Appendix

5.1 Training Algorithms

Algorithm 1 presents the Hard-Gating Training Algorithm, Algorithm 2 presents the Soft-Gating
Training Algorithm, and Algorithm 3 summarizes the End-to-End Training Algorithm.

Algorithm 1 Hard-gating Algorithm for In-Stage I DK Cascade

Input
D?: Training data containing N° samples in stage-s
M?: Sorted list of the models trained for stage-s
C: Dictionary of models’ spatio-temporal costs
cs: User-defined budget of spatio-temporal cost for stage-s
q: Confidence function
max A: Value for the upper bound of the cutoffs to avoid over-fitting
nBins: Number of bins for the grid search
Output
o;: The optimal IDK cutoff vector for stage-s

1: procedure HARDGATING(D?®, M?*, c,, C, q, max A, nBins)
2 o =[], ModelAssign = 1, cost = 3, , C[ms1]
3 if cost > c, then return o
4 end if
5: for k in range(K; — 1) do > Bottom-up search
6: Idxdk < UI(Model Assignli, t] == k).
7 if Idxz4k is () then break
8: end if
9: minQ < minsgear {gsr(Tit) }
10: mazQ) < min(mazxA, maxygzak {qsk(wit)}).
11: oy < minQ.
12: for oy, in LinSpace(min@, max@,nBins) do
13: IDK < Urazarl (gsk(xit) € [0}y, i)
14: if IDK is not () then
15: if cost + ;i Clmsky1] — C[my] > ¢, then
16: G, < al + [k, ]; return o
17: end if
18: Qo — O,
19: ModelAssign[IDK] «+ k+1,
20: cost+ =Y 1 pr ClMmsky1] — Clmy]
21: end if
22: end for
23: al — o+ [od]
24: end for
25: return o

26: end procedure

5.2 Data preparation

By following the definition of Sepsis-3|Singer et al.|(2016), we identify the sepsis onset to be the
time when an increase in the Sequential Organ Failure Assessment (SOFA) score of 2 points or more
occurs in response to infections. We use the Sepsis-3 toolkiFl to obtain the suspected infection time in
patients, and following the process in|Seymour et al.|(2016) to finally label the onset of sepsis. We
result at a total number of 20, 009 sepsis patients out of the 52, 902 adult patients from MIMIC-IIT
database. We exclude those patients who stay in ICUs less than 6 hours and also exclude those
patients who developed sepsis within the first 6 hours after ICU admission. This reduces our cohort
to a total of 34,475 ICU patient, and only 2, 370(6.8%) out of them are labeled as sepsis (because
88.1% of sepsis onsets happened within the first 6 hours after ICU admission and are excluded from
our study cohort). Then according to|Singer et al.|(2016), we identify the onset of septic shock as

*https://doi.org/10.5281/zenodo . 1256723
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Algorithm 2 Soft-gating Algorithm for In-Stage I D K Cascade

Input
D?: Training data containing N® samples in stage-s
M?: Sorted list of the models trained for stage-s
fams: A multi-head DKD model for distilling all the model’s confidence at stage-s
C: Dictionary of models’ spatio-temporal costs
cs: User-defined budget of spatio-temporal cost for stage-s
q: Confidence function
A: Controller for the spatio-temporal cost budget
w: Controller for L1-norm sparsity regularization
nEpochs: Number of training epochs
Output
a’, b the optimal soft-gating IDK coefficient for stage-s
procedure SOFTGATING(D®, M?, faqs, ¢s, C, q)
Ir<le—1,e<+0,as < 1,b, + 0.5
while e < nEpochs do
Gsj(xy) < q(f (s mei) 1]/ 2 f (@3 mar)) > DKD confidence distillation

1:
2
3
4:
5: ‘C:parse — Zz},t,k H GIDK(qASj(wt)) Hl
6.
7
8

Ea’swbs — £311 + )“Cgost + M‘C:parse
Optimize Lq, p, using SGD
: Reduce [r by factor 0.5 once learning stagnates.
9: e+e+1
10: end while
11: return a’, b}

s s
12: end procedure

Algorithm 3 End-to-End Training algorithm for UnfoldML

Input
D: Full training data containing /N instances
M: Full model zoo
C: Dictionary of models’ spatio-temporal costs
q: Confidence criterion

Output
6*: the optimal ICK; gate parameters
a* (or a*, b*): the optimal IDK gate parameters

1: procedure END-TO-ENDTRAINING(D, M)

2 Pre-allocate costs c, for each stage s.

3 Step 1: Learn in-stage IDK gate parameters.
4: for each stage s do

5: a* < HardGating(D*, M?®, ¢, C, q)

6: or, a*, b* + SoftGating(D*, M?*, ¢,, C, q)
7 end for

8

9: Step 2: Learn ICK; gate parameters.
10: for each model m;, do

11: 0%, < Grid Search for minimizing | /iy, + €,
12: end for
13: return o* (or a*, b*), 0*

14: end procedure

16



o
©
©

o
[
o

End-to-End AUC
o <)
S

o
©
<)

—e— Entropy-of-Expected
—e— Confidence

—e— Expected-Entropy
. —e— Mutual-Information

o

N

©
L2

7 2‘0 5'5 14‘8
Spatial-Temporal Cost
Figure 3: Conﬁdence measure selection in Soft-Gating
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Figure 4: Transitions in model calls: both cascades always call the first model per each stage for an entrance

and transition to next models (IDK) or next stage (ICK). )
when a vasopressor is required to maintain a mean arterial pressure (MAP) > 65 mm Hg and serum

lactate level > 2 mmol/L (> 18 mg/dL). We result at 229(9.7%) septic shock patients out of the
2,370 sepsis patients.

For feature generation, we extract § patient static characteristics including age, gender, race, height,
weight, sepsis onset hour since ICU admission, whether diagnosed diabetes or on a ventilator at ICU
admission. Then we extract the dynamic features by obtaining the 8§ vital signs, 16 lab measurements,
6 vassopressors, continuous replacement therapies (CRRT), ventilation, 2 intravenous fluids in fluid
resuscitation, and 5 additional measurements that are recommended for monitoring during sepsis
management. The 8 vital signs include heart rate, systolic blood pressure, diastolic blood pressure,
mean blood pressure, respiration rate, temperature, SpO2 and glucose. The 16 lab measurements in-
clude Anion gap, Albumin, Bands, Bicarbonate, Bilirubin, Creatinine, Chloride, Glucose, Hematocrit,
Hemoglobin, Lactate, Platelet, Potassium, PTT, INR, PT, Sodium, BUN and WBC. The 6 vasopres-
sors include dobutamine, dopamine, epinephrine, norepinephrine, phenylephrine, and vasopressin.
The 2 fluids include Crystalloids and Colloids that are recommended in the early management of
sepsis Rhodes et al.|(2017), and particularly fluid resuscitation of bolus > 500 mL is one of the
most common treatment for managing septic shock. The 5 additional measurements include whether
a vasopressor is needed to maintain a mean arterial pressure (MAP) > 65 mm Hg, serum lactate
level > 2 mmol/L, urine output > 5 ml/kg/hr, venous oxygen saturation (SvO2) > 70% and central
venous pressure (CVP) of 8 — 12 mmHg. We fill missing values like lab measurements using the
last measured value; we clamp real-valued features in between their 0.05-quantile and 0.95-quantile
values respectively and normalize the features using min-max normalization.

For training sepsis prediction models, we take the full training cohort but discard the data after the
first sepsis onset in sepsis patients, then we label the data per hour, and label the current sepsis
outcome as 1 if the true sepsis is going to happen in the next 12 hours (designed for early prediction
on sepsis). For training shock prediction models, we take the sepsis sub training cohort and discard
the data before sepsis onset. We also discard the data after septic shock onset in shock patients. Then
we label in the same way as for sepsis, i.e. label the current shock outcome as 1 if the true shock will
take place in the next 12 hrs. For those non sepsis patients, we discard the first 12 hrs data after ICU
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‘ Model Zoo ‘ Dirichlet Knowledge Distillation (DKD)

Model AUC  Computational Data Total AUC  MAE MAE MAE MAE
Cost Modality Norm. Cost Confidence Entropy of Exp. Entropy MI
vitals_1hr.h100.nlayer! 74.5% 5 1 0.10 74.4% 0.07 0.13 0.08 0.05
vitals_6hr.h100.nlayer1 782% 7 1 0.11 74.7%  0.06 0.11 0.07 0.05
vitals_6hr.h100.nlayer3 79.7% 172 1 0.54 74.8% 0.08 0.14 0.09 0.06
vitals_6hr.h300.nlayer2 81.1% 173 1 0.54 75.0% 0.08 0.14 0.09 0.06
vitals_12hr.h200.nlayer4 82.3% 175 1 0.55 70.5% 0.09 0.16 0.10 0.10
vitals_labs_Ihr.h100.nlayer] 76.8% 5 2 0.20 74.0%  0.06 0.11 0.07 0.04
vitals_labs_6hr.h100.nlayer1 81.8% 86 2 0.41 74.0%  0.06 0.12 0.08 0.04
vitals_labs_6hr.h100.nlayer2 82.6% 257 2 0.86 73.5% 0.06 0.12 0.08 0.05
vitals_labs_6hr.h100.nlayer3 82.5% 258 2 0.86 74.2% 0.08 0.14 0.09 0.05
vitals_labs_csu_lhr.h100.nlayer1 783% 5 3 0.30 73.8% 0.07 0.13 0.09 0.05
vitals_labs_csu_6hr.h100.nlayer1 81.6% 90 3 0.52 73.4% 0.08 0.14 0.10 0.05
vitals_labs_csu_6hr.h400.nlayerl | 81.6% 258 3 0.96 73.5% 0.05 0.11 0.07 0.05
vitals_labs_csu_6hr.h400.nlayer3 | 83.5% 259 3 0.97 73.7% 0.07 0.13 0.08 0.06
vitals_labs_csu_6hr.h300.nlayer3 82.2% 264 3 0.98 73.5% 0.07 0.14 0.08 0.07
vitals_labs_csu_6hr.h100.nlayer2 81.8% 272 3 1.00 73.2% 0.09 0.15 0.10 0.06
vitals_labs_csu_12hr.h300.nlayer4 | 85.1% 268 3 0.99 72.6% 0.09 0.16 0.10 0.07

Table 5: Sepsis-Stage model zoo

| Model Zoo | Dirichlet Knowledge Distillation (DKD)
Model AUC Computational  Data Total AUC MAE MAE MAE MAE
Cost Modality Norm. Cost Confidence Entropy of Exp. Entropy MI
vitals_1hr.h100.nlayerl 87.0% 5 1 0.23 87.1% 0.05 0.07 0.04 0.03
vitals_6hr.h100.nlayer1l 88.6% 7 1 0.23 86.7% 0.04 0.08 0.06 0.03
vitals_6hr.h100.nlayer3 88.4% 172 1 0.28 86.9% 0.04 0.08 0.06 0.03
vitals_6hr.h300.nlayer2 86.8% 173 1 0.28 86.5% 0.04 0.07 0.06 0.03
vitals_12hr.h300.nlayer2 88.6% 174 1 0.29 86.0% 0.04 0.09 0.07 0.03
vitals_12hr.h200.nlayer4 88.6% 175 1 0.29 85.3% 0.04 0.09 0.06 0.04
vitals_12hr.h300.nlayer3 85.1% 177 1 0.29 853% 0.05 0.11 0.08 0.04
vitals_12hr.h400.nlayer3 89.5% 189 1 0.29 85.6% 0.03 0.07 0.05 0.02
vitals_labs_1hr.h100.nlayer] 89.0% 5 2 0.45 85.4% 0.03 0.06 0.04 0.03
vitals_labs_6hr.h100.nlayer1 89.8% 86 2 0.48 86.1% 0.04 0.08 0.05 0.04
vitals_labs_6hr.h100.nlayer2 89.9% 257 2 0.54 85.4% 0.03 0.06 0.04 0.04
vitals_labs_6hr.h300.nlayer1 87.7% 258 2 0.54 84.0% 0.03 0.07 0.04 0.04
vitals_labs_6hr.h200.nlayer2 89.8% 263 2 0.54 87.4% 0.04 0.09 0.06 0.04
vitals_labs_12hr.h300.nlayer4 93.5% 262 2 0.54 82.9% 0.01 0.03 0.02 0.01
vitals_labs_12hr.h200.nlayer4 90.7% 270 2 0.54 89.1% 0.01 0.04 0.02 0.02
vitals_labs_csu_1hr.h100.nlayer 90.8% 5 3 0.68 86.2% 0.04 0.09 0.06 0.04
vitals_labs_csu_6hr.h100.nlayerl 91.9% 90 3 0.71 86.3% 0.04 0.10 0.06 0.05
vitals_labs_csu_1hr.h100.nlayer4 90.2% 172 3 0.73 86.7% 0.02 0.05 0.04 0.02
vitals_labs_csu_6hr.h200.nlayer2 88.9% 258 3 0.76 86.3% 0.02 0.06 0.04 0.03
vitals_labs_csu_6hr.h300.nlayer3 88.7% 264 3 0.77 88.0% 0.01 0.02 0.01 0.01
vitals_labs_csu_12hr.h200.nlayer3 92.1% 287 3 0.78 86.2% 0.02 0.05 0.03 0.02
vitals_labs_csu_med_1hr.h100.nlayer1 91.5% 5 4 0.90 85.5% 0.03 0.06 0.03 0.05
vitals_labs_csu_med_6hr.h100.nlayer1 91.6% 86 4 0.93 87.3% 0.03 0.07 0.04 0.04
vitals_labs_csu_med_6hr.h400.nlayerl 91.4% 257 4 0.99 87.1% 0.03 0.08 0.05 0.04
vitals_labs_csu_med_6hr.h300.nlayer3 | 90.4% 259 4 0.99 86.4% 0.03 0.07 0.05 0.03
vitals_labs_csu_med_12hrh100.nlayer2 | 93.4% 262 4 0.99 83.3% 0.00 0.01 0.01 0.01
vitals_labs_csu_med_12hr.h400.nlayer4 | 93.4% 269 4 0.99 84.7% 0.02 0.06 0.02 0.04

Table 6: Septic Shock-Stage model zoo

admission to reduce data noises and randomly sample a sequence length between 12 hrs up to 7 days
per each non sepsis patients. More details of data prepossessing are provided in the attached code.

5.3 Model Zoo

Computational cost was measured in ms as the total running time of feeding all the test data (with
batch size of 256) calling each individual models on a single GeForce RTX 2080T1i divided by the
total number of calls. Then we multiply the cost by 10 as the GPU is approximately 10X hardware
cost comparing to a CPU. Future work can extend the model zoo to include CPU models or running
all the models on CPUs based on resource specifications. Table and Table|§| respectively show the
model prediction AUC scores on the validation set for the sepsis and septic shock stages.

In addition, we also fit small DKD surrogate models for distilling the predictive probabilities and
confidence of the models in the zoo. The DKD model is a 4-layer MLP taking the embedding vectors
from the first model in each stage, so it obtains similar AUC scores on the validation set comparing
to the early models in the zoo but much lower scores comparing to the later heavier models. But the
mean absolute errors (MAE) of the DKD model on estimating confidence measures of the original
models are consistently small, which is beneficial for our soft-gating algorithm that requires only
confidence estimation instead of predictive probabilities.
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Figure 5: A timeline shown for an example shock patient. The y-axis represents probabilities of sepsis (left) and
septic shock (right). The x-axis represents patient’s length of stay (hours). This figure illustrates how different
models are selected based on patient’s critical health condition and timely septic shock prediction is made in
cost-efficient manner.
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Figure 6: Dynamic model allocations in the UnfoldML: the example shock patient (in large-sized marker)
transitioned from cheaper model in sepsis (dot) stage to costlier model in shock stage (cross).

5.4 Model Utilization in UnfoldML.

We analyze model utilization frequency (the proportion of how many times a model was invoked)
in our test cohort and compare model frequencies for hard and soft gating in FigureE| (models are
grouped into 8 groups for Stage 1 and 10 groups for Stage 2): soft gating can skip invocations of
many models and directly select the more confident models for faster transitioning to shock stage.

where ) is the digamma function defined as the logarithmic derivative of the gamma function, oy and
« are the concentration parameters estimated by the DKD models. More definitions are in|Malinin
and Gales|(2018). We show “Entropy of expected” exhibits the best AUC-Cost trade-off path in

Figure

5.5 Qualitative Evaluation

We walk through an example shock patient’s length of stay in ICU from the test set, and deploy
the proposed multi-stage prediction pipeline on it. UnfoldML starts the prediction of sepsis with
a cheaper model as seen in Figure|S| At t=2, the model’s prediction probability reaches the I DK
threshold which signifies model’s uncertainty in sepsis prediction. Hence, the Unf o1dML switches to
a costlier and more accurate model (a similar trend is observed at t=4,7). At t=5, UnfoldML predicts
sepsis onset as the probability of sepsis prediction reaches IC'K threshold. Note, once sepsis onset is
predicted by the cascade, it switches to a cheaper model which predicts septic shock (Stage-2). Due
to early switching, UnfoldML can detect septic shock significantly earlier. In Stage-2, UnfoldML
transitions to costlier model once the cheaper model becomes uncertain. Lastly, it predicts septic
shock once the probability of septic shock detection reaches the /C K threshold.

Additionally, we randomly slice 35k time-steps from the sequential data in the test set and visualize
them in a TSNE |Van der Maaten and Hinton|(2008) plot in Figure @based on their embedding vectors
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generated from the LSTMs in the model zoo. Different colors show the different model allocations
for the subsampled test data points, sepsis (dot) and shock (cross) stages are clearly separated in to
the left and right regions of the 2-D transformation space. We highlight the picked shock patient

(with significantly large markers) showing its dynamic model allocations and stage transitions within
UnfoldML.
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