϵ)m out of the sum)

=
1

d
(1− 2ϵ)m

d∑
i=1

E
[
ezi ln(

1+2ϵ
1−2ϵ )

]
(definition of power, we recognize a MGF E[ezt])

=
1

d
(1− 2ϵ)m

d∑
i=1

(
1

2
+

1

2
.
1 + 2ϵ

1− 2ϵ

)m

(MGF of Bin(m,
1

2
) for t = ln

(
1 + 2ϵ

1− 2ϵ

)
)

=
1

d
(1− 2ϵ)m

d∑
i=1

1

2m

(
1 +

1 + 2ϵ

1− 2ϵ

)m

(extracting
1

2
out of the power)

=
1

d
(1− 2ϵ)m

d∑
i=1

1

2m

(
1− 2ϵ

1− 2ϵ
+

1 + 2ϵ

1− 2ϵ

)m

=
1

d
(1− 2ϵ)m

d∑
i=1

1

2m

(
2

1− 2ϵ

)m

=
1

d
(1− 2ϵ)m

d∑
i=1

(
1

1− 2ϵ

)m

(simplifying the terms with 2m)

=
1

d
(1− 2ϵ)md

(
1

1− 2ϵ

)m

(term in the sum does not depend on j)

= 1.

Continue by applying Lemma 3. This auxiliary computation shows that we meet the assumption
of Lemma 3. Thus, we continue the computation of the lower bound of the TV by applying Lemma 3.
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TV(P∥Q)

≤ 1

2
E


1

d

d∑
j=1

(1 + 2ϵ)zj (1− 2ϵ)m−zj − 1

2

1/2

=
1

2
E

(1

d

d∑
i=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2

− 1

1/2

(applying Lemma 3)

=
1

2
E

 1

d2

d∑
i,j=1

(1 + 2ϵ)zi(1− 2ϵ)m−zi(1 + 2ϵ)zj (1− 2ϵ)m−zj

− 1

1/2

(expanding square of the sum)

Expand double sum. To continue, we will expand the double sum on indices i, j into two parts:
a part where i = j and a part where i ̸= j. In the latter, the random variables zi and zj , for
i ̸= j, are independent. We recall here that they are Binomial random variables Bin(m, 1

2 ). As
the sum of independent Binomial random variables, of same probability of success (her: p = 1

2 ),
is also a Binomial random variable. Here, we will have: zi + zj ∼ Bin(2m, 1

2 ). We continue the
computations:

TV(P∥Q)

≤ 1

2
E

 1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2
+

 1

d2

d∑
i,j=1
i ̸=j

(1 + 2ϵ)zi(1− 2ϵ)m−zi(1 + 2ϵ)zj (1− 2ϵ)m−zj

− 1


1/2

=
1

2
E

 1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2
+

1

d2

d∑
i,j=1
i ̸=j

(1 + 2ϵ)zi+zj (1− 2ϵ)2m−zi−zj − 1


1/2

(property of power)

=
1

2

 1

d2

d∑
i=1

E
[(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]
+

1

d2

d∑
i,j=1
i ̸=j

E
[
(1 + 2ϵ)zi+zj (1− 2ϵ)2m−zi−zj

]
− 1


1/2

(linearity of the expectation)

=
1

2

 1

d2

d∑
i=1

E
[(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]
+

1

d2

d∑
i,j=1
i ̸=j

E
[
(1 + 2ϵ)z̃(1− 2ϵ)2m−z̃

]
− 1


1/2

where we define the sum zi + zj of two independent Bin(m, 1
2 ) as the new Binomial variable:

z̃ ∼ Bin(2m, 1
2 )). Here, we can apply the result of the auxiliary computation above, to see that the

expectation on z̃ is equal to 1.
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Thus, we get:

TV(P∥Q)

≤ 1

2

 1

d2

d∑
i=1

E
[(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]
+

1

d2

d∑
i,j=1
i ̸=j

1− 1


1/2

=
1

2

(
E

[
1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]
+

d(d− 1)

d2
− 1

)1/2

(Counting the 1s in the sum)

=
1

2

(
E

[
1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]
+ 1− 1

d
− 1

)1/2

(simplifying)

=
1

2

(
E

[
1

d2

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]− 1

d

)1/2

(simplifying)

=
1

2
√
d

(
E

[
1

d

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2]− 1

)1/2

(extracting
1

d
)

≤ 1

2
√
d

(
E

[
1

d

d∑
i=1

(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2])1/2

(because
√
a− 1 ≤

√
a as

√
() is monotonic increasing)

=
1

2
√
d

(
1

d

d∑
i=1

E
[(
(1 + 2ϵ)zi(1− 2ϵ)m−zi

)2])1/2

(linearity of expectation)

=
1

2
√
d

(
1

d
d.E

[(
(1 + 2ϵ)z1(1− 2ϵ)m−z1

)2])1/2

(the zi’s are identically distributed)

=
1

2
√
d

(
E
[(
(1 + 2ϵ)z1(1− 2ϵ)m−z1

)2])1/2
(simplifying)

=
1

2

1√
d
(1− 2ϵ)mE

[∣∣(1 + 2ϵ)z1(1− 2ϵ)−z1
∣∣2]1/2 (extracting (1− 2ϵ)m)

=
1

2

1√
d
(1− 2ϵ)mE

[(
1 + 2ϵ

1− 2ϵ

)2z1
]1/2

(property of power)

=
1

2

1√
d
(1− 2ϵ)mE

[
exp

(
2z1 ln

(
1 + 2ϵ

1− 2ϵ

))]1/2
(property of power)

=
1

2

1√
d
(1− 2ϵ)m

(
MBin(m,1/2)

(
2 ln

(
1 + 2ϵ

1− 2ϵ

)))1/2

(definition of MGF as E[exp(zt)] for t = 2 ln

(
1 + 2ϵ

1− 2ϵ

)
)

=
1

2

1√
d

(
1 + 4ϵ2

)m/2
(MGF of a Binomial random variable)

Consequently, we obtain:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV(P∥Q)

⇒min
Ψ

max
PP′∈H0

P1∈H1

Pe ≥ 1− 1

2
√
d

(
1 + 4ϵ2

)m/2

which is a slightly different bound than (Monteiro Paes et al., 2022) due to the 1
2 that we kept.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

E.2 PROOF FOR GAUSSIAN BOP

Here, we do the proof for a real-valued cost function, assuming that the BoP is a normal variable
with a second moment bounded by σ2.
Theorem 5 (Lower bound for real-valued cost function). The lower bound writes:

min
Ψ

max
PX,S,Y ∈H0

QX,S,Y ∈H1

Pe ≥ 1− 1

2
√
d
exp

(
ϵ2

σ2

)m/2

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0.

For a centered Gaussian random variable X of variance s2, the MGF takes the form MX(t) =
exp( 12s

2t2). Thus, the lower bound writes:

L = 1− 1

2
√
d
exp

(
ϵ2

σ2

)m/2

= 1− 1

2
√
d
MX

(
ϵ
√
2

σ2

)m/2

. (25)

Proof. By Proposition 1, we have that:
min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

for any well-chosen P ∈ H0 and any well-chosen Q ∈ H1. We will design two probability
distributions P,Q defined on the N data points (X1, G1, Y1), ..., (XN , GN , YN ) of the dataset D to
compute an interesting right hand side term. An “interesting” right hand side term is a term that makes
the lower bound as tight as possible, i.e., it relies on distributions P,Q for which TV (P ∥ Q) is small,
i.e., probability distributions that are similar. To achieve this, we will first design the distribution
Q ∈ H1, and then propose P as a very small modification of Q, just enough to allows it to verify
P ∈ H0.

Mathematically, P , Q are distributions on the dataset D, i.e., on N i.i.d. realizations of the ran-
dom variables X,S, Y where X is continuous, S is categorical, and Y is continuous (regression
framework). Thus, we wish to design probability distributions on (X1, S1, Y1), ..., (XN , SN , YN ).

However, we note that the dataset distribution is only meaningful in terms of how each triplet
(Xi, Si, Yi) impacts the value of the estimated BOP. Thus, we design probability distributions P,Q
on n i.i.d. realizations of an auxiliary random variable B, with values in R, defined as:

B = ℓ(h0(X), Y )− ℓ(hp(X,S), Y ). (26)
Intuitively, Bi represents how much the triplet (Xi, Si, Yi) contributes to the value of the BOP. bi > 0
means that the personalized model provided a better prediction than the generic model on the triplet
(xi, si, yi) corresponding to the data point i.

Consider the event b = (b1, ..., bN ) ∈ RN of N realizations of B. For simplicity in our computations,
we divide this event into the d groups, i.e., we write instead: bj = (b

(1)
j , ..., b

(m)
j ), since each group

j has m samples. Thus, we have: b = {b(k)j }j=1...d,k=1...m indexed by j, k where j = 1...d is the
group in which this element is, and k = 1...m is the index of the element in that group.

Design Q. Next, we design a distribution Q on this set of events that will (barely) verify H1, i.e.,
such that the expectation of B according to Q will give γ = 0. We recall that γ = 0 means that
the minimum benefit across groups is 0, implying that there might be some groups that have a > 0
benefit.

Given p = N (0, σ2) a centered Gaussian distribution, we propose the following distribution for Q

Qj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d

Q(b) =

d∏
j=1

Qj(bj).
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We verify that we have designed Q correctly, i.e., we verify that Q ∈ H1. When the dataset is
distributed according to Q, we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EQ[ℓ(h0(X), Y ) | S = s]− EQ[ℓ(hp(X), Y ) | S = s] (by definition of group cost)

= min
s∈S

EQ[ℓ(h0(X), Y )− ℓ(hp(X), Y ) | S = s] (by linearity of expectation)

= min
s∈S

EQ[B | S = s] (by definition of random variable B)

= min
s∈S

0 (by definition of the probability distribution on B)

= 0.

Thus, we find that γ = 0 which means that γ ≥ 0, i.e., Q ∈ H1.

Design P . Next, we design P as a small modification of the distribution Q, that will just be enough
to get P ∈ H0. We recall that P ∈ H0 means that γ ≤ ϵ where ϵ < 0 in the flipped hypothesis test.
This means that, under H0, there is one group that suffers a decrease of performance of |ϵ| because of
the personalized model.

Given p = N (0, σ2) a centered Gaussian distribution, and pϵ = N (ϵ, σ2) a Gaussian distribution of
same variance but negative mean ϵ < 0, we have:

Pj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d,

P ϵ
j (bj) =

m∏
k=1

pϵ(b
(k)
j ), for every group j = 1....d,

P (b) =
1

d

d∑
j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′).

Intuitively, this distribution represents the fact that there is one group for which the personalized
model worsen performances by |ϵ|.We assume that this group can be either group 1, or group 2,
etc, or group d, and consider these to be disjoint events: i.e., exactly only one group suffers the |ϵ|
performance decrease. We take the union of these disjoint events and sum of probabilities using the
Partition Theorem (Law of Total Probability) in the definition of P above.

We verify that we have designed P correctly, i.e., we verify that P ∈ H0. When the dataset is
distributed according to P , we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EP [B | S = s] (same computations as for Q ∈ H1)

= min(ϵ, 0, ..., 0) (since exactly one group has mean ϵ)
= ϵ (since ϵ < 0).

Thus, we find that γ = ϵ which means that γ ≤ 0, i.e., P ∈ H0.

Compute total variation TV (P ∥ Q). We have verified that Q ∈ H1 and that P ∈ H0. We
use these probability distributions to compute the lower bound to Pe. First, we compute their total
variation:
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TV (P ∥ Q) =
1

2

∫
b1,...,bj

|P (b1, ..., bj)−Q(b1, ..., bj)| db1...dbj (TV for probability density functions)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (definition of P,Q)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (adding missing j′ = j)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Qj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (Pj = Qj by construction)

=
1

2

∫
b1,...,bj

d∏
j=1

Qj(bj)

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣ db1...dbj (extracting the product)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣
 (recognizing an expectation with respect to Q)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏m
k=1 p

ϵ(b
(k)
j )∏m

k=1 p(b
(k)
j )

− 1

∣∣∣∣∣∣
 (definition of Pj and P

(ϵ)
j )
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Plug in the Gaussian assumption. Under the assumption of Gaussianity of the random variable B,
we continue the computations as:

TV (P ∥ Q) =
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏m
k=1 exp(−

∥b(k)
j −ϵ∥2

2σ2 )∏m
k=1 exp(−

∥b(k)
j ∥2

2σ2 )

− 1

∣∣∣∣∣∣
 (definition of p and p(ϵ))

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

−

∑m
k=1

(
∥b(k)j − ϵ∥2 − ∥b(k)j ∥2

)
2σ2

− 1

∣∣∣∣∣∣
 (property of exp)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

(
−∥bj − ϵ̄∥22 − ∥bj∥22

2σ2

)
− 1

∣∣∣∣∣∣
 (with ϵ̄ = (ϵ, .., ϵ) ∈ Rm)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

(
−∥bj∥22 − 2 < bj , ϵ̄ > +∥ϵ̄∥22 − ∥bj∥22

2σ2

)
− 1

∣∣∣∣∣∣
 (expansion of ∥∥22)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

(
−−2 < bj , ϵ̄ > +∥ϵ̄∥22

2σ2

)
− 1

∣∣∣∣∣∣
 (simplifying)

=
1

2
EQ

∣∣∣∣∣∣1d exp

(
−∥ϵ̄∥22

2σ2

) d∑
j=1

exp

(
−−2 < bj , ϵ̄ >

2σ2

)
− 1

∣∣∣∣∣∣
 (since ϵ̄ does not depend on j)

=
1

2
EQ

∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp

(
2 < bj , ϵ̄ >

2σ2

)
− 1

∣∣∣∣∣∣
 (definition of ϵ̄ = ϵ.1m)

=
1

2
EQ

∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp

(
< bj , ϵ̄ >

σ2

)
− 1

∣∣∣∣∣∣


=
1

2
EQ

∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp

(
ϵ
∑m

k=1 b
(k)
j

σ2

)
− 1

∣∣∣∣∣∣
 (because ϵ̄ = (ϵ, .., ϵ)).

Next, we define the auxiliary random variables zj = ϵ
σ2

∑m
k=1 b

(k)
j . The sum of independent,

identically distributed N(0, σ2) Gaussian random variables
∑m

k=1 b
(k)
j is itself a Gaussian random

variable distributed as N(0,mσ2). Scaling this random variable by ϵ
σ2 gives a random variable zj

distributed as N (0, ϵ2

σ4mσ2) = N (0, mϵ2

σ2 ). Thus, we get:

TV (P ∥ Q) =
1

2
EQ

∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp

(
ϵ
∑m

k=1 b
(k)
j

σ2

)
− 1

∣∣∣∣∣∣


=
1

2
E

∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp zj − 1

∣∣∣∣∣∣
 (where zj ∼ N(0,

mϵ2

σ2
))

≤ 1

2
E


∣∣∣∣∣∣1d exp

(
−mϵ2

2σ2

) d∑
j=1

exp zj − 1

∣∣∣∣∣∣
2


1
2

(by Cauchy-Schwartz: E[|X|] ≤
√
E[X2])

Auxiliary computation to apply Lemma 3 Next, we will apply Lemma 3. For this, we need to
prove that the expectation of the first term is 1. We perform this auxiliary computation here. We
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recall that the moment generating function (MGF) of a centered Gaussian random variable X of
variance s2 is MX(t) = exp(12s

2t2). We have that:

E

1
d
exp

(
−mϵ2

2σ2

) d∑
j=1

exp zj

 =
1

d
exp

(
−mϵ2

2σ2

) d∑
j=1

E [exp zj ] (linearity of expectation)

=
1

d
exp

(
−mϵ2

2σ2

) d∑
j=1

exp(
1

2

mϵ2

σ2
) (MGF of centered Gaussian)

=
1

d
exp

(
−mϵ2

2σ2

)
d. exp(

1

2

mϵ2

σ2
) (term in the sum is independent of i)

= 1.

Continue by applying Lemma 3. This auxiliary computation shows that we meet the assumption
of Lemma 3. Thus, we continue the computation of the lower bound of the TV by applying Lemma 3.

TV (P ∥ Q)

≤ 1

2
E


1

d
exp

(
−mϵ2

2σ2

) d∑
j=1

exp zj

2

− 1


1
2

(applying Lemma 3)

=
1

2
E

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1

exp zj exp zj′

− 1

 1
2

(expanding the square of the sum)

=
1

2
E

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1

exp (zj + zj′)

− 1

 1
2

(property of exp)

=
1

2
E

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

exp (2zj)

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

exp (zj + zj′)

− 1

 1
2

where we split the double sum to get independent variables in the second term.

We get by linearity of the expectation, E[aX + bY ] = aE[X] + bE[Y ]:

TV (P ∥ Q)

≤ 1

2
E

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

exp (2zj)

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

exp (zj + zj′)

− 1

 1
2

=
1

2

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

E[exp (2zj)]

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

E[exp (zj + zj′)]

− 1

 1
2

Here, 2zj ∼ N (0, 4mϵ2

σ2 ) and independent sum is zj+zj′ ∼ N (0, 2mϵ2

σ2 ). In both cases, we recognize
the moment generating function (MGF) of a random variable, defined as MX(t) = E[exp(tX)]
evaluated at t = 1. For a centered Gaussian random variable X of variance s2, the MGF takes the
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form MX(t) = exp( 12s
2t2). Applying this to our two random variables 2zj and zj + zj′ , we get:

TV (P ∥ Q)

≤ 1

2

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

E[exp (2zj)]

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

E[exp (zj + zj′)]

− 1

 1
2

=
1

2

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

exp(
1

2
4
mϵ2

σ2
)

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

exp(
1

2
2
mϵ2

σ2
)

− 1

 1
2

=
1

2

 1

d2
exp

(
−mϵ2

σ2

) d∑
j=1

exp(2
mϵ2

σ2
)

+

 1

d2
exp

(
−mϵ2

σ2

) d∑
j,j′=1,j′ ̸=j

exp(
mϵ2

σ2
)

− 1

 1
2

=
1

2

[(
d

d2
exp

(
−mϵ2

σ2

)
exp(2

mϵ2

σ2
)

)
+

(
d(d− 1)

d2
exp

(
−mϵ2

σ2

)
exp(

mϵ2

σ2
)

)
− 1

] 1
2

=
1

2

[
1

d
exp

(
mϵ2

σ2

)
+

(
d− 1

d

)
− 1

] 1
2

=
1

2

[
1

d
exp

(
mϵ2

σ2

)
+

(
d− 1

d

)
− d

d

] 1
2

=
1

2

[
1

d
exp

(
mϵ2

σ2

)
− 1

d

] 1
2

=
1

2
√
d

[
exp

(
mϵ2

σ2

)
− 1

] 1
2

≤ 1

2
√
d

[
exp

(
mϵ2

σ2

)] 1
2

(because
√
a− 1 ≤

√
a)

=
1

2
√
d

[
exp

(
ϵ2

σ2

)]m/2

This gives us the final result:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− 1

2
√
d

[
exp

(
ϵ2

σ2

)]m/2

E.3 PROOF FOR LAPLACE BOP

Here, we do the proof for a real-valued cost function, assuming that the BoP is another random
variable. We consider: a Laplace distribution (for more peaked than the normal variable. We note
that a similar analysis can be done for a Gamma distribution (for purely positive distributions).
Theorem 6 (Lower bound for real-valued cost function). The lower bound writes:

min
Ψ

max
PX,S,Y ∈H0

QX,S,Y ∈H1

Pe ≥ 1−

[
1

2
exp

(
−
√
2mϵ

σ

)
− 1

2

]

where PX,S,Y is a distribution of data, for which the generic model h0 performs better, i.e., the true γ
is such that γ(h0, hp,D) < 0, and QX,S,Y is a distribution of data points for which the personalized
model performs better, i.e., the true γ is such that γ(h0, hp,D) > 0.
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Corollary 4 (Maximum number of attributes (real valued cost function)). If we wish to maintain a
probability of error such that minmaxPe ≤ 1/2 then the number of attributes k should be chosen
below a value kmax that depends on the number of samples N .

kmax ≤ 1

2
− 1.4427 log

(
0.693147σ

ϵN

)
(27)

where ϵ < 0.

We start by considering a Laplace distribution of the BoP. The proof stays the same until designing
our distributions Q and P .

Design Q. Next, we design a distribution Q on this set of events that will (barely) verify H1, i.e.,
such that the expectation of B according to Q will give γ = 0. We recall that γ = 0 means that
the minimum benefit across groups is 0, implying that there might be some groups that have a > 0
benefit.

Given p = Laplace (0, b) = Laplace
(
0, σ√

2

)
a centered Laplacian distribution with scale parameter

b, we propose the following distribution for Q:

Qj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d

Q(b) =

d∏
j=1

Qj(bj).

We verify that we have designed Q correctly, i.e., we verify that Q ∈ H1. When the dataset is
distributed according to Q, we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EQ[ℓ(h0(X), Y ) | S = s]− EQ[ℓ(hp(X), Y ) | S = s] (by definition of group cost)

= min
s∈S

EQ[ℓ(h0(X), Y )− ℓ(hp(X), Y ) | S = s] (by linearity of expectation)

= min
s∈S

EQ[B | S = s] (by definition of random variable B)

= min
s∈S

0 (by definition of the probability distribution on B)

= 0.

Thus, we find that γ = 0 which means that γ ≥ 0, i.e., Q ∈ H1.

Design P . Next, we design P as a small modification of the distribution Q, that will just be enough
to get P ∈ H0. We recall that P ∈ H0 means that γ ≤ ϵ where ϵ < 0 in the flipped hypothesis test.
This means that, under H0, there is one group that suffers a decrease of performance of |ϵ| because of
the personalized model.

Given p = Laplace
(
0, σ√

2

)
a centered Laplacian distribution, and pϵ = Laplace

(
ϵ, σ√

2

)
a Lapla-

cian distribution of same variance but negative mean ϵ < 0, we have:

Pj(bj) =

m∏
k=1

p(b
(k)
j ), for every group j = 1....d,

P ϵ
j (bj) =

m∏
k=1

pϵ(b
(k)
j ), for every group j = 1....d,

P (b) =
1

d

d∑
j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′).

Intuitively, this distribution represents the fact that there is one group for which the personalized
model worsen performances by |ϵ|. We assume that this group can be either group 1, or group 2,
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etc, or group d, and consider these to be disjoint events: i.e., exactly only one group suffers the |ϵ|
performance decrease. We take the union of these disjoint events and sum of probabilities using the
Partition Theorem (Law of Total Probability) in the definition of P above.

We verify that we have designed P correctly, i.e., we verify that P ∈ H0. When the dataset is
distributed according to P , we have:

γ = min
s∈S

Cs(h0, s)− Cs(hp, s)

= min
s∈S

EP [B | S = s] (same computations as for Q ∈ H1)

= min(ϵ, 0, ..., 0) (since exactly one group has mean ϵ)
= ϵ (since ϵ < 0).

Thus, we find that γ = ϵ which means that γ ≤ 0, i.e., P ∈ H0.

Compute total variation TV (P ∥ Q). We have verified that Q ∈ H1 and that P ∈ H0. We
use these probability distributions to compute the lower bound to Pe. First, we compute their total
variation:

TV (P ∥ Q) =
1

2

∫
b1,...,bj

|P (b1, ..., bj)−Q(b1, ..., bj)| db1...dbj (TV for probability density functions)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

∏
j′ ̸=j

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (definition of P,Q)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Pj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (adding missing j′ = j)

=
1

2

∫
b1,...,bj

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)

d∏
j′=1

Qj′(bj′)−
d∏

j=1

Qj(bj)

∣∣∣∣∣∣ db1...dbj (Pj = Qj by construction)

=
1

2

∫
b1,...,bj

d∏
j=1

Qj(bj)

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣ db1...dbj (extracting the product)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

P ϵ
j (bj)

Pj(bj)
− 1

∣∣∣∣∣∣
 (recognizing an expectation with respect to Q)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏m
k=1 p

ϵ(b
(k)
j )∏m

k=1 p(b
(k)
j )

− 1

∣∣∣∣∣∣
 (definition of Pj and P

(ϵ)
j )

Plug in the Laplacian assumption. Under the assumption that the random variable B follows a
Laplacian distribution, we continue the computations as:
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TV (P ∥ Q) =
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

∏m
k=1 exp(−

√
2|b(k)

j −ϵ|
σ )∏m

k=1 exp(−
√
2|b(k)

j |
σ )

− 1

∣∣∣∣∣∣
 (definition of p and p(ϵ))

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

−

∑m
k=1

√
2
(
|b(k)j − ϵ| − |b(k)j |

)
σ

− 1

∣∣∣∣∣∣
 (property of exp)

=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

−

√
2
∑m

k=1

(
|b(k)j − ϵ| − |b(k)j |

)
σ

− 1

∣∣∣∣∣∣


Since we are finding the worst case lower bound, we will find functions that upper and lower bound
|b(k)j − ϵ| − |b(k)j |. This function is lower bounded by ϵ and upper bounded by −ϵ since ϵ < 0. To
maximize Pe, we take the function that gives us the lower bound of TV (P ∥ Q). Continuing by
plugging in to get the lower bound:

≤ 1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

(
−
√
2
∑m

k=1 −ϵ

σ

)
− 1

∣∣∣∣∣∣


=
1

2
EQ

∣∣∣∣∣∣1d
d∑

j=1

exp

(√
2mϵ

σ

)
− 1

∣∣∣∣∣∣


=
1

2
EQ

[∣∣∣∣∣exp
(√

2mϵ

σ

)
− 1

∣∣∣∣∣
]

=
1

2

[
exp

(√
2mϵ

σ

)
− 1

]
(since all values are constant)

This gives us the final result:

min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1− TV (P ∥ Q)

⇒ min
Ψ

max
P0∈H0
P1∈H1

Pe ≥ 1−

[
1

2
exp

(√
2mϵ

σ

)
− 1

2

]

F COMPARISON BOP FOR PREDICTION AND BOP FOR EXPLAINABILITY
PROOFS

Proof for Theorem 3:

Proof. Let X = (x1, x2) where x1 and x2 are independent and each follows Unif(− 1
2 ,

1
2 ). Let us

define S ∈ {0, 1} as S = 1(X1 + X2 > 0) and Y = S. Then, h0(x) = 1(X1 + X2 > 0) and
hp(x) = 1(S > 0) can both achieve perfect accuracy. Therefore, BoP(h0, hp) = 0.

For explanation, let us assume r = 1. Then, for model h0, its important feature set J0 will be either
{X1} or {X2}, and without loss of generality, let J0 = {X1}. For the personalized model, Jp = {S}.
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Then, comprehensiveness of h0 is

Pr(h0(X) ̸= h0(X\J0
)) = Pr(X1 +X2 ≤ 0|X2 > 0)Pr(X2 > 0)

+ Pr(X1 +X2 > 0|X2 ≤ 0)Pr(X2 ≤ 0) (28)

= Pr(X1 +X2 ≤ 0|X2 > 0) · 1
2
+ Pr(X1 +X2 > 0|X2 ≤ 0) · 1

2
= Pr(X1 +X2 ≤ 0|X2 > 0) (due to symmetry of the distribution)

=

∫
x2>0,x1+x2≤0

Pr(x1, x2)dx1dx2/Pr(X2 > 0)

= 2 ·
∫ 1

2

x2=0

Pr(x2)

∫
x1≤−x2

Pr(x1)dx1dx2

= 2 ·
∫ 1

2

x2=0

Pr(x2)(−x2 +
1

2
)dx2

= 2 ·
[
−1

2
x2
2 +

1

2
x2

] 1
2

0

=
1

4
.

For hp, comprehensiveness is :

Pr(hp(X,S) ̸= hp(X\Jp
, S\Jp

)) =
1

2
,

as without S, hp can only make a random guess. Hence, BoP-X in terms of comprehensiveness is 1
4 .

For sufficiency, we can do a similar analysis:

Pr(h0(X) ̸= h0(XJ0
)) = Pr(X1 +X2 ≤ 0|X1 > 0)Pr(X1 > 0)

+ Pr(X1 +X2 > 0|X1 ≤ 0)Pr(X1 ≤ 0) (29)

=
1

4
.

Again, due to symmetry, equation 29 is the same as equation 28. On the other hand, the sufficiency
for hp is

Pr(hp(X,S) ̸= hp(XJp , SJp)) = 0,

as Jp = {S} is sufficient to make a prediction for hp. Thus, BoP-X in terms of sufficiency is also 1
4 .

hp(X) = random guess

Proof for Lemma 2:

Proof. A Bayes optimal regressor using a subset of variables from indices in J ⊆ [1, . . . , t + k]
would be given as:

ŷ = h∗
J(xJ , sJ) =

∑
j∈J,
j≤t

αjxj +
∑
j∈J,

j≥t+1

αjSj−t, (30)

where h∗
J represents an Bayes optimal regressor for the given subset J , and xJ and xJ are sub-vectors

of x and s, using the indices in J . Then, the MSE of h∗
J is given as:

MSE(h∗
J) =

∑
j∈\J,
j≤t

α2
jVar(Xj) +

∑
j∈\J,
j≥t+1

α2
jVar(Sj−t), (31)
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where \J is a shorthand notation for [1, . . . t+ k] \ J . By combining equation 30 and equation 31,
we can obtain:

MSE(h0) =

t+k∑
j=t+1

α2
jVar(St+j) + Var(ϵ), (32)

MSE(hp) = Var(ϵ). (33)

We define J0 and Jp as a set of important features for h0 and hp. Note that J0 and Jp are the same
across all samples for the additive model. Then, for regressors for sufficiency, we can write the MSE
as:

MSE(h0,J) =
∑

j∈\J0,
j≤t

α2
jVar(Xt) +

t+k∑
j=t+1

α2
jVar(Sj−t) + Var(ϵ) (34)

MSE(hp,J) =
∑

j∈\Jp,
j≤t

α2
jVar(Xt) +

∑
j∈\Jp,
j≥t+1

α2
jVar(Sj−t) + Var(ϵ). (35)

Similarly, for regressors for incomprehensiveness, MSE can be written as:

MSE(h0,\J) =
∑
j∈J0,
j≤t

α2
jVar(Xt) +

t+k∑
j=t+1

α2
jVar(Sj−t) + Var(ϵ), (36)

MSE(hp,\J) =
∑
j∈Jp,
j≤t

α2
jVar(Xt) +

∑
j∈Jp,
j≥t+1

α2
jVar(Sj−t) + Var(ϵ). (37)

Then, our assumption of BoP-X = 0 for sufficiency becomes:

MSE(h0)− MSE(h0,J) = MSE(hp)− MSE(hp,J). (38)

We can expand MSE(h0)− MSE(h0,J) as:

MSE(h0)− MSE(h0,J) = MSE(h0)

(
1− MSE(h0,J)

MSE(h0)

)
= MSE(h0)

(
1− Var(\J0) + Var(S) + Var(ϵ)

Var(S) + Var(ϵ)

)
= MSE(h0)

Var(\J0)
Var(S) + Var(ϵ)

= MSE(h0)
Var(J0) + Var(\J0)

Var(S) + Var(ϵ)
Var(\J0)

Var(J0) + Var(\J0)
, (39)

where we use the shorthand notations:

Var(J0) =
∑
j∈J0,
j≤t

α2
jVar(Xt),

Var(\J0) =
∑

j∈\J0,
j≤t

α2
jVar(Xt),

Var(S) =
t+k∑

j=t+1

α2
jVar(St+j).

Further, note that

Var(J0) + Var(\J0) =
∑
j∈J0,
j≤t

α2
jVar(Xt) +

∑
j∈\J0,
j≤t

α2
jVar(Xt) =

t∑
j=1

α2
jVar(Xj) = Var(X).
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Defining M(h0) ≜ MSE(h0)
Var(X)

Var(S)+Var(ϵ) and r0 ≜ Var(J0)
Var(J0)+Var(\J0)

, we further simplify equation 39
as:

MSE(h0)− MSE(h0,J) = M(h0)(1− r0). (40)

Through a similar process, we can simpilfy MSE(hp)− MSE(hp,J) as:

MSE(hp)− MSE(h0,p) = M(hp)(1− rp), (41)

where M(hp) ≜ Var(X)+Var(S)
Var(ϵ) MSE(hp) and rp ≜ Var(Jp)

Var(Jp)+Var(\Jp)
Using equation 40 and equa-

tion 41, we arrive at:

M(h0)(1− r0) = M(hp)(1− rp). (42)

By taking similar steps using comprehensiveness, we can derive:

M(h0)r0 = M(hp)rp. (43)

By combining equation 42 and equation 43, we can conclude that:

r0
rp

=
1− r0
1− rp

=⇒ r0 = rp.

Plugging this back to equation 42, we get: M(h0) = M(hp). Now, let us assume that BoP-P > 0,
and prove it by contradiction. Comparing equation 32 and equation 33, we can deduce that BoP-P > 0
means Var(S) > 0. Expanding M(h0) = M(hp), we get:

MSE(h0)
Var(X)

Var(S) + Var(ϵ)
=

Var(X) + Var(S)
Var(ϵ)

MSE(hp),

MSE(hp) =
Var(X)

Var(X) + Var(S)
Var(ϵ)

Var(S) + Var(ϵ)
MSE(h0),

=
Var(X)

Var(X) + Var(S)
MSE(hp).

Since Var(S) > 0, this equality cannot hold. This concludes that BoP-P = 0. We can make the same
claim with similar logic for a classifier where Y is given as:

Y = 1(α1X1 + · · ·αtXt + αt+1S1 + · · ·+ αt+kSk + ϵ > 0) (44)

G TRAINING DATA EXPERIMENT RESULTS

Group n Prediction Incomprehensiveness Sufficiency

Ĉ(h0) − Ĉ(hp) Ĉ(h0) − Ĉ(hp) Ĉ(h0) − Ĉ(hp)

Female, NW 688 -0.0974 -0.1759 -0.2718
Female, W 651 -0.1183 -0.2535 -0.2197
Male, NW 657 -0.0548 -0.1370 -0.1583
Male, W 654 -0.0856 -0.1728 -0.1391

Total 2650 -0.0891 -0.1845 -0.1981

Table 2: Evaluating A Classification Model: All metrics use 0-1 loss cost function and are found
on the training dataset. The results in this table are striking, in that personalization worsens model
performance across all metrics.

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Group n Prediction Incomprehensiveness Sufficiency

Ĉ(h0) − Ĉ(hp) Ĉ(h0) − Ĉ(hp) Ĉ(h0) − Ĉ(hp)

Female, NW 688 -0.0022 1.5514 3.8769
Female, W 651 -0.0043 1.5113 3.2429
Male, NW 657 -0.0032 1.5606 4.3278
Male, W 654 -0.0143 1.2517 3.4145

Total 2650 -0.0059 1.4699 3.7188

Table 3: Evaluating A Regression Model: All metrics use square error loss cost function and are
found on the training dataset. As shown, hp assigns less accurate predictions for all groups. It
decreases population prediction accuracy. For explainability, the personalized models improves
incomprehensiveness for all subgroups. It leads to an overall improvement in incomprehensibility. hp

improves sufficiency for all groups and overall. This example highlights that while personalization
may not improve prediction accuracy, it can lead to improvements in model explainability.

H MAX ATTRIBUTES

Proof. If minmaxPe ≤ 1/2, then:

1− 1

2
√
d
exp

(
mϵ2

2σ2

)
≤ minmaxP2 ≤ 1/2 (45)

Or equivalently, if minmaxPe ≤ 1/2, then:

1√
d
exp

(
mϵ2

2σ2

)
≥ 1 (46)

Given the number of groups d = 2k, the number of samples per group m = n/d, the total number of
samples n = 104 and the threshold of ϵ = 0.01, we get:

ϕ(k) = 1− 1

2k/2+1
exp

(
104

2k
× 0.0001

2σ2

)
= 1− 1

2k/2+1
exp

(
1

2k+1σ2

)
(47)

We prove that this function is an increasing function in k. Indeed, consider the auxiliary function
f(x) = 1

2
√
x
exp(ax ). Its derivative is f ′(x) = − exp( a

x )(2a+x)

4x5/2 . For x, a > 0, we have: f ′(x) < 0,
i.e., f is a monotonically decreasing function. Consequently, 1− f is a monotonically increasing
function. Thus, the function k → 1− f(2k) with a = 1

2σ2 is a monotonically increasing function of
k > 0.

I MAXIMUM ATTRIBUTES (REAL-VALUED COST FUNCTION) FOR ALL PEOPLE

Corollary 5 (Maximum attributes (real-valued cost function) for all people). See Appendix X.
Consider auditing a personalized classifier hp to verify if it provides a gain of ϵ = 0.01 to each group
on an auditing dataset D. Consider an auditing dataset with σ = 0.1 and N = 8× 109 samples, or
one sample for each person on earth. If hp uses more than k ≥ 22 binary group attributes, then for
any hypothesis test there will exist a pair of probability distributions PX,G,Y ∈ H0, QX,G,Y ∈ H1

for which the test results in a probability of error that exceeds 50%.

k ≥ 22 =⇒ min
Ψ

max
PX,G,Y ∈H0

QX,G,Y ∈H1

Pe ≥
1

2
. (48)

J EXPERIMENT PLOTS

In the following section, we show supplementary plots for the regression task on the auditing dataset.
We show the distribution of the BoP across participants for all three metrics we evaluate, displaying
a roughly Gaussian distribution. Additionally, we show how incomprehensiveness and sufficiency
change for the number of important attributes r that are kept are removed.
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Figure 4: Individual prediction cost for all groups using the square error loss function.

Figure 5: Individual incomprehensiveness cost for all groups using the square error loss function.
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Figure 6: Individual sufficiency cost for all groups using the square error loss function.
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Figure 7: Values of Sufficiency and Incomprehensiveness across varying r top features selected using
the square error loss function. Values are found for h0 and hp.
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