A Convergence of 1p-proj

In this section, we first provide some results useful for our analysis, then give several important
properties of our method and present the proof of Theorem([I] i.e., the convergence of 1p-proj for
the case p = 2.

The framework is adapted from Dinh et al. [13]], with some concrete results specific to our settings.

A.1 Some Useful Results

In this subsection, we provide some existing results useful for our later analysis. We first introduce
more definitions.

Definition 2 (Further definitions). Suppose that f;, is a function from R® to R.
(a) fy is said to be convex, if for any w,w’ € R% and 0 < o < 1, it holds that
frlaw + (1 = a)w') < afp(w) + (1 = a) fu(W').
If fy. is differentiable, the above condition is equivalent to that for any w,w’ € R,
fe(W') = fre(w) +(Vfr(w), W' —w).
(b) fy is said to be p-strongly convex for some pi > 0, if for any w,w’ € R and 0 < a < 1, it
holds that

_ pa(l—a)
2

If f, is differentiable, the above condition is equivalent to that for any w,w’ € R,

Jelaw + (1= a)w) <afu(w) + (1 - ) fu(w) [w = Il
Je(W') = Fu(w) 4+ (V fi(w), W' = w) + & [ = w]”.
If f. is twice differentiable, the above condition is also equivalent to V2 fj, = I,

Then we have the following property of strongly convex functions.
Proposition 3 (Nesterov [54], Theorem 2.1.10). If F}, is up-strongly convex, then we have that

IVE(W') = VE(wW)lly > pp W' = wl,
for any w,w’ € R

Proposition[d] provides two useful inequalities, which can be derived from Cauchy-Schwarz Inequality.
Proposition 4 (Cauchy-Schwarz inequality). For any x;, € R%, k = 1,2,..., M, we have

M 2 M
Soxif <MY lIxkl3-
k=1 k=1

2
2 2 2
%1+ %ol < (14 ¢) [lxallz + (14 1/¢) [Ixalf; -

Next, we present the relationships between a function and its conjugate function.

Proposition 5 (Hiriart-Urruty and Lemaréchal [24], Corollaries X.1.3.6 and X.1.4.4 Theorems
X.4.2.1 and X.4.2.2). Suppose that f is a convex function from R to RU{+o00}. Define the conjugate
of f as f*(u) = sup,cra{(u,x) — f(x)} and the biconjugate of f as f** = (f*)*. The domain of
[ is denoted by dom f = {x € R? : f(x) € R}. Suppose c is a positive number. Then we have the
following results.

(a) If f is convex, then f** = f.
(b) If f is c-strongly convex, then dom f* = R¢ and f* is 1/c-smooth.
(c) If f is convex and c-smooth, then f* is 1/c-strongly convex on every convex subset C C

dom df*.
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(d) If [ is convex, thenu € 0f(x) < x € 0f*(u).

Proposition [6] guarantees the approximate isometry of a “flat” matrix with independent rows under

certain conditions.

Proposition 6 (Vershynin [61]], Theorem 5.58). Let A be an d x D matrix (d < D) whose rows aiT
are independent sub-gaussian isotropic random vectors in R® with | a; l, = V'D. Then for every
t > 0, the inequality

VD = CVd —t < $min(A) < Smax(A) < VD + CVd + t

holds with probability at least 1 — 2 exp(—ct?), where spmin(A) and smax(A) denote the smallest
and the largest singular values of A, C = C,, ¢ = ¢ > 0 depend only on the subgaussian norm
K = max; ||A;l|,,, of the rows.

For the definitions of sub-gaussian random vectors and the norm ||-||,,, see Definition 5.7 and 5.22 in
Vershynin [61]]. A random vector is said to be isotropic, if its covariance matrix is the identity matrix.

With Proposition[6] we can prove that our projection matrix P is approximately orthogonal in the
sense that all the singular values of P are around 1.
Proposition 7. With probability at least 1 — 2 exp(—cdgsup ), we have 1 — C'\/dgup/d < Smin(P) <

Smax(P) < 14 C\/mfor some C,c > 0, where spin(P) and Symax(P) denote the smallest
and the largest singular values of P.

Proof. For our choice of P, we have P = (aj,as,... ,adsub)T where the row vectors a; are
independent and uniformly distributed on the unit sphere of R?. Example 5.21 in Vershynin [61]

= () for
P2

implies that each v/d a; is isotropic. Moreover, by Example 5.25, we have that H Vda;
some absolute constant Cy > 0.

Then by Proposition@ we have that 1 — C'\/dgup/d < Smin (P) < Smax(P) < 14+ Cy/dsup/d with
probability at least 1 — 2 exp(—cdg,1,) for some positive constants C' and c. O

For brevity, we let s = Cy/dsup/d. If \/dsup/d is sufficiently small, we have s < 1. Then
Proposition [7]implies that

1—5<$min(P) < 8max(P) <145, 0<s<1 @)

holds with probability at least 1 — 2 exp(—cdgyp). This implies that rank(P) = dg, and the
dsut, X dsup matrix P T P is invertible.

The next proposition is a straightforward consequence of (7).

Proposition 8. If@) holds, then we have ||PX||§ < (1+s)? ||X||§f0r any x € RY, ||Px||§ >
(1 — )2 ||x||§ for any x € col(P") and (1 — s)? Hy||§ < ||PTyH§ < (1+s)? ||y||§ for any

y € R Moreover, if f(-) is an L-smooth function from R? to R, then f(P'-) is a (1 + s)%L-
smooth function from R%w 1o R.

Proof. From , it is easy to verify these properties except for the inequality |\Px||§ > (1—s)? ||x||§
for any x € col(P ). Suppose the SVD of Pis P = UDV T where U is a dgyp, X dsup, orthogonal
matrix, D is a dgyp X dgyb, diagonal matrix whose digonal elements are between 1 — s and 1 + s,
and V is a d X dgyp matrix with orthogonal column vectors. For x = PTy, we have

IPx|2=||[PPTy|. =y " PPTPP y—y PVD*V'PTy.

Ify #04,,, V' P'y=DU"y # 04, Since D? = (1 — 5)?I,_, . It follows that

sub * sub *

|Px[2>(1-s)?y"PVVTPTy=(1-5s?2y'UDDU "y
2
=(1-s)2y'UDV'VDU "y = (1-3s)*||P Ty, = (1-s)?|x]3.
This completes the proof. O

17



A.2 Important Properties

In this subsection, we give several important properties of F}, and x}, ,.. First, we can establish the
smoothness of F}, as follows.

Proposition 9. Suppose Assumption and @ hold with 0 < s < 1/30 and X > 4L.
Then Fy, is Lp-smooth with Ly = \. Moreover, VE,(W) = MW — PPTy}), where y1, =

argming, cpd.., {fk(PTYk) + % H‘;V - PPT.Y/@Hi}'

For the square regularizer, the local update iteration becomes wi i1l = wk ” n)\(wk .
Px; ). Note that Propos1t10n|§]1mphes that VFy, (W}, ) = (W}, — PPTkaT) where ¥}, . =

argming, cpd,., {fk (PTyk) + HWZ,,« — PPy, H2 } Then our local update can be viewed as
an approximation of gradient descent on F.

Then we restate Lemmal [Tl as follows.

Lemma 2. Suppose that Assumpnons. [Z] l 4| and @) hold with 0 < s < 1/30 and A\ > 4AL. Fora
fixed Wi, ., we have

1 2(1 + s)8 2
BB [IVF(RL,) = AL, — Pt [5] < 6%= (+5) ( 7f|+y> L @®)

(1 =8)*A=(1+5)2L)% \ |Dy,

The next lemma provides the bounded diversity of Fj.
Lemma 3. IfAssumption and @ holds with 0 < s < 1/30, and A > +/10L, then we have

N 10L2 2 A2 2
D IVE) = VE@); < 557 IVF®s +3 5557397

7ZO'F

A.3 Proof of Proposition 9]
This proof is adapted from Hoheisel et al. [25]].

Let oA(y) = fr(PTy) + %HPPTij By H we have that the smallest eigenvalue of
PPTPPT is no less than (1 — s)*. Since A > 4L and 0 < s < 1/30, px(y) is
((1 = s)*X = (1 + s)?L)-strongly convex. Similarly, the function fr(PTy) + 3 ||W — PPTyH2
isalso ((1 — s)*A — (1 + s)2L)-strongly convex. Such an yy, exists and is unique. By Proposition
% is a continuously differentiable function defined on R4 and Vi = (V)7L

Then we have

A
Fuw) = min, { )+ 5 1 - a3}

Xk

= min {fk(PTy)Jr;HW—PPTij}

yERsub
A - A
31— sw A PPTY) - 4Py - 5 PPy
yERdsub

A . -
= 2113 - S (APPTw),

where the second equality is by Assumption[f} Then VF}(w) = AW — APP T V3 (APPTw). On

the other hand, we have

A
Y = argmin {fk(PTY) + b) HVN" - PPTsz}

yERdsub

= argmin {@A(y) - <v~v, PPTy>} :
yGRddub
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The first-order condition implies Vi, (¥x) = APPTWw. It follows that y;, = Vpi;(APPTw).
Finally, we obtain VF (W) = AW — APPTyy.

Now we prove the Lipschitz continuity of VF},. Let ¢, (x) = fi(x) + 3 ||Px||§ and X = P yy.
By Assumption[d] we have

A
Xj, € argmin {fk(x) + 3 |[w — ng} = argmin {¢))(x) — A (W, Px)}.

xERC xER4
The first-order condition implies V5 (X)) = AP "w. By Proposition|8] v is ((1 — s)?A — L)-
strongly convex on col(P ). Then we have that for any x € col(P "), it holds that
5 A 1 5
VA (Rk) < Ua(x) + A(PTW, % —x) = o (1= 5)°A = L) [[x = 5.
Recalling the definition of v, we obtain
. Ao 2 A 2 Te o Alps 2
i)+ 5 PRl = 3 1] — A (P W, % = x) + 5 | P — P
L (1-s)2\ . Ao
<60+ (5 - ) e sl + 5 1Px.— Pl
By Proposition we have || Pxj, — Px||§ < (1+8)? % — x||§ It follows that

. A A . D
fi&e) + 5 IPRel3 = 5 IPx]3 = A (P, %6 — %) + 5 | P, — P}

L .
<60+ (5 420 ) b= R,
which is equivalent to

fr(Xi) + XM (PTPx, — PTw, %), — x) < fu(x) + (g + 25)\> Ix — Xp||3 . 9)

Foraw’ # w,lety) = argmingcpa..,, {fk(PTy) + % ||v~v’ - PPTyHg} and X; = PTy}. Then
we also have %X}, € col(P ). Replacing x by X} in @) gives
. . - . . L . .
Jr(Xg) + A <PTPX;C — P W, %, — X;C> < fe(X}) + <2 + 23)\> %} — xk||§.
Changing the orders of X, and X}, leads to
. N I . N L . N
fr&) + MN(PTPX), — PTW %, — %) < fi(%s) + (2 + 25)\> %) — ka;
Adding the above two inequalities and rearranging terms yields
MPTP(Ry — %), %, — X},) — (L + 45)\) %}, — %p[l3 < M(PT (W — W), %), — %) -
By Proposition[§| (PTP(x; — %},), %k — %},) = [Pk — %})|3 > (1 — 5) |%¢ — %} /3. Then
we have
(1 =65 — s\ = L) X}, — %i |3 < M PT (% — W), %p, — X} ) -
Since s < 1/30 and A\ > 4L, we have (1 — 6s — s>)\ — L > 0. Dividing both sides by (1 — 65 —
s2)A — L — L gives
1

2L (PT(W—W),%, —%,). (10)

A~/ ~ 2
— <
||Xk Xk?||2— 17657
Then we have

1 - - - - N a2
2 IVEe(W) = VE(W); = [[W =W — P(xx — %)l

= W = W', — 2 (W — W', P — %)) + [ P& — %) 5
< W — Wl = 2 (W = W P& — %) + (14 9)* %5 — %5
(1 + 8)2 ~ ~ / o A/
—9 _ P(x. —
1— 65— 52— L/A (W =W, P(Xe — %)),
where the first inequality is due to Proposition [8|and the second one is due to (I0). Since A > 4L and

s < 1/30, we have % —2<0. Asaresult, |VFy(w) — VF]C(VNV/)Hg <A ||w— V~V/Hg.

< o — W2+ (
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A.4 Proof of Lemmal[2

Let x|, = PTyZ,T + Qy}.,. Recall that we have PQ = Oq,,, x (d—duu)-
sition H and , we have HVFk(Vvtk L) = AWE L —Pxt )|l = A HPPT(ytk S YE L)
: : R : :

Then by Propo-
<

(1+5)2\

Then we focus on the distance between y} . and y? .

2
ot t ot _ ; T At T
Yir — Yir , where ¥} . = argming, cgd.u, fe(Plyr)+ 5 HW’%T - PP kaQ .

Recall the definition of hy, in Eqn. EI) Throughout this proof, v?rtk’r and Dy, are fixed, so we omit

the dependence of hy, on these parameters for brevity. For any x;, = (P, Q) <§Z> , we have
Dy, I P - _ B .
=0 = T | Vx, hi. By Assumption 4 we have 0y, hy, = 0. Then with some abuse of
Oy, i, Q
notation, we can view hj, as a function of yy:

~ 1 ~ A 2
hi(yk) = Byl Z fk(PTYk;ﬁk,i)+§HWZ,T—PPTYICHQ,
k €k, €Dy,
and it holds that Vy, hy = P Vy, hy..

2
For convenience, let hy(xx) = fi(xx) + % HWZ . kaH and X}, . = PTy; ~ By Proposition
, 5 ) ,

hiis ((1 = s)*X\ — (1+ s)L)-strongly convex in yj, and Vy, hi(¥%,) = 0. Then by (7) and
Propositions [3|and[f] we have

At o2 1 =y - . 2
Eou ¥k =il < Gy B [V W) = Vi,
(1+s)? —— - 2
S =9 rorLp ™ Vi (hor) = Vo b i)
2(1 4 5)? e ENIE it 1P
Ex x r) — h r Ex xi P r
T (1 =s)tA— (14 s)2L)° < B || VoouFor (Rer) = Vi (i) 2+ B || Ve For (Xi.) 2
2
2(1+s)? 1 oot ot
< Ep, == Y V/rhriéei) = Ve, +v
— 4\ — 2 2 Dk s s o
(A=s)*"A=(1+4s)°L) | Dy vy )

2(1 + 5)? 1 Foot e N ot 7
= (1 —s)4X— (1 +5)2L)? <|75k|2 Ek,ize:ﬁk Ee i ||V 6 (K5 €)= Vi () 2 + V)

2 2
< 2(1+s) _ ’Zf v
(T=9)*"A = (145)2L)" \ |Dx|
where the fourth inequality is due to & ; are independent and E¢, | Vf’k.(fcfcyr; &k,i) = fr(X},,) and
the last inequality is by Assumption [2| Then by Proposition@ and , we have

1 i i 2 2(1 + 5)° i
E || VF (W) — M(Ww),. — Px} . < ~— 4 v|.
)\2 [|‘ k( k, ) ( k, k, )||2:| ((1—8)4)\—(1+S)2L)2 |Dk|
A.5 Proof of Lemma[3
If fi is L-smooth, by Proposition[9} we have
1 ’
|VFL(W) — VF(W)|2 = | AW — Pxy) — NZA(vaxi) ,
=1 2

. A . - 2
where X, = P Ty with y;, = argming, cpd.up {fk(PTyk) + % Hw — PPTka2}.
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The first-order condition implies PV f, (P yx) = APP'(w — PP'y}), which implies

PV fi(xi) = APPT(W — Pxy) . By (7). it is easy to verify ||(PPT)~ < (1—s)t
through SVD. Then we have
N 2
IVEL(W) = VF(W)[l; = H(PPT) (ka Z )
i=1 2
2
<(1-s)7? (ka X **vav >
2
1 ’
2(1 - ) (Wk(xk) - ¥ ;mm) 2
N L 2
2 ~ ~
+2<1_8) (szfz(xk)_Nvaz(xl)> )
i=1 i=1 2
where the last inequality is by Proposition 4]
Taking the average over the devices, we obtain that
N N
1 - ~ N2 —2 - . 2
N ; [VE(W) = VE(W)l; < 2(1 - s) ; [(V fr(Xk) = V. (xx))Il2 (n
N 2

—_2 92 2(1—8)_2 NN N 2
<21 —8)of+ S D ) IV = VA, (12

k=1 i=1

where the last inequality is by Assumption [3|and Proposition[d By the smoothness of f;, we have
IV £il5) = VFi(&)ll3 < L 156 — %113 = 22| PT (3 — 95
— 1?|PT(PPT)'PP (5, - 3|,
< (1= )L ||PPT (31~ )],
= (1 - s)"2L?||Px;, — P[5
<201 - )22 (1P, — W3 + | PXs - w]3)

:%(va W3+ IVEW)3) (13)

where the third inequality is by Proposition 4] and the last equality is by Proposition[J] Substituting

(13) into (I2) gives

1< . e o, 8(1—s)i2 1 &
w2 IVE (%) = VE(W); < 2(1 - 5) 0f+72NZIIVFk W)l
k=1 k=1

10L% 1
< 30% + A”VZHVFk )k

10L2 - -
=302 + ( Z IV Fr (W) = VF(W)]3 + |W<w>|§> 7

where the second inequality follows from s < 1/30 and the last equality is due to the fact that
IEH|X||§] =E[|X — E[X] ||§] + |E[X] ||§ for a random vector X . Finally, rearrange the terms yields

N
1 B 2 32, 10L2 2
— — < — .
3 2 VE) = VE@)I < 55005 + 5o IVEO9
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A.6 Proof of Theorem [l

In this subsection, we give the proof of Theorem I}

We rewrite the local update as

~ 1 ~ t ~ 1 t
Wil = Wi, — N AW, — Pxp ), (14)
—_——
=g},
R—1

which implies n 7 ' gt = 2oreo (Wi = Wi 01) = Wi g — W), g = Wy — W}, . Then gf
can be considered as a biased estimate of V k (er)r) and the global update rule becomes

Wi =(1— 5)‘7"#% > WZ,R:V‘/‘rg D (W — W p)=W UﬂR Z Z ks (15)

kES: kEeS, :377 kESt r=0

=8t
where 7 and g; can be interpreted as the step size and the approximate stochastic gradient of the
global update, respectively.

The next two lemmas are from Dinh et al. [13]. Lemma[4]states that the diversity of F}, w.r.t. client
sampling can be bounded by the diversity w.r.t. all clients. Lemma 5] gives an upper bound on the
drift error of the inner loop.

Lemma 4 (Dinh et al. [[13], Lemma 4, bounded diversity of Fj w.r.t. to client sampling).

2 N
1 - _ N/S -1 1 - 2
3 k; VE(W) = VE(W0) || < == > 5 IVE(We) = VE(W) 5.

2 i=1
Lemma 5 (Bounded client drift error). Suppose that Assumptions[I} 2 fland (7) hold with 0 < s <

1/30. For i < 5L , we have
N R-1 , a2 (7 N

NR Z Z [Hgtm - VFk(VI’t)||2:| < 2X%6% + ﬂ}; <N ZE [HVFk(VVt)”g] + 10)\252> ;
k=1 r=0 k=1

where 52 is defined in Lemma

Proof. By Proposition[d] we have
E[gf., — VE()|l;] < 2E [|le.. - vmvvz D]+ 2E [IVEGRE,) = VB3]

2
< 2E ||lgh., — VE(WE,) 5] + 223 [[Wh, — wlf3]
< 2)%% 4 2L3E [va; w3 (16)
where the second inequality is by ProposmonE[, and the last inequality is by Lemma[2] Next, we

bound the second term Hwk . — Wy H By Proposmon for r > 1, we have

E [k, — well3] = B[k o1 = e = ngho 3]

1
< <1 + E) E |[Who1 = We = nVE(W)5] + 0+ 4R)E [||gk,r 1 — VR[]

<1 + 4R)2E [| Whooq — v~vt||ﬂ + <1 + E) (1+4R)n’E [||VFi(We)|12]
+(1+4R) [Hgk - VFk(vat)HQ] . a7

Recall that7) = nSR < 7~ and R > 1. Then we have (1 + 4R) <1+—% 16R (1 + ﬁ) (1+4R) <
ZRand (1+4R)n* < 5R772 <S5Rs—rz77 25R2L2 = 5RL}' Substituting these inequalities and l| into
(]H]) yields

B [k~ wel] < (1+ 157 ) & (19, — ] + FRrE [I9AGIE]
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+ 10R°A%62 + [ngm_l 3]
1
< (1 + R) E [||v~v§€,,._1 - v~vt||ﬂ + 7TRPE [||VFk(v~vt)||§} S+ 10R)A282.
(18)
Note that holds forany 1 < r < R and v~v}5€70 = W;. Applying recursively, we obtain

E [Hﬁ/}i,r —vthﬂ < (7Rn2E [||VF,€(V~Vt)||§} n 10Rn2/\262) Ril (1 N ]1%)1"

=0

Since (1 + z/n)™ < € for any z € R, we have Zf‘:—ol (1+1/R)" = % < ¢l <2R.
This implies

- -2 147 2072252
B [t - W) < R [Ivmwoi] + 25 (19)
Substituting (T9) into (T6) yields
=9
E ek, — VE(W) 2] <2226 + =EL (7 [IVF(w)l13] +104%2).
Taking the average over the indices k£ and r, we obtain the desired result. O

Now we complete the proof of Theorem 1]

Proof of Theorem[I} We first assume 7 < g—;’%. The exact value of n will be determined later. By

Proposition|7} we have (7)) holds with probability at least 1 — 2 exp(—cdg,p) and 0 < s < 1/30 as
long as ds,1,/d is sufficiently small. Throughout the proof, we assume this inequality holds.

Recall that with 7 and g; defined in , we have wyy; = w; — 1g;. By Proposition E Fy, is
L p-smooth, then F' is also L p-smooth. hlS implies that

BF(Wii1) — F(Wi)]

N - L - -
< E[VF (W), Wep1 — W) + lE [[Wis1 — Wl [3]

= —FE[(VF (W), )] + 7 LF E [llg:]13]
= B [[VF(W0)|3] ~ FE[(VF (), g — VE@w))] + LB [g?]
_ N R-1 2 =2
< B [IVFe) 3] + T8 (V)3 + T ” 50 S (e — VL) ] + 5B Il

(20)

where gt,m is defined in li and the last inequality is by Cauchy-Schwarz inequality. Next from the
proof of Lemma 3 in Dinh et al. [13]], we have

N R-1 2
1 1 - - -
Es, [lg:ll3] < 3Es, [NR SN gk — VEE)| + 5 E; VE(We) = VE(W)|| + [VE(W)|3
k=1 r=0 kES: 2
2D

We defer the proof of to the end of this subsection Recall that 7jp = g5 /\é e f>1land A > 1.
n< 3r % implies that 7 = ﬁRn < s Substltutmg into ( . yields
E [F(Wt+1) — F(%,)]

i e (7, 3PLe) 1 R~ n . e
< —QE [HVF(Wt)Hﬂ + 2 +— 2 NR Z ZE [Hgk,r - VFk(Wt)”z]
r=0 k=1

372 Lr

T

E [|[VF()|l3)]

ZVFk W) — VF (W)
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< A= 30L0) g g py 3] + SEe NS 1121EIIVFk ) = VE)3]

2 52

(1 = 37Lr) 3n2LF N/S—1(, . 10 ST
< -k [[IVE(W)]3] + N71 30F + 371012 E [[IVE(W)]3]

(1 +37Lr) [ 22 , ALER 2 2SS N 22

_ 1 3 15L2 N/S—1  14(1 +37Lr)N%FLr o
= —ij |:§7"7LF (5+A2_10L2 N_1 T ﬁQW_lOLZ) E [IVEF(We)ll5]

i
2 ~29 QN/S
52 (1+37LF)2L% (2105 + 10X0%6%) 4+ 7 LF N1

where the second inequality is by Lemmas I andland the fact that E[|| X ||2] = E[|| X — E[X]|]3] +
IE[X] H2 for a random vector X, and the last inequality is by Lemma [3|

i(1+37LF) | a2 (7 i ) i
4 MA+3ILE) Noy252 | ALEN (NZE[||VFk(wt)—VF(wt)|§]+7]E [||VF(wt)|§]+10A252>}

L1+ 37Le) N8,

Clearly, we also have /) < 5 L , which implies that 1 + 37Lr < 1 4 33/2 < 35. Recall that
A2 —10L% > 1 and N]([S__ll < 1. Then we have

3 1502 N/S—1 14(1+ 37Lr)\%iLE
2 A2-10L2 N-1 B2(A\2 — 10L2)

3 45
< 3 +15L% + 2102 < ?)\2.

Since 7 = BRn < 90>\2L , then
1 (3 1502 N/S—1 141+ 377LF))\217LF) 1 4502 )L S 1
2 2 -4

Y

z _ALe|2
2 M et 02 Vo1 52()\2 — 10L?)

Moreover, the choice of A implies A > 1. Then we have 1 +3nLp <1+ = )\2 < 2. It follows that

- N/S —1
E[F(W41) — F(% )]<—7E [||VF( )M i = 412 (2103+10X°5%) i 5L g0 F/7+ 22262 .

N — —
=:C4 —:Cy -8
By rearranging the terms and telescoping, we obtain
1 «— _ 2] - E[F(wo) — F(VVT)]
== D E[IVF)I3] < Ty i+ C 22
aT 2 [VE(W)5| < T 52 1+ 700 + Cs. (22)

Now we use the techniques in Karimireddy et al [33]], Arjevani et al. [2]], Stich [58]] to specify the
value of 7). Recall that we need to ensure n < < 3r % (e, < 1o ).

o If ) > B8 T C orng > TC , then the first term on the right-hand side of is no large than

1/3 1/2
the sum of the second and third terms. We choose 77 = min { (ﬂTQCf ) , (TC*Z) }

Then we have 77 < 1 and

T-1 2/3 ~1/3 1/2
1 A (oh (ApCy)Y
. ;]E [NZEAHES: L 2 0

o Ifp 22 and 7) TC’ , then the first term on the right-hand side of (2 | is larger than
the second and th1rd terms. We choose 77 = 1)y and obtain

1 — A
— N E||VF(w)|3] <35
7 LB [IVFE] <327
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Combine the two cases and sampling ¢* uniformly from {0, 1,...,7 — 1}, we have

T-1

HEE DRI\ 2 CATH

<ol AP (02 4 A257)° | (ArLro}(N/S - 1)"?
ﬂoT B2/3T12/3 vTN

E [||VF(v~vt*)

+ )\262> =: 00.

Now we prove the second inequality. Let ¥}, = argming, cpa.,, {fk(PTyk) + 3 || — PPTy;sz}
and X}, = PTyz. By Proposition we have

NZE (1P, —will2] < ;ixa [

2 X E[IVEGE)IE]

N T e =

i=1

s+ 1P — 5]

<262 +

where the last inequality is by Proposition [9] and Lemma 2] Due to Lemma [3] and the fact that
E[|X|3] = E[||X — E[X]||3] + ||E[X]||3 for a random vector X , we have

2 N
NZE (1) 2] < ZE IV () = V|13 + IV F () 2]
< 302 a8 w12
_3UF+mHVF(Wt)H2' (24)
Substituting (24) into (23] and taking the average over the index ¢, we obtain
T-1 N 602
2
NZZE{HPK% WtM—V—mL?TZ [IVF @3] +20% 4+ =5
=0 k=1
copro(r
< O+ 22 )
where the last inequality is due to A > +/10L2 + 1. This completes the proof. O
Now we prove (Z1).

Proof of (Z1). By Proposition[d we have

R—1 2
Es, [lg:ll3] < 3Es, [H;R >N (gl — VE(W))

keSy r=0 2

2

1 > VEF (W) — VF(Wy)

kES

+ IVF(V%)I?]

2
2

keSt

kGSt r=0 2

< 3Es, [ > Z gk — VFe (%05 + + IIVF(v*vt)I';’] -

If we only consider the randomness from the sampling of S, gk , and VFy, (W) become con-
stant vectors. Use 1 4 to denote the indicator function of an event A. Uniform sampling implies
Es, [1kes,] = % Then we have

1 - i 1 N Rl i
sREs | D 3 et - m(wt)Hi] = g5 2 2 llgh, = VE () Es, [Lres)
keS; =0 k=1 r=0
| NoBol )
:TRZ ng,r_VFk(VNVt)‘gv
k=1 r=0
This completes the proof. O



B Federated Linear Regression

In this section, we consider a federated linear regression model, which is different from that in Li
et al. [44].

Suppose that the true parameter on client k is wy, there are n samples on each client and the

covariate on client k is {{x; }7_; and fixed. The observations are generated by yx ; = f,jiwk + 2k

where the noises zy, ; are i.i.d. and distributed as N'(0, 0%). Then the loss on client k is f(x)) =
1\ T 2

3 2ie1 Wk — &g i Xk)

Li et al. [44]] focused on a Bayesian framework where the true parameters wy, are drawn from a
Gaussian distribution and the mean of this Gaussian distribution is drawn from the non-informative
prior, while we treat wy, as fixed vectors. We compare the performance of 1ocal (pure local training),
FedAvg [51], pFedMe [13]], Ditto [44] and our method 1p-proj-2 in terms of test losses, robustness
and fairness.

B.1 Solutions of Different Methods

In this subsection, we derive the solutions of different methods. Let 2, = (€1,&k,2, - - - ,fk,n)—'—
and yr = (Yk.1,Yk2,---,Ykn) - Then the loss on client k can be rewritten as fi(x;) =
= || Bexy — yk||3 Suppose rank(=j) = d. The least square estimator of wy, is

) B Vi 1)

local For pure local training, the solution on client & is defined as wi*® = argming, cga fr(Xx) =

Wi

FedAvg For FedAvg, the solution is defined as w8 = argmin,, cga + ij:l fr(w). One can

~1 -1
Avg — N =2Tg N =T, N =T= N =Te w
check that w& = (E b1 =k ._.k) > 1 B Yk = (E b1 Sk ._k) > e B B Wi

pFedMe pFedMe corresponds to our method with P = I;. Then the optimization problem is
Mingeps F(W) = % Y00, Fi(w) where Fi(w) = miny ege{fs(xk) + 3 [|w — xx[3}. The
solution of the global model is defined as w™¢ = argming, cpa 77 Zivzl F(w) and the solution of
the local model is defined as x}'* = argmin,, cga {fk (xk) + 5 ||wMe — Xk”;}

Now we give the explicit forms of wM¢ and x)!¢. Define %;(w) := argmin,, cga{fr(xx) +
2w — xk||§} It is easy to check %4(w) = (B} Ex/n + M)~ (EL yi/n + Aw). Then we
have

Fi(w) = felGiu(w) + 5 llw — ()

T -1
1 (=] 2= =, A 2
= [ 22 4w SNPGRS U T S M 21
2 n n n 2 2n

—1 —1
w! (Bl E =B, =B =
_ W ( =LY k=RW W T Ll RIPY k Yk
2 n n n n

2 — —_
L lvels  yiE <=

2n 2n

It follows that

N _ = 1T N _T = A

1 w! (B =, =, BEpw 1 = B S Yk
Fw)=—>_ k bV SRR - ) aw ! [ ZEEE 4T k
(w) N 2 ( n + d) ( n N Pt w n + Al n



where Cj is a constant number. Then wM® is the solution to

[I]

T =
k =73 e

1L | (==, =, (=25, - N o (=T=, - 2y
— LAnURNEPY # + =k LAnLNESY w=> [ ZE= 41 LEA
2 — n n n n n n

By the Sherman—Morrison—Woodbury formula, we have

':‘T':k -t Id =T ':k':'—r -t =
—L "+ AT — — = | nI, ——
PR B W Wl R py
It follows that

==, -t ==, =5 = 2.5 -t E.E B,
SeSk g, Ny k k Sk
n n n

An A A A
:2 —k':;' -1
Zk | nr, + =5 =

A\ (n , + h ) Kk

-1 -1
== == =T = =T
Similarly, we can obtain —&—*~ (""‘n"'k + )\Id> = S (nIn + =k > =j. This implies

=T ) =T =T -1
that | == + A1 Se=k = Sesk | Sesk 4T . Thus, the solution to (22) is
- - —1 r
N ':T':'k -1 ':T':.'k N ':T':'k -1 ':Tyk
LA D PV # g > o= g
n n n n
k=1 k=1
- - _1 -
N (=TE, -t ==, N (=TE, -t ==,
= E T + Ay E + My wil o,
k=1 k=1
=
=, S

. Then

which can be seen as a weighted average of wj with weight <E’“TWE'“ + )\Id) 1
solution of the local model is x}¢ = %, (WM®) = (B Ex/n + )" (] yr/n + IwMe) =
(BLER/n + M)~ HEL Epwi/n + AwMe),

Ditto  For Ditto, the solution of the global model is the same as that of FedAvg, i.e.,
wP = argmingcps = Sh, fr(w) = (Zk L :Z:k) 1 SN Bl Eywy. The solution of
the local model is defined as x)' = argmin,, cpa {fk(xk) + 5 ||wP - xkui} = (B, Zx/n +

M) YE yi/n+ AwWP) = (B Ep/n+ M) (E] Epwi/n + AwP).

1p-proj-2  For our method lp-proj-2, the optimization problem is mingcpd.., F(W) =

LS | Fi(w) where Fi(%) = ming cga{fr(xx) + 2 [|W — Pxx[3}. The solution of
the global model is defined as W = argmingcpa.,, %Zﬁ;l F,(w) and the solution
Lo . - 2
of the local solution is defined as x? = argmin, pa {fk(xk) + % ||w12 - PXkHz}' Let
X(W) = argmin,, cga {fk(xk) + 3 |w— ka||§} It is easy to check X(W) = (B, Zx/n +
APTP) Y (] yr/n+ APTW). It follows that
- -~ Ao L2
Fie(W) = fuGou(w)) + 5 % — % (w) ]l
T -1
1 (5] =B =
( kyk+>\PTv~v> ( k kJr/\PTP) ( kyk+)\PTW 7||~||2 ||YkH2
2 n n n
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A A2 == -t == -t 2y
— S WE-SwTP (2222 APTP| PTw— AP (R L APTP k Ik
2 2 n n n
-1
2 T =T =T
+ ||YkH2_yk~—'k <~k~k+)\PTP> h‘kYk.
2n 2n n n
Then we can obtain the expression of F'(W). However, for the general =y, it is difficult to obtain a
concise expression of the minimizer of F'(w). To make the calculations clean, we assume EgEk =
nbiI4. Then the solutions of other methods can be simplified as
o . _ i e
FedAvg: w8 = SN b
R SN bW/ (brtN) Me __ bpwi+AwMe
pFedMe: wMe = —Zk)kl YISy and x; ¢ = AT
. E 1 be Wi b Wi+ AW
Ditto: wDi = &g kT o and x %
Meanwhile, for 1p-proj-2, without loss of generalization, we can assume P = Py :=
(e1,ea,... ,edsub)T, where e; is the unit vector in R? with the i-th element equal to 1 and other
elements equal to 0. Otherwise, we can find a orthogonal matrix @ such that P = Py@. Then we
have
AL 9 1 0 A . 2
Xk ) + = [|[W — Pxi|;, = — ||Bpxi — + — [|[w — Px
Jr(xx) 5 | kll2 o 1Exxk — Ykl 5 [ kll2
1 o 2 A 2
=5, 1Z:Q " Qxi — yi |, + 5 [W — Po@Qxkll5
1 |= 2 A 9
= — E X1 — — W — P X .
o [ =y, + 5 19 - Pl
~ ~ T ~
where X;, = Qx, and E;, = £,Q". Note that E, Z;, = nb I implies £, ;, = QE, E,Q " =
nbiI;. After reparametrization, we return to the special case P = Pj.
Now we have
-1
~ Abg ~ 112 A - T T ||}’k||§ yZEk EZE;C T 52}%
F(w)=——|W|; — ———W BPE — AP, P,
k(W) 2(by + ) 1l (b, + M)n 0= Y+ 2n 2n n AP Fo n
—1
Abe oAb g lysly  yiEx (E[Sk T EL Yk
2(bi, + N) %1l br + A ot 2n 2n n 00 n
where Wy, 1 = Pywy, is the first dg,p, elements of wy,. Then we obtain
N N
- 1 by _ )\bk T
Fip(w)=— —_ w w1+ Ch,

_ g bW /(b
> ky b/ (br+A)
bW 1 + AW2)/(by, + A)

Wk,2

, and the

where (1 is a constant. Thus the solution of the global model is W'

solution of the local model is x> = % (W'2) = (( , where Wy 5 is the

last d — dg,1, elements of wy,.
To summarize, the solutions of different models are listed as follows.

loc ~

* local: w.© = wyg.

* FedAvg: w8 = Zf:k i”“b‘:k

*+ pFedMe: wM¢ = % and XZ/Ie — %y
* Ditto: wDi = Ezkg_ikbwk and xP = bt
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. - o bew b+ . s
* lp-proj-2: w2 = Zki{\;fbkk/éb/:f/\t ) and X2 = xp(wW?) =
(bW 1 + AW2) /(b + )
Wi 2 ’

Note that x}'® and x}' are both the weighted average of wM¢/wP' and W), with the same weight. w™M®
and wP' are weighted average of Wy, with different weights. If \ = 0, we have wMe = L 7% .

If A\ — 0o, we have WM¢ — wA2, Thus, the weight of pFedMe is more uniform than that of FedAvg.
In Section 4.2 we assume b, = b. This is reasonable since we often normalize the data. Then we

have wi'¢ = wMe Di

- —_ 1N o« Me _ Di
=w"' = %> W and X' = X

Moreover, 1p-proj-2 can be viewed as a interpolation of local and pFedMe. The first dg,;, dimen-

sions of xlk2 equal to those of xz’le and the last d — dg,1, dimensions equal to those of w}é’c.

B.2 Test Loss

In this subsection, we compute the test losses of different methods. From now on, we always assume
b, = b to make calculations clean.

Recall that the dataset on client k is (2, yi ), where E, is fixed and y, follows Gaussian distribution
N(E,wy,02I,). Then the data heterogeneity across clients only lies in the heterogeneity of wy.
We can obtain the distribution of the solutions of different methods.

N
Letw = # We have
2
* local: Wi ~ N/ (wk, Z—nId).

* FedAvg: w8 ~ N( ; anId>

a

_ p24 2bX 2
* pFedMe: wM NN( ,anId) and xe N/\/<ka-,+Aw (2 e+ MI>

btx (But N2
e Ditto: wPi = wMe and xP! = xMe.
¢ 1p-proj-2: w2 ~ N (W.J, b‘jv—nIdsub) and

2
bwi,1+AW. 1 (b2+2b>\) bﬂ+N2 T I
1]€2 ~ N br+A , (br+A)2 dsub
Wk,2 r
’ bon Ltd—dsun

where wy, 1 is the first d elements of wy,, wy, 2 is the last d — dg,p, elements of wy, and w. ;
is the first k& elements of w.

Since Ej, is fixed, we assume the test data is (Ej,y)) where y; = Epwy + z) with z}, ~
N(0,, azIn) independent of z;. Then the test loss on client & is defined as

1 )
w(xk) = 5 EIEkxe —¥ill

1 2
= |, — (B /
™ 1ZExxk — (Brwr + 2z)l5

0.2

1 — 2
=5 5 BlE G = will;
0'2 b 2
5 + §E 1%k — Will5

0.2

b b
=5 + 3 tr(var(xy)) + 3 Exy — WkH;' (23)

and the averaged test loss is

2

N N
1 . o b
i ,;_1 fE(xk) = 5 + 5N kg_ltr(var X)) E | Exs — wk||2
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Then we can compute the test losses for different methods. Since the solutions of Ditto and pFedMe
are the same, we omit the analysis for Ditto. We have

N
c 1 o2 o2d
Llo - sz;‘e(wlk?c) = ? + %,
k=1
a N
1 0.2 0’2d b
LAVg . te Avg _9 od b o )
NkZ:lfk:(W )= +2Nn+2N§HW wil2,
N ) .
. R S S
IMe(\) = — ey _ 00 PR AR 0% N - i
(\) N k:lfk (xx%) 2 + (b+N)2 o + ON(b+ 2)? ; W — w5,
LP(\) = . zN:fte b)) = i + i + % + /\WQ U2dsub Ug(d_dsub) + bA? iv: W 2
W == 2T (xi) = < (b4 )2 om T 5 INh+ V2 2 W1 —weals -

Note that the test losses for pFedMe and 1p-proj-2 are functions of \.

One can check that the optimal A for pFedMe is A\M¢ = M
Dh=llWw—wyill53/N

Then we can compute the minimal test losses for pFedMe

and the optimal \ for

1p_proj -21s )\12 — (1_1/N)‘72dsub/n

i we Wi |I3/N
and 1p-proj-2 as follows.
aj n 072d (AMe)2/N + (1 + 1/N)bAMe + b2
2 2n (b + A\Me)2 ’
Ll2 _ L12(>\12) — 0’72 + UQdSUb . ()\]2)2/N + (1 + 1/N)b)\12 + b2 + 02(d - dSUb)
* 2 2n (b+ \2)2 2n
However, it is not easy the compare these losses directly. We further assume the heterogeneity in
terms of wy is uniform in all dimensions, that is

Li/le —_ LMe()\Me) _

1 N 1 N

_ 2 _ 2
TNa W =W Ear— E W.1 —W = 24
dN ; I cll dsupN £ 1w kol (24)

Then AM® and A coincide and are equal to \* := (1 — 1/N)o2/(nX). Note that o2 is the variance
of the observation noises on different clients, and n is the number of samples on each client. Thus \*
can reflect the relative magnitude of the variance and the heterogeneity .

With the uniform heterogeneity, we have

o = %2 + 2n(baj-d)\*)2 (A7) 4 260" + 7],
L = %2 + zn(bov-idx*)2 :(Az*v>2 + NJJVr A 2NN_ o Nz\_r 1% )
2 2 M()*)2
L = % + 2n(b0—|—d)\*)2 _()\N) + N];[i- S+ bQ} ’
L} = %2 + %E';df‘;’*y :(A;[)Z + N; Loar o+ bQ} + 021((621%:;2) [(A")? + 200" + %] .

Comparing their (optimal) losses, we can obtain the following observations.

o Llo¢ > [12 > [Meand LA2 > LMe This means that pFedMe with the optimal \ always has
the minimal loss. Moreover, since 1p-proj-2 can be regarded as an interpolation of local
and pFedMe, L? is also a interpolation of L'°° and LM,

o Ll < LA if and only if A\* < b. This means that if the heterogeneity or the number of
local data is sufficiently large, then local is better than FedAvg.

didsub
better than FedAvg is slightly larger than the range of that over which local is better than
FedAvg.

o L2 < LA if and only if \* < /-—%—b. The range of \* over which 1p-proj-2 is
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* Fix 0% and n and let ¥ — oo. Then we have A* — 0, limy-_,o L' = limy-_,o LM® =
limy-_,0 L and limy-_,q LAY = oo. This implies that if the heterogeneity is sufficiently
large, the optimal lambda is nearly 0 and there is little difference between local, pFedMe
and 1p-proj-2. And the loss of FedAvg is large. So there is no need for federated learning.

Up to now, we have only focused on the optimal value of \. However, in practice, we can hardly
know this value. Thus we need to compare these losses under different values of A\. With holding,
we have the following results.

o Lo¢ < [Aifand only if ¥ > & A* < b).

N bn (
o Lloe < [2()) < LMe()\) if and only if & > N1 26 e” gy s Nole® (3« < p) thisis
equivalent to A > = )\ T=5 75"

o IMe()\) < LA ifand onlyif ¥ > & This is equivalent to A > 2~=2

N (b+2)\)n

: : o2 d(b+N)% —dsup A (20+X b+ )" —dsup A (20+A
‘ le()\) S LAVg lfand Only le > N : n (;_(IF)‘r)\)2 (ti)u(bA;_ ) AbOUt ( Jr(blA)z Zsu(bA;_ )’

d—d
144/ dsub 2 .
we have < d(b;r?)‘) 3 ;‘s";“ﬁ’j” < 1. When A = 0 or A — oo, the fraction
J,-\/ ({lisub ( + ) —GQsub

goesto 1. When A =/ ﬁb, the fraction attains the minimal value.

Then we can sort these losses.

.. . 2 1+ Su
If the heterogeneity is small, i.e., ¥ < No1o? 1hy i
g y N bn 14+

Q.Q.Q-
o

,then \* > b. When \ < %, we have

Q.

d—dgyh

LAe < [Me()\) < L2()\) < L' when A\ > T_b, we have LMe(\) < LA < [2()\) < LI°°. In
this case, FedAvg and pFedMe are always better than 1p-proj-2 and local. If A is larger than a

threshold value, pFedMe is better than FedAvg.

If the heterogeneity is large, i.e., X > Tl"— then \* < b. When A < 3 /b, we have LM¢()\) <

L2()\) < L' < LA%; when \ > /\*/b, we have L'°° < L2(\) < IMe()\) < LA2, In this case,
FedAvg is the worst method and 1p proj-2 always lies between local and pFedMe.

B.3 Robustness

In this subsection, we consider the robustness of different methods against Byzantine attacks. Recall
that in the last subsection, we only consider the exact solution of these methods and ignore the process
of the algorithms. In terms of robustness, we must take the procedures of different methods into
account, especially the communication between the central server and local clients. Moreover, we
focus on the simplified setting where the number of local update steps is infinite, there is only one
round of communication and all clients participate in the communication.

As indicated in Section[4.2], we examine three types of Byzantine attacks. Throughout this subsection,
we suppose that there are [V, benign clients and N, malicious clients with N, + N, = N, and let [,
denote the indices of benign clients and I, denote the indices of malicious clients.

We will analyze how these attacks will affect the solution of different methods, and compare the
averaged test losses on benign clients.

B.3.1 The Simplified Setting

We first show that in our simplified setting, after one round of communication, all the methods will
obtain their exact solutions defined in Appendix

local The objective of the local client is minycga fi(W). If the number of local update steps
is infinite, we will obtain the least square estimator Wy = w}fc. For the convergence of SGD, see
Nemirovski et al. [S3]].
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FedAvg Similar to local, the local client will obtain Wy, and sends it to the server. Then the
server obtains & S5, W), = w™'¢ and broadcasts w2 to all the clients.

pFedMe pFedMe corresponds to lp-proj-2 with P = I;. The local update step is Wtk’r+1 =

2
R
bw’“btr# (When the number of local update steps is infinite, it is reasonable to assume that we

can obtain the exact value of x}im.) The local update rule can be rewritten as w}sm 41 = Wkp —

nAb t ~ . . . . nAb e
Y (w ko — Wy ), which can be regarded as a step of gradient descent with step size - to minimize

Lw — Wy, ||§ As long as the step size is not too large, we have limp_, o W}, , = Wj. This means
that if we do infinite steps of local update, the local version of global parameter is W. Then each client

Wi — AW}, . — X}, ) where X}, . = Xx(W}, ) = argmin, ga {fk(xk) +3 sz,r - xk‘

sends this local version to the server and the server obtains % Z,]jzl Wi, = wMe. After that, the server
. . . . 2
broadcasts wMe to all clients. Finally, the client £ solves min, cga { fe(xk) + % HWMe — Xy, ||2} and

obtains x)¢ = %, (wMe).

Ditto The global model of Ditto is the same as the model of FedAvg. So the server will also
obtain & S5, Wy, = wPi. Then the server broadcasts w™ to all the clients and the client k solves

ming, cgd {fk(xk) +3 HwDi - XkHi} and gets xP'.

lp-proj-2 For lp-proj-2, without loss of generality, we can still assume P = Py :=

(e1,ey,...,€q,,,). The local update step is W}, | = Xx(W}, ) = W}, — nA\ (W}, — Px} ) =
Wi, — %(VNV};T — Wg,1), where x}, . = argmin,, cga {fk(Xk) +3 H‘X’i,r - POX’“HE} -
((bwk’l * ?ZZ;)/ (b+ /\)> Similar to pFedMe, the local update step can be regarded as a
step pf gradien7t descent with step size % to minimize % ||W — Wk,l\\; As long as the step

size is not too large, we have limp_ oo W r = Wy,1. After the communication, the server gets
N . - . . .~
+ Y p_i Wi,1 = W' and the client k obtains x}? = X, (W'?).

B.3.2 Same-value Attacks

Now we focus on the same-value attacks.

local For pure local training, there is no communication between the central server and local
1 : 3 : loc,attl __ 1 te locy _ o2 o2d
clients. So the averaged test loss on benign clients is L = Y ke 1, [i (Wi ) =% + %4

FedAvg For FedAvg, the local problem miny,cga fx(W) remains unchanged, no matter what the
server sends to the local client. As long as the number of local update steps goes to oo, the local
parameter will go to the least square estimator wy.

If the k-th client is benign, it will send Wy, to the server. Recall that W = (EkEk)*lEkyk ~
N(wg,0%I,;/(bn)). This means that Wy, can be viewed as an unbiased observation of w;, with

covariance matrix 7—1I.

If the k-th client is malicious, it will send w'™*) = ¢I; to the server with ¢ ~ A/(0,72). Then w'™®
1 1 ... 1
1 1 1

is an unbiased observation of 0,,, with covariance matrix 72J; where J; = | . . .| €
1 1 --- 1

R¥*¢_1In this case, the number of local update steps will not affect the messages transferred by the

malicious client. Then the server obtains wAv&dt! — % (Z ver, Wk + D per, W,(gna)). We have
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whvgatl  Af (% Zkelb Wy, ﬁ (Nb“ I;+ N,7 Jd>). Then we can compute the averaged test
loss on benign clients as

1 02  bd [ Nyo? b

Avgattl _ E te( Avgattly b
L Nkelf’“(“ ) 2+2N2< b T NaT > 2N &~
b =

N 2
i€l Wi o

N

2

pFedMe Similar to FedAvg, the attack will not influence the minimization of the local model. If the

ma)

k-th client is benign, it sends Wy, to the server. If the k-th client is malicious, it sends wk =cly

to the server with ¢ ~ N(0, 72). The server obtains wMet! = (Zkelb Wk + D el w,(cm”)> =
WAvg, attl.

Then the server broadcasts wMet! to all the clients. And the benign client k& compute the local

Me,att1 5 Me,attl) _ bwgawMe We have

parameter x,, = Xp(w Y

2 0_2 2 0_2 2
i+ A S /N [0+ F) 6 (N DRG] T+ Nafer
b+ A ’ (b+ A2

M 1
X e,att NN

Then we can compute the averaged loss on benign clients as

LMe alll Z f Avg attl
ker
o2 bd <b2 T NbA ) 2 4 No) N’ 2 a2 le!b W, 2
=3ty (b+)\)2 HETESYVER Nb ~ W,

(1— 1/N)<72d/n
27611) +dNa (72702/(5”))'
2

And one can check the optimal ) is A\M®atl —

1
Ny Zkelb =Wy,

Ditto Since the global model of Ditto is the same as the model of FedAvg, we have wPbat! —=

wAYS atl - Then the server broadcasts wP3! to all the clients and the benign client k obtains
. . . N Di, attl .
xpr = g (wPhatl) = DWtaw s — xMe4t Then Ditto and pFedMe have the same loss. So

we will omit the analysis for Ditto.

lp-proj-2 Similar to pFedMe, if the k-th client is benign, it sends Wy, ; to the server. If the

k-th client is malicious, it sends w™® = cldbub to the server where ¢ ~ A(0,72). The server
receives the messages and obtains w24 = (Zkelb Wei+ Y per, W ma)). And we have
wizath A (i > ker, Whils 3T (Nb” Iy, + N7, b)) Then the server broadcasts w'>!!
to all the clients and the benign client k computes the optimal local parameter Xlk2 al— 2 (wi2atl) —
((bwk’l * /\v‘;:: ;ml)/(b + /\)) It follows that

2,2 -2
bwk,1+>‘2iel wi,1/N [(b"'%) ﬁ""(Nb_l)W]Idsub""Na ~NzT stub
Raul _, Ar b
Xk: ~ y

b+ (b+X)? ,
Xk72 ZinIdsub
Then we can compute the averaged loss on benign clients as
L12 anl Z 12 aul
k‘€[b
2, 20A | N ,\ 2 | NoX? 2
_ o b (b TNt N )ZT# N (A dan)o”
2 2 (b +A)? 2n
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bA2 1 D ier, Wil
e - DI A
20+ Ny & N )
And the optimal A is A2atl = = (1-1/N)a® dsub/n
&y Seer, | HETL i | 2 (202 om))

To make calculations clean, we still assume that the heterogene1ty is uniform in all dimensions, i.e.,

2 2
Zzelb Wi 1 Dier, Wil
— Wg = — = — Wi = 21. (25)
dNb keI, ’ 2 sl kel N 2
2
Then we have AMe-atl — \2atl — \+ . __(-1/N)or/n__ e numerator of A} is the variance

D1+ 3% (r2 =02/ (bn))
of noises over the number of samples. The denominator is the sum of data heterogeneity and variance
of attacks.

Now we can obtain the losses of different methods at 7.

pleeat = %2 + ‘;—:i = %2 + 2n(ba—|2—d/\*1‘)2 [(AD)? +2bAT + 7],

[ Avgaud _ %2 n - (U2d o {()\*)2 N N]:[- 1b)\*1‘ N 2NN— 1b2 n NZ\; 1?\;] ’

Meatl — pMeatd () — %2 + 5 (Zif ) [(A;{V)z + N; lbxl‘ + bﬂ ;

LE = LX) = "22 + 2n’(’;ff“;?)2 [(Agf + N; Loag + bQ} + ‘m [(AD)? + 2007 + 0] .

(26)
We have the following observations.

o [locatl > pladl > pMeaul apg pAvgatl > pMeatl Thig means that pFedMe with the
optimal A always has the minimal loss.

o [lovatl < [Aveatlif and only if A} < b. This means that if the heterogeneity or the noise
of attacks is sufficiently large, then local is better than FedAvg.

* L? < LA if and only if A\ < /g=4—"b. The range of A\* over which 1p-proj-2 is
better than FedAvg is slightly larger than the range of that over which local is better than
FedAvg.

Since 72 can be very large, A} is much smaller than \*. Recall that in the settings of Figure |1} we
have A\] =4.9e-04.

Now we compare the losses for different values of A and give the formal version of Proposition
Theorem 2 (Formal version of Proposition[I). We have

Lloc, attl _ 12 L2d
2 2n’
2 2
LAVg,aIt] — % + % (]\Z;:— + Na7’2> + bdzzl7
2, 20\ | N ,\ g% | NgX? 2
LMe,att](A) _ 0'72 n % . (b + N + b ) n + Nz T b)\ZdEl

2 T3 (b+>\)2 METESNER
LDi, utt](/\) — LMe,att] ()\)

2 | 20X Nb)\ % | NuX\ 2
2 atfl()\) _ Oj + bdsun, . (b + N + ) bn + Nz T + (d - dsub)o'2 + b)‘stubzl
2 2 (b+)\)2 n 2(b+ \)2
27
And the following propositions hold.
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. Lluc,att] < LAvg,artI ifand only lle + % (7_2 02) > %%ﬁ ()‘T < b)

T bn

1 12, anl Me,anl ; : No (2 2 N—12b+) o?
Lt < [2anl(\) < LMo (3) if and only if Sy + N (72— 52 ) = ML
2 1 42 .. . 207
1+ N (72 - Z;) > NZLo- (N} < b), this is equivalent to X > =7

2

o LMeanl(\) < [Avsatl if and only if 1+ X% (T2 - %) > %(H"W This is equivalent
b

A —
o\ > 270,

o2 d(b+2)? —dsupA(20+)
bn A+ N2 —daap A2

o« L2 att]()\) < AV, ait] zfand only lle + % (T2 _ ZT?) > N-1

With (27), it is easy to check the above propositions hold.

. 2 1.2 ..
If the attacks are very serious, we can have ¥, + % <72 - Z—n) > %g—n (AT < b). Similar to

the analysis at the end of Appendix when \ < %E/b, we have IMeatl (\) < L2 attl () <
1

Lloc, attl LAVg, anl; when \ > : 2:5/[)’ we have Lloc, attl LIZ, atll()\) < LMe, atll()\) < LAvg, alll.
> =i /b > > >

B.3.3 Sign-flipping Attacks

The second type of attack is sign-flipping attacks. For simplicity, we define w;, = N%, Dic 1, Wis

_ 1 O N ) = N )
Wa = N, Ziela Wi, Wp,1 = N, Zie]b Wi,1 and Wa,1 = N, Zie[d Wi, 1.

local This attack will not affect 1ocal. So the averaged test loss on benign clients is L'°% 32 =

1 2 2d
Ny > ke, (W) = T+ %5

FedAvg If the k-th client is benign, it sends Wy, to the server. If the k-th client is malicious, it send

w,(vma) = —|c|Wy, to the server, where ¢ ~ N (0, 72). Recall that Wy, is an unbiased observation of

. . . 2 . .
w;, with covariance matrix Z-I;. Now we examine w,(cma). Although w,(cma) does not obey Gaussian
distribution, we can still calculate its mean and covariance by the independence of ¢ and Wwy. We

have E [—|c|W] = —+/2/77W}, and

var (—|c|wy) = E [C2VAV]€VAV,1—] —E[|c|wg] E Uc|v?/,;r]

2 T, 0 2 T
=7\ wpwy, + —Ig ) — =T Wrw,,
bn ™
2
=2 o
= Tzwkw,;r +72—1,.
T bn
Then w,(cm“) can be regarded as an unbiased observation of —/2/m7w;, with covariance matrix

_ nm—=2,2 T 252 Avg,att2 __ 1 ~ (ma)
My, = Z=—=1°ww, + 71 ,. Thus the server gets w =% Zkelb Wi + Zkela Wy, .

s

Avg at2] _ NowWs—Nay/2/77W, Avg a2y _ 1 [ Nyo?
We have E[w = 5 and var(w )= w2z ("o Ta+ D e, Mk).

Then we can compute the averaged test loss on benign clients as

LAVS a2 _ NL Z f;:(WAVg’ att2)
b

kel
2
o? bd | Nyo? T—2 , 5  T202 - Nywp — Nov/2/m7w,
~ 2 TN | T +Z< 7 wellz + bn) o 2 N Wk
kel, ke, 2
pFedMe If the k-th client is benign, it will send Wy to the server. If the k-th client is
malicious, it will send w\™ = —|c|W}, to the server. The server obtains wMe 2

» (Zke[b Wi+ er, W;(gma)) = wA& 42 and broadcasts wM® 2 back to all the clients. For
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Me, anZ) — bwktiv;Mc,allz We have ]E[ Me, attZ} _
bwy + )\NbWb ~ Q/WTWQ} and var(Xl;\g/Ie’ anz) = {(b+ ) ua +(Nb_1()b1—\i]-2x\)g;}ld+ A2 Dier, M

the benign client k, it gets xy~*? = %y(w

b+)\

Then we can compute the averaged test loss on benign clients as

LMe attZ()\) Nb Z fte( Me, att2)

kel
bA 4 Ny A2 tr(M;
_a2+bd<b2+21v+ v )bn+N2 i€l, (d)
2 2 (b+ \)?
2
+ b)\2 1 Z NbWb*Na\/Q/WTWa
2(b+ A2 Ny = N 2’
b

_ 2 2 2
where tr(M;) = =272 |w; |, + =22

_ 2
And the optimal X is AM& 12 = peR—— (=1/N)od/n ST .
b“’b+/”ﬂ"“ +7d1i,v§ (7151‘11\7 ° 70‘2/(bn)>

a

—Wp

1
Ny kel ,

Ditto The global model of Ditto is the same as the model of FedAvg. Similar to the analysis

. ; R - - Di, a2
of same-value attacks, we have w32 = wA& a2 gand xPH 42 = %, (wPha2) — bpdae =
x}'*2 Then Ditto and pFedMe have the same losses. We will also omit the analysis for Ditto.

lp-proj-2 If the k-th client is benign, it will send Wy ; to the server. If the k-th client

is malicious, it will send w(ma) = —|c|Wyg,1 to the server, where ¢ ~ ./\/(0 72). Then we
have E[w (ma)] = —+/2/7Twy 1 and var(w (ma)) = I= 272wk Wi T andsub = M.
The server receives these messages and gets w'>a2? = (Zkelb Wei + Y rer, v?/(ma))
12, att2
And the benign client k obtains xp*? = %, (W2>%?) = (bW 1 +)\vv§; )/ (b+>\)>.
k,2
Nbv’vb,lfNa 2/7\'T\Xla11
Then we have E[x}"*?] = (=) {bwk 1A N } and var(xp %) =
Wi .2
[(b"'%)?%i"'(]vb_l) N2 o ]Id+ N2 ZLEIQ M
b+2)? . The averaged test loss on benign
Z?Id_dsllb
clients is
LIZ, attZ()\) _ Z 12 alt2
k:EIb
2 | N )2 A2 tr(M;)
o . bdsu (b TN +tN ) o TN el don L= dsup) 0
2 2 (b+ )2 2n
2
" X 1 Z NbWbJ*Na\/Q/?TTWa’l

v N — Wil

2(() + /\) Ny el N )
where tr(M;) = =272 w2 + %. And the optimal lambda is A% 2

(1—1/N)o2deun /7
Nywy, 1—Nay/2/77mW, 1 2+dsub2Nu (Ziela tr(M;)/dgyt, —02/(bn)>
2

1
Ny Zkelb

N “Wk,1 N Na

We still focus on the case where the heterogeneity and norm of wy, are uniform in all dimensions,
that is,

1
v, 2

b rer,

2
NbV_Vb’l — N, 2/7T7’Wa71
— Wg,1

N El

= 22

2
Nywyp — N, 2/7T7’V_Va 1
— W —
N dsubNb

kel 2
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and g3~ >, tr(M;) = ;=5 20, tr(M;) := Mo. Then we have \M& 2 = \242 = )5 .=
(13,_1/ N)o®/n . The losses of different methods at optimal A3 have similar forms as (26)), with

22+N7%(J\40—0'2/(bn))

A} replaced by A\35. The discussion below also applies here.

For the comparison of losses at different values of )\, we have

2 Qd
Lloc, att2 _ 1 L
2 + on’
2 2
[Aveat2 % 21;\(/%2 (J\Z):' i NaM()) 4 bd2227
260 | NpA2\ o2 | NuA2
LMe,attZ()\) o 12 N % (b2 + 5t 1{)/2 ) wm T Nz*MO N bA2dY,
2 2 (b+A)? 2(b+ )2’

2 | 26\ | NpA?)\ o2 | Ny\2
L2y = (i n bdsun, . (b + 55+ 5 ) T+ =My N (d— dgup)o?  bA2dgupXs
2 2 (b+XN)? 2n 2(b+ N2

Thus the propositions and discussion below also hold here, with 21, 72, A] replaced by o, My
and A} respectively.

B.3.4 Gaussian Attacks

Gaussian attacks are similar to same-value attacks. For FedAvg, pFedMe and Ditto, the malicious
client sends W,(Cma) to the server, where W,(Cma) ~ N(04,721,). For 1p-proj-2, the malicious client
sends ngma) to the server, where VNV]gma) ~N(0g,,,™14.,)-

Note that tr(I4) = tr(Jy) for any d and the test loss (23) is only relevant to the trace of the covariance
matrix. Thus the averaged test losses on benign clients under Gaussian attacks are the same as those

under same-value attacks.

B.4 Fairness

In this subsection, we examine the performance fairness of these methods. Recall that in Definition|T]
we measure performance fairness in terms of the variance of test accuracy/losses. In Appendix
the test loss on client k is

2

o b b
¥ (xk) = 5+ gtr(var(x) + 5 [Ex — will;.

For different methods, we can compute that

2 2
te locy __ 1 o*d
fk: (Wk: )_ 2 + m 3
. v o? o?d b, _ 9
fitc(WAg)=?+m+§||W—WkH27
2 P+ BN b
e/ Mey _ O N N O
KR = fiE (=),
2 4B X o2, 2(d—d bA2
e/ 2y _ 9 N N O Gsub o ( sub) _ _ 2
FR) =T T 2 T 2 Tapgogr W T Wealle:

2
Define vary (a;) = + Zgzl ai — (% 25:1 ak> . Then we give the formal version of Proposition
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Theorem 3 (Formal version of Proposition2). The variances of test losses on different clients for
these methods are as follows.

yloe = varg(fr (Wff)) =0,

b? _
VA = varg (fif (W) = Zrvar(|w — will3),

214
V) = v GeE) = g yyvans (I = )
VPIA) = VM),
V() = var,(fi€(x%)) = mvark(\\v_v.,l - Wk’1||§).

If wy, are i.i.d. and distributed as N (i, 2.,) with 3., = (0i;)axd, we have

d d
EVAE — < N ZZU?j:O 42
i=1 j=1

EVY¢ () )= Gt (1 )Zzag:o
=1 j=1
p2 4 dsub dsub
VIZ(A) (b+ NE ( ) Zzafy = O sub)
=1 j=1

By Theorem [3} we have V'*¢ < VMe(\) < VA% and V!¢ < V'2()). And larger A leads to more
fairness. This is because in our settings, only the true parameters Wk on the clients are different. For
local, Wloc is an unbiased estimation of wy. So fi¢(wl) = fi¢(wl) for any k # . For other

methods, X, Ve xM xMe and x? are all biased. Thus test losses on different clients can vary a lot.

However, it is not easy to compare vary(||w — wk||§) and varg (||W.1 — Wy 1 ||§) directly. If the
variance of wy, concentrates on the the first dy,, dimensions, var(||Ww.1 — w1 ||§) can be larger
than vary, (||W — wy|)3).

To gain more intuition, we further assume wy, are i.i.d. and distributed as N (f1,,, 3y, ). Then Theorem
implies that EV'® < EV2(\) < EVMe()\) < EVAYe,

Now we give the proof of Theorem 3]

Proof of Theorem |3} The first part is easy to check. For the second part, we first give an equivalent
form of var ([|W — wy|2).

1 & N 2

_ 2 _ 2

varg([[w — will3) = WZHW w3 — ( dolw Wk||2>
k=1

k=1

= [ - Z Iwic = wlly = > lhwi = Wil [w: - w|§]
k#l
B _ 2
_ Ly (e = Wil — = #13)
N? 2
k#l
1
= mz:<wk — W, Wi + W —2‘7")2‘
k#l

Since wy, are i.i.d. and wy ~ N (j1y, X4 ), one can check that cov(wy — wy, wi, + w; — 2w) = 0,
which implies that w;, — w; and wy + w; — 2w are independent. Moreover, for k # [, we
have wy — w; ~ N(0,,,23,) and wy + w; — 2w ~ N (0, (2 — 4/N)X,,). It follows that

Evarg(||w — wk||2) =4(1-2/N) Zf 1 Z? L 07;. Similarly, we have Evary ([|w. 1 — Wk’1||§) =
4(1 -2/N) Z sup ZJS“'f o2.. This completes the proof. O
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C Experimental Details

The datasets, corresponding models and tasks are summarized in Table [2]below. The performance of
lp-proj-1and lp-proj-2 are evaluated on both convex and non-convex models across a set of FL
benchmarks, including both synthetic and real datasets.

The synthetic datasets are generated following the setup in Li et al. [43], we denote it as
Synthetic(a, (), where « controls how much local models differ from each other and /3 controls
how much the local data for each client differs from that of other clients. Specifically, the synthetic
samples (X}, yy) are generated from the model y = arg max(softmax(Wyz + by,)) with z € R,
W ¢ R10%60 and b, € R, where X, € R"*% and 3, € R™. Each entry of W}, and by,
are modeled as N (g, 1) with pi ~ (0, ), and (zx); ~ N(vk, 51=) with vy ~ N(Bj,1) and

Table 2: Summary of datasets and models.

Average Sample Size

Datasets # of Clients £ . Tasks Partitions Models
or each Client
Synthetic(0, 0) 100 202 10-class classification * logistic
Synthetic(1, 1) 100 202 10-class classification * logistic
EMNIST 248 2000 62-class classification 10 classes to each client ~ 2-hidden-layers NN
CIFAR 200 200 10-class classification 2 classes to each client CNN
MNIST 100 434 10-class classification 2 classes to each client  1-hidden-layer NN
FASHIONMNIST 100 480 10-class classification 2 classes to each client CNN

Neural Network Architecture for the Models used in Numerical Experiments.
* 1-hidden-layer NN for MNIST: One hidden fully-connected layer with 100 neurons. We use
ReLU as the activation function.

* 2-hidden-layer NN for EMNIST: Two hidden fully-connected layers, each with 100 neurons. For
each FC layer, ReLU is used as the activation function.

* CNN for CIFAR: The neural network used in our experiment consists of two convolutioal layers
and three fully-connected layers. The architecture for each layer is listed as follows:

— Convolutional layer 1: input_channel: 3, output_channel: 6, kernel_size: 5.

Convolutional layer 2: input_channel: 6, output_channel: 16, kernel_size: 5.

Fully-connected layer 1: input_features: 400, output_features: 120.

Fully-connected layer 2: input_features: 120, output_features: 84.

Fully-connected layer 3: input_features: 84, output_features: 10.

For each convolutional layer, we would firstly apply a ReLU activation function right after the
convolution, and then apply a max pooling with kernel_size = 2, stride = 2 to extract the feature
map. Besides, for the fully-connected layers, we use ReLLU as the activation function.

* CNN for FASHIONMNIST: The neural network used for FASHIONMNIST dataset in our experi-
ment is modified from He et al. [23]], which consists of a normal convolutional layer, two resnet
block and finally a fully connected layer. The architecture for each layer is lister as follows:

— Convolutional layer: input_channel: 1, output_channel: 64, kernel_size: 7, stride: 2, padding:
3. Right after the convolution, we apply a batch normalization layer to standardize the features,
and then the ReLU function is applied as the activation function, and finally, a max pooling
layer with kernel_size = 3, stride = 2, padding = 1 is applied to extract the feature map.

— Resnet block 1: input_channels: 64, output_channels: 64, number of residuals: 2.
— Resnet block 2: input_channels: 64, output_channels: 128, number of residuals: 2.
— Fully-connected layer: input_features: 128, output_features: 10.

Furthermore, we apply average pooling right after resnet block 2 to extract the feature map before
feeding to the fully connected layer.

For implementation details, please refer to the source code provided in https://github.com/
desternylin/perfed.
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Total Number of Parameters for the Full Model.

* Synthetic: 610.

MNIST: 79510.

CIFAR: 62006.

EMNIST: 94862.
FASHIONMNIST: 678794.

Computing Resource for Numerical Experiments. All of our experiments are performed on
GPUs. Specifically, every single experiment (a competing method with its given parameter setting
and model) is performed on a single GPU, where the type of GPU is one of the following two:

* NVIDIA TITAN RTX with 24220MB memory, driver version: 470.63.01, CUDA version: 11.4.

* NVIDIA GeForce RTX 2080 Ti with 11019MB memory, driver version: 470.63.01, CUDA version:
11.4.

C.1 Competing Methods

Several state-of-the-art methods in the literature aiming for different purposes such as personalization,
robustness and communication efficiency are considered in our experiment. We list and provide a
brief description of these methods below.

* FedAvg [51]], which learns a shared model by averaging the locally-computed model updates in
each communication round. This is a baseline algorithm in the FL literature, but it would probably
suffer from the statistical heterogeneity among clients.

* Local, which trains a local model for each client separately. This algorithm does not have the
communication burden issue, but may perform poorly when there is little local data.

* Ditto [44], which considers two overarching tasks: the global objectives and the local objectives,
and uses a regularization term that encourages the personalized model to be close to the optimal
global model.

* LG-FedAvg [46], which proposes to learn useful and compact features from the raw data locally
and the central server only aggregates the learned representations to improve communication
efficiency and get better personalization performance.

» RSA [42], which incorporates the objective function with an L? regularizer to robustify the learning
task and mitigate the negative effects of Byzantine attacks.

* pFedMe [13], which considers a bi-level problem that concerns global and local objectives
respectively. The main difference of pFedMe and Ditto is that when considering the global
objective, pFedMe considers the whole loss function including the regularizer, while Ditto excludes
the regularizer in the global level.

* Per-FedAvg [[16], which applies MAML [18]] to personalize federated models with a Hessian-
product approximation to approximate the second-order gradients.

* Sketch [29], which carries out distributed SGD by communicating count sketches instead of full
gradients to reduce communication cost. However, in our experiments, we find that the size of the
sketches should be relatively large to retain accuracy performance in heterogeneous networks.

* LBGM (Look-Back Gradient Multiplier) [3]], which exploits the low-rank property of the gradient
space to enable gradient recycling between model update rounds of federated learning.

* QSGD (Quantized SGD) [[1]], which quantize each component by randomized rounding to a discrete
set of values before message transmission. Furthermore, it employs efficient lossless code for
quantized gradients, which exploits their statistical properties to generate efficient encodings.

* DGC (Deep Gradient Compression) [47], which compresses the gradient with momentum correc-
tion and local gradient clipping on top of the gradient sparsification. What’s more, to overcome the
staleness problem caused by reduced communication, it also uses momentum factor masking and
warmup training.
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C.2 Parameter Settings

For each competing algorithm, different hyper-parameters need to be tuned. We provide two or
three candidates for each hyper-parameter and perform grid search on all the possible combinations
based on the accuracy performance on the validation dataset. The tuning hyper-parameter and their
corresponding candidates for each algorithm are listed as follows.

» FedAvg: local learning rate: {0.05,0.1, 0.5}, rounds for local update: {1, 5}.
* Local: local learning rate: {0.05,0.1,0.5}.

* Ditto: local learning rate: {0.05,0.1,0.5}, personalization model learning rate: {0.01,0.05,0.1},
A :{0.1,1, 10}, local computation rounds R : {1, 5}.

* LG-FedAvg: local learning rate: {0.05,0.1,0.5}, rounds for local update: {1,5}.

* RSA: local learning rate: {0.05, 0.1, 0.5}, personalization model learning rate: {0.01,0.05,0.1},
A :{0.1,1, 10}, local computation rounds R : {1, 5}.

» pFedMe: local learning rate: {0.05,0.1,0.5}, personalization model learning rate:
{0.01,0.05,0.1}, A : {0.1,1, 10}, local computation rounds R : {1, 5}.

* Per-FedAvg: local learning rate: {0.05,0.1,0.5}, personalization model learning rate:
{0.01,0.05,0.1}.

* Sketch: local learning rate: {0.05, 0.1, 0.5}, columns of the sketch: {0.02,0.05} x dimension of
the full model, rows of the sketch: {0.005,0.01} x dimension of the full model, k for the recovered
k-sparse gradient: {0.01,0.05} x dimension of the full model.

* Ip-proj-1: local learning rate: {0.05,0.1,0.5}, personalization model learning rate:
{0.01,0.05,0.1}, A : {0.1, 1, 10}, local computation rounds R : {1,5}.

* Ip-proj-2: local learning rate: {0.05,0.1,0.5}, personalization model learning rate:
{0.01,0.05,0.1}, A : {0.1,1, 10}, local computation rounds R : {1, 5}.

* LBGM: learning rate: {0.05,0.1,0.5}, local computation rounds R : {1,5}, look-back phase
(LBP) error threshold 6™ : {0.2,0.5,0.8}.

* QSGD: learning rate: {0.05,0.1,0.5}, quantization level: {5,10,15}, bucket size:
{500, 1000, 2000}.

* DGC: learning rate: {0.05,0.1,0.5}, initial sparsity level: {0.25,0.5,0.75}, sparsity rising level
during warm-up training: {0.75,0.5,0.25}.

Other parameters shared by all algorithms:

* # of clients particiate in each communication: 10% x total # of clients.
* Accuracy level v for inner loop for personalization methods: 10~1°.
* Batch size for local SGD: 64.

* Projection dimension dgy1, for 1p-proj-1 and 1p-proj-2: Synthetic: 21, EMNIST: 80, CIFAR:
60, MNIST: 50, FASHIONMNIST: 600. The projection dimension for each dataset and each model is
determined by the full model size and communication budget, and we show theoretically (Lemmal[T)
that the accuracy performance only has mild dependence on the projection dimension.

* # of repeated experiments: 10.

C.3 Complete Results on Personalization and Fairness Performance

Table 3]shows complete results on personalization performance in terms of train loss and test accuracy
and performance fairness in terms of variance of the above two metrics. Figure [5]displays the training
loss and test accuracy evolution as the training proceeds. We can see that 1p-proj-1 and 1p-proj-2
own better performance with lower train loss, higher test accuracy and lower variance across clients.
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Table 3: Complete Result on Personalization and Fairness Performance in terms of Tran Loss and Test Accuracy.

Dataset method Train Loss Train Loss Var Test Acc Test Acc Var
Ditto 0.3500 £+ 0.0038 0.0780 4+ 0.0020 0.8569 + 0.0012 0.0178 + 0.0005
pFedMe 0.3542 £0.0013  0.0785 4+ 0.0009 0.8580 + 0.0015 0.0178 + 0.0007
Per-fedavg  0.6986 + 0.0184 0.2106 £ 0.0085 0.7977 £ 0.0010 0.0410 £ 0.0006
Synthetic(0, 0) FedAvg 0.7988 £0.0114 0.2815+0.0112 0.7714 £ 0.0010  0.0455 4+ 0.0023
’ local 0.2522 +£0.0045 0.0451 +0.0016  0.8665 + 0.0016  0.0159 + 0.0007
Ip-proj-1 0.0769 + 0.0097 0.0048 + 0.0012 0.8868 + 0.0010 0.0106 4+ 0.0003
Ip-proj-2 0.0818 +0.0041  0.0053 4+ 0.0005 0.8867 + 0.0013  0.0105 + 0.0003
RSA 0.5319 £0.0075 0.1466 + 0.0034 0.8314 £ 0.0019 0.0265 4+ 0.0008
Ditto 0.3431 £0.0165 0.1596 +0.0488 0.8615 + 0.0011 0.0193 + 0.0006
pFedMe 0.3010 £ 0.0029  0.0660 4+ 0.0014  0.8666 + 0.0008 0.0170 + 0.0004
Per-fedavg  0.6015 £ 0.0151 0.2194 £ 0.0193  0.7925 £ 0.0046  0.0465 £ 0.0022
Synthetic(1, 1) FedAvg 0.6938 £ 0.0147 0.3392 + 0.0214 0.7875 £ 0.0025 0.0480 4+ 0.0023
’ local 0.2969 + 0.0157 0.1283 +0.0439 0.8675 + 0.0018 0.0177 + 0.0007
Ip-proj-1 0.0614 + 0.0143 0.0162 +0.0191 0.8954 + 0.0019  0.0123 + 0.0008
Ip-proj-2 0.0679 £+ 0.0068  0.0074 + 0.0042 0.8932 + 0.0018 0.0125 + 0.0009
RSA 0.4547 £0.0075 0.1271 +0.0032  0.8416 + 0.0015 0.0242 + 0.0009
Ditto 0.2499 £+ 0.0032  0.0066 4+ 0.0001  0.9089 + 0.0008 0.0016 + 0.0001
pFedMe 0.4397 £ 0.0062 0.0301 4+ 0.0092  0.8556 + 0.0012  0.0035 + 0.0004
Per-fedavg  0.9061 £+ 0.0882 2.1828 +2.7274 0.7944 4+ 0.0083  0.0104 4+ 0.0011
FedAvg 0.7219 £0.0119 0.0300 + 0.0036  0.7713 £ 0.0029 0.0070 4+ 0.0004
EMNIST local 0.3903 +£0.0013  0.0110 +0.0017 0.8566 + 0.0008 0.0022 + 0.0001
Ip-proj-1 0.0389 + 0.0036  0.0039 + 0.0003 0.9067 £+ 0.0003 0.0017 4+ 0.0001
Ip-proj-2 0.0448 +0.0022  0.0039 + 0.0002 0.9070 + 0.0001 0.0017 + 0.0000
RSA 0.2740 £ 0.0054  0.0066 4+ 0.0004 0.8714 +0.0011 0.0019 + 0.0001
LG-FedAvg 0.4500 £ 0.0194 0.1624 £ 0.0691 0.8453 £ 0.0042  0.0089 +£ 0.0015
Ditto 0.1463 £ 0.0335 0.0232 £ 0.0128  0.7909 + 0.0084 0.0110 + 0.0008
pFedMe 0.1837 +£0.0262 0.0311 +0.0072 0.7913 + 0.0034  0.0100 + 0.0006
Per-fedavg  1.0378 £ 0.1614  0.8320 + 1.0412  0.7257 +0.0220  0.0183 + 0.0022
FedAvg 1.4739 +0.0198  0.0438 +0.0092  0.4594 + 0.0091 0.0173 + 0.0026
CIFAR local 0.3101 £0.0098 0.0409 + 0.0021 0.7688 £ 0.0026 0.0131 4+ 0.0006
Ip-proj-1 0.0381 +£0.0296  0.0077 4+ 0.0066  0.7922 + 0.0017  0.0097 + 0.0003
Ip-proj-2 0.0043 = 0.0105 0.0009 £ 0.0024 0.7910 + 0.0015 0.0099 + 0.0005
RSA 0.0073 £ 0.0015  0.0000 + 0.0000 0.7768 + 0.0048  0.0097 + 0.0008
LG-FedAvg 0.4231 +£0.0182 0.0352 + 0.0028 0.7523 + 0.0055 0.0134 + 0.0009
Ditto 0.0266 + 0.0010  0.0001 4 0.0000  0.9863 + 0.0004  0.0003 + 0.0000
pFedMe 0.0511 £0.0037 0.0006 + 0.0001 0.9824 + 0.0005 0.0005 4+ 0.0000
Per-fedavg  0.0555 £ 0.0011 0.0010 £ 0.0004 0.9831 £ 0.0005 0.0004 £ 0.0000
FedAvg 0.2099 £+ 0.0013  0.0029 + 0.0002 0.9416 £+ 0.0009 0.0015 4+ 0.0001
MNIST local 0.0204 + 0.0065 0.0002 4+ 0.0001 0.9822 + 0.0001  0.0004 + 0.0000
Ip-proj-1 0.0101 £ 0.0046  0.0000 £ 0.0000 0.9822 + 0.0002 0.0004 + 0.0000
Ip-proj-2 0.0060 + 0.0052  0.0000 £+ 0.0000 0.9825 + 0.0002 0.0004 + 0.0000
RSA 0.0829 £+ 0.0032 0.0010 4+ 0.0001  0.9809 + 0.0002 0.0005 + 0.0000
LG-FedAvg 0.0156 £ 0.0019 0.0001 £ 0.0000 0.9821 + 0.0003  0.0004 + 0.0000
Ditto 0.0141 £0.0016  0.0004 £ 0.0005 0.9770 &+ 0.0004 0.0019 + 0.0001
pFedMe 0.0076 £+ 0.0013  0.0001 4+ 0.0001  0.9729 4+ 0.0004 0.0024 + 0.0001
Per-fedavg  0.1834 +0.0383 0.3004 £+ 0.1443  0.9500 £ 0.0041  0.0092 £ 0.0013
FedAvg 0.1129 £ 0.0109 0.0194 4+ 0.0042  0.9694 + 0.0021 0.0029 + 0.0006
FASHIONMNIST local 0.0020 £+ 0.0016  0.0001 4 0.0002 0.9748 4+ 0.0008 0.0021 + 0.0001
Ip-proj-1 0.0002 £+ 0.0004  0.0000 £+ 0.0000 0.9752 + 0.0008 0.0022 + 0.0002
Ip-proj-2 0.0004 £+ 0.0005  0.0000 £+ 0.0001 0.9749 + 0.0007 0.0021 + 0.0002
RSA 0.0908 £+ 0.0368  0.0046 4+ 0.0035 0.9605 + 0.0033  0.0039 + 0.0012
LG-FedAvg 0.0038 £ 0.0037 0.0001 £ 0.0001 0.9738 £ 0.0005 0.0021 £ 0.0001

C.4 Complete Results on Communication Efficiency

Table [ shows complete results on communication performance in terms of test accuracy and
communication bytes. From the comparison result, we can see that, given a communication budget of
bytes, 1p-proj-1 and 1p-proj-2 achieve the highest test accuracy. On the other hand, given a target
test accuracy, these two approaches need the least bytes for communication, and the compression rate
could be up to 1000x.
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Table 4: Complete Result on Communication Performance in terms of Test Accuracy and Communication Bytes.
There are two comparisons: one is test accuracy on a given byte budget, the other is used bytes to achieve a
target test accuracy. Under the given bytes budget, a x on the column “Test Acc” refers to the situation that bytes
used in the first iteration of the corresponding algorithm have exceeded the budget. Under target test accuracy, a
* on the column “Used Bytes” means the algorithm could not provide a solution that reaches the target accuracy.

Dataset Method Bytes Budget Test Acc Target Acc Used Bytes
FedAvg 328020 0.625 £ 0.006 0.6 597800 + 0
Sketch 328020 0.456 £ 0.020 0.6 * £ *
lp-proj-1 328020 0.885 £ 0.002 0.6 4620 + 0
Synthetic(0, 0) lp-proj-2 328020 0.888 + 0.001 0.6 4620 + 0
LBGM 328020 0.538 £ 0.007 0.6 365002 4+ 23578
QSGD 328020 0.115 + 0.069 0.6 923350 + 174383
DGC 328020 * £ % 0.6 391800 + 186123
FedAvg 401940 0.516 £ 0.028 0.6 523380 £ 34268
Sketch 401940 0.359 £ 0.017 0.6 * £ *
lp-proj-1 401940 0.892 £ 0.002 0.6 4620 + 0
Synthetic(1, 1) lp-proj-2 401940 0.888 + 0.001 0.6 4620 + 0
LBGM 401940 0.331 £ 0.042 0.6 1153406 + 371717
QSGD 401940 0.582 + 0.018 0.6 2607290 + 905787
DGC 401940 0.114 + 0.208 0.6 61500 + 184500
FedAvg 4236900 * £ * 0.7 445851400 + 16265444
Sketch 4236900 * £ % 0.7 * %
lp-proj-1 4236900 0.906 + 0.000 0.7 174720 £+ 10699
EMNIST lp-proj-2 4236900 0.906 + 0.000 0.7 196560 + 6552
LG-FedAvg 4236900 0.071 £ 0.016 0.7 230786010 + 6629787
LBGM 4236900 * % 0.7 769902776 + 37552057
QSGD 4236900 * = * 0.7 673302175 £ 101397671
DGC 4236900 * £ % 0.7 * %
FedAvg 1029600 * £ * 0.4 392870016 + 33519046
Sketch 1029600 * £ % 0.4 * %
lp-proj-1 1029600 0.792 £ 0.002 0.4 26400 + 0
CIFAR Ip-proj-2 1029600 0.790 + 0.002 04 26400 + 0
LG-FedAvg 1029600 * % 0.4 51369296 + 10550837
LBGM 1029600 * £ * 0.4 476274601 + 41680525
QSGD 1029600 * % 0.4 72535230 + 24632864
DGC 1029600 == 0.4 37640880 + 323640
FedAvg 228000 * £ * 0.7 56293080 + 6828608
Sketch 228000 * £ % 0.7 531338200 + 51486427
Ip-proj-1 228000 0.982 + 0.000 0.7 12000 £ 0
MNIST Ip-proj-2 228000 0.982 + 0.000 0.7 12000 £ 0
LG-FedAvg 228000 0.111 £ 0.026 0.7 763560 + 55540
LBGM 228000 * % 0.7 28353303 + 5492558
QSGD 228000 * % 0.7 16158000 + 4693474
DGC 228000 * % 0.7 16170900 + 2836077
FedAvg 3384000 * £ * 0.7 1186531912 £ 52998121
Ip-proj-1 3384000 0.975 + 0.001 0.7 144000 £+ 0
Ip-proj-2 3384000 0.975 + 0.001 0.7 144000 £+ 0
FASHIONMNIST LG-FedAvg 3384000 0.892 + 0.010 0.7 1725336 + 118790
LBGM 3384000 * % 0.7 1409583679 + 120013474
QSGD 3384000 * % 0.7 565519560 + 252785764
DGC 3384000 * % 0.7 135446730 £ 165916659

C.5 Complete Results on Robustness

Complete results for different methods under various kinds and various levels of Byzantine attacks
are shown in Table[5] [ and [7] and complete results under data poison attack is shown in Table 8]
lp-proj-1and lp-proj-2 show stable performance and is the most robust to different attacks.

C.6 Complete Results on Accuracy and Performance Fairness Trade-off

Figure [6] shows complete results for accuracy and performance fairness trade-off on all the datasets
used for numerical experiments. 1p-proj-1 and 1p-proj-2 are comparable to other state-of-the-art
methods.
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Table S: Complete Result on Robustness Performance in terms of test accuracy under same-value attacks. (The
number in the parentheses is the corresponding variance.)
Dataset Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.018)  0.856(0.017) 0.851 (0.020) 0.855 (0.017) 0.837 (0.014)

Global+Mean  0.772 (0.044) 0.558 (0.150) 0.485 (0.161) 0.462 (0.169)  0.446 (0.166)

Global+Median  0.519 (0.140)  0.558 (0.129)  0.604 (0.121) 0.434 (0.156) 0.471 (0.155)

Synthetic(0,0)  Global+Krum  0.235(0.109)  0.285 (0.127) 0.318 (0.133) 0.298 (0.131)  0.285 (0.122)
RSA 0.832(0.026) 0.881(0.011) 0.879 (0.011) 0.885 (0.012) 0.863 (0.008)

Ip-proj-1 0.888 (0.010) 0.868 (0.013) 0.880 (0.011) 0.884 (0.012) 0.869 (0.010)

Ip-proj-2 0.887 (0.010) 0.865 (0.014) 0.873 (0.012) 0.875 (0.014) 0.858 (0.012)

Ditto 0.863 (0.018) 0.882 (0.015) 0.884 (0.014) 0.885 (0.012) 0.873 (0.012)

Global+Mean  0.785(0.051) 0.481 (0.168) 0.440 (0.175) 0.387 (0.171)  0.477 (0.147)

Global+Median  0.525 (0.142)  0.606 (0.124)  0.655 (0.122)  0.428 (0.163)  0.484 (0.166)

Synthetic(1, 1)  Global+Krum  0.224(0.105) 0.294 (0.135) 0.310 (0.139) 0.396 (0.143)  0.241 (0.149)
RSA 0.844 (0.023)  0.901 (0.013) 0.903 (0.012) 0.906 (0.010) 0.916 (0.005)

Ip-proj-1 0.893 (0.014)  0.890 (0.014)  0.907 (0.010)  0.908 (0.010) 0.914 (0.005)

Ip-proj-2 0.891 (0.013)  0.890 (0.015) 0.905 (0.011)  0.898 (0.013)  0.907 (0.007)

Ditto 0.907 (0.002) 0.293 (0.004) 0.294 (0.004) 0.289 (0.004) 0.282 (0.003)

Global+Mean ~ 0.770 (0.007)  0.057 (0.013)  0.058 (0.013) 0.061 (0.013)  0.072 (0.015)

Global+Median  0.556 (0.015)  0.057 (0.013)  0.058 (0.013) 0.061 (0.013)  0.072 (0.015)

EMNIST Global+Krum  0.504 (0.032)  0.057 (0.013) 0.058 (0.013) 0.061 (0.013)  0.072 (0.015)
RSA 0.872 (0.002) 0.293 (0.004) 0.294 (0.004) 0.337 (0.012) 0.431 (0.021)

Ip-proj-1 0.906 (0.002)  0.908 (0.002)  0.905 (0.002) 0.908 (0.002) 0.908 (0.002)

Ip-proj-2 0.907 (0.002)  0.900 (0.002) 0.902 (0.002) 0.904 (0.002) 0.907 (0.002)

Ditto 0.796 (0.010) 0.501 (0.000) 0.502 (0.001) 0.502 (0.001) 0.511 (0.002)

Global+Mean  0.456 (0.022) 0.106 (0.042) 0.116 (0.044) 0.115(0.044)  0.150 (0.052)

Global+Median  0.247 (0.035) 0.106 (0.042)  0.116 (0.044) 0.115 (0.044) 0.150 (0.052)

CIFAR Global+Krum  0.246 (0.038)  0.106 (0.042) 0.116 (0.044) 0.115 (0.044)  0.150 (0.052)
RSA 0.775 (0.010)  0.539 (0.008) 0.574 (0.013) 0.590 (0.016) 0.595 (0.013)

Ip-proj-1 0.791 (0.009)  0.786 (0.009)  0.790 (0.009) 0.797 (0.010) 0.795 (0.012)

Ip-proj-2 0.792 (0.009)  0.783 (0.009) 0.789 (0.010) 0.791 (0.012) 0.788 (0.011)

Ditto 0.986 (0.000) 0.529 (0.011) 0.516(0.009) 0.958 (0.005) 0.939 (0.005)

Global+Mean  0.942 (0.001) 0.107 (0.042)  0.120 (0.046) 0.113 (0.046) 0.198 (0.055)

Global+Median  0.808 (0.014)  0.861 (0.006) 0.120 (0.046) 0.113 (0.046) 0.175 (0.057)

MNIST Global+Krum  0.647 (0.062)  0.668 (0.080) 0.120 (0.046) 0.113 (0.046) 0.168 (0.061)
RSA 0.981 (0.001)  0.980 (0.000) 0.981 (0.001) 0.984 (0.000) 0.985 (0.000)

1p-proj-1 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.984 (0.000) 0.987 (0.000)

Ip-proj-2 0.982 (0.000) 0.983 (0.001)  0.982 (0.000) 0.984 (0.000) 0.989 (0.000)

Ditto 0.977 (0.002) 0.605 (0.020) 0.611 (0.018) 0.630 (0.016) 0.615 (0.013)

Global+Mean  0.967 (0.004) 0.130 (0.047)  0.151 (0.052) 0.153 (0.048) 0.176 (0.057)

Global+Median  0.729 (0.033)  0.739 (0.024) 0.119 (0.045) 0.120 (0.046)  0.162 (0.044)
FASHIONMNIST ~ Global+Krum  0.374 (0.072) 0.413 (0.122) 0.119(0.045) 0.140 (0.050)  0.192 (0.062)
RSA 0.960 (0.004) 0.685 (0.033) 0.767 (0.036) 0.775 (0.022) 0.827 (0.018)

Ip-proj-1 0.975 (0.002)  0.973 (0.002)  0.980 (0.001) 0.976 (0.002) 0.976 (0.002)

Ip-proj-2 0.974 (0.002) 0.971(0.003) 0.979 (0.001) 0.975 (0.002) 0.975 (0.002)
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Figure 5: Personalization performance of competing methods.
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Table 6: Complete Result on Robustness Performance in terms of test accuracy under sign-flipping attacks.
(The number in the parentheses is the corresponding variance.) A x on the cell means that the corresponding
algorithm would collapse under the given intensity of adversarial attack and could not return a solution.

Dataset Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.018) 0.853 (0.017) 0.850 (0.017) * (%) * (%)

Global+Mean  0.772 (0.044) 0.412 (0.146) 0.324 (0.130) * (%) * (%)

Global+Median 0.519 (0.140) 0.421 (0.131)  0.425(0.139) 0.192 (0.087) * (%)

Synthetic(0, 0) Global+Krum  0.280 (0.133)  0.304 (0.139) 0.308 (0.157)  0.281 (0.134) * (%)
RSA 0.832 (0.026) 0.829 (0.025) 0.834(0.022) 0.881 (0.012) 0.848 (0.011)
Ip-proj-1 0.888 (0.010) 0.884 (0.011) 0.885 (0.010) 0.885 (0.010) 0.863 (0.010)

1p-proj-2 0.887 (0.010) 0.885 (0.010) 0.884 (0.010) * (%) * (%)

Ditto 0.863 (0.018) 0.879 (0.015) 0.884 (0.013) * (%) * (%)

Global+Mean  0.785 (0.051)  0.292 (0.142) 0.243 (0.134) * (%) * (%)

Global+Median  0.525 (0.142) 0.455(0.140) 0.436 (0.169) 0.168 (0.092) * (%)

Synthetic(1, 1) Global+Krum  0.269 (0.134) 0.287 (0.142) 0.326 (0.141)  0.372 (0.155) * (%)
RSA 0.844 (0.023)  0.856 (0.023) 0.863 (0.020) 0.905 (0.010)  0.920 (0.004)
Ip-proj-1 0.893 (0.014)  0.905 (0.011) 0.909 (0.010) 0.905 (0.009) 0.918 (0.005)

Ip-proj-2 0.891 (0.013) 0.902 (0.013)  0.908 (0.011) * (%) * (%)

Ditto 0.907 (0.002) 0.746 (0.004) 0.748 (0.003) * (%) * (%)

Global+Mean  0.770 (0.007) 0.057 (0.013)  0.072 (0.012) * (%) * (%)

Global+Median  0.556 (0.015) 0.382 (0.021) 0.392 (0.024) 0.107 (0.005) * (%)

EMNIST Global+Krum  0.501 (0.037) 0.452 (0.029) 0.409 (0.031)  0.495 (0.035) * (%)
RSA 0.872 (0.002) 0.501 (0.007) 0.598 (0.006)  0.905 (0.002) 0.907 (0.002)
Ip-proj-1 0.906 (0.002)  0.908 (0.002) 0.910 (0.002) 0.905 (0.002) 0.907 (0.002)

Ip-proj-2 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) * (%) * (%)

Ditto 0.795 (0.010) 0.746 (0.016) 0.762 (0.015) * (%) * (%)

Global+Mean  0.456 (0.022) 0.106 (0.042) 0.128 (0.029) * (%) * (%)

Global+Median  0.247 (0.035)  0.265 (0.039) 0.224 (0.018) * (%) * (%)

CIFAR Global+Krum  0.246 (0.038) 0.240 (0.038)  0.290 (0.019)  0.200 (0.059) * (%)
RSA 0.778 (0.009) 0.646 (0.010) 0.613 (0.013) 0.788 (0.010) 0.791 (0.010)
Ip-proj-1 0.790 (0.009) 0.795 (0.010)  0.793 (0.009) 0.801 (0.010) 0.788 (0.011)

Ip-proj-2 0.792 (0.009) 0.788 (0.009) 0.786 (0.010) * (%) * (%)

Ditto 0.986 (0.000) 0.981 (0.000) 0.981 (0.000) * (%) * (%)

Global+Mean  0.942 (0.001) 0.188 (0.057) 0.296 (0.061) * (%) * (%)

Global+Median  0.859 (0.007) 0.103 (0.041) 0.817 (0.008) 0.206 (0.032) * (%)

MNIST Global+Krum  0.679 (0.076) 0.668 (0.080) 0.723 (0.045) 0.796 (0.029) * (%)
RSA 0.981 (0.001) 0.954 (0.006) 0.976 (0.001) 0.984 (0.000) 0.984 (0.000)
Ip-proj-1 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.984 (0.000) 0.984 (0.000)

Ip-proj-2 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) * (%) * (%)

Ditto 0.977 (0.002) 0.973 (0.002) 0.980 (0.001) * (%) * (%)

Global+Mean  0.967 (0.004) 0.111 (0.043) 0.119 (0.045) * (%) * (%)

Global+Median  0.729 (0.033) 0.214 (0.031)  0.537 (0.038) * (%) * (%)

FASHIONMNIST  Global+Krum  0.374 (0.072) 0.430 (0.069) 0.511 (0.107) 0.728 (0.065) * (%)
RSA 0.960 (0.004) 0.891 (0.021) 0.930 (0.011) 0.974 (0.002)  0.977 (0.002)
Ip-proj-1 0.975 (0.002) 0.975 (0.002) 0.981 (0.001) 0.976 (0.001) 0.977 (0.002)

Ip-proj-2 0.974 (0.002) 0.974 (0.002) 0.981 (0.001) * (%) * (%)
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Table 7: Complete Result on Robustness Performance in terms of test accuracy under Gaussian attacks. (The
number in the parentheses is the corresponding variance.)
Dataset Method Clean 10% 20% 50% 80%

Ditto 0.857 (0.018)  0.651 (0.052) 0.674 (0.056) 0.722 (0.045) 0.710 (0.047)

Global+Mean  0.772 (0.044) 0.174 (0.081) 0.173 (0.080) 0.189 (0.082)  0.246 (0.102)

Global+Median  0.519 (0.140)  0.124 (0.054) 0.143 (0.071) 0.189 (0.083) 0.204 (0.091)

Synthetic(0,0)  Global+Krum  0.235(0.109)  0.133 (0.072) 0.148 (0.086) 0.208 (0.105)  0.290 (0.086)
RSA 0.832 (0.026) 0.845 (0.019) 0.851 (0.018) 0.868 (0.017) 0.837 (0.015)

1p-proj-1 0.888 (0.010) 0.876 (0.013) 0.880 (0.011) 0.885 (0.011) 0.862 (0.009)

Ip-proj-2 0.887 (0.010) 0.838(0.023) 0.846 (0.020) 0.861 (0.018) 0.844 (0.011)

Ditto 0.863 (0.018) 0.694 (0.060) 0.741 (0.051) 0.762 (0.032) 0.795 (0.024)

Global+Mean  0.785(0.051) 0.194 (0.089) 0.188 (0.101)  0.196 (0.090) 0.295 (0.143)

Global+Median  0.525 (0.142)  0.132 (0.059) 0.124 (0.078) 0.231(0.122) 0.250 (0.144)

Synthetic(1, 1)  Global+Krum  0.224(0.105) 0.157 (0.096) 0.159 (0.084) 0.248 (0.116)  0.268 (0.121)
RSA 0.844 (0.023) 0.886 (0.014) 0.887 (0.014) 0.885(0.015)  0.902 (0.006)

Ip-proj-1 0.893 (0.014) 0.898 (0.013) 0.910 (0.011) 0.905 (0.011)  0.916 (0.005)

Ip-proj-2 0.891 (0.013) 0.868 (0.020) 0.887 (0.016) 0.878 (0.013)  0.893 (0.008)

Ditto 0.907 (0.002) 0.649 (0.004) 0.673 (0.004) 0.681 (0.006) 0.703 (0.006)

Global+Mean  0.770 (0.007)  0.068 (0.005) 0.063 (0.005) 0.060 (0.008) ~ 0.059 (0.009)

Global+Median  0.556 (0.015) 0.061 (0.001) 0.079 (0.002) 0.081 (0.002) 0.062 (0.011)

EMNIST Global+Krum  0.504 (0.032) 0.177 (0.005) 0.164 (0.009) 0.181 (0.006) 0.180 (0.006)
RSA 0.872 (0.002) 0.782 (0.003) 0.786 (0.003) 0.820 (0.002) 0.844 (0.003)

1p-proj-1 0.906 (0.002) 0.899 (0.002) 0.903 (0.002) 0.905 (0.002) 0.907 (0.002)

Ip-proj-2 0.907 (0.002) 0.862 (0.002) 0.862 (0.002) 0.881 (0.002) 0.883 (0.002)

Ditto 0.796 (0.010) 0.668 (0.011) 0.674 (0.011) 0.658 (0.014) 0.604 (0.021)

Global+Mean  0.456 (0.022) 0.139(0.010) 0.151 (0.038) 0.146 (0.035)  0.153 (0.033)

Global+Median  0.247 (0.035) 0.112(0.011)  0.136 (0.024)  0.159 (0.034)  0.144 (0.009)

CIFAR Global+Krum  0.246 (0.038)  0.160 (0.008) 0.166 (0.013) 0.156 (0.007) 0.169 (0.017)
RSA 0.775 (0.010)  0.731 (0.011)  0.736 (0.010) 0.757 (0.009) 0.772 (0.011)

1p-proj-1 0.791 (0.009)  0.790 (0.008) 0.791 (0.010) 0.797 (0.009)  0.795 (0.010)

Ip-proj-2 0.792 (0.009) 0.775 (0.011) 0.779 (0.010) 0.784 (0.010)  0.776 (0.011)

Ditto 0.986 (0.000) 0.931 (0.002) 0.928 (0.002) 0.932 (0.003) 0.937 (0.002)

Global+Mean  0.942 (0.001) 0.460 (0.027) 0.272 (0.040) 0.186 (0.027) 0.210 (0.043)

Global+Median  0.808 (0.014)  0.862 (0.006) 0.141 (0.038) 0.114 (0.039) 0.207 (0.062)

MNIST Global+Krum  0.647 (0.062) 0.669 (0.062) 0.770 (0.012) 0.778 (0.013) 0.821 (0.013)
RSA 0.981 (0.001) 0.957 (0.001) 0.963 (0.001) 0.979 (0.001)  0.982 (0.000)

1p-proj-1 0.982 (0.000)  0.981 (0.000) 0.982 (0.001) 0.983 (0.000) 0.984 (0.000)

1p-proj-2 0.982 (0.000) 0.978 (0.000) 0.980 (0.000) 0.984 (0.000) 0.987 (0.000)

Ditto 0.977 (0.002) 0.886 (0.015) 0.880 (0.014) 0.873 (0.017) 0.895 (0.007)

Global+Mean  0.967 (0.004) 0.167 (0.041) 0.165 (0.040) 0.170 (0.050)  0.174 (0.034)

Global+Median  0.729 (0.033)  0.650 (0.046) 0.346 (0.018) 0.192 (0.035) 0.192 (0.051)
FASHIONMNIST ~ Global+Krum  0.374 (0.072) 0.437 (0.117) 0.468 (0.067) 0.494 (0.060) 0.362 (0.012)
RSA 0.960 (0.004)  0.947 (0.007) 0.959 (0.002) 0.964 (0.002)  0.969 (0.002)

Ip-proj-1 0.975 (0.002)  0.973 (0.002) 0.978 (0.001) 0.977 (0.001) 0.974 (0.002)

1p-proj-2 0.974 (0.002) 0.964 (0.003) 0.973 (0.001) 0.968 (0.002) 0.972 (0.002)
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Table 8: Complete Result on Robustness Performance in terms of test accuracy under data-poison attacks. (The
number in the parentheses is the corresponding variance.)
Dataset Method Clean 2% 5% 10% 20%

Ditto 0.857 (0.018) 0.853 (0.019) 0.851 (0.019) 0.749 (0.068)  0.342 (0.123)

Global+Mean  0.772 (0.044) 0.484 (0.163) 0.304 (0.134) 0.257 (0.129)  0.141 (0.059)

Global+Median  0.519 (0.140)  0.539 (0.141)  0.552 (0.130) 0.322(0.118)  0.435 (0.133)

Synthetic(0,0)  Global+Krum  0.280 (0.133) 0.288 (0.130) 0.290 (0.134) 0.291 (0.156)  0.300 (0.146)
RSA 0.832 (0.026) 0.850 (0.019) 0.865 (0.016) 0.876(0.012) 0.875 (0.011)

1p-proj-1 0.888 (0.010) 0.886 (0.011) 0.884 (0.011) 0.884 (0.011) 0.881 (0.011)

Ip-proj-2 0.887 (0.010)  0.886 (0.011) 0.881 (0.012) 0.868 (0.015) 0.866 (0.014)

Ditto 0.863 (0.018) 0.863 (0.019) 0.853 (0.023) 0.810 (0.045) 0.401 (0.184)

Global+Mean  0.785 (0.051) 0.432(0.156) 0.253 (0.124) 0.208 (0.111)  0.146 (0.090)

Global+Median  0.525 (0.142)  0.534 (0.151) 0.554 (0.144) 0.274 (0.132)  0.373 (0.152)

Synthetic(1, 1)  Global+Krum  0.269 (0.134) 0.277 (0.129)  0.300 (0.145) 0.249 (0.140)  0.290 (0.163)
RSA 0.844 (0.023) 0.864 (0.019) 0.874 (0.016) 0.894 (0.013) 0.903 (0.010)

Ip-proj-1 0.893 (0.014) 0.889 (0.013) 0.901 (0.012) 0.904 (0.011) 0.914 (0.009)

Ip-proj-2 0.891 (0.013) 0.896 (0.012) 0.893 (0.012) 0.895(0.013) 0.899 (0.013)

Ditto 0.907 (0.002) 0.761 (0.003) 0.778 (0.005) 0.859 (0.002) * (%)

Global+Mean  0.770 (0.007) 0.179 (0.024) 0.110 (0.019) 0.150 (0.019) * (%)
Global+Median  0.556 (0.015) 0.549 (0.013) 0.564 (0.015) 0.433(0.012) 0.419 (0.011)
EMNIST Global+Krum  0.501 (0.037) 0.454 (0.038) 0.449 (0.022) 0.329 (0.030) 0.321 (0.031)
RSA 0.872 (0.002) 0.832 (0.002) 0.825(0.002) 0.871 (0.002) 0.878 (0.002)

Ip-proj-1 0.906 (0.002)  0.909 (0.002) 0.910 (0.002) 0.906 (0.002) 0.905 (0.002)
Ip-proj-2 0.907 (0.002) 0.907 (0.002) 0.907 (0.002) 0.908 (0.002) 0.906 (0.002)
Ditto 0.795 (0.010) 0.750 (0.016) 0.749 (0.015) 0.739 (0.009) 0.765 (0.011)
Global+Mean  0.456 (0.022) 0.102 (0.041)  0.139 (0.033) 0.153 (0.025) 0.155 (0.038)
Global+Median  0.247 (0.035) 0.252(0.023) 0.247 (0.025) 0.292 (0.015) 0.288 (0.011)
CIFAR Global+Krum  0.246 (0.038)  0.250 (0.045)  0.250 (0.027) 0.301 (0.046) 0.222 (0.019)
RSA 0.778 (0.009)  0.719 (0.011)  0.753 (0.010) 0.739 (0.013) 0.778 (0.011)
Ip-proj-1 0.790 (0.009)  0.795 (0.010)  0.793 (0.008) 0.795 (0.010)  0.801 (0.010)
Ip-proj-2 0.792 (0.009)  0.794 (0.009)  0.794 (0.008) 0.786 (0.009) 0.789 (0.009)
Ditto 0.986 (0.000) 0.983 (0.000) 0.982 (0.000) 0.982 (0.001) * )
Global+Mean  0.942 (0.001)  0.832(0.007) 0.712 (0.025) 0.627 (0.047) 0.514 (0.028)
Global+Median  0.859 (0.007) 0.860 (0.006) 0.862 (0.006) 0.857 (0.007)  0.839 (0.006)
MNIST Global+Krum  0.679 (0.076)  0.697 (0.078)  0.659 (0.068) 0.668 (0.080) 0.697 (0.046)
RSA 0.981 (0.001) 0.978 (0.001) 0.975 (0.001) 0.979 (0.001)  0.979 (0.001)
Ip-proj-1 0.982 (0.000)  0.983 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.001)
1p-proj-2 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.000) 0.982 (0.001)
Ditto 0.977 (0.002) 0.972 (0.002) 0.973 (0.002) 0.964 (0.004) * ()
Global+Mean  0.967 (0.004) 0.208 (0.070) 0.181 (0.070)  0.161 (0.055) * (%)
Global+Median  0.729 (0.033) 0.739 (0.036)  0.720 (0.025) 0.721 (0.029)  0.840 (0.037)
FASHIONMNIST ~ Global+Krum  0.374 (0.072) 0.480 (0.082) 0.488 (0.100) 0.401 (0.072) 0.581 (0.126)
RSA 0.960 (0.004)  0.969 (0.003) 0.959 (0.004) 0.965 (0.003)  0.976 (0.002)
Ip-proj-1 0.975 (0.002) 0.974 (0.002) 0.973 (0.002) 0.974 (0.002) 0.980 (0.001)
Ip-proj-2 0.974 (0.002)  0.973 (0.002) 0.973 (0.002) 0.975 (0.002) 0.981 (0.001)
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Figure 6: Complete results of performance fairness of competing methods. (The point closer to the bottom right

corner is better.)

49



	Convergence of lp-proj
	Some Useful Results
	Important Properties
	Proof of Proposition 9 
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Theorem 1

	Federated Linear Regression
	Solutions of Different Methods
	Test Loss
	Robustness
	The Simplified Setting
	Same-value Attacks
	Sign-flipping Attacks
	Gaussian Attacks

	Fairness

	Experimental Details
	Competing Methods
	Parameter Settings
	Complete Results on Personalization and Fairness Performance
	Complete Results on Communication Efficiency
	Complete Results on Robustness
	Complete Results on Accuracy and Performance Fairness Trade-off


