
Under review as a conference paper at ICLR 2023

SUPPLEMENTARY MATERIAL:
ICLR 2023 SUBMISSION ID 2106

Anonymous authors
Paper under double-blind review

A HYPERPARAMETER VALUES

We show all hyperparameters related to Stacked LSTM and RHN experiments in Table. 1. These
hyperparameters are not optimized by hyperpruning.

Table 1: Hyperparameters list: dimension of hidden units (H-dim), number of layers (Layers),
dimension of input embedding (Emb), Optimization (Opt), Learning rate (LR), Non-monotone
interval for SNT-ASGD (Non-mono), Training batch size (BS), Back-Propagation Through Time
(BPTT), Gradient Clip (Clip), LS computation batch size (LS-BS), Sparsity decay schedule (Decay
Sche), Encoder and Decoder weight tied (Tied).

Model H-dim Layers Emb Opt LR Non-mono BS
Stacked LSTM 1500 2 1500 SNT-ASGD 40 5 20

RHN 830 1 830 SNT-ASGD 15 5 20

Model BPTT Dropout Epochs Clip LS-BS Decay Sche Tied
Stacked LSTM 35 0.65 100 0.25 2 Cosine False

RHN 35 0.65 500 0.25 2 Cosine True

B JACOBIAN MATRIX DERIVATION

B.1 STACKED LSTM

The LSTM is defined by the following equations:

ft = σg(Wfxt + Ufht−1 + bf)

it = σg(Wixt + Uiht−1 + bi)

ot = σg(Woxt + Uoht−1 + bo)

c′t = σc(Wcxt + Ucht−1 + bc)

ct = ft · ct−1 + it · c′t
ht = ot · σc(ct),

where σg and σc are element-wise sigmoid function and tanh function, respectively. For simplicity,
we use the following notation when calculating the derivatives:

y∗ = W∗xt + U∗ht−1 + b∗,

where ∗ can be f, i, o, c, depending on the gate. The derivative of each of those gates/states with
respect to the hidden states is shown below:

1

Under review as a conference paper at ICLR 2023

∂ft
∂ht−1

= [σg(yf)(1− σg(yf))]
TUf

∂it
∂ht−1

= [σg(yi)(1− σg(yi))]
TUi

∂ot
∂ht−1

= [σg(yo)(1− σg(yo))]
TUo

∂ct
∂ht−1

=
∂ft

∂ht−1
ct−1 +

∂it
∂ht−1

tanh(yc) + itsech
2(yc)Uc

∂ht

∂ht−1
=

∂ot
∂ht−1

tanh(ct) + otsect
2(ct)

ct
∂ht−1

,

The derivative of each of those gates/states with respect to the inputs is shown below:

∂ft
∂xt

= [σg(yf)(1− σg(yf))]
TWf

∂it
∂xt

= [σg(yi)(1− σg(yi))]
TWi

∂ot
∂xt

= [σg(yo)(1− σg(yo))]
TWo

∂ct
∂xt

=
∂ft
∂xt

ct−1 +
∂it
∂xt

tanh(yc) + itsech
2(yc)Wc

∂ht

∂xt
=

∂ot
∂xt

tanh(ct) + otsect
2(ct)

ct
∂xt

,

B.2 RHN

An RHN layer with a recurrent depth of L is described by:

h
[t]
l = p

[t]
l · e[t]l + h

[t]
l−1 · c

[t]
l ,

l ∈ [1, L],

where

p
[t]
l = tanh(WPx

[t]
1{l=1} +RPl

h
[t]
l−1 + bPl

)

e
[t]
l = σ(WEx

[t]
1{l=1} +REl

h
[t]
l−1 + bEl

)

c
[t]
l = σ(WCx

[t]
1{l=1} +RCl

h
[t]
l−1 + bCl

)

and 1 is the indicator function. The output of the RNH layer is the output of the Lth Highway layer,
i.e., y[t] = h

[t]
L . The derivative is shown below:

h
[t]
1

h
[t−1]
1

=
∂h

[t]
1

∂h
[t−1]
L

L−1∏
l=1

∂h
[t−1]
l+1

∂h
[t−1]
l

where
∂h

[t−1]
l+1

∂h
[t−1]
l

= P
′[t−1]
l+1 diag(e

[t−1]
l+1) + E

′[t−1]
l+1 diag(p

[t−1]
l+1) + diag(c

[t−1]
l+1) + C

′[t−1]
l+1 diag(h

[t−1]
l),

2

Under review as a conference paper at ICLR 2023

with

P
′[t−1]
l+1 = RT

Pl+1
diag[tanh′(RPl+1

h
[t−1]
l + bPl+1

)]

E
′[t−1]
l+1 = RT

El+1
diag[tanh′(REl+1

h
[t−1]
l + bEl+1

)]

C
′[t−1]
l+1 = RT

Cl+1
diag[tanh′(RCl+1

h
[t−1]
l + bCl+1

)],

and

∂h
[t]
1

∂h
[t−1]
L

= P
′[t]
1 diag(e

[t]
1) + E

′[t]
1 diag(p

[t]
1) + diag(c

[t]
1) + C

′[t]
1 diag(h

[t−1]
L)

with

P
′[t]
1 = RT

P1
diag[tanh′(WPx

[t] +RP1h
[t−1]
L + bP1)]

E
′[t]
1 = RT

E1
diag[tanh′(WEx

[t] +RE1
h
[t−1]
L + bE1

)]

C
′[t]
1 = RT

C1
diag[tanh′(WCx

[t] +RC1
h
[t−1]
L + bC1

)]

If it is coupled, c = 1 - e. The RHN becomes

h
[t]
l . = p

[t]
l · e[t]l + h

[t]
l−1 · (1− e

[t]
l)

C CORRELATION COMPARISON

To show that LS-based distance is more informative and predictive than the loss-based method, we
show the scatter plot of early LS-based distance vs. final perplexity (Top) and early perplexity vs.
final perplexity (Bottom) in Fig. 1. For a quantitative comparison, we use Pearson Coefficient which
evaluates to what degree a monotonic function fits the relationship between two random variables,
the higher the better. The Pearson Coefficient is defined below.

ρ =
cov(r, s)

σrσs
,

where cov(·, ·) is the covariance of two variables, and σr and σs are the standard deviations of r and
s, respectively.

As we can see from Fig. 1, LS-based distance has a much higher Pearson Coefficient than early
perplexity at the beginning of training (epoch 3: 0.68 vs. 0.45) and at early training (epoch 15: 0.73
vs. 0.27) which means LS-based distance is more informative and predictive than early perplexity.

D TIME EFFICIENCY

In Figure 4 of the main paper, we showed the time efficiency of LS-based hyperpruning and loss-based
full training search by estimating their time to reach a particular target perplexity. Specifically, the
entire training of each candidate takes 100 epochs, including 70 epochs of SGD optimization and 30
epochs of SNT-ASGD optimization. Experiments are conducted on an NVIDIA GeFORCE RTX
2080 Ti GPU, and one epoch of SGD and SNT-ASGD optimization takes about 1.5 and 3.5 minutes,
respectively. Therefore, extensive training for each candidate takes 70× 1.5 + 30× 3.5 = 210 min
= 3.5 hr. For a target testing perplexity of 70, we find that about 40 candidates are need to be fully
trained to reach it which takes about 150hrs. For LS-based Hyperpruning with the initial candidate
pool size n = 40, initial epoch e0 = 3 and incremental epoch ei = 3, the candidate selection process

3

Under review as a conference paper at ICLR 2023

Figure 1: (Top) scatter plot of Early LS-distance (at epoch 3 and 15) vs. Final perplexity. (Bottom)
scatter plot of Early perplexity (at epoch 3 and 15) vs. Final perplexity.

and the extensive training process take about 8 and 7 hours, respectively. Thus, the LSH is more time
efficient than Perplexity-based full training (15hr vs. 150hr).

One concern of LSH is that the LS computation is computationally expensive and memory heavy
since it involves QR decomposition and Jacobian matrix multiplication. It takes about 6s to compute
the LS of each sample. However, as we mentioned in Table. 4 of the main paper, the difference
between using 2 and 10 samples is not significant, so in our experiments, we just use 2 samples for
the LS computation which take about 12s. Compared with the time of training one epoch with SGD
(90s), the LS computation only slows down the candidate selection process by 13% compared to the
loss-based one, and the extensive training process does not require LS computation. Therefore, for
larger problems, even if the LS computation is expensive since only a few samples are required, the
overall computation overhead is still reasonable.

E EMBEDDING SPACE

As mentioned in the main paper, we use the following equations to calculate the distance between the
candidate model ti in the candidate pool T and the reference dense model t̂:

[v̂0, . . . , v̂E , v
i
0, . . . , v

i
E] = embedding([Λ̂,Λi])

s = distance(v̂E , v
i
E),

where Λi
j stands for the LS of the i-th candidate at the j-th epoch and Λi groups all LS of ti till the

the latest epoch E, i.e.,Λi ≡ {Λi
j}Ej=0. The embedded LS of ti and t̂ at epoch E, i.e., v̂E and viE , is

used to calculate the distance. We use PCA as the embedding function and L2 distance but there
are no special constraints on this particular embedding function and distance metric. We perform an
ablation study on three embedding spaces, namely, PCA, original LS, and T-SNE, and two kinds of
distance metrics, namely L2 and Cosine distance which is defined in the following equations:

4

Under review as a conference paper at ICLR 2023

L2(p, q) =

√√√√ n∑
i=1

(pi − qi)2

Cos(p, q) = 1− p · q
|p||q|

= 1−
∑n

i=1(piqi)√∑n
i=1(pi)

2 +
√∑n

i=1(qi)
2
,

The results of the selected model based on those embedding functions and distance metrics are shown
in Table. 2. As we can see, each combination achieves a decent result, and even using the original
LS with Cosine distance obtains a comparable performance which means LS is informative of the
model performance even at early training. Furthermore, PCA with L2, used by LSH outperforms
other combinations.

Table 2: Perplexities of the final model selected based on different combinations of embedding
functions and distances metrics.

Embedding PCA LS T-SNE
Distance L2 Cos L2 Cos L2 Cos

Perplexity 69.9 72.99 72.56 70.3 70.5 72.6

F LSH-SELECTED MODEL

To better understand the LSH-selected model, we show it on the LS-Space with the dense reference
model and its testing perplexity over the entire training. In Fig. 2 (Left), we use the PCA as the
embedding function and show the 2d-PCA space. Each point corresponds to the model at one epoch,
i.e., vie,. The arrows in the figure point along with the training, i.e., from pre-training to post-training,
pruned model’s color gradually changes from blue to green and the dense model’s from black to gray.
In Fig. 2 (Right), we show the perplexities of LSH selected model at each point during training. As
noticed, the sudden drop of perplexity at around epoch 70 is due to the change of optimizer from
SGD to SNT-ASGD.

the LSH-selected pruned model

Figure 2: (Left) LS-space: Each dot represents one model at one epoch and the arrows point to later
training (Pruned: blue to green; Dense: black to gray). (Right) Epoch vs. Test perplexity of the LSH
selected model

5

	Hyperparameter Values
	Jacobian Matrix Derivation
	Stacked LSTM
	RHN

	Correlation Comparison
	Time Efficiency
	Embedding space
	LSH-selected Model

