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ABSTRACT

Symmetry is an important inductive bias that can improve model robustness and
generalization across many deep learning domains. In multi-agent settings, a pri-
ori known symmetries have been shown to address a fundamental coordination
failure mode known as mutually incompatible symmetry breaking; e.g. in a game
where two independent agents can choose to move “left” or “right”, and where a
reward of +1 or −1 is received when the agents choose the same action or differ-
ent actions, respectively. However, the efficient and automatic discovery of envi-
ronment symmetries, in particular for decentralized partially observable Markov
decision processes, remains an open problem. Furthermore, environmental sym-
metry breaking constitutes only one type of coordination failure, which motivates
the search for a more accessible and broader symmetry class. In this paper, we
introduce such a broader group of previously unexplored symmetries, which we
call expected return symmetries, which contains environment symmetries as a sub-
group. We show that agents trained to be compatible under the group of expected
return symmetries achieve better zero-shot coordination results than those using
environment symmetries. As an additional benefit, our method makes minimal a
priori assumptions about the structure of their environment and does not require
access to ground truth symmetries.

1 INTRODUCTION

Incorporating the symmetries of an underlying problem into models has had demonstrable success in
improving generalization and accuracy across many different machine learning domains (Bronstein
et al., 2021; Krizhevsky et al., 2017; Cohen et al., 2019; Finzi et al., 2020; Van der Pol et al., 2020).
As an important example, using data augmentations and equivariant networks has been shown to
improve zero-shot coordination (ZSC), the ability of independently trained agents to coordinate
in cooperative multi-agent settings at test time (Hu et al., 2020; Muglich et al., 2022a). Without
accounting for symmetries, independently trained agents can converge onto equivalent yet mutually
incompatible policies during training, leading to coordination failure at test time. For example,
one team of agents might use the color “blue” to signal “play” in a cooperative card game like
Hanabi, while a different team might use the equivalent color “red”. This issue, known as mutually
incompatible symmetry breaking, can be mitigated by incorporating symmetries like color into the
training process, as is done in other-play (OP) (Hu et al., 2020). OP addresses this by applying
an independently sampled symmetry transformation to each agent during every training episode,
ensuring compatibility amongst equivalent policies.

Environmental symmetry breaking is a form of over-coordination, where agents adopt arbitrary
conventions that hinder new partners’ adaptation within an episode. Yet, this is only one failure
mode; even without non-trivial symmetries, agents may over-coordinate by forming overly specific
conventions (see Example 2). Moreover, current symmetry-based methods assume a priori access
to these symmetries, but automatically discovering them—especially in large-scale Dec-POMDPs
(Oliehoek et al., 2007)—can be computationally infeasible (Narayanamurthy & Ravindran, 2008).

∗Equal contribution
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Figure 1: Mutually incompatible symmetry
breaking between chess players is shown in the
left side panels (Chess.com, 2021). Let π1, π2

represent the joint policies under which both play-
ers choose handshake, fist bump, respectively, and
let the reward be ±1, depending on whether they
match or not. The self-play score of both joint
policies is 1, but the cross-play score between
them is −1. Thus, policies incompatibly break
the symmetry between handshake and fist bump.

To address these two issues, in this paper, we define the group of expected return symmetries (ER
symmetries), a relatively underexplored symmetry group that contains the environment symmetries
of a Dec-POMDP as a subgroup. Since in most cases ER symmetries are a strict superset of the envi-
ronment symmetries, using them as the symmetry group for OP enforces training time compatibility
with a greater number of policies.

We also introduce a scalable method for discovering approximate ER symmetries, which lever-
ages gradient-based optimization to search for transformations that preserve expected returns across
optimal policies. Furthermore, we show that ER symmetries better improve zero-shot coordination
amongst independently trained agents than Dec-POMDP symmetries, while maintaining completely
model-free assumptions. To summarize, our main contributions are:

1. We define the group of expected return symmetries and introduce novel algorithms for
learning them.

2. We demonstrate that, when combined with the OP learning rule, expected return sym-
metries are significantly more effective at preventing over-coordination than Dec-POMDP
symmetries. Furthermore, we demonstrate that our method is applicable in settings where
both off-belief learning Hu et al. (2021) and cognitive hierarchies Cui et al. (2021) fail.

3. To the best of our knowledge, our method is the first symmetry-based method to im-
prove zero-shot coordination without a priori/privileged environment information, such as
of symmetries or dynamics.

2 BACKGROUND

2.1 DECENTRALIZED PARTIALLY OBSERVABLE MARKOV DECISION PROCESSES

We model cooperative multi-agent tasks as a Decentralized POMDP (Dec-POMDP) Oliehoek et al.
(2007), defined by the 9-tuple

(S, n, {Ai}ni=1, {Oi}ni=1, T ,R, {U i}ni=1, H, γ).

Here, S is the state space, n the number of agents, and for each agent i, Ai and Oi denote the
local action and observation spaces (with joint action and observation spaces A = ×n

i=1Ai and
O = ×n

i=1Oi). The dynamics are given by

st+1 ∼ T (st+1 | st, at), oit+1 ∼ U i(oit+1 | st+1, at),

with rewards rt+1 = R(st+1, at), horizon H (with terminal state sH ), and discount factor γ. Each
agent i follows a local policy πi, which chooses local actions based on the local action-observation
history (AOH) τ it = (ai0, o

i
1, . . . , a

i
t−1, o

i
t), while the joint policy π = (π1, . . . , πn) selects joint

actions at = (a1t , . . . , a
n
t ) based on the joint AOH τt = (τ1t , ..., τ

n
t ), with probability

π(at|τt) =
n∏

i=1

πi(ait|τ it ).

The self-play objective is defined by the expected discounted return:

J(π) = Eπ

[
H−1∑
t=0

γtrt+1

]
.
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2.2 ZERO-SHOT COORDINATION

The self-play objective is widely used in multi-agent reinforcement learning (MARL) (Samuel,
1959; Tesauro et al., 1995), where agents train together under a joint policy. While effective for
coordination, it often results in arbitrary conventions that only work among agents trained together.
However, many real-world tasks require coordination with unknown partners (Mariani et al., 2021;
Resnick et al., 2018; Kakish et al., 2019), making this limitation problematic.

To address this, Hu et al. (2020) introduced zero-shot coordination (ZSC). In ZSC, agents first
agree on a learning rule, which they each implement independently (e.g., cannot agree on seeds).
Each agent then trains a joint policy in a Dec-POMDP environment, without communication or
coordination between agents during training. Finally, agents participate in cross-play (XP), where
joint policies trained by different agents are combined to evaluate the XP objective (defined here
only for n = 2, but it can be extended to n > 2):

XP(π1, π2) :=
1

2

(
J(π1

1 , π
2
2) + J(π1

2 , π
2
1)
)
, (1)

for independently learned joint policies π1 and π2. ZSC aims for learning rules that optimize cross-
play with other rational partners using the same minimal set of assumptions (e.g., no access to be-
havioral data or coordination experience with specific groups of agents). ZSC presents a promising
approach to addressing real-world coordination challenges where relying on arbitrary conventions
is impractical. ZSC has become a key benchmark for human-AI coordination and is an important
step towards more generalized coordination capabilities (Ji et al., 2023; Hu et al., 2021).

2.3 SYMMETRY GROUPS AND OTHER-PLAY IN DEC-POMDPS

We consider symmetries that can be expressed as maps ϕ = (ϕS , ϕA, ϕO), consisting of bijective
maps ϕS : S → S, ϕAi : Ai → Ai, and ϕOi : Oi → Oi, i = 1, ..., n, in the sense that
ϕA(a) = (ϕA1(a1), ..., ϕAn(an)), ϕO(o) = (ϕO1(o1), ..., ϕOn(on)), for all a ∈ A and o ∈ O.
The set of all such maps forms a group, which we denote by Ψ. Given ϕ ∈ Ψ, we slightly abuse
notation and define ϕ(s) := ϕS(s), ϕ(ai) := ϕAi(ai) and ϕ(oi) := ϕOi(oi), for s ∈ S, ai ∈ Ai

and oi ∈ Oi. Given a joint AOH τt = (τ1t , ..., τ
n
t ), we define ϕ(τt) := (ϕ(τ1t ), ..., ϕ(τ

n
t )), with

ϕ(τ it ) := (ϕ(ai0), ϕ(o
i
1), ..., ϕ(a

i
t−1), ϕ(o

i
t)). Furthermore, we let a symmetry ϕ ∈ Ψ act on joint

policies through the formula

ϕ(π)i(ϕ(ait) | ϕ(τ it )) := πi(ait | τ it ). (2)

Any subgroup Φ ⊂ Ψ partitions the space of joint policies into disjoint equivalence classes: given a
joint policy π, we define its equivalence class [π] := {ϕ(π) : ϕ ∈ Φ}.
Definition 1 (Dec-POMDP Symmetries). A map ϕ ∈ Ψ is called a Dec-POMDP symmetry if for
all (st, at, st+1, ot+1) ∈ S ×A× S ×O it holds that

T (st+1 | st, at) = T (ϕ(st+1) | ϕ(st), ϕ(at)),
U(ot+1 | st+1, at) = U(ϕ(ot+1) |, ϕ(st+1), ϕ(at)),

R(st+1, at) = R(ϕ(st+1), ϕ(at)).

(3)

We denote the set of all the Dec-POMDP symmetries of a given Dec-POMDP by ΦMDP.

Dec-POMDP symmetries form a subgroup of Ψ, which corresponds to relabelings of the state,
action, and observation spaces that leave all the transition and reward functions of the Dec-POMDP
unchanged (see Example 2). We note that Dec-POMDP symmetries can be extended to also include
permutations between players (Treutlein et al., 2021).

Hu et al. (2020) demonstrate that policies equivalent under ΦMDP are prone to mutually incompat-
ible symmetry breaking: without biases like initialization or reward shaping, the learning rule may
converge to either π or its equivalent ϕ(π), as the learning process cannot distinguish between them
due to the Dec-POMDP symmetries. Although J(π) = J(ϕ(π)), the cross-play score may suffer,
i.e. J(π) > XP(π, ϕ(π)), meaning π and ϕ(π) were not trained to be compatible. See Figure 1.

To constrain policies to be compatible with policies that are equivalent with respect to the symmetry
group ΦMDP, Hu et al. (2020) introduced the other-play objective (can be extended to n > 2):
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Definition 2 (Other-Play (OP) Objective). Given a Dec-POMDP and a symmetry group Φ ⊂ Ψ, we
define the other-play (OP) objective OPΦ : Π→ R w.r.t. Φ by

OPΦ(π) :=Eπ̃∈[π] [XP(π, π̃)] =
1

2|[π]|
∑
π̃∈[π]

(
J(π1, π̃2) + J(π̃1, π2)

)
. (4)

Hu et al. (2020) proposed the OP learning rule π∗ = arg supπ OPΦ(π), for Φ = ΦMDP. Agents
trained using the OP objective take into account modes of symmetry breaking resulting from the fact
that a test-time partner is unbiased in their choice between ϕ(π) and π, ∀ϕ ∈ Φ.

3 METHOD

In Section 3.1, we generalize the OP objective (Equation 4) to be defined over a general symmetry
group Φ and highlight desirable properties that a symmetry group for OP should satisfy. In Section
3.2, we define the group of expected return symmetries, which we argue is better suited for OP than
Dec-POMDP symmetries by way of the aforementioned desirable properties. In Section 3.3, we
propose a method for learning expected return symmetries.

3.1 OTHER-PLAY OVER GENERAL SYMMETRY GROUPS

While Hu et al. (2020) introduced symmetry breaking w.r.t. ΦMDP, we extend the definition for a
general symmetry group Φ:

Definition 3 (Symmetry Breaking). Given a symmetry group Φ, a joint policy π is said to incom-
patibly break symmetry w.r.t. ϕ ∈ Φ if J(π) > XP(π, ϕ(π)), and w.r.t. Φ if J(π) > OPΦ(π).

The OP objective (Equation 4) evaluates the expected return when an agent from one policy is
matched in a team with members of randomly chosen policies from the same equivalence class
induced by Φ. Thus OP optimal policies are maximally compatible with policies within their equiv-
alence class, as they best avoid incompatible symmetry breaking w.r.t. Φ. We note that different
OPΦ-optimal policies are not necessarily in the same equivalence class and can therefore be incom-
patible; for example, when Φ = Id, OPΦ reduces to SP, and each OPΦ-optimal policy forms its
own one-element equivalence class. We denote ΠΦ

∗ as the set of all optimal policies under OPΦ.

Rational and independent ZSC agents would therefore choose a symmetry group Φ such that:

1. (Diversity within Equivalence Classes) The choice of Φ should ensure that for all π ∈
ΠΦ

∗ , the equivalence class [π] is meaningfully diverse. This diversity should be such that
using OP to enforce π and [π] to be compatible makes π broadly compatible with policies
it could encounter at test-time, assuming other agents also adopt OPΦ as their learning rule.

2. (Optimality within Equivalence Classes) Φ should separate poor policies from good poli-
cies, i.e. OPΦ(π′) ≈ OPΦ(π), for any π ∈ ΠΦ

∗ and π′ ∈ [π], since otherwise there is no
reason to constrain oneself to be compatible with π′ (a rational test-time partner would not
use π′).

Example 1. For Φ = {Id}, OPΦ = SP, which corresponds to perfectly preserving optimality, but
not introducing any diversity to the equivalence class; i.e. perfect satisfaction of Item 2 but extremely
poor satisfaction of Item 1. On the other extreme, we can consider Φ to be the set of all bijections
on Π, which enforces compatibility with every possible test-time partner (i.e., rational partners), but
also with all other possible policies (which are mostly poor), thus converging to the best response to
a random player; i.e., perfect satisfaction of Item 1 but extremely poor satisfaction of Item 2.

The goal of ZSC is to find a learning rule that maximizes the expected XP score between indepen-
dently trained test-time partners. For the learning rule OPΦ the expected XP score is:

XP(OPΦ
∗ ) := Eπ1,π2∼ΠΦ

∗
[XP(π1, π2)] . (5)

Thus one can interpret maxπ∈Π OPΦ(π) as estimating XP(OPΦ
∗ ), but only through the cross-play

scores within a given equivalence class [π] induced by Φ:

max
π∈Π

OPΦ(π) = Eπ∼ΠΦ
∗

[
OPΦ(π)

]
= Eπ1∼ΠΦ

∗

[
Eπ2∼[π1] [XP(π1, π2)]

]
. (6)
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Since optimal OPΦ policies are not trained to be compatible across different equivalence classes,
we can always assume w.l.o.g. that OPΦ(π) > Eπ′′∈[π′] [XP(π, π′′)] for any π, π′ ∈ ΠΦ

∗ for which
π /∈ [π′] (else one just merges [π] and [π′] by adding the transposition1 between π and π′ to Φ).
Thus if Item 2 is satisfied perfectly, it follows that

max
π∈Π

OPΦ(π) ≥ XP(OPΦ
∗ ), (7)

with equality if and only if [π] = ΠΦ
∗ for any and thus all π ∈ ΠΦ

∗ . This means that if one finds a
symmetry group Φ which satisfies both of Items 1 and 2 perfectly, then [π] = ΠΦ

∗ for any π ∈ ΠΦ
∗

and OPΦ(π) = XP(OPΦ
∗ ). In other words, with such a choice of Φ, agents during training account

for any potential test-time partner produced by OPΦ, and only for such partners. Items 1 and 2
are thus desirable criteria for choosing a group Φ that makes OPΦ a suitable learning rule for ZSC.
However, these criteria alone are not sufficient for Φ to be optimal for ZSC, because agents in ZSC
cannot choose a symmetry group Φ that is tailored to a specific Dec-POMDP. For example, suppose
agents select Φ as the set of all bijections on Π that leave a particular SP optimal policy π unchanged.
In this case, except for trivially simple Dec-POMDPs, we have ΠΦ

∗ = [π] = {π}. This choice of Φ
would trivially satisfy Item 1 (since {π} is entirely representative of test-time policies) and Item 2
(since π ∈ ΠΦ

∗ and ϕ(π) = π,∀ϕ ∈ Φ). However, such a symmetry group is not permissible in ZSC
because it is specifically constructed for a particular policy in a specific Dec-POMDP, violating the
requirement for generality in ZSC. Therefore, while Items 1 and 2 are desirable properties, they are
not sufficient on their own for choosing an appropriate symmetry group Φ for ZSC.

3.2 EXPECTED RETURN SYMMETRIES

We propose that the group ΦER of expected return (ER) symmetries, which can be learned with
completely model-free assumptions, handles the above trade-off given by Items 1 and 2 favorably:

Definition 4 (Expected Return Symmetries). For a fixed temperature α > 0, define the set of
Boltzmann exploratory policies as

Πα :=

π ∈ Π
∣∣∣ πi(ait | τ it ) =

exp
(

Qi
π(τ

i
t ,a

i
t)

α

)
∑

ai∈Ai(τ i
t )
exp

(
Qi

π(τ
i
t ,a

i)
α

) ,∀ ait ∈ Ai(τ it ), ∀τ it , ∀i = 1, ..., n

 ,

where Qi
π(τ

i
t , a

i
t) is the action-value function of πi, when assuming that all other agents also follow

π. The set of self-play optimal Boltzmann exploratory policies is then defined as

Πα
∗ := argmax

π∈Πα

J(π).

Finally, define the group of expected return symmetries as

ΦER :=
{
ϕ ∈ Ψ

∣∣∣ ∀π ∈ Πα
∗ : ϕ(π) ∈ Πα

∗

}
,

i.e., the subset of transformations preserving self-play optimality of Boltzmann-exploratory policies.

We will suppress the dependence of ΦER on α, but it is important to define ΦER over self-play op-
timal Boltzmann-exploratory policies: if one were to allow self-play optimal policies that do not
explore the entire space of AOHs in this structured way, then expected return symmetries would not
be properly restricted in their effect on policies at suboptimal AOHs, and ΦER could contain symme-
tries that inhibit coordination (see Appendix C). For small α, policies learned via Q-learning can be
converted—albeit approximately, due to the algorithm being off-policy —into policies belonging to
Πα by using Boltzmann sampling on the learned local action values. As well, entropy-regularized
policy gradient methods yield policies whose actor networks produce logits proportional to the cor-
responding Q-values, thereby resulting in policies in Πα (see Appendix B.2 for details).

ΦER is a group under function composition (see Appendix B.1). Furthermore, since for any Dec-
POMDP symmetry ϕ ∈ ΦMDP and any joint policy π it holds that J(π) = J(ϕ(π)), and also that
ϕ(π) is Boltzmann exploratory, it follows that ΦER contains ΦMDP as a subgroup (see Appendix
B.1).

1A transposition is a permutation that swaps exactly two elements.
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At a high level, ΦMDP captures coordination differences based only on relabeling actions and obser-
vations, offering limited diversity. In contrast, self-play-optimal policies can differ significantly in
coordination strategies, beyond mere label permutations. By grouping such diverse policies into the
same equivalence class, ΦER better addresses Item 1 than ΦMDP. While ΦER may not fully satisfy
Item 2 (as ΦER is only required to preserve the expected return of self-play-optimal policies), we
show in Section 4.4 that learned symmetries in ΦER approximately meet this criterion. Overall, this
suggests ZSC agents using OPΦER

will coordinate better at test time than those using OPΦMDP
. Section

4 confirms that ΦER significantly improves (zero-shot) coordination across various environments.

The following example illustrates the advantage of ER symmetries over Dec-POMDP symmetries.
Example 2. Consider a cooperative communication game based on Hu et al. (2021). Alice observes
a binary variable (pet) representing either “cat” or “dog”. Her actions include turning a light bulb
on for a reward of 0.01, light bulb off for a reward of 0, bailing for a reward of 1 which ends the
game, or removing a barrier at a cost of 5 to let Bob directly observe the pet. Bob can bail for 0.5 or
guess the pet, receiving 10 for a correct “cat” guess, 11 for a correct “dog” guess, and losing 10 for
an incorrect guess.

In this game, there are two ways for Alice to communicate with Bob: a “cheap-talk” channel (turning
the light on or off) and a “grounded” channel (removing the barrier). There are exactly two self-
play optimal (Boltzmann exploratory) joint policies, and both use the cheap-talk channel with high
probability: one policy associates “light on = dog, light off = cat,” while the other assigns the reverse.
These two policies are incompatible in cross-play however, where coordination fails if each agent
follows a different encoding.

Due to the different rewards for cat/dog, this game contains no non-trivial Dec-POMDP symmetries,
which means that OP with ΦMDP reduces to self-play, which, as just discussed, leads to coordination
failure since independently trained agents will converge on either of the two self-play-optimal but
cross-play-incompatible policies. Indeed, permuting “on/off” and “cat/dog” is not a Dec-POMDP
symmetry because these environmental features have different reward dynamics.

However, these pairings are ER symmetries, as they transform the two self-play-optimal policies into
one another and thus preserve their expected return. Therefore, these two policies are symmetric to
each other w.r.t. ΦER, are put into the same equivalence class, and OP with ΦER is able to anticipate
their coordination failure. OP with ΦER then chooses the optimal grounded policy, leading to the
best possible cross-play score in this game for independent rational agents. This is demonstrated
empirically in Section 4.2.

3.3 ALGORITHMIC APPROACHES

In practice, if ΦER is large, we find that it can be effectively approximated by a limited number of
learned ER symmetries, that are sufficiently diverse (see Section 3.1 for the importance of diversity).
We therefore develop an algorithm to learn such a subset of ER symmetries, which we find in Section
4 is sufficient to significantly enhance zero-shot coordination across various environments.

Based on Equation 4, we formulate the following objective for learning ER symmetries:

ϕθ∗ where θ∗ = arg inf
θ∈Θ

Eπ∼Π′
[
|J(π)− J(ϕθ(π))|

]
, (8)

where {ϕθ : θ ∈ Θ} is a parameterization, and Π′ ⊂ Πα
∗ is a fixed pool of SP optimal Boltzmann

exploratory policies. The broader the set Π′ is, the more representative it will be of Πα
∗ , and hence

the less likely the learned ϕθ∗ will overfit to a specific policy (i.e. not able to preserve expected
return for other optimal policies outside the training set).

Since the policies in Equation 8 are approximately SP optimal, we can use the equivalent objective

ϕθ∗ where θ∗ = arg sup
θ∈Θ

Eπ∼Π′ [J(ϕθ(π))] . (9)

Importantly, the optimization in Equation 9 focuses only on the ER symmetry ϕθ. In this process,
we train the transformation ϕθ within a reinforcement learning loop, but we keep the weights of the
policies in Π′ fixed. See Algorithm 1 in Appendix E for details. The Boltzmann exploration of the
policies in Π′ enforces that ϕθ takes into account all possible AOHs during training, not just optimal
ones. Furthermore, when training ϕ using policy gradient methods, we use entropy-regularization to
ensure ϕ(π) yields a self-play optimal Boltzmann exploratory policy (see Appendix B.2 for details).
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Recall that ϕθ = {ϕS,θ, ϕO,θ, ϕA,θ}. Since we are interested in expected return symmetries insofar
as they act on the policy space rather than the Dec-POMDP itself, we fix ϕS,θ = Id. Furthermore,
since typically |A| ≪ |O|, rather than learning both {ϕO,θ, ϕA,θ} in a reinforcement learning loop,
we can consider learning ϕA,θ through search over tuples of permutations on the local action spaces;
i.e. we initialize a fixed tuple of local action permutations as ϕA,θ and learn ϕO,θ as per Equation 9.
See Algorithm 1 in Appendix E for an outline of this procedure.

Each local action space Ai allows for
(|Ai|

2

)
distinct transpositions, representing the number of

unique ways two actions can be permuted. Consequently, learning one observation transformation
ϕO,θ corresponding to every possible tuple of local action transpositions requires O(

∏n
i=1 |Ai|2)

optimizations of Equation 9 to perform an exhaustive search (i.e. O(
∏n

i=1 |Ai|2) iterations of the
outer for loop in Algorithm 1). However, in Section 4.4 we show that a non-exhaustive search that
undersamples the space of tuples of transpositions is still sufficient for learning symmetries that
significantly improve coordination amongst agents.

Note that the objective in Equation 9 does not enforce closure under composition (i.e. ϕ1◦ϕ2 ∈ ΦER

for all ϕ1, ϕ2 ∈ ΦER) or invertibility (i.e. for all ϕ ∈ ΦER there exists ϕ−1 ∈ ΦER such that
ϕ−1 ◦ ϕ = Id), both necessary for ΦER to form a group. To learn ER symmetries which are
compositional and invertible, we use the following regularized objective:

ϕθ∗ where θ∗ = argmax
θ∈Θ

Eπ∼Π′

[
(1− λ1)J(ϕθ(π)) + λ1 · Eϕ̂i,ϕ̂j∼Φ̂ER

[
J(ϕ̂i ◦ ϕθ ◦ ϕ̂j(π))

]]
− λ2Eo∈O

[
d(o, ϕ2

θ(o))
2
]

(10)

where d : O2 → [0,∞) is a metric, Φ̂ER is a fixed pool of unregularized ER symmetries learned
through Equation 9Algorithm 1, and λ1 ∈ [0, 1), λ2 ∈ [0,∞) control the regularization towards
compositionality and invertibility, respectively. Since ϕA,θ is a fixed transposition, ϕ2

A,θ = Id by
design, so we can easily enforce ϕ2

O,θ = Id. The objective can be optimized stochastically, to avoid
computing multiple policy gradients per update. This is detailed in Algorithm 2 in Appendix E. Note
that in the term Eo∈O

[
d(o, ϕ2

θ(o))
2
]

we abuse notation, and let ϕθ map into a continuous extension
of O, otherwise this term would be locally constant with a gradient of zero almost everywhere.

We also propose an alternative objective for learning ER symmetries through XP maximization:

ϕθ∗ s.t. θ∗ = arg sup
θ∈Θ

XP(πi, ϕθ(πj)), (11)

where πi, πj ∈ Π′ are a pair of SP optimal policies chosen from the fixed training pool. If πi

and πj belong to the same equivalence class induced by ΦER, then by definition there exists an ER
symmetry ϕ that maximizes Equation 11 to the self-play optimum value of J(πi). Therefore, for
each pair of optimal policies πi, πj ∈ Π′, we optimize Equation 11 over ϕθ, and save the ϕθ that
optimize Equation 11 to the highest value. We outline this approach in Algorithm 3 of Appendix E.
We highlight a trade-off between the objectives of Equation 10 and Equation 11: while the former
more directly optimizes for an ER symmetry, it assumes ϕA,θ to be of a certain form, while the latter
assumes no such form but tacitly assumes some pair in Π′ belong to the same equivalence class.

4 EXPERIMENTS

We evaluate our method in four different environments, focusing on how ER symmetries impact
zero-shot coordination (ZSC) compared to self-play and other-play with Dec-POMDP symmetries.
Specifically, we train independent agent populations that take advantage of ER symmetries and
compare their cross-play performance within the population to baseline populations. The goal is to
assess whether the use of ER symmetries leads to better coordination between agents than self-play
or Dec-POMDP-symmetry-based training.

Populations of agents using ER symmetries for ZSC are formed as follows: each agent i chooses k
seeds at random to train k different optimal policies, Π′

i. Agent i then independently performs ER
symmetry discovery with their specific Π′

i by optimizing Equation 9, Equation 10 or Equation 11,
and among their learned transformations uses the l that best preserve expected return as their ER
symmetries. Agent i then chooses m seeds at random and uses their learned symmetries to train
m policies {πi,k}mk=1 with reinforcement learning constrained by the learning rule in Equation 4;
multiple policies (m > 1) are trained to mitigate the effect of a seed that sub-optimally explores the
space. Agent i then selects πi := argmaxk=1,...,m J(πi,k), and deploys πi for cross-play.
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Aside from the environments in Sections 4.1 and 4.2, we parameterize ϕO,θ as a feed-forward neural
network with two hidden layers. The experiments in Sections 4.3 and 4.4 use the JaxMARL environ-
ment and implementations (Rutherford et al., 2023). For details on our setup and hyperparameters,
refer to Appendix A. See Appendix F for plots of interpretability of agent play. If accepted, we will
release our full working code for all four environments.

4.1 ITERATED THREE-LEVER GAME

We consider a Dec-POMDP inspired by Treutlein et al. (2021) where two agents choose one of
three levers simultaneously, earning +1 for a match and −1 otherwise over 2 rounds, with each
agent observing the other’s previous action. Thus, |S| = 1, A = O = {1, 2, 3} × {1, 2, 3},
rt+1 = 1a1

t=a2
t
, and o1t+1 = a2t , o2t+1 = a1t .

There are 6 Dec-POMDP symmetries (the 6 permutations of levers). The optimal OPΦMDP
policy

chooses a lever uniformly in round one; if the agents match, they repeat that choice, otherwise they
switch to the unique unused lever. This yields an expected return of 4/3 (optimal for ZSC given a
1/3 chance of first-round success). Since ΦER = ΦMDP, learning all of ΦER and applying OPΦER

approximates the optimal ZSC policy.

Each ER symmetry agent first trains k = 20 SP optimal policies using IQL with shared Q-values, and
then makes them Boltzmann exploratory with α = 1. For each tuple of local action permutations,
we select the tuple of local observation permutations that maximizes the objective in Equation (9)
(averaged over 2000 episodes). The ERS agent then picks the l = 6 best ER symmetries. Each of 5
ERS agents learns exactly the 6 Dec-POMDP symmetries.

This game illustrates a setting where OP outperforms OBL (Hu et al., 2021)—OBL fails (in its turn-
based form) as agents assuming uniform randomness converge to a uniform distribution. However,
in the two-lever variant OPΦMDP

(and hence OPΦER
) fails due to the lack of a unique second-round

choice, leaving repeat and switch policies in distinct, incompatible equivalence classes. This under-
scores a limitation in the symmetry group’s expressivity.

4.2 CAT/DOG ENVIRONMENT

We take the cat/dog game from Example 2. We build a population of 5 independent Q-learning
(IQL) (Tan, 1993) agents as a self-play baseline. We build a population of 5 ER symmetry agents,
for which each agent trains k = 10 optimal self-play policies as Π′, and then optimizes Equation
9 with vanilla policy gradient (Sutton et al., 1999), where ϕO,θ is parameterized as a probability
distribution over all possible permutations of the observations (there being 2! for Alice and 4! for
Bob). Equation 9 / Algorithm 1 suffices because permutations already satisfy compositionality and
invertibility. Each ER symmetry agent uses l = 3 ER symmetries to then train m = 3 OPΦER

policy.

We find ER symmetries can prevent over-coordination in settings where non-trivial Dec-POMDP
symmetries do not even exist. It is worth mentioning that approaches based on cognitive hierarchies
fail to find the optimal grounded communication protocol in this setting (Hu et al., 2021; Cui et al.,
2021; Camerer et al., 2004), since they assume other agents follow random or lower-level strategies,
and instead consistently converge onto “bailing” for a return of 1.

4.3 OVERCOOKED V2

Overcooked V2 is a recent AI benchmark for ZSC (Gessler et al., 2025), which improves on the
cooperative multi-agent benchmark Overcooked (Carroll et al., 2019), by introducing asymmetric
information and increased stochasticity, creating more nuanced coordination challenges. In this
work, we concentrate on the “Grounded Coordination Simple” layout, leaving the exploration of
additional layouts to future work.

For ZSC, we train a population of 5 IPPO (Yu et al., 2022) policies as a SP baseline, where each
policy uses an RNN coupled with a CNN to process the observations. The population of ER sym-
metry agents each train k = 12 IPPO SP policies, to then use Equation 11 / Algorithm 3 to obtain
l = 16 ER symmetries. Each agent trains m = 3 OPΦER

policies using their learned symmetries.

The IPPO baseline shows a bimodal XP score distribution, with agents either highly compatible or
incompatible. In Figure 2, the SP-optimal baseline scores a mean XP of 6.74, compared to 15.8
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Figure 2: Cross-play
score distribution of the
IPPO self-play baseline
population and the ER
symmetry agent popula-
tion in Overcooked V2.
The baseline population
achieves mean SP scores
of 162.33 ± 0.14, and
the ER symmetry popu-
lation achieves mean SP
scores of 27.81± 0.3.

for the OPΦER
-optimal population. The ER symmetry population thus significantly reduces the SP-

XP gap, leading to more consistent coordination. Overcooked V2’s simultaneous moves further
underscore the effectiveness of ER symmetries for ZSC.

4.4 HANABI

Hanabi (see Appendix G for details) is a challenging AI benchmark, and has served as the primary
test bed for many algorithms designed for zero-shot coordination, ad-hoc teamplay, and other coop-
erative tasks (Bard et al., 2020; Cui et al., 2021; Nekoei et al., 2021; 2023; Muglich et al., 2022a;b).

Preserves OP Optimality

Since ER symmetries contain Dec-POMDP symmetries, and capture equivalences beyond just rela-
belling, they are clearly more diverse than Dec-POMDP symmetries, and hence better satisfy Item
1 from Section 3.1. We verify the ER symmetries also approximately satisfy Item 2.

We take the 11 learned regularized ER symmetries from above, denoting this set as Φ̂ER. We find
that Eπ∼ΠΦ̂ER

∗

[
OPΦ̂ER

(π)
]
= 23.59±0.04 and Eπ∼ΠΦ̂ER

∗

[
Eϕ∼Φ̂ER

[
OPΦ̂ER

(ϕ(π))
]]

= 23.34±0.05,

where we train 5 OPΦER
policies. Thus, Item 2 is approximately satisfied by Φ̂ER.

Zero-Shot Coordination

For ZSC we use two baselines: (1) a population of 5 IPPO agents, and (2) 5 IPPO agents with
access to all Dec-POMDP symmetries constrained by the OP objective (Equation 4). We also train a
population of ER symmetry agents that independently discover ER symmetries for the OP objective.
Each ER agent uses k = 6 seeds to learn symmetries and saves the top l = 11 that best preserve
expected return. Every population consists of 5 agents, where each agent trains m = 5 policies
and deploys the one with the highest return. Symmetries are trained via Equation 10 by randomly
selecting 64 fixed transpositions on the local action space, with the same transpositions fixed for
both local policies to simplify the search in the symmetric game Hanabi.

Inspired by the symmetrizer in Treutlein et al. (2021); Muglich et al. (2022a); Van der Pol et al.
(2020), we define the symmetrizer S : Π → Π by S(π)(at | τt) := 1

|[π]|
∑

π′∈[π] π
′(at | τt), where

Φ can be taken to be either ΦER or ΦMDP. Agents from any population can thus transform their
policy with S before deploying for cross-play, ensuring invariance of the deployed policy w.r.t. Φ
(since ϕ(S(π)) = S(π),∀ϕ ∈ Φ). As per the empirical results below, the symmetrizer functions as
a policy improvement operator for cross-play across multiple policy populations.

Table 1 shows that the agents using ER symmetries improve in ZSC over both baselines; this is
even in spite of the Dec-POMDP agent population assuming access to environment symmetries. As
well, even with just using a subset of transformations from ΦER, the return symmetry agents are able
to converge on policies that generalize well in cross-play. We also notice that symmetrization with
respect to ΦER or ΦMDP improves coordination amongst agents of all populations considered; we can
see that ΦER better improves the optimal self-play policy population, and ΦMDP better improves the
other two, which aligns with expectation since ΦER is only explicitly enforced to maintain invariance
over optimal self-play policies, whereas ΦMDP maintains invariance over any policy type.
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Table 1: Self-play, within-population mean cross-play (XP) and median cross-play (XP(*)) scores
are reported. The OPΦMDP

population used all 120 Dec-POMDP symmetries, whereas the OPΦER

population used 11 ER symmetries. “MDP” indicates the population was symmetrized with Dec-
POMDP symmetries at test time, and “ER” analogously indicates symmetrization with expected
return symmetries. The ER symmetrizer uses 11 expected return symmetries.

Model Self-Play XP XP(*) XP(*)+MDP XP(*)+ER

IPPO 24.04± 0.02 4.02± 0.17 0.12± 0.03 0.14± 0.03 0.10± 0.03

IPPO + OPΦMDP
23.81± 0.03 8.61± 0.17 8.14± 0.15 8.70± 0.16 9.91± 0.14

IPPO + OPΦER
23.74± 0.03 21.64± 0.07 22.03± 0.05 22.50± 0.06 22.25± 0.05

5 RELATED WORK

Extensive research exists on coordination in multi-agent systems, particularly in zero-shot coordi-
nation. Methods like Hu et al. (2020); Muglich et al. (2022a) use Dec-POMDP symmetries to avoid
incompatible policies, while Hu et al. (2021) rely on environment dynamics for grounded policies.
Diversity-based approaches also leverage known symmetries and simulator access (Cui et al., 2023;
Lupu et al., 2021). In contrast, ER symmetries can be learned from agent-environment interactions
without privileged information, enabling grounded signaling and effective coordination in concur-
rent environments (see Sections 4.2 and 4.3).

In single-agent settings, symmetry has been shown to reduce sample complexity in RL (Van der
Pol et al., 2020; Zhu et al., 2022; Nguyen et al., 2024). In multi-agent systems, symmetries reduce
policy space complexity and help agents identify equivalent strategies (van der Pol et al., 2021;
Muglich et al., 2022a). However, many methods require explicit knowledge of symmetries, or rely
on predefined groups (Abreu et al., 2023; Yu et al., 2024; Nguyen et al., 2024). Our work generalizes
these approaches by introducing ER symmetries, which do not require prior symmetry knowledge
or equivariant networks, and can be learned directly through environment interactions.

Our work relates to value-based abstraction, which groups states or observations with similar value
functions. Rezaei-Shoshtari et al. (2022) use lax-bisimulation to learn MDP homomorphisms, while
Grimm et al. (2021) learn a model of the underlying MDP for value-based planning. In contrast, we
focus on symmetries in the policy space that preserve expected return. ER symmetries are concep-
tually related to Q∗-irrelevance abstractions (Li et al., 2006) in that both aim to preserve the optimal
value function of an MDP. However, whereas Q∗-irrelevance abstractions reduce complexity by ag-
gregating states, ER symmetries form a group that acts bijectively on the policy space, transforming
optimal policies into other policies with the same expected return.

6 CONCLUSION

This paper defined expected return symmetries—a group whose action preserves policy expected
return. We demonstrated that the symmetries in this group can be learned purely from interactions
with the environment and without requiring privileged environment information. We demonstrated
that this symmetry class significantly enhances zero-shot coordination, significantly outperforming
traditional Dec-POMDP symmetries, which are a subset of this group. Importantly, we showed that
expected return symmetries are effective in challenging settings where state-of-the-art ZSC methods,
such as off-belief learning (Hu et al., 2021) in Hanabi or approaches based on cognitive hierarchies,
either fail completely (e.g., in the lever game and cat/dog environments) or face difficulties in their
application (e.g., Overcooked V2).

One major limitation of our approach is that we constrain the search for symmetries to bijections
over the action and observation spaces. While this works well in many settings, as shown in our
experiments, there are environments, e.g. the two-lever game, in which this limited expressivity
cannot provide enough diversity within the equivalence classes of policies that are optimal w.r.t.
OP with ΦERS, to prevent coordination failure in ZSC. Another limitation is that the success of our
method is heavily dependent on the type of policies which are used to learn the ER symmetries.

Our work opens several avenues for future research. One direction is to explore the use of expected
return symmetries in ad-hoc teamwork or single-agent settings. Another is to investigate broader
classes of symmetries, beyond the ones that arise from bijections on the actions and observations.
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A EXPERIMENTAL SETUP

For expected return symmetry discovery in the three-lever game, each ERS agent trains 20 self-play
optimal policies using IQL over 10000 episodes, with an ϵ = 0.1 ϵ-greedy behaviour policy and
a learning rate of 0.1. The computed Q-values are then used to construct Boltzmann exploratory
policies, with temperature α = 1. Then for each pair of local action permutations, the ERS agent
maximizes the objective 9, by searching over each pair of local observation permutations. The
best 6 quadruples of two local action permuations and two local observation permuations are kept
as learned expected return symmetries. Each of 5 ERS agents exactly finds the 6 Dec-POMDP
symmetries.

For expected return symmetry discovery in cat/dog, we use a temperature of α = 1/2.667 for
Boltzmann exploration to promote sufficient exploration of different actions. We use a constant
baseline function with value 9.5 for the policy gradient. We use a learning rate of 0.01 and 2000
episodes for each inner loop of Algorithm 1.

For expected return symmetry discovery in Overcooked V2 and Hanabi, we parameterize ϕ̂O,θ as a
two hidden layer, feedforward neural network, with each linear layer intialized as a |Oi|-dimensional
identity matrix; this choice of initialization is necessary as the symmetry discovery is highly initial-
ization sensitive. We apply ReLU to the final output of the network to promote sparsity in the repre-
sentation. We build on top of the environment implementation and baseline algorithms in JaxMARL
(Rutherford et al., 2023).

For Hanabi, we run each inner loop of Algorithm 2 for 2.25e9 timesteps across vectorized Han-
abi environments. As per Equation 10 we use λ1 = 0.65, λ2 = 2.5e−9. ϕA,θ is a fixed action
transposition for each learned symmetry. We use a temperature of α = 1 for Boltzmann exploration.

For Overcooked V2, we run each inner loop of Algorithm 3 for 1.5e8 timesteps. ϕA,θ is a learned
affine map. We use a temperature of α = 1.1 for Boltzmann exploration.

For both Hanabi and Overcooked V2, we use PPO and Generalized Advantage Estimation. For Han-
abi, we use 4 epochs, 1024 environments per pretrained policy, 128 environment steps per update, 4
minibatches, γ = 0.99, GAE Lambda = 0.95, CLIP EPS = 0.2, VF COEFF = 0.5, MAX GRAD
NORM = 0.5, a learning rate of 1e−5 and a linear learning rate annealing schedule. For Over-
cooked V2, we use 4 epochs, 256 environments, 256 environment steps per update, 64 minibatches,
γ = 0.99, GAE Lambda = 0.95, CLIP EPS = 0.2, VF COEFF = 0.5, MAX GRAD NORM = 0.25,
a learning rate of 1e−5 with no annealing.

Methods for Hanabi and Overcooked V2 were ran on A40 and L40 GPUs.

Code for Cat/Dog:

https://colab.research.google.com/drive/1enEW6cjnzTbM9sTtHlD2-vowYh9NDlhc?
usp=sharing

Code for Iterated Three-Lever Game:

https://colab.research.google.com/drive/1T9LpOkLDBl9BBkjzUelXKND6U8dOvfXV

Code for Hanabi/Overcooked V2:

https://github.com/gfppoy/expected-return-symmetries/tree/main
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B PROOFS

B.1 GROUP PROPERTIES

Theorem. ΦER :=
{
ϕ ∈ Ψ

∣∣∣ ϕ(Πα
∗
)
= Πα

∗

}
forms a group under function composition.

Proof. To show that ΦER forms a group under function composition, we verify the group axioms:
closure, associativity, identity, and inverses.

Closure: For any ϕ1, ϕ2 ∈ ΦER, we need to show that ϕ1 ◦ ϕ2 ∈ ΦER. For the composition ϕ1 ◦ ϕ2,
we see that

(ϕ1 ◦ ϕ2)(Π
α
∗ ) = ϕ1(ϕ2(Π

α
∗ )) = ϕ1(Π

α
∗ ) = Πα

∗ .

which shows that ϕ1 ◦ ϕ2 ∈ ΦER.

Associativity: Function composition is associative, so for any ϕ1, ϕ2, ϕ3 ∈ ΦER:

(ϕ1 ◦ ϕ2) ◦ ϕ3 = ϕ1 ◦ (ϕ2 ◦ ϕ3).

Thus, associativity holds.

Identity: The identity function Id ∈ Ψ satisfies Id(π) = π for all π ∈ Π, and thus Id ∈ ΦER and
acts as the identity element.

Inverses: We let ϕ ∈ ΦER. Since Ψ is a finite group, there exists a positive integer k such that
ϕk = Id, and thus ϕ−1 = ϕk−1. Since ϕk−1 ∈ ΦER due to closure, we see that ϕ−1 ∈ ΦER.

Since ΦER satisfies closure, associativity, identity, and inverses, it forms a group under function
composition.

Theorem (Dec-POMDP Symmetry Expected Return Invariance). For any Dec-POMDP symmetry
ϕ ∈ ΦMDP, and any joint policy π, it holds that

J(π) = J(ϕ(π)).

Proof. We prove by induction on the time step t = 0, 1, . . . ,H that for every action–observation
history (AOH) τt,

Vπ(τt) = Vϕ(π)(ϕ(τt)).

Since the initial AOH is the empty history (i.e., τ0 = ϕ(τ0)), this immediately implies

J(π) = Vπ(τ0) = Vϕ(π)(ϕ(τ0)) = J(ϕ(π)).

Base Case (t = H): At time H the game terminates, so by definition,

Vπ(τH) = 0 and Vϕ(π)(ϕ(τH)) = 0.

Inductive Hypothesis: Assume that for some t with t < H , the equality

Vπ(τt+1) = Vϕ(π)(ϕ(τt+1))

holds for every AOH τt+1.

Inductive Step (t): Consider an arbitrary AOH τt. By the Bellman equation, the value function
for π is

Vπ(τt) =
∑
st∈S
Bπ(st | τt)

∑
at∈A

π(at | τt)
∑

st+1∈S
T (st+1 | st, at)

×

R(st+1, at) + γ
∑

ot+1∈O
U(ot+1 | st+1, at)Vπ(τt+1)

 .
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Similarly, the value function for the transformed policy ϕ(π) on the transformed history ϕ(τt) is

Vϕ(π)(ϕ(τt)) =
∑
st∈S
Bϕ(π)(ϕ(st) | ϕ(τt))

∑
at∈A

ϕ(π)(ϕ(at) | ϕ(τt))

×
∑

st+1∈S
T (ϕ(st+1) | ϕ(st), ϕ(at))

×

R(ϕ(st+1), ϕ(at)) + γ
∑

ot+1∈O
U(ϕ(ot+1) | ϕ(st+1), ϕ(at))Vϕ(π)(ϕ(τt+1))

 .

By the symmetry properties (e.g., Equations 2 and 3), we have

Bϕ(π)(ϕ(st) | ϕ(τt)) = Bπ(st | τt), ϕ(π)(ϕ(at) | ϕ(τt)) = π(at | τt),
and the invariance of T ,R, and U under ϕ. Thus,

Vϕ(π)(ϕ(τt)) =
∑
st∈S
Bπ(st | τt)

∑
at∈A

π(at | τt)
∑

st+1∈S
T (st+1 | st, at)

×

R(st+1, at) + γ
∑

ot+1∈O
U(ot+1 | st+1, at)Vϕ(π)(ϕ(τt+1))

 .

By the inductive hypothesis Vϕ(π)(ϕ(τt+1)) = Vπ(τt+1), so it follows that

Vϕ(π)(ϕ(τt)) = Vπ(τt).

This completes the inductive step.

By mathematical induction, the equality Vπ(τt) = Vϕ(π)(ϕ(τt)) holds for all t = 0, 1, . . . ,H , and
hence

J(π) = Vπ(τ0) = Vϕ(π)(ϕ(τ0)) = J(ϕ(π)).

Theorem (Dec-POMDP Symmetry Boltzmann Exploratory Invariance). Let ϕ ∈ ΦMDP be a Dec-
POMDP symmetry and let π ∈ Πα be a Boltzmann exploratory joint policy with temperature α > 0.
Then, the transformed policy ϕ(π) is also Boltzmann exploratory, i.e.,

ϕ(π)i
(
ϕ(ait) | ϕ(τ it )

)
=

exp

(
Qi

ϕ(π)

(
ϕ(τ i

t ),ϕ(a
i
t)
)

α

)
∑

ai∈ϕ−1
(
Ai(ϕ(τ i

t ))
) exp(Qi

ϕ(π)

(
ϕ(τ i

t ),ϕ(a
i)
)

α

) .

Moreover, it holds that
Qi

ϕ(π)

(
ϕ(τ it ), ϕ(a

i
t)
)
= Qi

π(τ
i
t , a

i
t),

for all agents i, times t, AOHs τ it , and local actions ait.

Proof. We first prove by induction over the time step t that for every agent i,

Qi
ϕ(π)

(
ϕ(τ it ), ϕ(a

i
t)
)
= Qi

π(τ
i
t , a

i
t).

Base Case (t = H):
At terminal time H , the episode ends. Hence, by definition we have

Qi
π(τ

i
H , aiH) = 0 and Qi

ϕ(π)

(
ϕ(τ iH), ϕ(aiH)

)
= 0.

Thus, the base case holds.

Inductive Hypothesis:
Assume that for some t < H , and for all agents i, all local histories τ it+1, and actions ait+1, the
following holds:

Qi
ϕ(π)

(
ϕ(τ it+1), ϕ(a

i
t+1)

)
= Qi

π(τ
i
t+1, a

i
t+1).
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Inductive Step (t):
For a given local AOH τ it and local action ait, the Bellman equation gives

Qi
π(τ

i
t , a

i
t)

=
∑
st,τt

Bπ(st, τt | τ it )
∑
a−i
t

π−i(a−i
t | τ−i

t )
∑
st+1

T (st+1 | st, at) (12)

×

R(st+1, at) + γ
∑
oit+1

U i(oit+1 | st+1, at)
∑

ai
t+1∈Ai(τ i

t+1)

πi(ait+1 | τ it+1)Q
i
π(τ

i
t+1, a

i
t+1)

 .

Here π−i, a−i
t , τ−i

t , denote the parts of the joint policy π, joint action at, and joint AOH τt, which
do not belong to agent i.

Similarly, under the transformed policy ϕ(π), the Q-function for agent i is given by

Qi
ϕ(π)

(
ϕ(τ it ), ϕ(a

i
t)
)

=
∑

st,τt∈S
Bϕ(π)

(
ϕ(st), ϕ(τt) | ϕ(τ it )

)∑
a−i
t

ϕ(π)−i
(
ϕ(a−i

t ) | ϕ(τ−i
t )

)∑
st+1

T
(
ϕ(st+1) | ϕ(st), ϕ(at)

)

×

[
R
(
ϕ(st+1), ϕ(at)

)
+ γ

∑
oit+1

U i
(
ϕ(oit+1) | ϕ(st+1), ϕ(at)

)
(13)

×
∑

ai
t+1∈ϕ−1

(
Ai(ϕ(τ i

t+1))
)ϕ(π)i

(
ϕ(ait+1) | ϕ(τ it+1)

)
Qi

ϕ(π)

(
ϕ(τ it+1), ϕ(a

i
t+1)

)]
.

Since ϕ is a Dec-POMDP symmetry, Equation 3 states that

T
(
ϕ(st+1) | ϕ(st), ϕ(at)

)
= T (st+1 | st, at),

U
(
ϕ(ot+1) | ϕ(st+1), ϕ(at)

)
= U(ot+1 | st+1, at),

R
(
ϕ(st+1), ϕ(at)

)
= R(st+1, at).

Hence, for the belief Bπ it holds that

Bϕ(π)
(
ϕ(st), ϕ(τt) | ϕ(τ it )

)
= Bπ(st, τt | τ it ).

By definition of ϕ(π) we see that

ϕ(π)−i
(
ϕ(a−i

t ) | ϕ(τ−i
t )

)
= π−i(a−i

t | τ−i
t ).

Moreover, by the inductive hypothesis,

Qi
ϕ(π)

(
ϕ(τ it+1), ϕ(a

i
t+1)

)
= Qi

π(τ
i
t+1, a

i
t+1).

Finally, it holds that
ϕ−1

(
Ai(ϕ(τ it ))

)
= Ai(τ it ),

as this is a necessary condition on ϕ, such that ϕ(π) is well-defined for all π.

Substituting all of the above equations into Equation 13, we obtain:

Qi
ϕ(π)

(
ϕ(τ it ), ϕ(a

i
t)
)
= Qi

π(τ
i
t , a

i
t).

This completes the induction step.
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Therefore, for any agent i, local history τ it , and action ait, the transformed policy satisfies

ϕ(π)i
(
ϕ(ait)

∣∣∣ϕ(τ it )) = πi(ait|τ it ) =
exp

(
Qi

π(τ
i
t ,a

i
t)

α

)
∑

ai∈Ai(τ i
t )
exp

(
Qi

π(τ
i
t ,a

i)
α

)

=

exp

(
Qi

ϕ(π)

(
ϕ(τ i

t ),ϕ(a
i
t)
)

α

)
∑

ai∈ϕ−1
(
Ai(ϕ(τ i

t ))
) exp(Qi

ϕ(π)

(
ϕ(τ i

t ),ϕ(a
i)
)

α

) .

which shows that ϕ(π) ∈ Πα.

B.2 POLICY-GRADIENT BASED BOLTZMANN-EXPLORATORY POLICIES

Recall that for a decentralized partially observable setting, each agent i acts based on its local ac-
tion–observation history (AOH) τ it . The value of τ it , when assuming that all agents follow their
respective local policies in π, is given by

V i
π(τ

i
t ) =

∑
ai∈Ai(τ i

t )

πi(ait | τ it )Qi
π(τ

i
t , a

i
t),

where Qi
π(τ

i
t , a

i
t) is the local action–value function for agent i, when assuming that all agents follow

their respective local policies in π.

In practice, actor–critic methods update the critic and actor on different timescales. With appropriate
learning rate schedules, the local value estimates Qi

π(τ
i
t , a

i
t) converge and approximately satisfy the

Bellman equations. In this regime, we may treat Qi
π(τ

i
t , a

i
t) as fixed when optimizing the policy.

Then, for agent i, the entropy-regularized objective becomes

Jτ i
t
(πi) =

∑
ai∈Ai(τ i

t )

πi(ait | τ it )Qi
π(τ

i
t , a

i
t) + αH

(
πi(· | τ it )

)
,

with the entropy given by

H
(
πi(· | τ it )

)
= −

∑
ai∈Ai(τ i

t )

πi(ait | τ it ) log πi(ait | τ it ).

Because Qi
π(τ

i
t , a

i
t) is treated as fixed and the entropy function is strictly concave, the local ob-

jective Jτ i
t
(πi) is strictly concave in πi(· | τ it ). Hence, its unique maximizer can be computed

independently for each agent and each local history by solving a Lagrangian optimization problem.

The following theorem formalizes that the unique maximizer of Jτ i
t
(πi) is the Boltzmann (softmax)

policy.

Theorem (Local Boltzmann Policy from Entropy-Regularized Objective). For a fixed local AOH
τ it of agent i, the optimal local policy that maximizes

Jτ i
t
(πi) =

∑
ai∈Ai(τ i

t )

πi(ait | τ it )Qi
π(τ

i
t , a

i
t) + αH

(
πi(· | τ it )

)
subject to ∑

ai∈Ai(τ i
t )

πi(ait | τ it ) = 1,

is given by

πi(ait | τ it ) =
exp

(
Qi

π(τ
i
t ,a

i
t)

α

)
∑

a′∈Ai(τ i
t )
exp

(
Qi

π(τ
i
t ,a

′)
α

) .
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Proof. Assume that for the fixed local AOH τ it , the value estimates Qi
π(τ

i
t , a

i
t) are treated as con-

stant. Define the Lagrangian

L(πi, λ) =
∑

ai∈Ai(τ i
t )

πi(ait | τ it )Qi
π(τ

i
t , a

i
t)

− α
∑

ai∈Ai(τ i
t )

πi(ait | τ it ) log πi(ait | τ it ) + λ

 ∑
ai∈Ai(τ i

t )

πi(ait | τ it )− 1

 .

Taking the derivative with respect to πi(ait | τ it ) for each ai ∈ Ai(τ it ) yields

∂L
∂πi(ait | τ it )

= Qi
π(τ

i
t , a

i
t)− α

(
log πi(ait | τ it ) + 1

)
+ λ = 0.

Rearrange this equation to obtain

log πi(ait | τ it ) =
Qi

π(τ
i
t , a

i
t) + λ− α

α
.

Exponentiating both sides gives

πi(ait | τ it ) = exp

(
Qi

π(τ
i
t , a

i
t)

α

)
exp

(
λ− α

α

)
.

Since the term exp
(
λ−α
α

)
is independent of ai, it is determined by the normalization constraint:∑

ai∈Ai(τ i
t )

πi(ait | τ it ) = exp

(
λ− α

α

) ∑
ai∈Ai(τ i

t )

exp

(
Qi

π(τ
i
t , a

i
t)

α

)
= 1.

Defining

Zi(τ it ) =
∑

ai∈Ai(τ i
t )

exp

(
Qi

π(τ
i
t , a

i
t)

α

)
,

we have

exp

(
λ− α

α

)
=

1

Zi(τ it )
.

Thus, the unique maximizer is given by

πi(ait | τ it ) =
exp

(
Qi

π(τ
i
t ,a

i
t)

α

)
Zi(τ it )

=
exp

(
Qi

π(τ
i
t ,a

i
t)

α

)
∑

a′∈Ai(τ i
t )
exp

(
Qi

π(τ
i
t ,a

′)
α

) .

Note the Q-functions above can be provided by a critic network or be estimated via empirical returns.
When the local Qi

π(τ
i
t , a

i
t) estimates have converged, the local objective decouples over τ it and its

unique maximizer is the Boltzmann (softmax) policy. This motivates our definition of the set of
Boltzmann exploratory policies,

Πα :=

π ∈ Π
∣∣∣πi(ait | τ it ) =

exp
(

Qi
π(τ

i
t ,a

i
t)

α

)
∑

ai∈Ai(τ i
t )
exp

(
Qi

π(τ
i
t ,a

i)
α

) , ∀ ait, ∀ τ it , ∀ i = 1, . . . , n

 ,

and, correspondingly, our definition of the set of self-play optimal Boltzmann-exploratory policies

Πα
∗ := argmax

π∈Πα

J(π).

Finally, we define expected return symmetries,

ΦER :=
{
ϕ ∈ Ψ

∣∣∣ ∀π ∈ Πα
∗ : ϕ(π) ∈ Πα

∗

}
,

as the subset of transformations preserving self-play optimality of Boltzmann-exploratory policies.
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C WHY BOLTZMANN-EXPLORATORY POLICIES ARE NECESSARY

Defining expected return symmetries in terms of Boltzmann-exploratory policies, rather than just
ϵ-soft policies, is necessary. If defined via ϵ-soft policies, permuting any set of actions which are
suboptimal in self-play would be an expected return symmetry, since all suboptimal actions would
be taken with the same probability. The following example illustrates this:

Consider the cat/dog game from Example 2. Boltzmann exploration is necessary to disambiguate
for Alice the actions of removing the barrier and bailing: simple ϵ−greedy exploration does not
suffice, since we would then still use both these suboptimal actions with equal probability, and so
the expected return remains the same under the relabeling of these actions. Thus, under ϵ−greedy
exploration, permuting the labels of the actions for removing the barrier and bailing is an expected
return symmetry. This, however, is undesirable because we want OPΦER

-optimal policies to be able
to disambiguate these very different actions. Under Boltzmann exploration, Alice takes the reveal
action more often than the bail action, and so relabeling these actions lowers expected return and is
thus not an expected return symmetry.

D LEARNED TRANSFORMATIONS SATISFY GROUP PROPERTIES

This section analyzes the learned ER symmetries for their group properties.

We first train six (near-)optimal IPPO policies with independent seeds as Π′, obtaining a mean
expected return of Eπ∼Π′ [J(π)] = 24.04 ± 0.02. Next, we randomly select 64 local-action-space
transpositions, and learn the corresponding {ϕO,θl}64l=1 via optimizing Equation 9 / Algorithm 1.
That is, we fix the same action transposition for each local policy, significantly constraining the
search. This is a significant undersampling of the 190 possible transpositions on each local action
space, yet as we show below we still learn effective ER symmetries for coordination. We then
save the 11 best transformations (those that maximize Equation 9) as unregularized ER symmetries.
These are used to maximize Equation 10 / Algorithm 2 on another set of 64 random transpositions,
now enforcing compositional closure and invertibility. The 11 best are saved as regularized ER
symmetries.

Table 2: Comparison of 11 unregularized and 11 regularized ER symmetries applied to 6 unseen
optimal policies (|Πunseen| = 6). Regularization enforces compositionality and invertibility. For k =
1, 2, 3, let Jk = Eϕi∼ΦEπ∼Πunseen [J((ϕ1 ◦ · · · ◦ ϕk)(π))] denote the expected return after composing
k randomly sampled transformations. We report Single Transform. (J1), Double Comp. (J2),
and Triple Comp. (J3). Relative Reconstruction Loss measures approximate invertibility (lower is
better): Eπ∼ΠunseenEτ∼π[

||τ−ϕ2
O(τ)||

||τ || ], using the ℓ2 norm for AOH vectors. Recall Eπ∼Π′ [J(π)] =

24.04± 0.02.

Single Transform. Double Comp. Triple Comp. Rel. Rec. Loss

Unreg. 22.88± 0.07 21.10± 0.09 20.36± 0.11 31.4%± 1.8%

Reg. 23.32± 0.05 22.16± 0.07 20.94± 0.12 16.7%± 0.18%

Table 2 shows that up to minor deviations in expected return preservation, the learned ER symme-
tries still approximately satisfy closure under composition. In addition, when invertibility is en-
forced, the relative reconstruction loss decreases substantially (a lower relative reconstruction loss
tells us applying the transformation twice brings us closer to the original AOH, suggesting approx-
imate invertibility). We conclude that the learned ER symmetries, especially the regularized ones,
approximately satisfy the desired group-theoretic properties.
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E ALGORITHMS

Algorithm 1 Learning Expected Return Symmetries with Policy Gradients (without enforcing com-
positionality nor invertibility) . . . Optimization of Equation 9

1: Input: A Dec-POMDP, a set Π′ of joint policies in it, a parameterization ϕO,θ, θ ∈ Θ, a learning
rate η > 0, l for the number of top transformations to save

2: Initialize list of top l average expected returns: J̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each tuple of local action transpositions ϕA ∈

∏n
i=1 Transpositions(Ai) do

5: Initialize ϕO,θ with random parameters θ ∈ Θ
6: while not converged do
7: for each policy π ∈ Π′ do
8: Sample a batch B of joint AOHs, and the corresponding sequences of returns, using

the transformed policy ϕθ(π) = (ϕA, ϕO,θ)(π)

9: Compute advantage Aϕθ(π)(τt, at) for all t = 0, ...,H − 1, using any advantage
function (e.g., TD, GAE)

10: Compute policy gradient:

∇θJ(ϕθ(π)) ≈
1

|B|
∑
τH∈B

[
H−1∑
t=0

∇θ log ϕθ(π)(at | τt)Aϕθ(π)(τt, at)

]
11: Update parameters: θ ← θ + η∇θJ(ϕθ(π))
12: end for
13: end while
14: Compute average expected return J̄ϕθ

, where for every π ∈ Π′ the expected return J(ϕθ(π))
is approximated by the average return over a number of episodes:

J̄ϕθ
≈ 1

|Π′|
∑
π∈Π′

J(ϕθ(π))

15: Find the index of the lowest return in J̄top, say imin

16: if J̄ϕθ
> J̄top[imin] then

17: Replace the lowest return: J̄top[imin]← J̄ϕθ

18: Replace the corresponding transformation: ϕtop[imin]← (ϕO,θ, ϕA,θ):
19: end if
20: end for
21: Output: Set ϕtop of the best l learned transformations
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Algorithm 2 Learning Expected Return Symmetries (enforcing compositionality and invertibility)
. . . Optimization of Equation 10

1: Input: A Dec-POMDP, a set Π′ of joint policies in it, a parameterization ϕO,θ, θ ∈ Θ, a learning
rate η > 0, transformations {ϕ1, . . . , ϕm} obtained from Algorithm 1, l for the number of top
transformations to save, regularization weights λ1, λ2

2: Initialize list of top l average expected returns: J̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each tuple of local action transpositions ϕA ∈

∏n
i=1 Transpositions(Ai) do

5: Initialize ϕO,θ with random θ ∈ Θ
6: while not converged do
7: for each policy π ∈ Π′ do
8: With probability 1 − λ1 set ϕ̃θ = ϕθ, and with probability λ1 sample ϕi, ϕj ∈
{ϕ1, . . . , ϕm} and set ϕ̃θ = ϕi ◦ ϕθ ◦ ϕj

9: Sample a batch B of joint AOHs, and the corresponding sequences of returns, using
the transformed policy ϕ̃θ(π)

10: Compute advantage Aϕ̃θ(π)(τt, at), for all t = 0, ...,H − 1, using any advantage
function (e.g., TD, GAE)

11: Compute the invertibility regularization term L(θ) = 1
|O|

∑
o∈O

[
d(o, ϕ2

O,θ(o))
2
]
,

and its gradient ∇θL(θ)
12: Compute policy gradient:

∇θJ(ϕ̃θ(π)) ≈
1

|B|
∑
τH∈B

[
H−1∑
t=0

∇θ log ϕ̃θ(π)(at | τt)Aϕ̃θ(π)(τt, at)

]

13: Update θ ← θ + η
(
∇θJ(ϕ̃θ(π))− λ2∇θL(θ)

)
14: end for
15: Compute average expected return J̄ϕθ

, where for every π ∈ Π′ the expected return
J(ϕθ(π)) is approximated by the average return over a number of episodes

J̄ϕθ
≈ 1

|Π′|
∑
π∈Π′

J(ϕθ(π))

16: end while
17: Find the index of the lowest return in J̄top, say imin

18: if J̄ϕθ
> J̄top[imin] then

19: Replace the lowest return: J̄top[imin]← J̄ϕθ

20: Replace the corresponding transformation: ϕtop[imin]← (ϕO,θ, ϕA,θ)
21: end if
22: end for
23: Output: Set ϕtop of the best l learned transformations
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Algorithm 3 Learning Expected Return Symmetries through cross-play maximization between pairs
of Policies . . . Optimization of Equation 11

1: Input: A Dec-POMDP, a set Π′ of joint policies in it, a parameterization ϕO,θ, θ ∈ Θ, a learning
rate η > 0, l for the number of top transformations to save

2: Initialize list of top l average expected returns: J̄top = [−∞, . . . ,−∞] (length l)
3: Initialize list of top l transformations: ϕtop = [∅, . . . , ∅] (length l)
4: for each pair of joint policies (πi, πj) ∈ Π′ ×Π′ \ {(π, π) |π ∈ Π′} do
5: Initialize ϕO,θ and ϕA,θ with random parameters θ ∈ Θ
6: while not converged do
7: Sample a batch B of joint AOHs, and the corresponding sequences of returns, using the

transformed pair (π1
i , ϕθ(π

2
j ))

8: Compute advantage A(π1
i ,ϕθ(π

2
j ))(τt, at), for all t = 0, ...,H − 1, using any advantage

function (e.g., TD, GAE)
9: Compute policy gradient:

∇θJ(π
1
i , ϕθ(π

2
j )) ≈

1

|B|
∑
τH∈B

[
H−1∑
t=0

∇θ log ϕθ(π
2
j )(at | τt)A(π1

i ,ϕθ(π
2
j ))(τt, at)

]

10: Update parameters: θ ← θ + η∇θJ(π
1
i , ϕθ(π

2
j ))

11: Compute average return J̄(π1
i ,ϕθ(π2

j ))
≈ J(π1

i , ϕθ(π
2
j )) over a number of episodes

12: end while
13: Find the index of the lowest return in J̄top, say imin

14: if J̄(π1
i ,ϕθ(π2

j ))
> J̄top[imin] then

15: Replace the lowest return: J̄top[imin]← J̄(π1
i ,ϕθ(π2

j ))

16: Replace the corresponding transformation: ϕtop[imin]← (ϕO,θ, ϕA,θ)
17: end if
18: end for
19: Output: Set ϕtop of the best l learned transformations
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F INTERPRETABILITY OF HANABI OP AGENTS

Figure 3: Conditional action matrices of OPΦMDP
-optimal and OPΦER

-optimal policies; i.e.,
P (ait | a

j
t−1). We select the agent from both respective populations achieving the highest cross-play

scores. We can see the OPΦER
-optimal policy more consistently uses a rank hint to signal playing

the fifth card, whereas the OPΦMDP
-optimal policy uses a similar convention but less consistently.

G HANABI

Hanabi is a cooperative card game that can be played with 2 to 5 people. Hanabi is a popular game,
having been crowned the 2013 “Spiel des Jahres” award, a German industry award given to the
best board game of the year. Hanabi has been proposed as an AI benchmark task to test models of
cooperative play that act under partial information Bard et al. (2020). To date, Hanabi has one of the
largest state spaces of all Dec-POMDP benchmarks.

The deck of cards in Hanabi is comprised of five colors (white, yellow, green, blue and red), and five
ranks (1 through 5), where for each color there are three 1’s, two each of 2’s, 3’s and 4’s, and one
5, for a total deck size of fifty cards. Each player is dealt five cards (or four cards if there are 4 or 5
players). At the start, the players collectively have eight information tokens and three fuse tokens,
the uses of which shall be explained presently.

In Hanabi, players can see all other players’ hands but their own. The goal of the game is to play
cards to collectively form five consecutively ordered stacks, one for each color, beginning with a
card of rank 1 and ending with a card of rank 5. These stacks are referred to as fireworks, as playing
the cards in order is meant to draw analogy to setting up a firework display.

We call the player whose turn it is the active agent. The active agent must conduct one of three
actions:

• Hint - The active agent chooses another player to grant a hint to. A hint involves the active
agent choosing a color or rank, and revealing to their chosen partner all cards in the partner’s
hand that satisfy the chosen color or rank. Performing a hint exhausts an information token.
If the players have no information tokens, a hint may not be conducted and the active agent
must either conduct a discard or a play.

• Discard - The active agent chooses one of the cards in their hand to discard. The iden-
tity of the discarded card is revealed to the active agent and becomes public information.
Discarding a card replenishes an information token should the players have less than eight.

• Play - The active agent attempts to play one of the cards in their hand. The identity of
the played card is revealed to the active agent and becomes public information. The active
agent has played successfully if their played card is the next in the firework of its color to
be played, and the played card is then added to the sequence. If a firework is completed,
the players receive a new information token should they have less than eight. If the player
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is unsuccessful, the card is discarded, without replenishment of an information token, and
the players lose a fuse token.

The game ends when all three fuse tokens are spent, when the players successfully complete all five
fireworks, or when the last card in the deck is drawn and all players take one last turn. If the game
finishes by depletion of all fuse tokens (i.e. by “bombing out”), the players receive a score of 0.
Otherwise, the score of the finished game is the sum of the highest card ranks in each firework, for
a highest possible score of 25.

More facts about Hanabi:

1. The Dec-POMDP symmetries correspond to permutations of the five card colors (5! =
120).

2. In two-player Hanabi, there are 20 possible actions per turn, organized into four types:
Play, Discard, Color Hint, and Rank Hint. These yield 190 distinct action transpositions.

3. A perfect score is 25, though some deck permutations make this score unreachable, so no
policy can guarantee an expected return of 25.
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