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ABSTRACT

An essential and challenging problem in causal inference is causal effect estimation
from observational data. The problem becomes more difficult with the presence of
unobserved confounding variables. The front-door adjustment is an approach for
dealing with unobserved confounding variables. However, the restriction for the
standard front-door adjustment is difficult to satisfy in practice. In this paper, we
relax some of the restrictions by proposing the concept of conditional front-door
(CFD) adjustment and develop the theorem that guarantees the causal effect identi-
fiability of CFD adjustment. By leveraging the ability of deep generative models,
we propose CFDiVAE to learn the representation of the CFD adjustment variable
directly from data with the identifiable Variational AutoEncoder and formally prove
the model identifiability. Extensive experiments on synthetic datasets validate the
effectiveness of CFDiVAE and its superiority over existing methods. The experi-
ments also show that the performance of CFDiVAE is less sensitive to the causal
strength of unobserved confounding variables. We further apply CFDiVAE to a
real-world dataset to demonstrate its potential application.

1 INTRODUCTION

Estimating causal effects is a fundamental problem in many application areas. For example, pol-
icymakers need to know whether the implementation of a policy has a positive impact on the
community (Athey, 2017; Tran et al.,|2022)), and medical researchers study the effects of treatments
on patients (Petersen & van der Laan, [2014)). Randomised Controlled Trials (RCTs) (Fisher,1936)
are considered the golden standard for estimating causal effects. However, RCTs are difficult to
implement in many real-world cases due to ethical issues or high costs (Deaton & Cartwright, 2018)).
For example, it would be unethical to subject an individual to a condition (e.g., smoking) if the condi-
tion may have potentially negative consequences. Therefore, many methods have been developed to
infer causal effects from observational data. Most of the methods assume no unobserved variables
affecting both the treatment and outcome, i.e., the unconfoundedness assumption (Imbens & Rubin,
2015)), and follow the back-door criterion (Pearl, 2009) to determine valid adjustment variable for
unbiased estimation.

A graphical view of the typical cases in causal effect estimation is shown in Fig.[I] A simple case that
satisfies the unconfoundedness assumption is illustrated in Fig. In this case, the causal effect can
be unbiasedly estimated by back-door adjustment (Pearl, 2009). Fig.[Ib] Fig.[Ic|and Fig.[Id|show
three cases where the unconfoundedness assumption is not satisfied. The IV (instrumental variable)
approach has been extensively studied and commonly used to deal with the case shown in Fig.
However, in practice, IV is not always available. In this case, if there exists a standard front-door
adjustment variable, e.g., Zspp as indicated in Fig. |1c| the standard front-door adjustment provides an
effective approach to dealing with unobserved confounding variables.

However, the requirement for a valid standard front door adjustment variable is too strict, which
hinders their practical application. In this paper, we aim to relax the requirement by considering
a more practical setting as shown in Fig. Different from the standard front-door adjustment
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Figure 1: Typical cases in causal effect estimation. 7" is the treatment; Y is the outcome; W is the
observed confounding variable; U is the unobserved confounding variable; IV is the instrumental
variable; Zgpp is the standard front-door adjustment variable; and Zcpp is the conditional front-door
adjustment variable

setting in Fig. we allow the interaction between observed confounding variable (1¥) and the
mediator (Zcpp), and we call Zcgp a conditional front-door (CFD) adjustment variable. This is a more
practical setting. For instance, referring to Fig.[Id, smoking (7") does not directly affect lung cancer
development (Y') but mediated through tar in lungs (Zcgp). For each patient, their other attributes
such as age (W) can directly affect smoking, tar in lungs and lung cancer development. In this case,
the standard front-door adjustment cannot be used since Zcpp is no longer a standard front-door
adjustment variable because it does not meet the standard front-door criterion (Definition EI), since,
there is an unblocked back-door path from 7' to Zcpp (1" < W — Zcpp), and a back-door path from
Zcrp t0 Y (Zcpp < W — Y) which is not blocked by 7.

Additionally, it is unrealistic to assume that users always know a CFD adjustment variable in advance
and thus it is desirable to find a CFD adjustment variable from observational data. In this paper, we
propose a novel method, CFDiVAE, which is based on the identifiable VAE technique (Khemakhem
et al., 2020) to learn the representation of a latent CFD variable from its proxy. We consider it is
practical to assume the existence of proxies of a CFD adjustment variable. For instance, in the above
example, the investigator may not observe tar in patients’ lungs but they may observe the proxy
variables, such as the results of patients’ follow-up sputum tests and urine tests.

This paper advances the theory and practical use of causal inference in the presence of unobserved
confounding variables through the following contributions:

* We address the challenge of estimating causal effects in the presence of unobserved confounding
variables using the front-door adjustment. We relax some of the restrictions of the standard front-
door adjustment by introducing conditional front-door (CFD) adjustment to enable more practical
use of front-door adjustment. We also develop the theorem that guarantees the causal effect
identifiability of CFD adjustment.

* We propose a novel method, CFDiVAE, that provides an effective data-driven method for deal-
ing with unobserved confounding variables in causal effect estimation. We further provide the
theoretical guarantee of the identifiability of the CFDiVAE.

* We evaluate the effectiveness of CFDiVAE on both synthetic and real-world datasets. Experiments
with synthetic datasets show that CFDiVAE outperforms existing methods. Furthermore, we apply
CFDiVAE to a real-world dataset to show the application scenarios and its potential.

2 PRELIMINARIES

We use a capital letter to represent a variable and a lowercase letter to represent its value. Due to page
limitation, we provide the definitions of directed acyclic graph (DAG), causal path, non-causal path,
markov condition, faithfulness, d-separation and d-connect in Appx.

This paper is focused on estimating the average treatment effect as defined below.

Definition 1 (Average Treatment Effect (ATE)). The average treatment effect of a treatment, denoted
as T, on the outcome of interest, denoted as Y, is defined as ATE = E(Y | do(T = 1)) — E(Y |
do(T = 0)), where do() is the do-operator and do(T = t) represents the manipulation of the
treatment by setting its value to t (Pearl, | 2009).

When the context is clear, we abbreviate do(T' = t) as do(t). In order to allow the above do()
expressions to be recovered from data, Pearl formally defined causal effect identifiability (Pearl,
2009) (p.77) and proposed two well-known identification conditions, the back-door criterion and
front-door criterion.
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Definition 2 (Back-Door Criterion (Pearl, 2009)). A set of variables Zgp satisfies the back-door
criterion relative to an ordered pair of variables (T,Y) in a DAG G if: (1) no node in Zgp is a
descendant of T'; and (2) Zgp blocks every path between T and 'Y that contains an arrow into T

A back-door path is a non-causal path from 7" to Y. They have been recognised as “back-door” paths
because they flow backwards out of T, i.e., a back-door path points into 7'

Theorem 1 (Back-Door Adjustment (Pearl, 2009)). If Zgp satisfies the back-door criterion relative
to (T,Y), then the causal effect of T on Y is identifiable and is given by the following back-door
adjustment formula (Pearl, | 2009)):

P(yldo(t)) = ZP(YJ | t, zp) P(28D)- 1
ZBD

Definition 3 (Front-Door Criterion (Pearl, [2009)). A set of variables Zsgp is said to satisfy the
(standard) front-door criterion relative to an ordered pair of variables (T,Y') in a DAG G if: (1)
Zsrp intercepts all directed paths from T to Y ; (2) there is no unblocked back-door path from T to
Zsrp, and (3) all back-door paths from Zsgp to Y are blocked by T.
Theorem 2 (Front-Door Adjustment (Pearl, |2009). If Zspp satisfies the (standard) front-door
criterion relative to (T,Y), then the causal effect of T on'Y is identifiable and is given by the
following standard front-door adjustment formula (Pearl, 2009):

P(yldo(t)) = Z P(y | t', zspp) P(t") P(zsep | ), )
ZsFD,t’

where t' is a distinct realisation of treatment.

3 CONDITIONAL FRONT-DOOR ADJUSTMENT

In this section, we present the definition of conditional front-door criterion and the theorem showing
that the average causal effect of treatment 7" on outcome Y is identifiable via conditional front-door
adjustment. The causal effect of T on Y is identifiable if the quantity p(y | do(t)) can be computed
uniquely from any positive probability of the observed variables (Pearl,2009). We formally define
the conditional front-door criterion as follows:

Definition 4 (Conditional Front-Door (CFD) Criterion). A set of variables Zcyp is said to satisfy
the conditional front-door criterion relative to an ordered pair of variables (T,Y ) in a DAG G if:
(1) Zcpp intercepts all directed paths from T to Y ; (2) there exists a set of variables W, called the
conditioning variables of Zcgp, such that all back-door paths from T to Zcgp are blocked by W ; and
(3) all back-door paths from Zcgp to Y are blocked by {T} UW.

Fig. [E provides an illustration of CFD criterion, where Zcpp satisfies the criterion, and W is the
conditioning variable of Zcpp. The following theorem provides the theoretical guarantee of the
identifiability of the causal effect of 7' on Y via CFD adjustment and gives the adjustment formula.
Theorem 3 (Conditional Front-Door (CFD) Adjustment). If Zcpp satisfies the CFD criterion relative
to (T,Y), the causal effect of T on'Y is identifiable and is given by the following CFD adjustment
formula:

P(yldo(t)) = > Py |t zcm, w)P(t' | w)P(zcrm | t,w)P(w), 3)

zcrp,w,t’

where t' is a distinct realisation of treatment.

Proof of the above theorem is provided in Appx.[B.I]

In practice, we often do not have a given CFD adjustment variable, hence in the next section, we
develop CFDiVAE to learn the representation of CFD adjustment variable using its proxies.

4 THE PROPOSED CFDIVAE METHOD

4.1 PROBLEM SETUP

We assume data is generated based on the DAG @G in Fig.[2] where T is the treatment variable, Y is
the outcome variable, U is the unobserved confounding variable, X1, ..., X,, are the proxy of Zcpp
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(n > 3), the latent CFD adjustment variable whose representation is to be learned and used for
CFD adjustment, and W7, ..., W, are the observed confounding variables and are the conditioning
variables of Zcpp (m > 1). When the context is clear we omit the subscript.

In our problem setting, we assume that the observed confounding w, - W, X, .. X
. . m 1 n

variable W and the proxy variable X are naturally separable. We

believe this assumption is easy to satisfy in practice since W is /

a pre-treatment variable (measured before treatment assignment)

while X is the proxy of the post-treatment variable, which is always T @ Y

collected after treatment assignment. For instance, with the example

in the Introduction, as previously mentioned, W can be a patient’s

age, and X can be the results of some follow-up tests after the

treatment has been applied, such as sputum and urine tests.

Figure 2: The DAG represent-
To clarify, the latent variable (i.e., Zcpp) refers to the variable that ing the data generation mecha-
is not measured, but its proxies (i.e., X1, ..., X, ) are measured. On nism assumed in this paper.
the other hand, the unobserved confounding variable (i.e., U) is

not measured and has no proxy. Latent variables and the existence of their proxies are commonly
assumed by data-driven causal inference methods (Louizos et al.,2017;|Zhang et al.,|2021;|Cheng
et al., |2022)) and it is a practical assumption. In addition to the previous example where follow-up
medical test results can be a proxy for tar in lungs, another example would be in the case when we
are not able to measure a person’s economic status, so a common solution is to rely on the proxy
variable such as postcode (Angrist & Pischkel 2009; Montgomery et al.| [2000).

The efficacy of our method is contingent upon the quality of the proxy for the CFD adjustment variable,
which is similar to most proxy based methods for causal inference. As discussed in (Goodman,|1974;
Kruskal, [1976;/Allman et al.| 2009), the model can be identified if the latent variable has at least three
independent proxies. [Miao et al.|(2018) build upon these assumptions, shifting the focus to causal
effect estimation, posit that the causal effect could still be identified using only two independent
proxies, even if the latent variable was not fully identified.

We summarise the problem setting as follows, including the assumptions made and the objective of
the paper.

Assumptions. There are always at least three independent proxy variables available for the latent
CFD adjustment variable; the noisy level of the proxy variables should be small; and the distribution
of the latent CFD adjustment variable should restrict to the exponential family distribution.

Objective. Given ajoint probability distribution P(X, W, T,Y') that is generated from the underlying
DAG in Fig. [Z]where U and Zcrp are not measured. Suppose that X = {X1,..., X} (n > 3) is the
proxy of the latent variable Zcyp and W = {W1, ..., Wy, } (m > 1) is the observed confounding
variable. The goal of CFDIVAE is to learn the representation of Zcgp.

For the simplicity of notation and without causing confusion, in the rest of the paper, we use Zcpp to
represent the learned representation of the latent variable Zcpp in Fig. [2] unless otherwise stated.

4.2 REPRESENTATION LEARNING

In this section, we introduce the details of CFDiVAE for learning Zcgp. CFDiVAE learns a full
generative model p(X, Zcpp | T, W) = p(X | Zcrp)p(Zerp | T, W) and an inference model
Q(ZCFD \ T7VI/7X)'

To guarantee the identifiability of CFDiVAE, we take T and W as additionally observed variables
to approximate the prior p(Zcgp | T, W) (Khemakhem et al., [2020). Following existing VAE-
based works in (Louizos et al., 2017; Zhang et al.,[2021; /Cheng et al.| 2022)), we assume the prior
p(Zcrp | T, W) follows the Gaussian distribution.

In the inference model, we design the encoder ¢(Zcgp | T, W, X) that serves as the variational

approximation of the posterior over the target representation, and the variational approximation of
. D . . .

the posterior is defined as, ¢(Zcrp | T, W, X) = [, 25 N (1 = fize, 0% = O'%CFDJ_ ), where fiz..,

and 67__ are the means and variances of the Gaussian distributions parameterised by the neural
networks for Zcgp.
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The generative model for X is defined as, p(X | Zcpp) = Hf:xl N(X; | p=jx;,0 og( ),
where fix;, = g(Zcrp,); &}j = 9(Zcrp, ), Dx is the dimension of X, and g(-) is a neural net-
work parameterised by its own parameters.

Then the evidence lower bound (ELBO) for the above inference and generative models is as follows:
Mcrpivae = Eqlogp(X | Zcep)] — Dxulg(Zerp | T, W, X) || p(Zcrp | T, W), 4)

where Dk [||-] is a KL divergence term.

4.3 MODEL IDENTIFIABILITY ANALYSIS

In this section, we provide the identifiability analysis of CFDiVAE. CFDiVAE is identifiable if the
following implication holds.

V(0,0") : po(X, Zepp | T, W) = po: (X, Zcpp | T,W) = 0 = 6’ (5)
Let 6 = (f, S, A) be the parameters of the following conditional generative model:
pe(X, Zcvp | T, W) = pe(X | Zcrp)ps.a(Zerp | T, W), (6)
and we define:
pe(X | Zerp) = pe(X — f(Zcrp))- @)

This means that the value of X can be decomposed as X = f(Zcpp) + £, where € is an independent
noise variable with probability density function p. (&). However, our method also applies to non-noisy
proxy variable and in this case X = f(Zcpp).

The function f in Eq.[7|is injective and the e should be small. For the prior ps x(Zcrp | T, W), we
have the following assumption, i.e., conditionally factorial, where each element of Zcpp restricts to
an exponential family distribution given 1" and W

The probability density function is given by:

Dzerp

Z Qi(Zcrpi)
psa(Zerp | T, W) H QZ CFD

MF

,] ZCFDz 1](T? W) ) (8)

where @; is the base measure, Z;(T, W) is the normalising constant and S; = (5; 1, ...,.5; ;) are
sufficient statistics and X(T, W) = (A 1 (T, W), ..., \i (T, W)) are the corresponding parameters
depending on T" and W, and k is the d1mens1on of each sufficient statistic.

Following the work in (Khemakhem et al., 2020), let X € R¢ and Zcpp € R™ (n < d), we have the
following theorem about the identifiability of CFDiVAE.

Theorem 4. Assume that the observational data are generated according to Eq. [6}Eq. [8 with
parameters @ = (f,S,\) and the following hold: (1) The function f in Eq. [7] is injective. (2)
The set {X € X | cpf( ) = 0} has measure zero, where . is the characteristic function of
the density p. defined in Eq. [?] (3) The sufficient statistics S; ; in Eq. are differentiable almost
everywhere, and (S; j)1<j<k are linearly independent on any subset of X of measure greater
than zero. (4) There exists nk + 1 distinct points (T, W )o, ..., (T, W)ny such that the matrix
L= (M\T1,W1) = X(To, W), eoe, XN(Trate, Wiie) — X(To, Wy)) of size nk x nk is invertible. Then
the parameters 8 = (f,S, \) are ~ a-identifiable.

This theorem guarantees the identifiability of the generative model in Eq.[6] Proof of the theorem is
provided in Appx.[B.2]and more related definitions are available in Appx. We also provide an
analysis in Appx.[B.3|to show the validity of the learned (transformed) CFD adjustment variable.

5 ATE ESTIMATION

After learning Zcpp, we can obtain unbiased estimation of the ATE by using the CFD adjustment.
Due to the page limit, we show how this is done with discrete data in Algorithm[I]in Appx.[C] For
continuous data, the methods would vary depending on the data generation models. We provide
the basic solution for data generation under a linear model in Appx.[C| For data generated under a
nonlinear model, we will explore this as a future work.
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6 EXPERIMENTS

In this section, we first demonstrate the correctness of representation learning. Then, we compare the
performance of CFDiVAE with the benchmark methods for estimating causal effects and validate that
CFDiVAE can unbiasedly estimate the causal effects and its performance is not sensitive to the change
of the causal strength of the unobserved confounding variable. We also show its feasibility when the
dimension of the learned representation is mismatched with the dimension of the ground truth CFD
adjustment variable. Finally, we apply CFDiVAE to a real-world dataset and demonstrate its potential
application. We also provide an additional experiment on the analysis of model identifiability in
Appx.[D.3] The source code is available in the Supplementary Material.

6.1 EXPERIMENT SETUP Table 1: Methods for comparison.

We compare CFDiVAE with a number of benchmark meth- Name Open-Source

ods,. including traditional and VAE based causal effect esti- LineaDRL oo o 1508  Boo]
mation methods. Note that all those methods are based onthe  CausalForest (Wager & Athey|[2018)  [EconML

back-door adjustment. FindFDSet and ListFDSets (Jeong };(({eleRT? I((/ﬁlh? et allfgllg)) Emm}:
5 .. . . earner unzel et al.} con

et al.} 2022 Wienobst et al., 2022) are used in the experi-  goneIpML (Nie & Wager2021)  EconML

ments since they are front-door adjustment based methods. CEVAE (Louizos et aL[[2017) GitHub

FindFDSet aims to find the standard front-door adjustment TEDVAE {Zhang et al} 202 1) GitHub

. . . . . . . FindFDSet (Jeong et al.|[2022) GitHub

variable in a given DAG, while ListFDSets is an extension ListFDSets (Jeong ot al, [2033) GitHub

and it can enumerate the standard front-door adjustment sets.

The implementations of CEVAE and TEDVAE are retrieved from the authors’ GitHub, the imple-
mentations of other methods are from EconML (Keith Battocchil 2019), and the implementations of
FindFDSet and FindFDSet are retrieved from the authors’ GitHub as shown in Table[Il A detailed
description of the comparison methods is shown in Appx.[D.T]

For evaluating the performance of CFDiVAE and the benchmark methods, we use the Estimation
Bias |(8 — 8)/8] x 100% as the metric, where {3 is the estimated ATE and $ is the ground truth.

The evaluation of estimated causal effects with un- N= 10k
observed confounding variables relies on synthetic

datasets since no ground truth causal effects available 0.3

for real-world datasets (Louizos et al.,|[2017; Zhang

et al.} 2021} |Cheng et al., 2022)). Synthetic datasets 0.2 1

used in the evaluation are generated based on the

causal graph (mechanism) shown in Fig 2] More 011 —
details on data generation are provided in the Sup- 00 — Growd Tt

plementary Material. To avoid the bias brought by . . .
the data generation process, we repeatedly generate 2 0 2
30 datasets with a range of sample sizes (denoted Figure 3: Probability Density Functions of the
as N), including 0.5k, 1k, 2k, 4k, 6k, 8k, 10k and  ground truth and the learned representation,
20k. For each method, we report the average (mean) where the horizontal axis represents the value
estimation bias over the 30 datasets, together with the and the vertical axis represents the density.
standard deviation.

6.2 CORRECTNESS OF THE LEARNED REPRESENTATION

In this section, we conduct experiments to validate the correctness of the learned representation.
Since we use synthetic datasets, we know the ground truth of the CFD adjustment variable. To
evaluate the correctness of the representations learned by CFDiVAE, we compare the probability
distribution of the learned representation against the distribution of the corresponding ground truth
CFD adjustment variable. Due to the page limit, we only show the result of N=10k. As shown in
Fig.[3] the distribution of the learned representation is close to the distribution of the ground truth,
which indicates that CFDiVAE can learn accurate representation of the CFD adjustment variable.
More results are reported in Appx.


https://econml.azurewebsites.net/_autosummary/econml.dml.LinearDML.html
https://econml.azurewebsites.net/_autosummary/econml.dml.CausalForestDML.html
https://econml.azurewebsites.net/_autosummary/econml.dr.ForestDRLearner.html
https://econml.azurewebsites.net/_autosummary/econml.metalearners.XLearner.html
https://econml.azurewebsites.net/_autosummary/econml.dml.KernelDML.html
https://github.com/AMLab-Amsterdam/CEVAE
https://github.com/WeijiaZhang24/TEDVAE
https://github.com/CausalAILab/FrontdoorAdjustmentSets
https://github.com/CausalAILab/FrontdoorAdjustmentSets
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Table 2: The estimation bias (%) of CFDiVAE and comparison methods under different N values.

0.5k 1k 2k 4k 6k 8k 10k 20k

LinearDRL  21.90+5.13 21.56+3.82 21.47+3.28 21.82+2.08 21.59+1.78 21.88+1.41 21.89+1.31 21.38+0.90
CausalForest 21.87+£5.55 21.33+4.28 21.39+3.62 21.85+198 21.63+1.80 21.88+1.33 21.94+123 21.36+0.99
ForestDRL ~ 21.90 +4.95 21.58+3.69 21.36+3.38 21.79+2.04 21.54+1.80 21.88+1.38 21.89+1.28 21.41+0.89

XLearn 21.92+5.14 21.65+355 21.35+£3.36 21.83+£2.04 21.59+1.78 21.86+1.39 21.88+1.30 21.39+0.90
KerneIDML  19.57 £5.38 19.63+3.83  19.79+3.56 20.38+2.04 20.24+1.75 20.59+1.39 20.64+1.25 20.27+0.94

CEVAE 102.63 £2.83 104.31+7.82 101.42+20.50 31.05+4.95 26.93+5.04 23.97+6.05 21.29+6.81 28.83+4.72
TEDVAE 9891 %1737 70.73+1694 26.67+3.58 24.63+£2.28 22.84+1.85 22.67+1.61 22.63+1.23 21.84+0.98

FindFDSet  15.79+896 16.15+7.77 1633+£6.10 1658 +3.11 15.64+240 1644+236 1649+2.65 16.53+1.63
ListFDSet  15.79+8.82 1597+7.72 1620+6.10 1643 +3.10 1552+242 1631+232 1636+2.60 16.39+1.60

CFDiVAE  86.29 £6.21 39.72+31.47 8.87+10.68 4.57+3.03 258+196 232+147 297+£2.09 2.14+3.38

6.3 PERFORMANCE OF ATE ESTIMATION

In this section, we evaluate the performance of CFDiVAE in estimating the ATE compared with
benchmark methods. As demonstrated in Table |2, CFDiVAE outperforms all other comparison
methods when the sample size is 2k or larger. This outcome is anticipated. All traditional and
VAE-based comparison methods employ back-door adjustment to estimate ATE, utilizing W as
the back-door adjustment variable. The estimation bias for comparison methods arises from the
unobserved confounding variable U. To achieve unbiased estimation based on back-door adjustment,
all back-door paths between 7" and Y must be blocked, which is unattainable due to the unobservable
nature of U. Our proposed method, CFDiVAE, avoids the limitations of back-door adjustment.

For this set of experiments, the PC algorithm implemented in the causal discovery toolbox
TETRAD (Ramsey et al.l 2018)) is used to generate DAGs as inputs for FindFDSet and ListFD-
Sets. These two methods achieve better performance compared to back-door adjustment methods.
However, there is still some bias resulting from causal structure learning and errors introduced by
proxy variables. We note that our method performs well only when the sample size is sufficiently
large, which is also observed in other VAE methods.

6.4 IMPACT OF THE CAUSAL STRENGTH OF UNOBSERVED CONFOUNDING VARIABLE

We also conduct experiments to verify the effectiveness of CFDiVAE with respect to different causal
strengths of the unobserved confounding variable. For this set of experiments, the causal strength is
varied by adjusting the coefficient of the path U — Y. The sample size for this experiment is fixed at
10k. We multiply a scaling factor to the coefficient (i.e., Sy,y) to realise the different causal strength
levels of the unobserved confounding variable. For example, 0.0 means that there is no unobserved
confounding variable, and 2.0 means that the coefficient doubles the original value. The range of the
scaling factor is set as [0.0, 2.0] and the step increment is set as 0.2.

The results are shown in Fig. 4l When the causal strength is zero, i.e., no unobserved confounding
variable, the back-door adjustment based comparison methods each achieve their own best perfor-
mance since in this case, all confounding variables are observed and their performance is solely
determined by their capabilities in correctly identifying or learning the correct back-door adjustment
variable. With the increase of causal strength, there is a clear downward trend in the performance
of the back-door adjustment based comparison methods, indicating that the back-door adjustment
cannot handle unobserved confounding variables. In contrast, the front-door based methods retain an
unchanged trend in estimation performance. CFDiVAE achieves and maintains an estimation bias of
around 3%. The result is expected as CFDiVAE is based on the CFD adjustment, which can cope
with unobserved confounding variables.

6.5 SENSITIVITY TO REPRESENTATION DIMENSION

In real-world applications, it is a common situation that the dimension set for the representation
does not match the dimension of the ground truth CFD adjustment variable. In this section, we
analyse the sensitivity of CFDiVAE to the representation dimension. In the following, Dy represents
the dimension of the learned representation, Dy represents the dimension of the ground truth CFD
adjustment variable, and Dx represents the dimension of the proxy variable. We apply CFDiVAE
with various dimension settings, i.e., Dr € {2,4,8}. The results are shown in Table We see that
CFDiVAE achieves its best performance in most sample sizes when Dy = Dy, which is similar to
the observation shown in (Wu & Fukumizu, [2022). When Dy # Dy and Dy # Dy, the performance
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Figure 4: Results with different scaling factor, where the horizontal axis represents the scaling factor
and the vertical axis represents the estimation bias (%).

Table 3: The estimation bias (%) of CFDiVAE to dimension mismatch on different N values. The
best results are shown in boldface.

Dy-Dr-Dx 0.5k 1k 2k 4k 6k 8k 10k 20k

1-2-4 8231+883 11.99+598 10.7+17.07 9.52+3.08 9.54+234 986+2.54 1035+425 9.88+1.36
2-2-4 78.16+4.99 12.85+1096 6.90 +5.88 883+£6.02 594+422 546+3.62 537+6.82 4.16+890
4-2-4 76.69 +4.44 23.21+1538 1231+1933 798+6.98 5.73+545 745+3.36 3.90+4.87 1.77+1.08

1-4-8 79.94 +898 22.12+18.63 12.09+4.62 13.73+3.58 14.24+3.43 15.07+£2.86 14.33+£2.64 14.83+£1.74
2-4-8 7431+690 1638+8.40 9.49+502 1154+375 9.84+315 8.19+486 843+6.85 6.10+1.83
4-4-8 7316570 19.04+11.12 12.89+16.47 990+5.15 874+569 678+£392 450+2.70 4.45+1.75
8-4-8 69.66 £8.20 31.97+12.11 3896+12.17 11.73+4.09 8.05+6.67 6.07+3.75 4.42+246 4.44+2.00

1-8-16 7538 £12.60 27.92+22.61 1586+6.77 1446+17.05 15.18+4.85 16.62+3.73 16.64+3.34 17.65+2.29
4-8-16 7233 +11.25 19.45+13.21 12.89+10.46 11.71+12.01 1228 +5.88 1036+537 9.26+5.88 7.47+3.04
8-8-16 6395+ 11.41 27.47+£1396 29.00+26.66 11.01+11.10 10.00+7.61 9.00+6.27 6.69+429 742+3.14
16-8-16 56.84 +11.64 22.67+12.68 17.15+19.49 10.60+9.62 7.86+6.56 8.28+575 6.23+4.15 5.30+2.99

of CFDiVAE can also maintain at an acceptable level. In all cases, the performance of CFDiVAE is
superior to the comparison methods (Appx. [D.4] shows more results). Hence, when the dimension of
the ground truth CFD adjustment variable is not accessible, we can safely set D, = Dx.

6.6 CASE STUDY ON A REAL-WORLD DATASET

In this section, we apply CFDiVAE to detect discrimination on the real-world dataset, Adult. The
dataset is retrieved from the UCI repository (Dua & Graff, 2017) and it contains 11 attributes about
personal, educational and economic information for 48842 individuals. We use the sensitive attribute
sex as T, income as Y, and age, race and native_country as W.

With causality-based discrimination detection, we consider that there is direct discrimination if the
sensitive attribute has a large enough direct causal effect on the outcome (above a given threshold 7),
and there is indirect discrimination if the sensitive attribute has a large enough indirect causal effect
on the outcome and the mediator is also a sensitive attribute (Zhang et al.,[2018).

Following the causal network in Fig. [7in Appx.[D.3] the green path represents the direct path
from sex to income, and the blue paths represent the indirect paths passing through marital_status.
The discrimination threshold 7 is set as 0.05. By computing the path-specific effects,
estimated that direct effect = 0.025 and indirect effect = 0.175, which indicated no direct
discrimination but significant indirect discrimination.

We aim to estimate the causal effect of sex on income using representation learning and conditional
front-door adjustment. We simplify the causal network (Fig. [7in Appx.[D.3) to fit our method with a
latent stereotype as shown in Fig. [§]in Appx.[D.3] The discrimination is not a direct result of sex,
but a direct result of the stereotype. We assume the proxy of the stereotype is accessible, and they
are marital_status, relationships, edu_level, hours_per_week, occupation, workclass, in this example.
Stereotype is not a standard front-door adjustment variable because the causal path from stereotype
to income is not blocked by sex. However, the stereotype is a CFD adjustment variable, since there
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are no back-door paths from sex to stereotype and all back-door paths from stereotype to income
are blocked by age, race and native_country (adding sex into this adjustment set will not invalidate
the result). By using CFDiVAE, we obtain that ATE = 0.176, which is consistent with the previous
estimate (0.175). The direct effect is ignored since it is very small.

7 RELATED WORK

Over the past few decades, researchers have proposed many methods for estimating causal effects
from observational data. These methods generally fall into three categories: methods based on
back-door adjustment, instrumental variables (IVs) and front-door adjustment, respectively.

Methods based on back-door adjustment are the most widely used, and most of these methods need to
assume that all confounding variables are observed. For example, several tree-based methods (Athey
& Imbens| [2016; |Su et al., [2009; |[Zhang et al.| 2017b) have been designed to estimate causal effects
by designing specific splitting criteria; meta-learning (Kiinzel et al.,2019)) has also been proposed to
utilise existing machine learning algorithms for causal effect estimation. Recently, methods using
deep learning techniques to predict causal effects have received widespread attention. For example,
CEVAE (Louizos et al.,|2017) combines representation learning and VAE to estimate causal effects;
TEDVAE (Zhang et al., 2021)) improves on CEVAE and decouples the learned representations to
achieve more accurate estimation; 3-Intact-VAE (Wu & Fukumizul [2022)) is based on the identifiable
VAE technique which models a prognostic score with a latent variable to identify and estimate
individualised treatment effects in situations of limited overlap.

Methods based on I'Vs have also received a lot of attention. Most IV based methods require users
to nominate a valid IV, such as the generalised method of moments (GMM) (Bennett et al.,[2019),
kernel-IV regression (Singh et al., [2019) and deep learning based method (Hartford et al., [2017)).
When there are no nominated I'Vs in the data, some data-driven methods are developed to find (Yuan
et al.,|2022) or synthesise (Burgess & Thompson), 2013; |Kuang et al.,2020) an IV or eliminate the
influence of invalid IVs by using statistical strategies (Guo et al., 2018} |Hartford et al.l 2021}

Front-door adjustment approach is rarely studied in the literature. There are only a few methods for
finding appropriate adjustment sets by following the standard front-door criterion (Jeong et al., [2022;
Wienobst et al.|[2022). These methods require a given DAG and aim to find and enumerate possible
standard front-door adjustment variables in the DAG.

The methods based on back-door adjustment cannot handle unobserved confounding variables. IV
based methods can cope with unobserved confounding variables, but the availability of known IVs
is itself a strong assumption. Existing front-door adjustment methods are restricted to the standard
front-door adjustment variable. We relax the restriction of standard front-door adjustment and
develop CFDiVAE to learn a CFD adjustment variable for unbiased ATE estimation in the presence
of unobserved confounding variables.

8 CONCLUSION

Summary of Contributions. In this work, we proposed the conditional front-door adjustment, which
is less restrictive than the standard front-door adjustment and proved that the average causal effect is
identifiable via the proposed conditional front-door adjustment. Our proposed method CFDiVAE
leverages the identifiable VAE technique to learn the representation of the conditional front-door
adjustment variable from data directly, and we have shown that the identifiability of the learned
representation is theoretically guaranteed. Extensive experiments have demonstrated that CFDiVAE
outperforms the benchmark methods. We have also shown that CFDiVAE is insensitive to the causal
strength of the unobserved confounding variable. Furthermore, the case study has suggested the
potential of CFDiVAE for real-world applications.

Limitations & Future Works. The efficacy of the CFD adjustment and the CFDiVAE method rely
on a set of assumptions. We acknowledge that such assumptions may not hold in some scenarios.
Notably, the robustness of CFDiVAE is largely dependent on the availability of a substantial sample
size. Presently, our solution is only for continuous data within linear models and discrete data. In the
future, our endeavors will be directed toward relaxing these assumptions. Additionally, we aim to
evolve the CFD adjustment technique for application to continuous data with nonlinear models.



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We wish to acknowledge the support from the Australian Research Council Discovery Project
200101210. Ziqi Xu is supported by the University Presidents Scholarship (UPS) of the University of
South Australia. Kui Yu is supported by the National Natural Science Foundation of China under
Grant 62376087. We are grateful for the valuable feedback provided by all anonymous reviewers.

REFERENCES

Elizabeth S Allman, Catherine Matias, and John A Rhodes. Identifiability of parameters in latent
structure models with many observed variables. 2009.

Joshua D Angrist and Jorn-Steffen Pischke. Mostly harmless econometrics: An empiricist’s compan-
ion. Princeton university press, 2009.

Susan Athey. Beyond prediction: Using big data for policy problems. Science, 355(6324):483-485,
2017.

Susan Athey and Guido Imbens. Recursive partitioning for heterogeneous causal effects. Proceedings
of the National Academy of Sciences, 113(27):7353-7360, 2016.

Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of Statistics,
47(2):1148-1178, 2019.

lain Barr. Causal inference with python part 3 - frontdoor adjustment, Sep
2018. URL |http://www.degeneratestate.org/posts/2018/Sep/03/
causal—-inference-with-python-part-3-frontdoor—adjustment/.

Andrew Bennett, Nathan Kallus, and Tobias Schnabel. Deep generalized method of moments for
instrumental variable analysis. In Advances in Neural Information Processing Systems 32, NIPS,
pp- 3559-3569, 2019.

Eli Bingham, Jonathan P Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan, Theofanis
Karaletsos, Rohit Singh, Paul Szerlip, Paul Horsfall, and Noah D Goodman. Pyro: Deep universal
probabilistic programming. The Journal of Machine Learning Research, 20(1):973-978, 2019.

Stephen Burgess and Simon G Thompson. Use of allele scores as instrumental variables for mendelian
randomization. International Journal of Epidemiology, 42(4):1134-1144, 2013.

Lu Cheng, Ruocheng Guo, and Huan Liu. Causal mediation analysis with hidden confounders. In The
Fifteenth ACM International Conference on Web Search and Data Mining, WSDM, pp. 113-122,
2022.

Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whit-
ney Newey, and James Robins. Double/debiased machine learning for treatment and structural
parameters: Double/debiased machine learning. The Econometrics Journal, 21(1), 2018.

Angus Deaton and Nancy Cartwright. Understanding and misunderstanding randomized controlled
trials. Social Science & Medicine, 210:2-21, 2018.

Dheeru Dua and Casey Graff. UCI machine learning repository, 2017. URL http://archive,
ics.uci.edu/mll

Ronald Aylmer Fisher. Design of experiments. British Medical Journal, 1(3923):554, 1936.

Leo A Goodman. Exploratory latent structure analysis using both identifiable and unidentifiable
models. Biometrika, 61(2):215-231, 1974.

Zijian Guo, Hyunseung Kang, T Tony Cai, and Dylan S Small. Confidence intervals for causal effects

with invalid instruments by using two-stage hard thresholding with voting. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 80(4):793-815, 2018.

10


http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-python-part-3-frontdoor-adjustment/
http://www.degeneratestate.org/posts/2018/Sep/03/causal-inference-with-python-part-3-frontdoor-adjustment/
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Published as a conference paper at ICLR 2024

Jason Hartford, Greg Lewis, Kevin Leyton-Brown, and Matt Taddy. Deep I'V: A flexible approach
for counterfactual prediction. In Proceedings of the 34th International Conference on Machine
Learning, ICML, pp. 1414-1423, 2017.

Jason S Hartford, Victor Veitch, Dhanya Sridhar, and Kevin Leyton-Brown. Valid causal inference
with (some) invalid instruments. In Proceedings of the 38th International Conference on Machine
Learning, ICML, pp. 4096-4106, 2021.

Guido W Imbens and Donald B Rubin. Causal Inference in Statistics, Social, and Biomedical
Sciences. Cambridge University Press, 2015.

Hyunchai Jeong, Jin Tian, and Elias Bareinboim. Finding and listing front-door adjustment sets.
arXiv preprint arXiv:2210.05816, 2022.

Maggie Hei Greg Lewis Paul Oka Miruna Oprescu Vasilis Syrgkanis Keith Battocchi, Eleanor Dil-
lon. EconML: A Python Package for ML-Based Heterogeneous Treatment Effects Estimation.
https://github.com/microsoft/EconML, 2019. Version 0.13.

Ilyes Khemakhem, Diederik P. Kingma, Ricardo Pio Monti, and Aapo Hyvirinen. Variational
autoencoders and nonlinear ICA: A unifying framework. In The 23rd International Conference on
Artificial Intelligence and Statistics, AISTATS 2020, pp. 2207-2217, 2020.

Joseph B Kruskal. More factors than subjects, tests and treatments: an indeterminacy theorem for
canonical decomposition and individual differences scaling. Psychometrika, 41:281-293, 1976.

Zhaobin Kuang, Frederic Sala, Nimit Sohoni, Sen Wu, Aldo Cérdova-Palomera, Jared Dunnmon,
James Priest, and Christopher Ré. Ivy: Instrumental variable synthesis for causal inference. In
The 23rd International Conference on Artificial Intelligence and Statistics, AISTATS, pp. 398—410,
2020.

Soren R Kiinzel, Jasjeet S Sekhon, Peter J Bickel, and Bin Yu. Metalearners for estimating heteroge-
neous treatment effects using machine learning. Proceedings of the National Academy of Sciences,
116(10):4156-4165, 2019.

Christos Louizos, Uri Shalit, Joris M. Mooij, David A. Sontag, Richard S. Zemel, and Max Welling.
Causal effect inference with deep latent-variable models. In Advances in Neural Information
Processing Systems 30, NIPS, pp. 6446—6456, 2017.

Wang Miao, Zhi Geng, and Eric J Tchetgen Tchetgen. Identifying causal effects with proxy variables
of an unmeasured confounder. Biometrika, 105(4):987-993, 2018.

Mark R Montgomery, Michele Gragnolati, Kathleen A Burke, and Edmundo Paredes. Measuring
living standards with proxy variables. Demography, 37(2):155-174, 2000.

Xinkun Nie and Stefan Wager. Quasi-oracle estimation of heterogeneous treatment effects. Biometrika,
108(2):299-319, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, NIPS, pp. 8024-8035,
2019.

Judea Pearl. Causality. Cambridge university press, 2009.

Maya L Petersen and Mark J van der Laan. Causal models and learning from data: Integrating causal
modeling and statistical estimation. Epidemiology (Cambridge, Mass.), 25(3):418, 2014.

R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical
Computing, Vienna, Austria, 2021. URL https://www.R-project.org/.

Joseph D Ramsey, Kun Zhang, Madelyn Glymour, Ruben Sanchez Romero, Biwei Huang, Imme
Ebert-Uphoff, Savini Samarasinghe, Elizabeth A Barnes, and Clark Glymour. Tetrad—a toolbox
for causal discovery. In 8th international workshop on climate informatics, pp. 29, 2018.

11


https://www.R-project.org/

Published as a conference paper at ICLR 2024

Rahul Singh, Maneesh Sahani, and Arthur Gretton. Kernel instrumental variable regression. In
Advances in Neural Information Processing Systems 32, NIPS, pp. 4595-4607, 2019.

Peter Spirtes, Clark N Glymour, Richard Scheines, and David Heckerman. Causation, Prediction,
and Search. MIT press, 2000.

Xiaogang Su, Chih-Ling Tsai, Hansheng Wang, David M Nickerson, and Bogong Li. Subgroup
analysis via recursive partitioning. Journal of Machine Learning Research, 10(2), 2009.

Eric J Tchetgen Tchetgen and Ilya Shpitser. Semiparametric theory for causal mediation analysis:
efficiency bounds, multiple robustness, and sensitivity analysis. Annals of statistics, 40(3):1816,
2012.

Ha Xuan Tran, Thuc Duy Le, Jiuyong Li, Lin Liu, Jixue Liu, Yanchang Zhao, and Tony Waters.
What is the most effective intervention to increase job retention for this disabled worker? In
Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
KDD, pp. 3981-3991, 2022.

Guido Van Rossum and Fred L Drake Jr. Python reference manual. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Stefan Wager and Susan Athey. Estimation and inference of heterogeneous treatment effects using
random forests. Journal of the American Statistical Association, 113(523):1228-1242, 2018.

Marcel Wienobst, Benito van der Zander, and Maciej Liskiewicz. Finding front-door adjustment sets
in linear time. arXiv preprint arXiv:2211.16468, 2022.

Pengzhou Abel Wu and Kenji Fukumizu. beta-intact-vae: Identifying and estimating causal effects
under limited overlap. In 10th International Conference on Learning Representations, ICLR, 2022.

Junkun Yuan, Anpeng Wu, Kun Kuang, Bo Li, Runze Wu, Fei Wu, and Lanfen Lin. Auto iv:
Counterfactual prediction via automatic instrumental variable decomposition. ACM Transactions
on Knowledge Discovery from Data (TKDD), 16(4):1-20, 2022.

Lu Zhang, Yongkai Wu, and Xintao Wu. A causal framework for discovering and removing direct
and indirect discrimination. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI 2017, pp. 3929-3935, 2017a.

Lu Zhang, Yongkai Wu, and Xintao Wu. Causal modeling-based discrimination discovery and
removal: criteria, bounds, and algorithms. IEEE Transactions on Knowledge and Data Engineering,
31(11):2035-2050, 2018.

Weijia Zhang, Thuc Duy Le, Lin Liu, Zhi-Hua Zhou, and Jiuyong Li. Mining heterogeneous causal
effects for personalized cancer treatment. Bioinformatics, 33(15):2372-2378, 2017b.

Weijia Zhang, Lin Liu, and Jiuyong Li. Treatment effect estimation with disentangled latent factors.
In Thirty-Fifth AAAI Conference on Artificial Intelligence, AAAI pp. 10923-10930, 2021.

12



Published as a conference paper at ICLR 2024

A BACKGROUND

A.1 CAUSALITY

Let G = (V, E) be a directed acyclic graph (DAG), where V is the set of nodes and E is the set of
edges between the nodes. A path 7 between nodes V; and V,, comprises a sequence of distinct nodes
< Vi,...,V, > with every pair of successive nodes being adjacent. A node V' lies on the path 7 if
V belongs to the sequence < V7,...,V,, >.

A path 7 is causal if all edges along it are all in the same direction such as V; — ... — V,,. A path
that is not causal is referred to as a non-causal path.

Assumption 1 (Markov Condition (Pearl, [2009)). Given a DAG G = (V,E) and P(V), the joint
probability distribution of V, G satisfies the Markov Condition if VV; € 'V, V; is probabilistically
independent of all of its non-descendants, given Pa(V;), the set of all parent nodes of V;.

Assumption 2 (Faithfulness (Spirtes et al., 2000)). A DAG G = (V, E) is faithful to P(V) iff every
conditional independence present in P(V ) is entailed by G and satisfies the Markov Condition. P(V)
is faithful to G iff there exists G which is faithful to P(V).

When the Markov condition and faithfulness assumption are satisfied, we can use d-separation to
read the conditional independence between variables entailed in the DAG G.

Definition 5 (d-separation (Pearl, 2009)). A path  in a DAG is said to be d-separated (or blocked) by
a set of nodes Z iff (1) the path m contains a chain V; — Vi, — Vj or a fork V; < Vi, — V; such that
the middle node Vy, is in Z, or (2) the path 7 contains an inverted fork (or collider) V; — Vi, < V;
such that Vy, is not in Z and no descendant of Vi, is in Z.

Let G = (V,E) be a DAG, and P(V) is the probability distribution over V. In the DAG G, a set of
nodes Z is said to d-separate V; and V; if and only if Z blocks every path between V; to V;; otherwise,
a set of nodes Z is said to d-connect V; and V;. When the Markov Condition and Faithfulness
assumption are satisfied by G and P(V'), (V; ALV} | Z) if Z d-separates V; and V}, and (V; LV} | Z)
if Z d-connects V; and V.

Theorem 5 (Rules of do-Calculus (Pearl, [2009)). Let G be the DAG associated with a causal model,
and let P(-) stand for the probability distribution induced by that model. For any disjoint subsets of
variables T, Y, Z, and W, we have the following rules.

Rule 1. (Insertion/deletion of observations):
P(y | do(t),z,w) = P(y | do(t),w), if Y IL Z | T, W) in G5.
Rule 2. (Action/observation exchange):
P(y | do(t),do(z),w) = P(y | do(t), z,w), if Y L Z | T, W) in G5z
Rule 3. (Insertion/deletion of actions):
P(y | do(t),do(z),w) = P(y | do(t),w), if Y L Z | T, W) in 9% zow) »

where Z (W) is the nodes in Z that are not ancestors of any node in W in G

A.2 MODEL IDENTIFIABILITY

We define two equivalence relations on the set of parameters ©.

Definition 6. Let ~ be the equivalence relation on © defined as follows:

(£,S,A) ~a (£,S,A)

-~ 9
JA,c | S(f(z)) = AS(f'(z)) +¢,Vx € X, ©

where (f, S, X) are the parameters obtained from some learning algorithm that perfectly approximates
the marginal distribution of the observations, A is an invertible nk x nk matrix, ¢ is a vector, and X
is the domain of X.
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B PROOFS

B.1 PROOF OF THEOREM

Proof. We compute P(y | do(t)) by using Theorem [5|under the DAG G in Fig.[2] Fig.[5|shows the
subgraphs that are needed for the derivations in the following.

P(y | do(t)) can be expanded as:
P(y | do(t)) = P(zcrp | do(t))P(y | zcrp, do(t)) (10)

ZCFD

We first compute P(y | zcrp, do(t )) which can be expanded as follow:
P(y | zcrp, do(?) ZP y | do(t), zcrp, w) P(w | do(t), zcrp) (11

The first part: P(y | do(t), zcrp, w) = P(y | do(t), do(zcrp), w),
since (Y 1L Zcpp | T, W) in G, (Rule 2 in Theorem 3))

P(y | do(t),do(zcrp), w) = P(y | do(Zcrp), w),
since (Y AL T | Zcpp, W) in chm ) (Rule 3 in Theorem[5)

P(y | do(zcrp), w ZP (y | do(zcrp), t',w)P(t' | do(zcrp), w)

P(y | do(zcrp),t',w) = P(y | zcrp, t' w),

since (Y 1L Zcpp | T, W) in Gz, (Rule 2 in Theorem [3))

P(t'"| do(zcrp),w) = P(t' | w),
since (T 1L Zcpp | W) in G ey (Rule 3 in Theorem 3))
P(y | do(t), zcep, w ZP | t', 2crp, w) P(t' | w) (12)
The second part: P(’U) | dO )»ZCFD) = ]D(’LU7 ZCFD | dO( ))/P(ZCFD | dO(t))
P(w, zcpp | do(t)) = P(zcrp | t, w)P(w)

P(ZCFD | t, w)P(w)

P(w | do(t), zrp) = Plecrn | do(0)) (13)
Thus, P(y | zcrp, do(t) ;P y |, zer, w) Pt | w) L gi;}':[ 1:1)0)(1; ;;") (14)
We take Eq. |E|int0 Eq.[T0]and get,
P | d0(0) = 3 Pleco | d0(0) 32 Ply | oz ) P ) ZEE22 S
S Plecrn | do(t)Ply | £, zcrm,w) P(# | w) Lec L Lw)Plw) )

P(ZC]:D | dO(t))

2cFp,w,t!
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Figure 5: Subgraphs of G used in the derivation of causal effects.

Finally, we get,

P(y | do(t Z Py | t, zcrp, w)P(t' | w)P(2cpp | t,w)P(w) (16)
ZCFD, W, t’
where t' is a distinct realisation of treatment. O

B.2 PROOF OF THEOREM

Our proof is based on the proof of Theorem 1 in (Khemakhem et al.| 2020).

Proof. Suppose we have two sets of parameters (f,S, ) and (f,S,X) such that pe(X, Zcrp |
T,W) = pg(X, Zcrp | T, W). Then:

/ psA(Zerp | T, W)pe(X | Zerp)d zem
Zcrp
— [ pssZem | TWIR(X | Zero)
ZCFD
- / pS,)\(ZCFD | T, W)pf-:(X - f(ZCFD))dZCFD
Zcrp
=/ psx(Zerp | T, W)pe(X — 1(Zerp))d 2z
Zcrp

— [ sl () | T.W)vol 2 (X)pe(X — Xy
X

:/ngf( {(X) | T, W)vol (X )pe (X — X)dg (17)

We denote the volume of a matrix vol A, and when A is full column rank, vol A = v detATA. J
denotes the Jacobian, and we make the change of the variable X = f(Zcgp) on the left hand side,

and X = f(Zcpp) on the right hand side.
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From Eq.[T7] we have:
psA(f(X) | T, W)volJ -+(X) = (f‘l( ) | T,W)volJ(X) (18)

By taking the logarithm on the both sides of Eq.[I8]and replacing ps x by its expression from Eq.[§]
we get:
k
log volJ (X)) + Z log Qi(fi (X)) —log Zy(T, W) + > S ;(fi (X)X (T, W)) =
Jj=1

k
log volJ+ (X) + ) " (log Qi (f; (X)) — log Zi(T, W) + Z : i (T, W) (19)

=1

Let (T, W)g, ..., (T, W),x be the points provided by Theorem [ (4), and define X\(T,W) =
AT, W) — )\(To, Wo). We plug each of those (T, W), in Eq.[L9|to obtain nk + 1 such equatlons
We subtract the first equation for (7', W), from the remaining nk equations to get for [ = 1, ..., nk:

(S(E (X)) A(T1, Wi)) + Y log m
Zi(To, Wo)

(20)
Zi(T;, W)

— (S(F(X)), (T3, W) +Zl

Let L be the matrix defined in Theorem (4), and L similarly defined for pY (f/ is not necessarily

invertible). Define b; = ). log ?g‘)’x’;z’gt’xi and b the vector of all b; for l = 1, ..., nk.
0,¥Vo 1 1

Then, Eq. 20]can be rewritten as:

LTS(f(X)) = LTS(f (X)) +b 1)
We multiply both sides of Eq.[21/by the transpose of the inverse of L’ from the left to get:
S(F7(X)) = AS(F(X)) +e, (22)

where A = L~TL andc = L~Tb.

By definition of S and according to Theorem[d](3), its Jacobian exists and is an nk x n matrix of rank
n. This implies that the Jacobian of S o f* exists and is of rank n and so is A. We have two cases:
(1) If k = 1, A is invertible since A is n X n matrix of rank n; (2) If £ >= 2, A is also invertible.
We have the following proof for (2):

Define X = f(X) and S;(X;) = (Si1(X;), ..., Sik(X;)). Foreach i € [1,...,n] there exist k
points X7, ..., X* such that (S;(X}), ..., S;(XF)) are linearly independent.

Firstly, we proof the above statement. Suppose that for any choice of such & points, the family
(S;(X}), ..., S;(XF)) is never linearly independent. That means that S, (R) is included in a subspace
of R* of dimension at most & — 1. Let h a non zero vector that is orthogonal to S, (R). Then for all
X € R, we have (S;(R), h) = 0. By integrating we find that (S;(R), k) = const. Since this is true
for all X € R and for a h # 0, we conclude that the distribution is not strongly exponential, which
contradicts our hypothesis.

Secondly, we prove A is invertible. Collect those points into k vectors (X!, ..., X k), and con-
catenate the k Jacobians Js(X!) evaluated at each of those vectors horizontally into the matrix
Q = (Js(X1),...,Js(X*)) (and similarly define @ as the concatenation of the Jacobians of

S(f™ o f(X)) evaluated at those points). Then the matrix Q is invertible. By differentiating Eq.
for each X!, we have:

Q=AQ (23)
The invertibility of @ implies the invertibility of A and é, which completes the proof. O
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B.3 THE VALIDITY OF THE LEARNED CFD ADJUSTMENT VARIABLE

Let us consider the linear causal relationships where T affects Y through the (conditional) front-door
adjustment variable Zcrp, as represented as follows:

Zcrp = ol + €Zcrp (24)

Y = 8Zcrp + €y (25)

where €z, and ey are the error terms, assumed to be mean-zero, independent random errors.
The causal effect of 7" on Y is commonly computed as the product of the path coefficients, i.e.,
ATE = af.
Following the discussion in Section [4.3] our proposed method CFDiVAE guarantees the model
identifiability, which means that the learned latent CFD adjustment variable Zcpp = ?‘1(X ) is equal
to the ground truth CFD adjustment variable Zcrp = £ (X), up to a linear invertible transformation
(through an invertible matrix A) and point-wise nonlinearities (in the form of S and S), that is,

Zcrp = AZcEp (26)

Substituting the above expression for Zcpp into Eq. we get,
AZCFD = OZT + €ZCFD (27)
Multiplying both sides of the Eq. by A7, we get,

A%AZJ\I;; = EC\I;E =aA"T + AileZCFD (28)

Substituting the expression for Zcrp shown in Eq. into Eq. , we get,
Y = BAZcrp + ey (29)

Eq.|28|shows that the causal effect of T" on Zcpp is aA™, and Eq.|29|shows that the causal effct of

—~

Zcpp on Y is B A, so the causal effect of T"on Y via Zgpp is the product of the two coefficients,
ie,aA"BA = afA A = af. This means that using the learned (transformed) CFD adjustment
variable will give us the same ATE as using the groundtruth CFD adjustment variable.

C DESCRIPTION OF ATE ESTIMATION

For discrete data, we show the solution in Algorithm[I] We see that the solution is aligned with Eq.

For the continues data with linear model, we assume the data generation as followed,

Zcrd = CZep + BT, Zew L + BW, Zew W + €Zcms (30

Y =cy + By, zem Zerp + Py W + BuyU + ey, (3D
where ¢ denotes intercept, e denotes error, and Zcpp is the learned representation by our method.

The ATE of T on Y is the product of coefficients 87, 7., and By z.,. The coefficients are obtained
with the following process (Tchetgen & Shpitser}, 2012} Barr, [2018]):

Step 1: Zcpp is regressed on T and W. This gives us the coefficient S7 z.,, and E[Zcrp | T, W].

Step 2: Using E[Zcrp | T, W], we estimate the noise ez, as Zcrp — E[Zcrp | T, W]. Regress
€zap 0N Y. This gives us the coefficient Sy, z,. Noise ez, is only introduced at Zcpp, and is
independent of the unobserved confounding variable U.

Although the solution for continuous data with the linear model does not mirror Eq.[3] it is still
consistent with the (conditional) front-door adjustment shown in Theorem As we know, the
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Algorithm 1 CFD Adjustment for ATE Estimation with Discrete Data

1: Input: 7, Y, W, and Zcpp
2: Qutput: ATEof TonY
3: Initialise E[Y'|do(T = 0)] and E[Y |do(T = 1)]
4: for each value of T do
5: Estimate the marginal probability P(t)
6: end for
7: for each combination of 7', W, and Zcgp do
8: Estimate the conditional probability P(zcgp|t, w)
9: end for
10: for each combination of T, W, Y, and Zcgp do
11: Estimate the conditional probability P(y|t, w, zcrp)
12: end for
13: for each value of Y, W, and Zcgp do
14: for each value of T do
15: E[Y|do(T = 0)] += yP(y|t, zcep, w) P(zcep|T = 0, w) P(t|w) P(w)
16: E[Y|do(T = 1)] += yP(ylt, zcrp, w) P(zcrp|T = 1, w) P(t|w) P(w)
17: end for
18: end for
19: Compute the ATE as E[Y |do(T = 1)] — E[Y|do(T = 0)]
20: return ATE

front-door adjustment consists of two back-door adjustments. In our case with continuous variables,
these two back-door adjustments are implemented by regression adjustments, as shown in Eq.[30]and
Eq.[31] Specifically, for the first backdoor adjustment, we use regression adjustment to get the causal
effect of T" on Zcpp (i.e., Br,zqp) adjusting on W, as shown in Eq.[30]and Step 1 of the process; for
the second backdoor adjustment, we also use regression adjustment as shown in Eq. [31{to obtain the
causal effect of Zcpp on Y adjusting on W and U. However, for this regression adjustment, since U
is unobserved, we follow the approach in (Tchetgen & Shpitser, 2012} Barr, |2018) to firstly obtain the
error ez, which is independent of U, and regress ez, on Y instead. In this way, we can eliminate
the confounding bias caused by U. This is shown in Step 2 of the process.

D EXPERIMENT

D.1 DESCRIPTION OF THE COMPARISON METHODS

LinearDRL |Chernozhukov et al.| (2018): A double machine learning estimator with a low-
dimensional linear regression as the final stage.

CausalForest Wager & Athey|(2018)): A causal forest estimator combined with the double machine
learning technique for conditional average treatment effect estimation.

ForestDRL |Athey et al.[(2019): A generalised random forest and orthogonal random forest based
estimator that uses doubly-robust correction techniques to account for covariates shift (or selection
bias) between the treatment.

XLearner Kiinzel et al.| (2019): A meta-learning algorithm that utilises supervised learning methods
(e.g., Random Forests and Bayesian Regression) for the analysis of conditional average treatment
effects.

KernelDML Nie & Wager (2021): A specialised version of the double machine learning estimator
that uses random fourier features and kernel ridge regression for the analysis of conditional average
treatment effects.

CEVAE |[Louizos et al.|(2017): A deep learning based method that leverages latent variable modelling,
specifically Variational AutoEncoder, to estimate causal effect from observational data, even in the
presence of latent confounders.
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Figure 6: Probability Density Functions of the ground truth CFD adjustment variable and the learned
representation, where the horizontal axis represents the value and the vertical axis represents the
density.

TEDVAE [Zhang et al.[(2021): A deep learning based method that learns the disentangled repre-
sentations of confounding, instrumental, and risk factors using VAE for accurate treatment effect
estimation.

D.2 MORE RESULTS OF THE EXPERIMENTS IN SECTION|6.2]

In this section, we compare the probability distribution of the learned representation of the CFD
adjustment variable with the distribution of the ground truth CFD adjustment variable under different
sample sizes. As shown in Fig. [6] the distribution of the learned representation is close to the
ground truth distribution, which indicates that the proposed method CFDiVAE can learn the accurate
representation of the CFD adjustment variable from its proxy.

D.3 ANALYSIS OF MODEL IDENTIFIABILITY

Our proposed method CFDiVAE takes 1" and W as additional observed variables to approximate
the prior p(Zcep | T, W). In this section, we apply two partially identifiable VAE models, i.e., T-
CFDiVAE and W-CFDiVAE, and the original VAE as comparison methods. 7-CFDiVAE is partially
identifiable VAE model that takes T as the additional observed variable to approximate p(Zcrp | T');
W-CFDiVAE is partially identifiable VAE model that takes 1/ as the additional observed variable
to approximate p(Zcpp | W); the original VAE does not take any additional observed variable to
approximate p(Zcgp). The ELBOs for these methods are defined as:
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Table 4: Results of model identifiability analysis.

0.5k 1k 2k 4k 6k 8k 10k 20k

Muvag (Eq. 88.93 £ 14.67 58.41£22.46 77.71+9.17 79.89+£7.00 32.92+31.20 1049 +7.66 7.07+5.72 4.55+9.19
Mr.croivae (EQ.32) 70.09 £20.60 77.48 +£12.65 81.48 £8.19 1594 +£22.84 10.25+22.99 4.60+6.11 3.89+4.56 1.77 + 1.41
My cepivae (Bq.[33) 68.89 +18.89 85.83+4.64 29.13+£21.00 549+3.83 649+17.82 3.14%£2.04 3.14%235 1.69+1.55

M cFDivaE (Eq.E) 86.29 £6.21 39.72+31.47 887+10.68 4.57+3.03 258+1.96 232+147 297+2.09 1.57+132

Mr.crpivag = Eqllog p(X | Zerp)] — Dxrla(Zern | T, X) || p(Zerp | T)) (32)
M _crpivae = Eq[log p(X | Zerp)] — Dxwnlg(Zerp | W, X) || p(Zerp | W)) (33)
Muyae = Eqllog p(X | Zerp)] — Dxrl¢(Zero | X) || p(Zerp)] (34)

The results are shown in Table @ We see that CFDiVAE achieves the best performance since it
uses all additional observed variables. The performance of T-CFDiVAE is slightly lower than the
performance of W-CFDiVAE since W has more additional information than 7" (the dimension of W
is generally higher than the dimension of T"). The original VAE which does not use any additional
observed variable achieves the worst performance.

D.4 MORE RESULTS OF THE EXPERIMENTS IN SECTION

In this section, we evaluate the performance of CFDiVAE and the comparison methods when the
dimension for the representation does not match the dimension of the ground truth CFD adjustment
variable. Table [5a shows the results for Dg = 2, Table[5b]shows the results for Dg = 4, and Table
shows the results for Dg = 8. We note that CFDiVAE achieves its best performance when Dy = Dy
in most sample sizes. Hence, in a more general case, we can safely set D;, = Dy to get an acceptable
causal effect estimation.

D.5 CAUSAL GRAPHS INVOLVED IN SECTION

Figure 7: The causal network for the Adult dataset: the green path represents the direct path, and the
blue paths represent the indirect paths passing through marital_status (Zhang et al., [2017a).
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Table 5: The estimation bias (%) of CFDiVAE and comparison methods under different NV values.
CFDiVAE-D -Dgr-Dx denotes apply CFDiVAE to a specified setting, where Dy represents the
dimension of the learned representation, D represents the dimension of the ground truth CFD
adjustment variable, and Dx represents the dimension of the proxy variable.

(a) Estimation bias (%) when Dg = 2.

0.5k 1k 2k 4k 6k 8k 10k 20k
LinearDRL 27.05+7.56 24.58+6.39 26.13+4.19 2453+3.01 25.01 £290 2492+ 1.61 2540+156 2542+1.12
CausalForest  28.26 +8.21 24.51+6.76 26.01 £+448 2456+3.11 25.09+3.10 2498 +1.58 2540+1.67 2546+1.13
ForestDRL ~ 26.91£7.95 24.51£638 2620+3.99 2454+3.11 24.95+287 2496+ 1.60 2538+1.59 2543+ 1.13
XLearn 27.15+£7.50 24.62+6.29 26.04+3.94 2457+3.09 25.02+290 2494 +1.59 2537+156 2540+1.11
KernelDML 2434+7.84 22.01+£629 2423+409 2294+3.05 23.57+281 23.57+147 24.06+1.58 24.22+1.08
CEVAE 102.05 £3.22 104.47 £9.79 104.04 £22.15 41.27 +£7.16 39.88 +8.89 32.34 + 10.46 23.62 + 11.21 34.20 +6.46
TEDVAE 93.05+14.19 69.77 £21.04 2461 +11.13 29.14£2.81 26.55+2.99 2598 +1.50 26.22+1.55 26.03 +1.30
CFDiVAE-1-2-4 8231£883 1199598 10.70+17.07 9.52+3.08 954234 986+254 1035+425 9.88%1.36
CFDiVAE-2-2-4 78.16+4.99 12.85+10.96 6.90+5.88 8.83+£6.02 594+422 546+3.62 537+6.82 4.16+8.90
CFDiVAE-4-2-4 76.69 £4.44 2321 +1538 12.31+19.33 798+698 573+545 745+336 390+487 1.77+1.08
(b) Estimation bias (%) when Dr = 4.
0.5k 1k 2k 4k 6k 8k 10k 20k
LinearDRL  32.82 + 13.77 30.76 £10.62 32.91+7.69 3238+4.51 3238+3.69 33.04+3.33 32.13+330 31.97+198
CausalForest 32.40 +13.57 31.34+11.30 33.41+7.79 32.88+425 3249+394 33.18%+3.16 32.11+3.36 31.94+1.93
ForestDRL 3242 £13.57 31.21+£10.75 32.78+8.07 3228 +4.31 3243+3.76 3292+320 32.13+3.47 32.01%+1.97
XLearn 32.88+12.93 31.14+10.54 3281+7.65 3236+4.37 3236+3.69 3298+333 32.15+335 32.00%1.99
KernelDML  28.12 + 14.57 27.83+10.53 29.48+7.97 3047+424 3032+3.72 31.19+3.33 30.48+3.17 30.60+1.98
CEVAE 102.10 £2.45 102.03 £ 13.14 123.90 £39.63 34.56 +£28.24 65.52 + 16.65 50.36 + 15.35 3541 +17.62 42.41 +10.94
TEDVAE 99.99 £16.35 75.63 £40.63 30.72+£21.25 4430+4.87 35.52+3.88 3533+3.24 3382+344 33.12+£2.20
CFDiVAE-1-4-8 79.94 898 22.12%18.63 12.09+4.62 13.73+3.58 1424+343 1507+286 1433264 1483+1.74
CFDiVAE-2-4-8 7431 +£6.90 16.38 +8.40 9.49 £5.02 11.54 £3.75 9.84+3.15 8.19+486 843+6.85 6.10 + 1.83
CFDiVAE-4-4-8 73.16£5.70 19.04+11.12 12.89+16.47 9.90+5.15 8.74+569 6.78+392 450+270 445+1.75
CFDiVAE-8-4-8 69.66 £8.20 31.97+12.11 38.96+12.17 11.73+£4.09 8.05+6.67 6.07+3.75 442+246 444+2.00
(c) Estimation bias (%) when Dg = 8.
0.5k 1k 2k 4k 6k 8k 10k 20k
LinearDRL 54.02 £30.87 48.22+16.82 47.84+13.83 48.01+9.29 46.89+7.52 47.17+497 48.66+6.26 47.56+3.31
CausalForest 51.85+31.93 49.64 +17.88 4748 +13.26 47.06+9.55 47.65+7.71 47.68+5.13 4885+641 4747+354
ForestDRL 53.42 £31.29 4792+ 17.51 47.76+13.55 4846+934 46.74+7.53 4720+483 48.60+6.19 47.59+3.34
XLearn 53.26 £30.78 48.08 £ 17.18 47.74 +13.99 48.06+9.23 46.88+7.56 47.15+488 48.61 +6.23 47.54 +3.28
Kernel DML 46.03 £31.34 43.16£1791 4293+13.83 4479+9.85 4350+£7.86 44.59+4.81 46.30+£6.26 45.65+3.21
CEVAE 101.71 £2.29 107.12 £ 13.68 122.72 +46.09 106.34 + 69.06 94.41 £29.52 106.92 +26.61 92.49 +36.07 33.48 £17.93
TEDVAE 98.58 £22.10 74.62 +55.07 60.77 £37.72 80.72+11.28 59.95+7.74 5193+5.16 52.78+6.30 49.85+3.43
CFDiVAE-1-8-16 7538 £12.60 27.92+22.61 1586+6.77 1446+17.05 15.18+4.85 16.62+3.73 16.64+3.34 17.65+229
CFDiVAE-4-8-16 7233 +£11.25 1945+ 1321 12.89+1046 11.71+12.01 1228+5.88 1036+537 926+588 7.47+3.04
CFDiVAE-8-8-16 63.95+ 1141 2747 %1396 29.00£26.66 11.0111.10 10.00£7.61 9.00+627 6.69+429 742+3.14
CFDiVAE-16-8-16 56.84 + 11.64 22.67+12.68 17.15+1949 10.60+9.62 7.86+6.56 8.28 £5.75 6.23+4.15 5.30+2.99

age

Sex

race

native_country

income

{marital_status, ..., relationship}

Figure 8: Simplified DAG for Adult dataset.
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E REPRODUCIBILITY

Table 6: Details of the parameter settings in CFDiVAE.

| Parameter Value | Parameter  Value | Parameter Value |

Reps 30 Num_Layers 3 wd le-4
Epoch 30 Ir le-3
Batch_Size 256 Ird 0.01

In this section, we provide more details of the experimental setting and configuration for repro-
ducibility purposes. CFDiVAE is implemented in Python (Van Rossum & Drake Jr, [1995)) libraries
PyTorch (Paszke et al) 2019) and Pyro (Bingham et al., 2019). The code for data generation is
written in R (R Core Team, [2021). We provide the parameter settings of CFDiVAE in Table @ The
descriptions of the major parameters are provided below:

Reps: the number of replications each set of experiments runs.

Epoch: one Epoch is when an entire dataset is passed forward and backward through the
neural network once.

Batch_Size: the number of training examples present in a single batch.
Num_Layers: the number of hidden layers.

Ir: the learning rate.

Ird: the learning decay.

wd: the weight decay.
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