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In the following sections, we add additional details omitted in the main paper due to space
restrictions. In Sec. [T} we present an ablation study on different components of the loss
function, underlining the importance of each term. In Sec. [2] we analyze the impact of
varying the neighborhood size of k—NN in focal entropy on the adversarial accuracy with
experiments conducted on the CelebA dataset. In Sec. the sanitization convergence
behavior of different classifiers involved in the adversarial minimax game is analyzed. In
Sec. [l we analyze the effect of the classifier-strength on the privacy leakage and dependence
on training time. In Sec. we present more visualizations around the concept of hub
formation and the connection to focal entropy. It contains a visualization of hub forming
identities and zoom-in visualization of the adversarial remapping of the identities in CelebA.
Next, we generated reconstructions on CelebA dataset samples generated in Sec. [6] Finally,
architectural details are presented in Sec. [7]

1 ABLATION ANALYSIS ON L0Oss COMPONENTS

To assess the contribution of each component of our objective function, we evaluated
each module’s performance separately, gradually adding components: reconstruction loss,
target classification loss, adversary loss. For that, we report the ablation study of the loss
components on CelebA in Tab. [ Furthermore, Fig. [Ia] shows the dependency between
adversarial accuracy and the number of training epochs. As can be seen, beyond 1000 epochs,
the adversarial accuracy drops below < 0.01, nearing chance level.
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Figure 1: Left: Relationship between adversarial accuracy and the number of training epochs
on CelebA. The translucent band corresponds to 50% confidence minimum and maximum
adversarial accuracy, respectively. Right: Relationship between adversarial accuracy for
strong (red) and normal classifier (blue) w.r.t. the number of training epochs on CelebA.
The translucent band corresponds to 50% confidence interval. Dashed lines correspond to
minimum and maximum adversarial accuracy, respectively.
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2 NEIGHBORHOOD SIZE

Focal entropy entails a notion of similarity tied to the integration of k—NN. Here, we study
the effect of varying k on focal entropy and the associated the adversary accuracy. See Fig.
for a visualization of this relationship on the CelebA dataset. As can be seen, the adversary
accuracy has oscillatory behavior with various local minima, reaching optimum around
k = 16. This can be attributed to the superpositioning of different hubs, each exhibiting a
different similarity pattern. Analysis of hub formation is explained in Sec. 4.2 in the main
paper and Fig. 4 in the main paper.
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Figure 2: Relationship between adversary accuracy and k—NN size on CelebA dataset.
Translucent band corresponds to 50% confidence interval. Dashed lines correspond to
minimum, and maximum adversary accuracy, respectively.

3 SANITIZATION CONVERGENCE BEHAVIOUR

This section explores the behavior of standard entropy and the proposed focal entropy for
sanitization. Fig. [3] depicts the classification performance during the training of different
classifiers involved in the minimax optimization scheme: target classifier accuracy, adversarial
sensitive attribute accuracy, and sensitive attribute accuracy. As can be seen, employing
standard entropy for sanitization results in re-occurring patterns of oscillations. This can be
attributed to degenerate/trivial solutions and “shortcuts”. In contrast to that, focal entropy
shows a relatively smooth convergence behavior. More details on the behavior can be found
in Sec. 4.2 in the main paper.
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Figure 3: Sanitization convergence behavior of standard entropy and focal entropy on CIFAR-
100 for different classifiers: Left: Target accuracy, Center: Adversarial accuracy, Right:
Sensitive attribute accuracy
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4  PROBING ANALYSIS WITH STRONG CLASSIFIER

This section provides more detail on assessing the classifier strength in terms of privacy leakage
and the dependence on training time. We thereby largely follow the protocol of
let al.| (2018); [Sadeghi et al.| (2019). Specifically, we employed a stronger post-classifier (Tab.
3 in the main paper) compared to the one used for learning the representation. The stronger
post-classifier is endowed with additional layer stack (see Tab. [5c| for architectural details),
trained for 100 epochs. The results in Tab. 3 of the main paper suggest no significant
changes in target and adversarial accuracy. Figure [ID] extends these results, depicting the
relationship w.r.t. the number of epochs. As can be seen, the difference between the strong
and normal classifier is largely constant, independent of the epoch.

CelebA |Guo et al. (2016)
Method Target Acc. Adversarial Acc.
Upper-bound / Random Chance 1.0 < 0.001
Our Method (only Rec. loss) 0.88 -
Our Method (Rec. + Tar. loss) 0.91 0.751
Our Method|[full] (Rec. + Tar. + Adv. loss) 0.90 < 0.01

Table 1: Ablation analysis for loss components on CelebA dataset.

Figure 4: Visualization of CelebA identities of adversary classification network. The network
(green) corresponds the k—nearest neighborhood size k = 5.
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5 EXTENDED HUB ANALYSIS

This section provides a visually more detailed analysis of how the application of focal entropy
promotes the formation of “hubs” (explained in Sec. 4.2 in the main paper). To study that,
we analyzed the identity remapping of IDs on the CelebA dataset. Employing focal entropy
results in a surjective ID confusion pattern by taking similar IDs into account for privacy
sanitization.

5.1 VISUALIZATION OF HUB FACEs:
To study hubs’ semantics, we visualize the CelebA identities of the network corresponding to

focal entropy with k—nearest neighborhood size k = 5. See Fig. {4 for the visualization of the
hub faces. As can be seen, the hubs exhibit a rich diversity in facial properties.

5.2 ADVERSARIAL IDENTITY MAPPING:
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Figure 5: Visualization of the remapping of IDs in CelebA due to adversarial representation
learning. Source IDs (left) are remapped to new target IDs (right). Pictures on the left
are samples that get mapped to a hub; separation with bar indicates different target hub.
Pictures on the right are the visualization of hub identities. Visualization contains a subset
of 150 IDs, with targets getting at least four associations. The first number at each node
indicates the ID, the second the number of images per ID. Node splicing indicates the
remapping of a single ID to multiple adversarial targets.

Figure[f]is a zoom-in version of a graph as shown in Fig. 4 in the main paper, with k—nearest
neighborhood size & = 5. This visualization provides a more in-depth view of how the
adversarial process leads to a remapping of identities. In order to avoid visual clutter, a
subset of identities and targets was chosen. As can be seen, instead of being a collapse of a
facial stereotype, each hub is associated with a diverse looking set of identities, giving rise to
the deep sanitization of the representation.

6 QUALITATIVE RESULTS

Figure |§| shows different reconstructions of additional CelebA identities (equal male and
female) at different privacy levels. Each column is two different samples from CelebA (one
male and one female), and from top to bottom, the privacy disclosure is decreasing for each.
It can be noticed that visualizations from residual latent part and target latent parts confirm
the sanitization visually.
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7 ARCHITECTURAL DETAILS

We describe the architectures of each part of our model. Table [d] shows the architectures of
the VAE, i.e., the encoder and the decoder. It should be noted that the last two layers of
the encoder in Tab. 2 arise from layer splitting to accommodate for partitioning target and
residual representations. This is highlighted with dashed lines. Furthermore, we provide the
architectures of classifiers in Tab. [5| Architectures for target and adversarial classifiers are
identical.
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Figure 6: Visualization of CelebA data and reconstructions at different privacy levels. (From
top to bottom, privacy revelation is decreasing).
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Layer | Output | Parameters
Input: 128 x 128 x 3

Conv-2d [ 64 x64 ] 64x[3x3] st 2

BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 32 x32 [ 128 x[3 x 3], st. 2

BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 16 x 16 [ 256 x [3 x 3], st. 2

BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 8x8 [ 512x[3x3 st 2

BatchNorm

LeakyReLU | negative slope: 0.01

Linear 1 x 4096

Linear 1 x 512

Linear 1 x 4096

Linear 1 x 512

Table 2: Encoder

Layer | Output [ Parameters
Linear | 32768

BatchNorm

LeakyReLU | negative slope: 0.01
DeConv-2d | 16 x 16 [ 256 x [3 x 3], st. 2
BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 32x32 [ 128 x[3x3],st. 2
BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 64 x 64 | 64 x[3x3],st. 2
BatchNorm

LeakyReLU | negative slope: 0.01

Conv-2d 128 x 128 [ 3 x [3 x 3], st. 2
Tanh

Table 3: Decoder

Table 4: Architectural details of VAE components. Parameters for convolutions correspond
to: number kernels x| kernel size ], and stride

Layer | Output size / Params Layer | Output size / Params
Linear | 256 Linear [ 256

BatchNorm BatchNorm

PReLU PReLU

Dropout | drop-rate: 0.2 Dropout | drop-rate: 0.5

Linear 128 Linear 128

BatchNorm BatchNorm

PReLU PReLU

Linear | #classes Linear | #IDs or #attributes X [1]

(a) Classifier on CIFAR-100

(b) Normal classifier on CelebA

Table

Layer | Output size / Params
Linear [ 256
BatchNorm

PReLU

Dropout | drop-rate: 0.5
Linear 128
BatchNorm

PReLU

Dropout | drop-rate: 0.5
Linear 256
BatchNorm

PReLU

Linear | #IDs

(c) Strong ID classifier on CelebA

5: Architectural details of the used classifiers
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