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A EXTENDED RELATED WORKS: FAIRNESS IN REGRESSION

Our results are part of a growing body of work evaluating model fairness (Mehrabi et al., 2022). In
the field of machine learning, the concept of fairness aims to mitigate biased outcomes affecting
individuals or groups. Past works have defined individual fairness, which requires similar performance
for similar individuals (Dwork et al.l|2011), or group fairness (Dwork & Ilventol 2019; Hardt et al.,
2016) which seeks similar performance across different groups. Within machine learning fairness
literature, the majority of methods, metrics, and analyses are predominantly intended for classification
tasks, where labels take values from a finite set of values (Pessach & Shmueli, [2022). Among fair
regression literature, multiple authors focus on designing fair learning methods rather than developing
metrics for measuring fairness in existing models (Berk et al.,[2017} [Fukuchi et al.| 2013} [Pérez-Suay
et al.|[2017;|Calders et al., 2013). Complimentary contributions focus on defining fairness criteria and
establishing methods to evaluate fairness for regression tasks (Gursoy & Kakadiaris| [2022; |Agarwal
et al.l[2019).

B EMPIRICAL DEFINITIONS

B.1 Cost

Definition 8 (Group Cost). The empirical group cost, C, (h,s), is defined as:

Culhs) & n% D iisi—s €08t (R (i), yi) if h:X—) (generic model)
A L Disi—s C0st (R (xi,8:),y:) if h: X x8—Y (personalized model)
15)
where ng refers to the number of samples in group s.

Definition 9 (Individual Cost). The empirical individual cost, of a model A for subject 7 with respect
to a cost function, cost : YV x YV — R is defined as:

é’-(h si) 2 cost(h(x;), yi) if h:X—QY (generic model) (16)
T L cost(h(xi,84),y:)  if R X xS —Y  (personalized model)
C BoP
Definition 10 (BoP). The empirical BoP is defined as:
BoP(ho, hp) £ C(ho,X,Y) — C(hy, X, 8,Y). (17)
Definition 11 (Group BoP). The empirical group BoP is defined as:
BoP,(ho, hy,s) 2 Cy(ho, X,Y) — Cy(hy, X,8,Y). (18)
Definition 12 (Minimal Group BoP). Empirical Minimal Group BoP
4 (ho, hp; D) £ min(BoPy(ho, hyp, s)) (19)

seS

Definition 13 (Individual BoP). The gain any individual sample benefits from using personalized
attributes is empirically written as:

BoP;(ho, hy) = Ci(ho, i, yi) — Ci(hyp, i, 505 i) (20

D BOP FOR EXPLAINABILITY - INCOMPREHENSIVENESS

Classification Using the 0-1 loss function cost function defined for incomprehensiveness, the
Minimal Group BoP is:

v (ho, hp; D) = I;él}gl (Pr (hp(X, s) # hp(X\J,s\J) |S = s)
— Pr(ho(X) # ho(X\y) | S=s)), where ~el[-1,1].

14
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Regression Using the square error loss function, the Minimal Group BoP for incomprehensiveness
is:

7 (ho, hp; D) = min (E [||hp(X, 8) = hp(Xy,80)[7 | S = 5]

seS
— E [Jho(X) = ho(X\ )2 | S =s]), where 7 € [—o, +od].

E PROOF OF THEOREMS ON LOWER BOUNDS FOR THE PROBABILITY OF
ERROR

As in (Monteiro Paes et al., 2022), we will prove every theorem for the flipped hypothesis test defined
as:

HO : 7(h07hp7p)

<€ <& Personalized h, performs worst: yields ¢ < 0 disadvantage
Hy: ~(ho,hp;D) >0 <« Personalized h, performs at least as good as generic hy.

where we emphasize that e < 0.

As shown in (Monteiro Paes et al.| [2022)), proving the bound for the original hypothesis test is
equivalent to proving the bound for the flipped hypothesis test, since estimating + is as hard as
estimating —+. In every section that follows, Hy, H; refer to the flipped hypothesis test.

Here, we first prove a proposition that is valid for all of the cases that we consider in the next sections.

Proposition 1. Consider Px sy is a distribution of data, for which the generic model hy performs
better, i.e., the true vy is such that y(ho, hy, D) < 0, and Qx s,y is a distribution of data points for
which the personalized model performs better, i.e., the true ~y is such that vy(hg, hy, D) > 0. Consider
a decision rule V that represents any hypothesis test. We have the following bound on the probability
of error P,:

min max P. >1-TV(P | Q),
v PyEH,
P1eH;

for any well-chosen P € Hy and any well-chosen () € Hy. Here T'V refers to the total variation
between probability distributions P and Q.

Proof. Consider hg and h,, fixed. Take one decision rule W that represents any hypothesis test.
Consider a dataset such that Hy, is true, i.e., D ~ P, and a dataset such that H is true, i.e., D ~ P;.

It might seem weird to use two datasets to compute the same quantity P, i.e., one dataset to compute
the first term in P., and one dataset to compute the second term in P.. However, this is just a
reflection of the fact that the two terms in P, come from two different settings: H true or Hy false,
which are disjoint events: in the same way that H cannot be simultaneously true and false, yet each
term in P, consider one or the other case; then we use one or the other dataset.

‘We have:

P, =

r(Rejecting Ho|H true) + Pr(Failing to reject Hy|H; true)
r(U(ho, hy, D, €) = 1|D ~ Py) + Pr(U(hg, hy, D, €) = 0|D ~ Py)

(¥(D) =1|D ~ Py) + Pr(¥(D) = 0|D ~ Py) simplifying notations
—Pr(¥(D) =0|D ~ Py) + Pr(¥(D) = 0|D ~ P;) complementary event
— Py(Ey) + Pi(Ey) writing Ey the event ¥(D) =0
— (Po(Ey) — Pi(Eyw))

15
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Now, we will bound this quantity:

vy g, e = e g 1 () = AlEw)
PieH, PreH,

> max min [l — (Py(Ey) — P1(Ey))] using minmax inequality
1 1

= nax [1 - qu}x(PO(Eq,) - P (Eq;))} to get min over ¥, we want (Py(Ey) — P1(Fy)) that is largest.
o€ Ho
PieH,

> max [1 — max (Py(4) — Pl(A))] because the max is now over all possible events A
ggggo events A
1 1

The maximization is broadened to consider all possible events A. This increases the set over which
the maximum is taken. Because W is only a subset of all possible events, maximizing over all events
A (which includes ¥) will result in a value that is at least as large as the maximum over V. In other
words, extending the set of possible events can only make the maximum greater or the same.

= fnax [1—TV(F, || P1)] by definition of the total variation (TV)
o€ Ho
PreH,

Po€Hy
PyeH,

>1-TV(P| Q) forany P € Hyand Q € H;.

This is true because the total variation distance T'V (P || @) for any particular pair P and () cannot
be smaller than the minimum total variation distance across all pairs. We recall that, by definition,
the total variation of two probability distributions P, () is the largest possible difference between the
probabilities that the two probability distributions can assign to the same event A. O

Next, we prove a lemma that will be useful for the follow-up proofs.

Lemma 3. Consider a random variable a such that E[a] = 1. Then:

E[(a — 1) = E[a®] — 1 1)
Proof. We have that:
E[(a —1)?] = E[a® — 2a + 1]
= E[a®] — 2E[a] + 1 (linearity of the expectation)
= E[a?] — 2 + 1(E[a] = 1 by assumption)
= E[a?] - 1.

E.1 PROOF FOR CATEGORICAL BOP

Here, we redo the proof from Monteiro Paes (Monteiro Paes et al.| 2022), to find a tighter bound.

Theorem 4 (Lower bound for categorical individual BoP (Monteiro Paes et al.,[2022)). The lower
bound writes:

min _ max P, >1-— (14 4¢2)™/? (22)

w Px_ysyy €Hy 2 d

Qx,s,y €H1 f

where Px gy is a distribution of data, for which the generic model hg performs better, i.e., the true ~y
is such that y(ho, hyp, D) < 0, and Qx s,y is a distribution of data points for which the personalized
model performs better, i.e., the true vy is such that vy(ho, hy, D) > €. Dataset D is drawn from an

unknown distribution and has d groups where d = 2¥, with each group having m = | N/d] samples.
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By recognizing that the variance of a Bernouilli distribution of parameter p is 02 = p(1 — p) =
£(1— ) = 7, we see that the lower bound can equivalently be written:

L—1—L(1+462)m/2—1—i 1+ < " (23)
O 2Vd O 2Vd o2

This equivalent formulation is interesting to compare this bound to the bound obtained for the
Gaussian case in the next section. In particular, we see that both bounds enjoy a very similar structure,
where the key variable controlling the bound is = which is the minimum benefit of personalization e
at the scale of the variance of the benefits across groups.

Proof. By Proposition[I} we have:

min max P, >1-TV(P | Q)
¥ PyeH,
PreH,

for any well-chosen P € H and any well-chosen @) € H;.

We will design two probability distributions P, defined on the N data points
(X1,G1, Y1), ..., (Xn,GnN,YN) of the dataset D to compute an interesting right hand side
term. An “interesting” right hand side term is a term that makes the lower bound as tight as possible,
i.e., it relies on distributions P, @) for which TV (P || Q) is small, i.e., probability distributions that
are similar. To achieve this, we will first design the distribution () € H7, and then propose P as a
very small modification of (), just enough to allows it to verify P € H,.

Mathematically, P, @ are distributions on the dataset D, i.e., on N i.i.d. realizations of the random
variables X, S, Y where X is continuous, S is categorical (binary), and Y is binary (classification
framework). Thus, we wish to design probability distributions on (X1, S1,Y1), ..., (XN, SN, Yn).

However, we note that the dataset distribution is only meaningful in terms of how each triplet
(X5, S;,Y;) impacts the value of the estimated BOP. Thus, we design probability distributions P, Q)
on NN i.i.d. realizations of an auxiliary random variable B, with values in R, defined as:

B =((ho(X),Y) — £(hy(X,S),Y). (24)

Intuitively, B; represents how much the triplet (X}, .S;, Y;) contributes to the value of the BOP. b; > 0
means that the personalized model provided a better prediction than the generic model on the triplet
(x4, 84, y:) corresponding to the data point i.

In the case of classification, prediction or explainability approach, ¢(ho(X),Y") and £(h, (X, S),Y)
are Bernouilli random variables, taking values in {0, 1}, while their difference B is a categorical
random variable taking values in {—1,0, 1}.

Consider the event b = (by, ..., bx) € RY of N realizations of B. For simplicity in our computations,
we divide this event into the d groups, i.e., we write instead: b; = (bg.l)7 e bg-m)), since each group
7 has m samples. Thus, we have: b = {bgk)}jzl__,d_,kzl__m indexed by j, kK where j = 1...d is the

group in which this element is, and k£ = 1...m is the index of the element in that group.

In what follows, we denote Cat(p1,1 — p1 — pa,p2) the ternary categorical distribution, i.e.,
Cat(p1,1 — p1 — p2,p2) = —1 with probability p;, Cat(py,1 — p1 — p2,p2) = 1 with proba-
bility po, and Cat(p1,1 — p1 — p2,p2) = 0 with probability 1 — p; — ps.

Design (). Consider p = Cat(%, 0, %) a centered Categorical distribution, we propose the following
distribution for Q):

Q;(b;) = Hp(b§k)), for every group j = 1....d
k=
d1
Q®) = [T Qi)
j=1

17
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Design P. Next, we design P as a small modification of the distribution (), that will just be enough
to get P € Hy. We recall that P € Hy means that v < ¢ where € < 0 in the flipped hypothesis test.
This means that, under Hy, there is one group that suffers a decrease of performance of |e| because of
the personalized model.

Givenp = Cat(%, 0

2

) a centered categorical distribution, and p¢ = Cat(3+¢,0,  —e¢) a categorical
distribution with negative mean € < 0, we have:

H p(b;"), for every group j = 1....d,

(b( )) for every group j = 1....d,

b)) [ P (b

J'#J

)—AM&

Compute total variation TV (P || Q). Given P and @, we can compute their total variation:

V(PlQ) =

1 d H;nzlps(bgk))
d j=1 H;::1 p(b§-k))

bq)| (TV for probability mass functions)

d d
Spewy) [P0 H (b;)| (definition of P, Q)
=1 i =1
d d d
Ps (b
Z 7 (84) H Py (b H i(bj)| (adding missing j' = j)
j=1 P] (b]) j'=1 j=1

d ) d d
Z ij ) H Qjr (b)) — H Q;(b;)| (P; = Q; by construction)

1 §'=1 =1

— 1| | (recognizing an expectation with respect to ()

—1|| (definition of P; and Pj(é))

Plug in the categorical assumption Under the assumption of a categorical distribution for the
random variable B, we have:

1

V(PIQ) = 5Eq
1

- 5]EQ

1
= -E
2Q

ISR Ul =

Ul =

- -

V-

=

J

Il
—
b

—

=
b

=

=k

—

1— bk 140k

(1—2¢) ="

(1+2¢)2 —1|| (definition of p and p{*))

(1+ Qe)i’k(l - 26)175)6 —1|| (Define b; £ (1 —b;) /2, element wise)

(14 2¢)2r=1 i’k(l — 2¢)M X0 " (property of power)

Given that each b, is distributed as a Bernouilli distribution Ber(1/2), we have that each entry of
b, is also distributed as a Bernoulli distribution with parameter 1/2. Define z; 2 =D bf
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definition, a binomial random variable Bin(m,p) is a sum of m Bernouilli random variables of
probability p. Thus, as a sum of m Bernouilli random variables Ber(1/2), z; is distributed as a
Binomial distribution Bin(m,1/2).

d
1
V(P||Q) = =E 52_: (14 2€)% (1 —2e)™ % — 1

- 97 1/2

d
1 1
5 y D (14267 (1 —2e)" % — 1 (by Cauchy-Schwarz: E[|X|] < /E[X?])
Jj=1

IN
|
=

This last inequality is where our proof differs from (Monteiro Paes et al.,[2022). Indeed, while the
authors drop the factor 1, by contrast, here, we choose to keep it.

Aucxiliary computation to apply Lemma [3] Next, we will apply Lemma 3] For this, we need
to prove that the expectation of the first term is 1. We perform this auxiliary computation here.
We recall that the moment generating function (MGF) of a binomial Bin(m, p) is, by definition,
M(t) = (q+ pet)™ where ¢ = 1 — p. We have that:

d N
1 1 2 3
E ; T297(01- )m_Zi] = -1 =29™ ZE [(1 i_ 2:) ] (extracting (1 — 2¢)™ out of the sum)

1 142¢
== (1—2¢)™ Z E [ez" ln(l%e)} (definition of power, we recognize a MGF E[e*'])

I 1 1+2\™ 1 1+ 2¢
-+ - MGF of B —)fort =1
( +3 1_26> (MGF o m(m,2) ort n(1_26))

1

1+ 2¢

" 1
) (extracting 3 out of the power)

d m
1 1 /1-2 142
= g(1—26)m - ( €+ + €>

1—2¢ 1-—2¢

d m
1 1
== (1—2¢)™ g < > (simplifying the terms with 2™)

2
1 - 1 m ) )
=3 (1—-2¢)™d (term in the sum does not depend on 7)

Continue by applying Lemma[3] This auxiliary computation shows that we meet the assumption
of Lemma 3] Thus, we continue the computation of the lower bound of the TV by applying Lemma 3]
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V(P HQ)

97 1/2

d
D (14267 (1 —2e)" % —1

IN
DN | =

E

&\»—‘

Jj=1
9 1/2

d
1
= 5IE ( Zz: (1+2¢)*(1 — 26)’”_Z’> -1 (applying Lemma[3)

Q.M—‘

=1
1/2
1<

d2
i,7=1

Expand double sum. To continue, we will expand the double sum on indices 4, j into two parts:
a part where ¢ = j and a part where ¢ # j. In the latter, the random variables z; and z;, for

i # j, are independent. We recall here that they are Binomial random variables Bin(m, %) As
the sum of independent Binomial random variables, of same probability of success (her: p = 2)

is also a Binomial random variable. Here, we will have: z; + z; ~ Bin(2m, ) We continue the
computations:

(142e)%(1—2¢)™ % (1+2e)% (1L —2¢)" % | — 1 (expanding square of the sum)

1/2

V(PIQ)
1|1 > 1 <
<3E|5 ; ((1+26)% (1 —2¢)™ )" + e ”Z::I(l + 2€)% (1 — 2€)™ % (1 + 2€) (1 — 2¢)™ %
L i#j
_ 1/2
111 1<
= §IE = Z ((1+2¢)% (1 —2¢)™ Zi) + = i;l(l 4 2€)%112i (1 — 2€)?m 772 — ] (property of power)
L i#]
1/2
11 & a1
_ 25 m—z; zit+zj _ 2m—z;—z;] _
= dz;E[((l—i—Ze) (1— 2¢) )}+d”2111<:[(1+26) i(1 - 2¢) -1
i#]
(linearity of the expectation)
1/2
11 a1 . .
=2 | =2 E [((1 +26)7 (1 — 26)™ %) } + 5 Y E[1+29°(1-29"" ] 1
i=1 i,j=1
i#£]

where we define the sum z; + z; of two independent Bin(m, %) as the new Binomial variable:
Z ~ Bin(2m, %)) Here, we can apply the result of the auxiliary computation above, to see that the

expectation on Z is equal to 1.
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Thus, we get:

V(PIQ)

IN

1/2

1 d 27 1 d

= ;E [((1 +20)% (1 - 20" 7=)"| + @Mz; 1-1
i3

2 d(d-1

r d 9 1/2
1
E ) Z (1 +2e)%(1—2e)™ %) | + T) - 1) (Counting the 1s in the sum)

d 1/2
1 Zq m—=z; 2 1 . . .
E a2 Z ((1 +2€)% (1 — 2¢) ) - d) (simplifying)

r B 1/2
1 d 1
<]E = g (14 26)7 (1 —26)™ %) | 41— i 1) (simplifying)

d 1/2
é Z ((1 +2€)% (1 — Qe)mzi)zl — 1) (extracting é)

i=1

a 1/2
1
p Z 1+ 2¢e)%( )T Zl ] ) (because va — 1 < v/a as \/6 is monotonic increasing)

d
1
p Z E [( (14 2€)% (1 —2¢)™ %) 2}) (linearity of expectation)

‘ -

IN
[\3
—_
Q.
/\/\/é\/\

1/2
d.E [((1 +2¢)"1(1 — 26)7”_21)2}> (the z;’s are identically distributed)

[N}
HS
QL

1/2
= N7 (IE [((1 +2€)* (1 — 26)"‘*21)2]) (simplifying)
1 1 m [ z —z 2 1/2 : m
= iﬁ(l —26)"E [|(1+2€)* (1 — 2¢) ™% } (extracting (1 — 2¢)™)
- 22,11/2
11 142
= 5ﬁ(l —2¢)"E (1 i_ 22) 1 (property of power)
11 0 142¢\\1"2
= iﬁ(l —2¢)"E _exp (221 In <1 — 26))} (property of power)
11 . 142¢\\) " g
= 5%“ —26)™ | MBin(m,1/2) | 21n [ (definition of MGF as E[exp(zt)] for t = 2In
11 m . . .
=3 7 (14 4€%) & (MGF of a Binomial random variable)

Consequently, we obtain:

>1—
m\I}n Jnax P.>1-TV(P|Q)
Pie€H;

1 m
= min max P >1——(1—|—462) /2

U PLeH, 2/d

PyeH;
which is a slightly different bound than (Monteiro Paes et al., |2022) due to the % that we kept. [
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E.2 PROOF FOR GAUSSIAN BoOP

Here, we do the proof for a real-valued cost function, assuming that the BoP is a normal variable
with a second moment bounded by o2.

Theorem 5 (Lower bound for real-valued cost function). The lower bound writes:

1 2\ ™/2
i Po>1——— <
m\I}n ngiéHo ‘= 2\/& P (0'2>

Qx,s,y €H1
where Px gy is a distribution of data, for which the generic model ho performs better, i.e., the true y
is such that y(ho, hyp, D) < 0, and Qx s,y is a distribution of data points for which the personalized
model performs better, i.e., the true +y is such that v(hg, hy, D) > 0.

For a centered Gaussian random variable X of variance s?, the MGF takes the form M (t) =

exp(4s%t?). Thus, the lower bound writes:

m/2
1 €2 m/2 1 V2
L=1———exp|— =1-—M — . 25
NE P(02> N/ X(U2 (25)

Proof. By Proposition[I] we have that:

min max P >1-TV(P| Q)
PieH;

for any well-chosen P € Hj, and any well-chosen ) € H;. We will design two probability
distributions P, () defined on the N data points (X1, G1,Y1), ..., (Xn,Gn, Yn) of the dataset D to
compute an interesting right hand side term. An “interesting” right hand side term is a term that makes
the lower bound as tight as possible, i.e., it relies on distributions P, @ for which TV (P || Q) is small,
i.e., probability distributions that are similar. To achieve this, we will first design the distribution
) € Hi, and then propose P as a very small modification of (), just enough to allows it to verify
P € Hy.

Mathematically, P, ) are distributions on the dataset D, i.e., on IV i.i.d. realizations of the ran-
dom variables X, S, Y where X is continuous, S is categorical, and Y is continuous (regression
framework). Thus, we wish to design probability distributions on (X1, S1,Y1), ..., (XN, SN, Yn).

However, we note that the dataset distribution is only meaningful in terms of how each triplet
(X, Si,Y;) impacts the value of the estimated BOP. Thus, we design probability distributions P, Q
on n i.i.d. realizations of an auxiliary random variable B, with values in R, defined as:

Intuitively, B; represents how much the triplet (X, S;, Y;) contributes to the value of the BOP. b; > 0
means that the personalized model provided a better prediction than the generic model on the triplet
(24, 8i,y;) corresponding to the data point 3.

Consider the event b = (by, ..., bx) € RY of N realizations of B. For simplicity in our computations,
b(l) b(m)

;s by
j has m samples. Thus, we have: b = {b§k)}j=1...d,k=1,__7n indexed by j, k where j = 1...d is the
group in which this element is, and £ = 1...m is the index of the element in that group.

we divide this event into the d groups, i.e., we write instead: b; = ( ), since each group

Design (). Next, we design a distribution () on this set of events that will (barely) verify Hy, i.e.,
such that the expectation of B according to @ will give v = 0. We recall that v = 0 means that
the minimum benefit across groups is 0, implying that there might be some groups that have a > 0
benefit.

Given p = N(0,02) a centered Gaussian distribution, we propose the following distribution for

Q,;(b;) = l_Ip(b§-k))7 for every group j = 1....d
k=1
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We verify that we have designed () correctly, i.e., we verify that Q € H;. When the dataset is
distributed according to (), we have:

v= mlnC (ho,s) — Cs(hy, s)
= mmIEQ[ (ho(X),Y) | S =s] —Eg[¢(hp(X),Y) | S = s] (by definition of group cost)
= minEq[¢(ho(X),Y) —

= Hélgl Eg[B | S = s] (by definition of random variable B)
s

L(hy(X),Y) | S = s] (by linearity of expectation)

= mig 0 (by definition of the probability distribution on B)
se
=0.

Thus, we find that v = 0 which means that v > 0, i.e., Q € H;.

Design P. Next, we design P as a small modification of the distribution (), that will just be enough
to get P € Hy. We recall that P € Hj means that v < e where € < 0 in the flipped hypothesis test.
This means that, under Hy, there is one group that suffers a decrease of performance of |e| because of
the personalized model.

Given p = N(0, 02) a centered Gaussian distribution, and p¢ = N (¢, 0) a Gaussian distribution of
same variance but negative mean ¢ < 0, we have:

P;(b;) = H p(bg-k))7 for every group j = 1....d,
k=1
Pi(bj) = H (b( )) for every group j = 1....d,
k=1
14
P(b) = - > Psvy) [T Pt

j=1 J'#J

Intuitively, this distribution represents the fact that there is one group for which the personalized
model worsen performances by |e|.We assume that this group can be either group 1, or group 2,
etc, or group d, and consider these to be disjoint events: i.e., exactly only one group suffers the |e]
performance decrease. We take the union of these disjoint events and sum of probabilities using the
Partition Theorem (Law of Total Probability) in the definition of P above.

We verify that we have designed P correctly, i.e., we verify that P € Hy. When the dataset is
distributed according to P, we have:

v = Hélg Cs(ho, s) — Cs(hyp, s)
= Iniél Ep[B | S = s] (same computations as for ) € Hy)
se
= min(e, 0, ..., 0) (since exactly one group has mean ¢)

= € (since € < 0).

Thus, we find that v = € which means that v < 0, i.e., P € Hj.

Compute total variation 7V (P || Q). We have verified that ) € H; and that P € Hy,. We
use these probability distributions to compute the lower bound to P,. First, we compute their total
variation:
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1
TV(P| Q) = i/b ) |P(b1,....;b;) — Q(b1, ..., b;)| dby...db; (TV for probability density functions)
1 1 d
=3 / y > Pi(v;) [ Pir(vj) — T] Qi (b)) dby...db; (definition of P, Q)
brobi |7 j=1 3'# =1
d d d
1/ 1 P(by) TV
=— = Py (bj:)— || Q;(b;)|db;...db; (adding missing j' = j)
2 bl,u.,bj d j:Zl Pj(bj) JH]_ J J jgl J\Y7 1 J
1 1K Pr(by) o d .
= 5/ p Z b)) H Qj (b)) — H Q;(bj)| dbi...db; (P; = @ by construction)
bi,...y b] j=1 JI\Y2 j'=1 j=1
d
1 / 1 P (b;) .
=- Q) |= J — 1| dby...db; (extracting the product)
2 Jo,,..., ijI;[l T d;Pj(bJ’) ’
=-FE 1 zd: P;(bj) 1| (recognizing an expectation with respect to Q)
- Q d P Pj(bj) g g p p
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Plug in the Gaussian assumption. Under the assumption of Gaussianity of the random variable B,
we continue the computations as:

16§ —e|?
Hk 1 XP( 202
16§12

L Fl [T, exp(— =55

| Sy (168 = el = §)12)
= -Eq gZexp — 557 —1|| (property of exp)

—1|| (definition of p and p')

V(PIQ) =3B ||

b — el -
202

b 2
” J||2) -1 (with € = (6,..,6) e R™)

202

_—2<bj,E> +eEll3

1 1 bil2—2<b;,€ &2 — ||b; |2
— §]EQ gzexp (” ]”2 < 0j,¢€ > +H€||2 || ]|2> -1 (expansion OfH”g)

> —1]| (simplifying)

202
L ‘721
If el <& —2 < bjE> .
= 5]EQ p exp (— 952 > ;exp <—%‘;> — 1| | (since € does not depend on j)
1 1 2 2 <bj,E>
= 5]EQ p exp (_m;) ;exp ( 2;26 ) — 1{| (definition of € = €.1,,)
1 1 me> < bj,e>
= 5]EQ P exp (—02> ;exp ( 2 ) -1
i 1 2 d € m_ b(k)
= -Eq ||5exp (-%) ;exp <1:21J —1|| (because € = (, .., €)).
Next, we define the auxiliary random variables z; = -5 > " | b(k . The sum of independent,

identically distributed N (0, 0?) Gaussian random variables S bg. )i

variable distributed as N (0, mo?). Scaling this random variable by ~5 gives a random variable z;
distributed as (0, ;—ima2) = N(0, 7’;32 ). Thus, we get:

is itself a Gaussian random

(k)
1 1 me? Zk 1b
V(P Q)= §IEQ - oxXp (—W) Zexp < -1

1 1 2 d 2
= §IE —exp (—n:) Zexp zj —1 :| (where z; ~ N(0, n;—;))
2

d 252 ) -
j=1
_ 1
d 2
<lgl|ie me” Ye 1| | (by Cauchy-Schwartz: E[|X|] < \/E[X2))
- — €eX — X i — - .

Aucxiliary computation to apply Lemma[3] Next, we will apply Lemma3] For this, we need to
prove that the expectation of the first term is 1. We perform this auxiliary computation here. We
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recall that the moment generating function (MGF) of a centered Gaussian random variable X of
variance s% is Mx (t) = exp(5s°t?). We have that:

2

1 2\ & 1
E 7 OxXP (—Z:;) Z exXpzj| = - exp <—Zﬁ;> Z E [exp z;] (linearity of expectation)

j=1 j=1
1 N & Ime
= - exp ZL;) ; exp(§ TZ—Z) (MGEF of centered Gaussian)
1

2 1 2
= —exp (_me) d. exp(§ TZ:—Z) (term in the sum is independent of 7)

Continue by applying Lemma[3] This auxiliary computation shows that we meet the assumption
of Lemma[3] Thus, we continue the computation of the lower bound of the TV by applying Lemma 3]

TV(P| Q)
B 2 2
1 1 me? .
< §E p exp <%¢2> Z expzj | —1 (applying Lemma3))

N

1 1 2\ &
= iE — exp (—6) Z expzjexpzy | — 1 (expanding the square of the sum)

d? o &
L J:3'=1
_ 1
2
1 1 me> <
= §IE 75 &XP (—02> Z exp(z; +2) | —1| (property of exp)
I =1
1 1 me?\ o 1 me? d ’
= 51[*3 7 XP (—02) exp (2z;) | + 7 €XP <—02> Z exp(zj+z) | —1
Jj=1 J.3'=13"#j

where we split the double sum to get independent variables in the second term.

We get by linearity of the expectation, E[aX + bY] = aE[X] + DE[Y]:

TV(P Q)
1
2
1 1 me?\ < 1 me> 4
< iE 7 €XP (—02> Zexp (2z;) | + 7 eXP <_02> Z exp(z; +zy) | —1
Jj=1 J.3'=15"#j
%
1 1 me2\ & 1 me? d
=5 || ze (—02> ZE[exp (2z))] | + 7 eXP <—02> Z Elexp (zj +z)] | —1
Jj=1 J,3'=1,5"#3j

Here, 2z; ~ N (0, 4";22 ) and independent sum is z;+z; ~ N (0,2 ";22 ). In both cases, we recognize

the moment generating function (MGF) of a random variable, defined as Mx (t) = E[exp(tX)]
evaluated at ¢t = 1. For a centered Gaussian random variable X of variance s2, the MGF takes the

26



Under review as a conference paper at ICLR 2025

form Mx (t) = exp(4s*t?). Applying this to our two random variables 2z; and z; + z;/, we get:
TV(P [ Q)

1 1 2 < 1 me 4
< 3 || zexp (—2> ZE[exp (2z))] | + -5 eXP <—02) Z Elexp (zj +z)] | —1

J:3'=1,3"#3

Nl=

Nl=

11 2\ & 1 me? 1 me? d 1_me?

N~ N~ N= N

IN

This gives us the final result:

i P.>1-TV(P
min max P > V(P Q)

PicH,
1 62 m/2
= min max P. >1— —— |exp | —
W PyeHy ¢ 2v/d [ P (02)]
PieH,

E.3 PROOF FOR LAPLACE BOP

Here, we do the proof for a real-valued cost function, assuming that the BoP is another random
variable. We consider: a Laplace distribution (for more peaked than the normal variable. We note
that a similar analysis can be done for a Gamma distribution (for purely positive distributions).

Theorem 6 (Lower bound for real-valued cost function). The lower bound writes:

1 2 1
min max P.,>1-— [2 exp (— fme) — ]

v Px s, y€Ho o 2
Qx,s,y€EH,

where Px sy is a distribution of data, for which the generic model hg performs better, i.e., the true y

is such that y(ho, hy, D) < 0, and Qx s,y is a distribution of data points for which the personalized
model performs better, i.e., the true vy is such that v(hg, hy, D) > 0.
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Corollary 4 (Maximum number of attributes (real valued cost function)). If we wish to maintain a
probability of error such that min max P, < 1/2 then the number of attributes k should be chosen
below a value k.« that depends on the number of samples N.

.69314
0.6931470 ) 27)

1
kmaz < = — 1.44271
2 8 < eN

where € < 0.

We start by considering a Laplace distribution of the BoP. The proof stays the same until designing
our distributions () and P.

Design ). Next, we design a distribution () on this set of events that will (barely) verify Hy, i.e.,
such that the expectation of B according to @ will give v = 0. We recall that v = 0 means that
the minimum benefit across groups is 0, implying that there might be some groups that have a > 0
benefit.

Given p = Laplace (0, b) = Laplace (O7 f) a centered Laplacian distribution with scale parameter
b, we propose the following distribution for Q:

H p(b;"), for every group j = 1....d

We verify that we have designed @) correctly, i.e., we verify that Q € H;. When the dataset is
distributed according to @), we have:

7= min Cy(ho,5) = Collp, 5)
= Isrélgl Eq[t(ho(X),Y) | S =s] —Eg[l(hy(X),Y) | S = s| (by definition of group cost)
= Ignelgl Eq[l(ho(X),Y) — £(hy(X),Y) | S = s] (by linearity of expectation)
= Isnelg Eg[B | S = s] (by definition of random variable B)
= rsrgg 0 (by definition of the probability distribution on B)
=0.
Thus, we find that v = 0 which means that v > 0, i.e., Q € H;.

Design P. Next, we design P as a small modification of the distribution @), that will just be enough
to get P € Hy. We recall that P € Hj means that v < € where ¢ < 0 in the flipped hypothesis test.
This means that, under Hy, there is one group that suffers a decrease of performance of |e| because of
the personalized model.

Given p = Laplace (O ) a centered Laplacian distribution, and p* = Laplace ( €, \[) a Lapla-
cian distribution of same variance but negative mean ¢ < 0, we have:

P;(b;) = H p(bgk)) for every group j = 1....d,

P5(b;) = H (b( )) for every group j = 1....d,

P(b) = - > Pivy) [ Pt
J=1 J'#i

Intuitively, this distribution represents the fact that there is one group for which the personalized
model worsen performances by |e|. We assume that this group can be either group 1, or group 2,
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etc, or group d, and consider these to be disjoint events: i.e., exactly only one group suffers the |¢|
performance decrease. We take the union of these disjoint events and sum of probabilities using the
Partition Theorem (Law of Total Probability) in the definition of P above.

We verify that we have designed P correctly, i.e., we verify that P € Hy. When the dataset is
distributed according to P, we have:

v = IsIélgl Cs(ho, s) — Cs(hyp, s)

= Iniél Ep[B | S = s] (same computations as for Q) € Hy)
s€

= min(e, 0, ..., 0) (since exactly one group has mean ¢)
= € (since € < 0).

Thus, we find that v = € which means that v < 0, i.e., P € Hy.

Compute total variation TV (P || Q). We have verified that Q € H; and that P € Hy. We
use these probability distributions to compute the lower bound to P.. First, we compute their total
variation:

TV(P| Q) =

S—
S

=
S

|P(b1,...,b;) — Q(b1,...,b;)| db;...db; (TV for probability density functions)

DN =

d d
> Psv)) [ P (bjr) = [ @i(05)| dbs...db; (definition of P, Q)

N | =

s~
s
QU=

1/ 1zd:P;(bj)ﬁP(b) ﬁQ(b)db b, (adding missing 7 — )
== = (b)) — (b ...db; (adding missing j' = j
2 bi,....b; d = P](bj) i} J°\77 e I\Y3 1 J
d d d
1 1 Fj(b)) .
= 5/ p Z Pj(bj) H Qi (bj) — H Q;(bj)|db;...dbj (P; = Q; by construction)
b1,...,b; j=1 VAN j'=1 j=1
d d
1/ 1 P5(b;) .
== Q,(b;) = J — 1| db,...db; (extracting the product)
2 bl,...,bjj[[l T d; Pj(bj) b
(1. d
1 1 P (b;
=-Eqg ||- Z J C) — 1| | (recognizing an expectation with respect to ()
294 & Py(by)

—1|| (definition of P; and Pj(e))

Plug in the Laplacian assumption. Under the assumption that the random variable B follows a
Laplacian distribution, we continue the computations as:
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_ 1< |1 exp(—%) s (e)
TV(P | Q) = ;Eq 42 - x/ilab?’“)l —1|| (definition of p and p'¢)
LI a=t TTizy exp(=——)
|1 & S V2 (J6f — el = b1)
=-Eg p j_zlexp — > — 1|| (property of exp)
[l RO
d -

Since we are finding the worst case lower bound, we will find functions that upper and lower bound
|b§k) — ¢ — |b§k> |. This function is lower bounded by ¢ and upper bounded by —e since € < 0. To

maximize P,, we take the function that gives us the lower bound of TV (P || Q). Continuing by
plugging in to get the lower bound:

IN

d m
1 1 V2, e
aEa ||z 2 cxp <a -1

|

This gives us the final result:

. >1_
min max P.>1-TV(P| Q)
1 V2me 1
Zex _ -
2P\ T 2

PieH;
F COMPARISON BOP FOR PREDICTION AND BOP FOR EXPLAINABILITY
PROOFS

= min max P, > 1—
U PyeH,
PyeH,

Proof for Theorem 3k

Proof. Let X = (z1,x2) where 27 and x5 are independent and each follows Unif(—%, % . Let us
define S € {0,1} as S = 1(X; + X2 > 0) and Y = S. Then, ho(z) = 1(X; + X2 > 0) and
hp(z) = 1(S > 0) can both achieve perfect accuracy. Therefore, BoP(hg, hp) = 0.

For explanation, let us assume r» = 1. Then, for model Ay, its important feature set .Jy will be either
{X1} or {X,}, and without loss of generality, let Jy = {X; }. For the personalized model, J, = {S}.
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Then, comprehensiveness of A is

Pr(ho(X) 7& hO(X\IO)) = Pr(X1 + X5 < 0|X2 > O)PY(XQ > 0)
+ Pr(X; + Xo > 0|Xz < 0)Pr(X < 0) (28)
1 1
= Pr(Xy + Xz  0[Xz > 0) 5+ Pr(X1 + Xp > 0]Xz < 0) - 5

=Pr(X; + X2 <0/ X5 > 0) (due to symmetry of the dlstrlbunon)

:/ Pr(z1, z2)dz1dxe /Pr(Xs > 0)
z9>0,21+22<0

1
2

=2 / Pr(;vg)/ Pr(zq)dxidzs
29=0 1<—T2

3 1
2~/ Pr(zs)(—xz2 + )dxz

2=0

1 1 2
=2 |3 g,
_ 1
.

For h,, comprehensiveness is :

1

Pr(hp(X7 S) 7& hp(X\Jp,S\Jp)) = 5,

as without S, h,, can only make a random guess. Hence, BoP-X in terms of comprehensiveness is i.
For sufficiency, we can do a similar analysis:

Pr(h(](X) 7& hO(XJo)) = PI'(Xl + X9 < 0|X1 > O)PI'(Xl > 0)
+Pr(X) + X2 > 01X, < 0)Pr(X; < 0) (29)

Again, due to symmetry, equation [29]is the same as equation[28] On the other hand, the sufficiency
for h,, is

Pr(hP(X7 S) # hp(XJp’SJp)) =0

as J, = {S} is sufficient to make a prediction for h,. Thus, BoP-X in terms of sufficiency is also i.

hp(X) = random guess

O
Proof for Lemma 2}
Proof. A Bayes optimal regressor using a subset of variables from indices in J C [1,...,t + k]
would be given as:
§=n5(xs.85) = oz + > ;S (30)
JEJ, JEJ,
J<t Jj>t+1

where hY represents an Bayes optimal regressor for the given subset J, and x ; and x ; are sub-vectors
of x and s, using the indices in J. Then, the MSE of h% is given as:

MSE(h5) = Y afVar(X;)+ > a’Var(S;_) (31)
Je\J, JeNJ,
J<t J>t+1
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where \J is a shorthand notation for [1,...t + k] \ J. By combining equation [30]and equation 31}
we can obtain:

t+k

MSE(ho) = Y a3Var(Syy;) + Var(e), (32)
Jj=t+1

MSE(h,) = Var(e). (33)

We define Jy and J,, as a set of important features for hy and h,. Note that Jy and .J,, are the same
across all samples for the additive model. Then, for regressors for sufficiency, we can write the MSE
as:

t+k
MSE(hos) = Y a3Var(X;)+ Y ofVar(S;_¢) + Var(e) (34)
Jj€\Jo, Jj=t+1
J<t
MSE(hy. ;) = > afVar(X,)+ Y afVar(S;_;) + Var(e). (35)
JE\Jp, JE€\Ip,
J<t j>t+1

Similarly, for regressors for incomprehensiveness, MSE can be written as:

t+k
MSE(ho, ) = afVar(X) + Y ofVar(S;_¢) + Var(e), (36)
Jj€Jo, j=t+1
j<t
MSE(h,\7) = Y ofVar(Xy)+ Y afVar(S;_;) + Var(e). (37)
J€Jp, J€Jp,
Jj<t j>t+1

Then, our assumption of BoP-X = 0 for sufficiency becomes:
MSE(hy) — MSE(hg, ;) = MSE(h,) — MSE(h,, ). (38)
We can expand MSE(hy) — MSE(hg, ) as:

MSE(hg) — MSE(hg, ;) = MSE(h) (1 - I\M)
B Var(\Jo) + Var(S) + Var(c)
= MSE(ho) (1 T Va(S) + Var(@ )
— MSE(ho)—ar\Jo)

Var(S) + Var(e)
Var(Jy) + Var(\Jp) Var(\Jp)
Var(S) + Var(e) Var(Jy) + Var(\Jy)’

— MSE(ho) (39)

where we use the shorthand notations:

0) = Z ajVar(Xy),

j€Jo,
j<t

Var(\Jy) = Z ; 2Var (X4),

J€\Jo,
J<t

t+k

Var(S) = Z afVar(Siy;).
j=t+1

Further, note that

Var(Jp) + Var(\Jp) = Z a?Var(Xt) + Z 2Var (Xy) = Zanar = Var(X).

i€Jo, 7€\ Jo,
J<t Jj<t
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Defining M (hg) = MSE(hy) % and g £ m, we further simplify equation

as:

MSE(hg) — MSE(hq, ;) = M (ho)(1 — 79). (40)
Through a similar process, we can simpilfy MSE(h,,) — MSE(h,, ;) as:

MSE(h,) — MSE(hg ) = M (hy)(1 —1p), 41
where M (h,) = %WMSE(%) and r, = % Using equation [40| and equa-
tion[41] we arrive at:

M(ho)(1 =r0) = M(hy)(1 = rp). (42)
By taking similar steps using comprehensiveness, we can derive:
M(ho)ro = M (hy)rp. (43)

By combining equation 42) and equation[43] we can conclude that:

To 177”0

= ﬁ’l"o:T’.
P
Tp 1—-7r,

Plugging this back to equation we get: M (hg) = M (h,). Now, let us assume that BoP-P > 0,
and prove it by contradiction. Comparing equation[32)and equation[33] we can deduce that BoP-P > 0
means Var(S) > 0. Expanding M (ho) = M (h,), we get:

Var(X) Var(X) + Var(S)

MSE(hO)Var(S) + Var(e) Var(e) MSE(h,),
B Var(X) Var(e)
MSE(h,) = Var(X) + Var(S) Var(S) + Var(e) MSE(ho),
VarlX)  \isE(h,).

~ Var(X) + Var(S)

Since Var(S) > 0, this equality cannot hold. This concludes that BoP-P = 0. We can make the same
claim with similar logic for a classifier where Y is given as:

Y = ]1(0(1X1 + - Xy + Oét+151 + -4 Oét_;.kSk +€e> O) 44)
O

G TRAINING DATA EXPERIMENT RESULTS

Group n Prediction Incomprehensiveness Sufficiency
C(ho) — C(hy) C(ho) — C(hy) C(ho) — C(hy)
Female, NW 688 -0.0974 -0.1759 -0.2718
Female, W 651 -0.1183 -0.2535 -0.2197
Male, NW 657 -0.0548 -0.1370 -0.1583
Male, W 654 -0.0856 -0.1728 -0.1391
Total 2650 -0.0891 -0.1845 -0.1981

Table 2: Evaluating A Classification Model: All metrics use 0-1 loss cost function and are found
on the training dataset. The results in this table are striking, in that personalization worsens model
performance across all metrics.
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Group n Prediction Incomprehensiveness Sufficiency
CA'(hO) - é(hp) CA’(hO) - é(hp) é(ho) - é(hp)
Female, NW 688 -0.0022 1.5514 3.8769
Female, W 651 -0.0043 1.5113 3.2429
Male, NW 657 -0.0032 1.5606 4.3278
Male, W 654 -0.0143 1.2517 3.4145
Total 2650 -0.0059 1.4699 3.7188

Table 3: Evaluating A Regression Model: All metrics use square error loss cost function and are
found on the training dataset. As shown, h, assigns less accurate predictions for all groups. It
decreases population prediction accuracy. For explainability, the personalized models improves
incomprehensiveness for all subgroups. It leads to an overall improvement in incomprehensibility. h,,
improves sufficiency for all groups and overall. This example highlights that while personalization
may not improve prediction accuracy, it can lead to improvements in model explainability.

H MAX ATTRIBUTES

Proof. If minmax P, < 1/2, then:

1 1 me2 < m P, < 1/2 (45)
— ——exp | —= min max
ova P22 ) = 2=
Or equivalently, if min max P, < 1/2, then:
1 me?
— — | >1 46
va P <2c72 ) - (46)

Given the number of groups d = 2%, the number of samples per group m = n/d, the total number of
samples 7 = 10% and the threshold of € = 0.01, we get:

1 10% % 0.0001 1 1
#k) =1 = a7 o <2a e (gee) @D

We prove that this function is an increasing function in k. Indeed, consider the auxiliary function

o 2)(2

f(z) = ﬁ exp(2). Its derivative is f'(z) = —%. For z,a > 0, we have: f'(z) < 0,
i.e., f is a monotonically decreasing function. Consequently, 1 — f is a monotonically increasing
function. Thus, the function k — 1 — f(2*) with @ = 515 is a monotonically increasing function of

k> 0. O

I MAXIMUM ATTRIBUTES (REAL-VALUED COST FUNCTION) FOR ALL PEOPLE

Corollary 5 (Maximum attributes (real-valued cost function) for all people). See Appendix X.
Consider auditing a personalized classifier hy, to verify if it provides a gain of ¢ = 0.01 to each group
on an auditing dataset D. Consider an auditing dataset with o = 0.1 and N = 8 x 10° samples, or
one sample for each person on earth. If hy, uses more than k > 22 binary group attributes, then for
any hypothesis test there will exist a pair of probability distributions Px ¢y € Hy, Qx.cy € Hi
for which the test results in a probability of error that exceeds 50%.

1
k>22 — min max P,> —. (48)
Px,c,y€Ho 2
Qx,c,y€H1

J  EXPERIMENT PLOTS

In the following section, we show supplementary plots for the regression task on the auditing dataset.
We show the distribution of the BoP across participants for all three metrics we evaluate, displaying
a roughly Gaussian distribution. Additionally, we show how incomprehensiveness and sufficiency
change for the number of important attributes r that are kept are removed.
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Figure 4: Individual prediction cost for all groups using the square error loss function.
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Figure 5: Individual incomprehensiveness cost for all groups using the square error loss function.
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Figure 6: Individual sufficiency cost for all groups using the square error loss function.
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Incomprehensiveness per Group for Varying r Values
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Figure 7: Values of Sufficiency and Incomprehensiveness across varying r top features selected using
the square error loss function. Values are found for kg and h,,.
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