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1 APPENDIX OVERVIEW

Source code is available athttps://sjtuplayer.github.io/projects/SaRA. This ap-
pendix provides additional analysis and experiments related to SaRA, including:

* More implementation details (Sec. [2));

* More comparison results on downstream dataset fine-tuning (Sec. [3);
* More comparison results on image customization (Sec. f));

+ Comparison experiments on controllable video generation (Sec. [3));
* Scaling weight for SaRA parameter (Sec. [6));

* Merging different SaRA parameters (Sec.[7);

e More ablation studies (Sec. ;

* Analysis on training efficiency (Sec.[9);

* Further analysis to understand what SaRA have learned (Sec. [I0);
* Hyperparameter analysis (Sec.[TT);

* More analysis on the learned matrix AP (Sec. @;

* Limitations (Sec.[T3).

2 MORE IMPLEMENTATION DETAILS

Metrics. We evaluate the generation models by three metrics: /) Fréchet Inception Distance
(FID) (Heusel et al.,[2017) to measure the similarity between the generated image distribution and
target image distribution, where a lower score indicates better similarity; 2) CLIP Score to measure
the matching degree between the given prompts and generated images with a CLIP L/14 back-
bone (Radford et al., 2021), where a higher score indicates better consistency; 3) Additionally, since
FID and CLIP scores exhibit a certain degree of mutual exclusivity in finetuning a text-to-image
model to downstream tasks (i.e., an overfitted model will result in the best FID but the worst CLIP
score), we introduce a new metric, the Visual-Linguistic Harmony Index (VLHI), which is calcu-
lated by adding the normalized FID and CLIP scores, to balance the evaluation of style (FID) and
the preservation of model priors (CLIP score), where a higher score indicates better performance.

Visual-Linguistic Harmony Index (VLHI). We propose VLHI to evaluate both the style and the
generalization of each PEFT method, by balancing FID and CLIP Score. For a group of FIDs
{FID;}_, and CLIP Scores {C LIP;}}_,, we compute the normalized FID and CLIP Score as
VLHI:
max({FID;}" ) — FID; CLIP; — min({CLIP;}" ;)
max({FID;} ) —min({FID;}* ) max({CLIP;}! ) — min({CLIP;} ;)
)

VLHI, =
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For downstream dataset fine-tuning experiments, we regard the methods in one Stable Diffusion
version and one dataset as a group.

Dataset details. In the downstream dataset fine-tuning experiments, we choose 5 widely-used
datasets from CIVITAI with 5 different styles to conduct the fine-tuning experiments, which are
Barbie Style, Cyberpunk Style, Elementfire Style, Expedition Style, and Hornify Style. Each dataset
contains about 200 ~ 400 images, and for each image, we employ BLIP model (Li et al.| 2022)) to
generate its text annotations. The detailed number of images in each dataset is recorded in Tab.[I]

Dataset Barbie Cyberpunk ElementFile Expedition Hornify
Image Number 316 440 156 396 236

Table 1: The number of images in each dataset.

Training Details. We use AdamW (Loshchilov et al.,[2017) optimizer to train the methods for 5000
iterations with batch size 4, with a cosine learning rate scheduler, where the initial learning rate [r
is calculated corresponds to the thresholds 6;: Ir = 1073 x e~3%0% (refer to Sec. [L1). For the
training images and labeled captions, we recaption them by adding a prefix ‘name style,’ (name
corresponds to the dataset name) before each caption, which is a common trick in fine-tuning Stable
Diffusion models to a new domain.

Implementation of SaRA. To enable easy im-
plementation of SaRA, we have efficiently en-
capsulated it, allowing users to perform SaRA-
based fine-tuning by modifying just a single
line of training code. As shown in Algorithm 1,
we integrate SaRA into the optimizer class, so 4
users only need to replace the original PyTorch 5 Yorea = model(z; 0)

optimizer with the SaRA optimizer to auto- ¢: loss = Loss_Func(ypred, y)
matically initiate SaRA training (The code that  7: loss.backward()
8
9
10:

Algorithm 1 SaRA Fine-tuning Pseudocode

1: model = Initialize_model()
2: # optimizer = AdamW (model.parameters())
optimizer = AdamW-SaRA (model, threshold = 0,)
3: for epoch=1to N do
for each mini-batch (z,y) do

needs to be modified is highlighted in green.). optimizer.step()
The learning rate will be automatically assigned end for
based on the threshold 6 if it is not specified. end for

3  MORE COMPARISON RESULTS ON
DOWNSTREAM DATASET FINE-TUNING

Visualization results. We compare our model with LoRA (Hu et al., 2021), Adaptformer (Chen
et al.| 2022)), LT-SFT (Ansell et al., |2021) and full-parameter finetuning method. We train all meth-
ods for 5,000 iterations and use the trained models to generate 500 images based on 500 text de-
scriptions (generated by GPT-4). The quantitative results are presented in the main paper. In this
section, we show more qualitative results on Stable Diffusion 1.5, 2.0, and 3.0 with resolutions 512,
768, and 1,024. The results from Stable Diffusion 1.5, 2.0, and 3.0 are shown in Figs. respec—
tively. It can be seen that our model generates images that contain most of the features in the target
domain and are well consistent with the given prompts under different datasets. Moreover, to show
the generation diversity of Our SaRA, we further generate more images by the trained SaRA weights
on Stable Diffusion 1.5, 2.0, and 3.0, where for each SaRA weight, we generate 5 images with the
same prompt and different random seeds. The generated results are shown in Fig. 4} [6] It can be seen
that SaRA can generate the target-domain images with high diversity, while keeping the semantics
consistent with the given prompts, demonstrating a good preservation of the model prior.

More compared methods. In this section, we compare our model with additional state-of-the-
art parameter fine-tuning methods on Stable Diffusion 1.5, including DoRA (Liu et al., 2024) and
DiffPruning (Guo et al.l 2020), which are the representative reparameterized PEFT and selective
PEFT approaches, respectively. The comparison results are presented in Tab. 2] The results show
that DoRA performs comparably to LoRA, while DiffPruning cannot learn enough tas-specified
knowledge, which results in an extremely high FID. In contrast, our model achieves the best perfor-
mance as evaluated by VLHI, attaining the lowest FID and competitive CLIP score. Moreover, to
demonstrate the effectiveness of our SaRA method among various selective PEFT approaches, we
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BarbieCore Cyberpunk 5 g Expedition Hornify Mean
Backbone | Params Model
‘ FID| CLIPt VLHIT | FID| CLIPT VLHIt| FID| CLIPY VLHIt| FID| CLIP{ VLHIt| FID| CLIPT VLHI{| FID| CLIP{ VLHI?
DoRA 15840 2948 143 | 11906 2816 149 | 17196 27.67 141 | 13133 2694 124 | 15033 2683 144 | 14622 2782 153
LoRA 161.88  29.93 1.34 11749 2822 1.62 181.66  27.47 1.20 136.31 27.39 1.32 156.36  26.80 1.28 150.74  27.96 1.45
50M Adaptformer | 166.09  29.00 1.00 126.21 27.13 0.64 15127 26,57 1.29 138.01 26.41 0.63 151.53  26.20 118 146.62  27.06 118
LT-SFT 157.80  23.80 0.54 12359 2571 0.37 171.67  25.11 0.44 139.29  27.81 1.46 158.52  26.35 1.06 150.18 2576 0.49
SaRA (Ours) | 148.54 2860 175 | 12167 2730 102 | 13267 2677 163 | 13156 2734 148 | 14036 2540 LIS | 13496 2708 155
DoRA 15885 2922 137 | 11623 2842 178 | 16991 2733 131 | 13380 2686 109 | 14897 2682 147 | 14555 2773 151
LoRA 15064 2965 140 | 11721 2843 171 | 17479 2761 135 | 13638 2700 107 | 15585 2706 143 | 14877 2797  LS52
SD 15 20M Adaptformer | 159.02  29.08 1.34 12388 28.07 111 17417 26.53 0.95 137.03  26.67 0.83 157.09  26.63 1.20 15024 27.39 1.21
LT-SFT 156.60  23.76 0.59 11975 2533 0.53 191.01 25.96 0.49 14457 28.01 137 16547  26.89 1.10 155.48 2599 0.42
SaRA (Ours) | 153.68  29.33 1.63 11669 28.24 1.69 138.64  26.63 1.50 12998  27.04 1.36 145.62  26.40 1.39 13692  27.53 1.69
DoRA | 15661 2907 145 | 11326 27.62 174 | 17870 2757 128 | 13550 2688  1.02 | 16121 2734 137 | 14907 2770 138
LoRA 16380 2993 125 | LI7.58 2832 165 | 18499 2774 125 | 13796 27.10 107 | 15357 2693 140 | 15158 2800 144
M Adaptformer | 164.22  29.37 1.14 12098 28.11 1.33 184.84  26.66 0.84 143.01 27.35 1.01 171.34  26.85 0.94 156.88  27.67 1.13
LT-SFT 169.24  24.23 0.08 127.01 2543 0.03 20247 26.90 0.68 15349  27.96 0.97 176.41 27.34 1.00 16572 2637 0.27
SaRA (Ours) | 153.69  29.39 1.64 118.74  28.17 1.52 174.86  27.04 113 13445  27.06 118 157.24 2697 1.33 147.80  27.73 144
10M DiffPruning 21743 3141 1.00 180.25 2843 1.00 24172 2749 0.91 184.56  28.67 1.00 206.73 2830 1.00 206.14  28.86 1.00
860M | Full-fincwne | 14781 2777 165 | 12022 2784 147 | 13649 2510 095 | 12907 2675 121 | 13486 2464 100 | 13369 2642  1.30

Table 2: Comparison with different parameter-efficient fine-tuning methods (including additional
DoRA and DiffPrune) on Stable Diffusion 1.5. For most of the conditions, our model achieves the
best FID and VLHI score, indicating that our model learns domain-specific knowledge successfully
while keeping the prior information well.

BarbieCore Cyberpunk ElementFire Expedition Hornify Mean
Backbone | Params Model

FID| CLIP1 VLHI{ | FID| CLIP{ VLHI1| FID| CLIP{ VLHI{ | FID| CLIP{ VLHI1| FID| CLIP{ VLHI{ | FID| CLIP{ VLHI

DoRA 16442 3176 177 | 12645 2920 176 | 17578 2823 074 | 139.84 27.60 112 | 16453 2729 090 | 15420 2882  1.06

Lora 168.59 3L68 151 | 13238 2896 126 | 13427 27.65 125 | 13037 2730 134 | 15478 2732 138 | 14408 2858 145

S0M Adaptformer | 17133 30.69 106 | 13574 2871 083 | 13971 2734 092 | 13568 27.11 098 | 15120 2694 LIS | 14673 2816  1.06

LTSFT | 16541 3020 124 | 13108 2865  LI6 | 140.62 2748 097 | 12610 2697 130 |150.94 27.11 134 | 14283 2808 121

SaRA (Ours) | 16253 3067 154 | 12604 2001 179 | 12092 2873 200 | 12448 2718 151 | 14428 2666 118 | 13745 2845 171

DoRA 16518 3141 162 | 12422 2895 175 |177.07 2825 072 | 13872 2764 120 | 16320 2728 095 | 15368 2871  1.03

Lora 16346 3158 177 | 13238 2896 126 | 139.89 28.02 131 | 13163 27.52 143 | 15704 2732 127 | 14488 2868 146

SDXL 20M Adaptformer | 168.54 3125 138 | 13761 2899 087 | 15514 2812 094 | 13773 2756  L19 | 159.013 2738 124 | 15163 2866  LI10

LTSET | 17851 3144 088 | 13172 2001 134 | 14982 2801  1.03 | 14051 2791 130 | 15482 27.16 121 | 15108 2871  LI6

SaRA (Ours) | 16238 3161 184 | 12855 2921 172 | 14260 2822 135 | 13544 2772 139 | 15333 2744 158 | 14446 2884 158

DoRA 16621 3119 149 | 12468 2909  L8I | 17447 2805 066 | 13924 2737  1.00 | 16532 2726 083 | 15398 2859  0.94

Lora 16938 3097 125 | 12676 2901 173 | 15141 2780 086 | 13803 2741  L07 | 15721 2701 094 | 14856 2844  L13

5M Adaptformer | 178.61  30.88 071 | 13876 2921 092 | 16038 27.99 072 | 14451 27.63 094 | 16177 2696  0.68 | 15681 2853 076

LTSFT | 17477 3165 116 | 12910 2915 164 | 16569 2808 062 | 14741 2758 078 | 16584 27.11 065 | 15656 2871 088

SaRA (Ours) | 17495 3184 120 | 12701 2933 192 | 14427 2840 141 | 137.07 27.66 128 | 15802 2745 136 | 14826 2894 144

Full-finctune | 2085M 16072 2855 100 | 12894 2781 077 | 14456 2701 059 | 12459 2641 100 | 14660 2648  0.89 | 141.08 2725 081

Table 3: Comparison with different parameter-efficient fine-tuning methods on Stable Diffusion
XL. For most of the conditions, our model achieves the best FID and VLHI score, indicating that
our model learns domain-specific knowledge successfully while keeping the prior information well.

compare SaRA with LT-SFT (Ansell et al.| 2021), FishMask (Sung et al., {2021}, DiffPruning (Guo
et al.,[2020), and an ablated method that fine-tunes the largest parameters on Stable Diffusion 1.5
with 50M trainable parameters. The qualitative comparison results are shown in Fig. It can be
observed that LT-SFT does not learn the target style well in the ElementFire and Horinfy datasets.
FishMask tends to generate artifacts as it tunes some effective parameters in the pretrained weights,
disrupting part of the model priors. DiffPruning fails to capture task-specific information, resulting
in outputs that differ significantly from the target style (despite the fact that we have tried different
hyperparameters). Additionally, the ablated model that fine-tunes the largest parameters tends to
overfit, similar to the full-parameter fine-tuning model. Since the most important parameters are all
fine-tuned, it is prone to overfitting to the target domain, leading to generated images that do not
align well with the given prompts. In contrast, our SaRA fits the five datasets well while preserving
the model priors, indicating superior performance among the different selective PEFT methods.

More experiments on Stable Diffusion XL. In this section, we present additional comparison
experiments on one of the most widely used stable diffusion models, Stable Diffusion XL 1.0 (Podell
et al.,[2023)), capable of generating images at a resolution of 1024 x 1024. The results, summarized
in Tab. [3| demonstrate that our SaRA consistently achieves the best performance on Stable Diffusion
XL 1.0, further validating the effectiveness and robustness of our approach.

More evaluation metrics. While the CLIP score (Radford et al.,[2021) measures overall similarity
between images and text, it may overlook finer details during evaluation. To address this, we incor-
porate the attribute evaluation metric (denoted as B-VQA) from T2I-CompBench++ (Huang et al.,
2023)), which assesses the alignment between generated images and input text prompts at a more
granular level. The comparison results are presented in Tab. 4] showing that our model achieves the
best or second-best B-VQA score in most cases, demonstrating its ability to preserve fine-grained
details described in the input text prompts.
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BarbieCore Cyberpunk ElementFire Expedition Hornify Mean
Backbone | Params Model

FID| B-VQA1 VLHIt| FID| B-VQA® VLHIt | FID| B-VQAT VLHIT| FID| B-VQAt VLHI?| FID| B-VQAt VLHI? | FID, B-VQA® VLHIt

DoRA 15840 037 116 | 11906 042 058 | 17196 048 096 | 13133 052 139 | 15033 049 131 | 14622 046 120

Lora 16188 0.40 126 | 11749 047 135 | 18166 051 089 | 13631 052 123 | 15636 049 115 | 15074 048 122

50M Adaptformer | 166.09  0.38 082 | 12621 046 056 | 15127  0.68 173 | 13801 053 122 | 15153 050 137 | 14662 051 160

LTSFT | 15780 038 127 12359 046 081 | 17167 046 093 | 13929 054 135 | 15852 051 125 [ 15018 047 119

SaRA (Ours) | 14854 0.40 184 | 12167 047 105 | 13267 050 158 | 13254 053 148 | 14036 051 173 | 13505 048 175

DoRA 15885 037 114 | 11623 044 098 | 16991 048 099 [ 13380 052 129 [ 14897 049 136 | 14555 046 125

Lora 15964 0.40 136 | 11721 047 135 [ 17479 050 097 | 13638 052 122 | 15585 049 123 | 14877 048 129

SD1s 20M Adaptformer | 159.02  0.38 122 | 12388 046 072 17417 049 096 |137.03 051 098 | 15709 048 109 | 15024 046 113
LTSFT | 15660 038 130 | 11975 048 140 [ 19101 050 073 | 14457 054 119 | 16547 051 108 | 15548 048 112

SaRA (Ours) | 153.68 040 164 | 11669 047 150 | 138.64 050 149 | 12998 054 175 | 14562 050 153 | 13692 048 172

DoRA 15621 037 121 [ 11326 044 129 [17870 047 084 | 13559 052 124 [ 16121 048 101 [ 14899 046 112

Lora 16380 0.41 125 | 1758 046 127 | 18499 050 083 | 13796 052 11715357 049 122 | 15158 048 120

M Adaptformer | 16422 0.34 064 | 12098 046 103 | 18484 049 082 | 14301 053 L1 | 17134 049 079 | 15688 046 094

LTSFT | 16924 040 091 | 12701 049 100 | 20247 052 061 | 15349 056 100 | 17641 053 100 [ 16572 050 094

SaRA (Ours) | 15369 041 170 | 11874 047 134 | 17486 051 100 | 13445 052 130 | 15724 050 121 | 14780 048 1.36

Full-finetune 860M 14781 030 100 | 12022 047 T15 | 13649 026 095 | 12907 048 100 | 13486 040 100 | 13369 038 100

Table 4: Comparison on FID and B-VQA from T2i-compbench++ (Huang et al.,[2023) with different
parameter-efficient fine-tuning methods on Stable Diffusion 1.5.

Prompt Dataset SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tune

A futuristic sci-fi scene
in space, featuring a
spaceship who is
traveling, evoking an
adventurous feeling.

A futuristic mythology
scene in a mountain,
featuring a cyber-
dragon who s flying,
evoking a powerful
feeling.

A vintage nature scene
in a garden, featuring a
butterfly who is
fluttering, evoking a
delicate feeling.

A cartoon portrait scene
in a desert, featuring a
camel who is journeying,
evoking a determined
feeling.

A cartoon nature scene
in a garden, featuring a
rabbit who is hopping,
evoking a playful feeling.

Figure 1: Comparison results between different PEFT methods on Stable Diffusion 1.5.
4 MORE COMPARISON RESULTS ON IMAGE CUSTOMIZATION

Image Customization. Image customization aims to learn a common subject from a few images
and then apply it to new images. Dreambooth (Van Le et all,[2023) trains the UNet of a diffusion
model to bind the target subject to a rare token and then generates images with the specified content
based on the rare token. Since Dreambooth requires fine-tuning the UNet network, we compare the
performance of full-finetune (original Dreambooth), LoRA, Adaptformer, LT-SDT, and our method
in image customization. We compute the CLIP-Text score and CLIP-IMG Score for the generated
data, along with VLHI balancing both the two metrics. As shown in Tab.[5} LoRA achieves a high
CLIP-IMG score but the lowest CLIP-Text score, indicating a severe overfitting problem. Other
PEFT methods, including full-parameter fine-tuning, achieve relatively low CLIP-IMG and CLIP-
Text scores. In contrast, our method achieves the best CLIP-Text score, a competitive CLIP-IMG
score (only lower than the overfitted LoRA), and the best average VLHI score across three datasets,
demonstrating its effectiveness in image customization tasks. We further conduct the qualitative
comparison on fine-tuning Dreambooth. As shown in Fig. [7 our method can learn the subject
content well while preserving the prior information of the diffusion model, thereby improving the




Published as a conference paper at ICLR 2025

Prompt Dataset SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tune

A tranquil countryside
bike ride through fields
of wildflowers.

A bustling carnival with
rides, games, and ferris
wheel.

A vintage nature scene
in a garden, featuring a
rose who is blooming,
evoking a beautiful
feeling.

A bustling train station
in the 1930s, with
steam engines,
passengers in period
attive, and porters
carrying luggage

A magical winter
wonderland with ice-
skating and snow
sculptures.

Figure 2: Comparison results between different PEFT methods on Stable Diffusion 2.0.

Prompt Dataset SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tune

I
v

A cartoon fantasy scene
in a forest, featuring a
sprite who is playing,
evoking a joyful feeling.

A minimalist mythology
scene in a mountain,
featuring a phoenix who
is rising, evoking a
rebivth feeling.

A surveal abstract scene
in an underwater,
featuring a jellyfish who
is glowing, evoking a
mystical feeling.

A surreal fantasy scene
in a forest, featuring a
unicorn who is walking,
evoking a primal feeling.

A vintage portrait scene
in a desert, featuring a
knight who is fighting,

evoking an angry feeling.

Figure 3: Comparison results between different PEFT methods on Stable Diffusion 3.0.

consistency between the generated images and the given texts, which demonstrates the effectiveness
of SaRA in image customization.
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Prompt Dataset SaRA (Ours)

A futuristic sci-fi scene
in space, featuring a
spaceship who is
traveling, evoking an

adventurous feeling. i\ N

A futuristic mythology
scene in a mountain,
featuring a cyber-
dragon who s flying,
evoking a powerful
eeling.

A vintage nature scene
in a garden, featuring a
butterfly who is
fluttering, evoking a
delicate feeling.

A cartoon portrait scene
in a desert, featuring a
camel who is journeying,
evoking a determined
feeling.

A cartoon nature scene
in a garden, featuring a
rabbit who is hopping,
evoking a playful feeling.

Figure 4: More generation results by SaRA for different downstream datasets on SD 1.5.

Prompt Dataset SaRA (Ours)

A tranquil countryside
bike ride through fields
of wildflowers.

A bustling carnival with
vides, games, and ferris
wheel.

A vintage nature scene
in a garden, featuring a
rose who is bl ing,
evoking a beautiful
feeling.

A bustling train station
in the 1930s, with
steam engines,
passengers in period
attive, and porters
carvying luggage

A magical winter
wonderland with ice-
skating and snow
sculptures.

Figure 5: More generation results by SaRA for different downstream datasets on SD 2.0.



Published as a conference paper at ICLR 2025

Prompt Dataset SaRA (Ours)

A cartoon fantasy scene
in a forest, featuring a
sprite who is playing,
evoking a joyful feeling.

L 21

A minimalist mythology
scene in a mountain,
featuring a phoenix who
is rising, evoking a
rebirth feeling.

A surreal abstract scene
in an underwater,
featuring a jellyfish who
is glowing, evoking a
mystical feeling.

A surveal fantasy scene
in a forest, featuring a
unicorn who is walking,
evoking a primal feeling.

A vintage portrait scene
in a desert, featuring a
knight who is fighting,

evoking an angry feeling.

Figure 6: More generation results by SaRA for different downstream datasets on SD 3.0.

Methods Dog Clock Backpack Mean
CLIP-It CLIP-T{ VLHI{ | CLIP-I1 CLIP-T{ VLHI1 | CLIP-It CLIP-T4+ VLHI1 | CLIP-It CLIP-T1 VLHIt
Textual Inversion 0.788 23.94 0.36 0.789 24.15 1.00 0.654 24.09 0.00 0.744 24.06 0.39
Dreambooth + Full Fine-tune | 0.776 25.85 113 0.894 22.39 113 0.856 25.44 176 0.842 24.56 1.36
Dreambooth + LoRA 0.895 23.64 1.00 0.913 21.71 1.00 0.917 25.23 1.84 0.908 23.53 1.00
Dreambooth + Adaptformer 0.772 25.42 091 0.885 23.18 1.38 0.873 25.25 1.69 0.843 24.62 141
Dreambooth + LT-DFT 0.757 23.94 0.13 0.893 22.45 1.14 0.869 25.00 1.49 0.840 23.80 0.79
Dreambooth + SaRA (Ours) 0.790 25.87 1.24 0.887 23.51 153 0.886 2527 176 0.854 24.88 1.67

Table 5: Quantitative comparisons between different PEFT methods on image customization.

5 CONTROLLABLE VIDEO GENERATION.

We further investigate the effectiveness of our method in fine-tuning video generation models. An-
imateDiff (Guo et al., |2023) is a representative video generation model based on Stable Diffu-
sion (Rombach et al.,|2022), which inserts temporal attention modules between the original spatial
attention modules to model temporal correlations, enabling a diverse text-to-video generation. To
achieve more controllable generation, AnimateDiff fine-tunes the temporal attention module using
different camera motion data, such as Pan Left, Pan Right, Zoom In, and Zoom Out, to control
the camera movements precisely. We compare the effectiveness of various PEFT methods in fine-
tuning AnimateDiff for three types of camera movements, including Zoom In, Zoom Out, and Pan
Right. Specifically, we collected 1,000 video-text pairs with identical camera movements for each
type of camera motion. The temporal attention modules are fine-tuned using full fine-tuning, LoRA,
Adaptformer, LT-SDT, and our SaRA. As shown in Fig. [§] the compared methods usually suffer
from generating artifacts in the results (shown in red boxes), indicating that these methods have lost
some model priors of specific content during the fine-tuning process. Moreover, for the sea turtle
examples, full fine-tuning, LoRA, and LT-SFT exhibit noticeable content degradation. And for the
pan-right examples, all the compared methods fail to capture the photographer, indicating a signif-
icant model overfitting problem. In contrast, our method achieves excellent camera motion control
while achieving good consistency between the video content and the text.




Published as a conference paper at ICLR 2025

Prompt Dataset SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tune Textual Inversion
2 ~% i

A photo of a
sks dog in the
bucket

A photo of a
sks clock on the
grass

A photo of a
sks backpack
on the grass

Figure 7: Qualitative comparisons among different PEFT methods on image customization by fine-
tuning the UNet model in Dreambooth (Van Le et al.},[2023)). Our model can accurately capture the
target feature while preventing the model from overfitting, outperforming Dreambooth with other

PEFT methods and Textual inversion (Gal et al.,[2022]).

Zoom In @, Zoom Out E Pan Right @—»

A rock climber scaling a steep cliff face. A sea turtle swim in the deep sea. hotographer capturing a

Full
Fine-tune

LoRA

Adapt-
former

LT-SFT

SaRA
(Ours)

Figure 8: The comparison results of the video generation model 2023), fine-tuned using
different PEFT methods on three video datasets featuring zoom-in, zoom-out, and pan-right camera
motions. The red boxes highlight artifacts generated by the compared methods, indicating that these
methods have lost some model priors of specific content during the fine-tuning process. In the sea
turtle examples, full fine-tuning, LoRA, and LT-SFT exhibit noticeable content degradation. And
for the pan-right examples, all the compared methods fail to capture the photographer, indicating
significant model overfitting. In contrast, our method achieves excellent camera motion control
while preserving video content well.

6 SCALING WEIGHT FOR SARA PARAMETERS

Our SaRA aims to learn a sparse low-rank parameter matrix A P, which is added to the pre-trained
weights P,. Similar to LoORA 2021), when applying the learned parameter AP to the
pre-trained one, we can assign a scaling weight « for the AP to control the emphasis extent on the
learned target-domain knowledge by:

P =P+ aAP. 2)
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Prompt

Barbir style,
An impressionist
abstract scene in an

underwater, featuring a Ky

coral who is growing,

. . J . M 3 » f L
evoking a vibrant feeling. . = - . % iy . A » Al

4Pt

Cyberpunk style,
A bustling Chinatown
alleyway with street
vendors and lanterns.

ElementFire style, 8
A futuristic urban scene i
in a cityscape, featuring [l
a hovercar who is
zooming, evoking a fast
feeling.

Expedition style,
A tranquil sunset boat
ride along a winding
river.

Hornify style,
A grand castle on a
hilltop surrounded by
lush greenery.

Figure 9: The generated results from different weight « for the learned SaRA parameters by Stable
Diffusion 1.5. As « increases, the generated image contains more tar-get domain features.

We show the results on different a ranging from 0 to 2 on five datasets in Fig. 9} It can be seen
that as the scaling weight « increases, the model tends to generate images with more target-domain
features, but may lose part of the information specified by the given texts.

7 MERGING DIFFERENT SARA PARAMETERS

For two SaRA parameters A P; and A P, learned from two different datasets, we aim to find whether
they can be combined to form new parameters that contain the knowledge from both the two datasets.
We combine the two parameters by:

AP = O[lApl + OQAPQ. (3)

Then, we employ the combined SaRA parameter AP to generate images. We choose four com-
binations: ’Barbie Style’ +’Cyberpunk style’, ’Cyberpunk Style’ +’ElementFire style’, ’Element-
Fire Style’ +’Expedition style’, and "Hornify Style’ +’Cyberpunk style’, where we simply assign
a1 = ap = 0.6. The generated images are shown in Fig.[T0] It can be seen that, after combining the
SaRA parameters learned from two different datasets, the output images contain the features from
both two datasets, which indicates that we can merge different SaRA parameters together, enabling
more flexible and abundant generation results.

8 MORE ABLATION STUDIES.

Ablation study on threshold. In SaRA, the threshold is an important hyperparameters that influence
the size of the parameter space directly. We conduct experiments on different thresholds ranging
from 2e-4 to le-1 on the Expedition dataset and Stable Diffusion 1.5, and evaluate the generated
images by FID and CLIP score. The results are shown in Tab. [6] It can be seen that when the
threshold is too small (e.g., 2e-4), the FID becomes much higher, indicating learning less target
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Barbie Style + Cyberpunk Style

An impressionist nature scene in a garden, featuring a butterfly A futuristic space colony on a distant planet, with domed
habitats and alien flora.

who is fluttering, evoking a delicate feeling.

Cyberpunk Style + ElementFire Style
A bustling carnival with rides, games, and cotton candy. A bustling food truck festival with gourmet offerings.

R o

Expedition Style + ElementFire Style
A magical castle floating in the sky with clouds and rainbows. A magical garden, with talking flowers, enchanted fountains,
and a fairy queen.

Hornify Style + Cyberpunk Style
A fantasy scene in a forest, featuring a sprite who is playing, A magical garden, with talking flowers, enchanted fountains,
evoking a joyful feeling. and a fairy queen.

Figure 10: Combining the SaRA parameters learned from two different datasets, the model can
generate images with features from both datasets. We show the combination results for *Barbie
Style’ +’Cyberpunk style’, ’Cyberpunk Style’ +’ElementFire style’, ’ElementFire Style’ +’Expedi-
tion style’, and *Hornify Style’ +’Cyberpunk style’ in this figure.

domain knowledge. And when the threshold is large (i.e., threshold<2e-3), the model performs quite
stably. Since we have a low-rank loss, the model with a high threshold also keeps the CLIP score
well. In summary, our SaRA performs well in different thresholds, demonstrating the robustness of
our model.

Threshold \ 2e-4 8e-4 2e-3 5e-3 le-2 Se-2 le-1

FID | 134.45 12998 132.54 131.05 13042 130.71 129.88
CLIP 1 27.06 27.04 2738 2721 27.15 27.04 27.02

Table 6: Ablation study on the threshold.

More ablation study on the low-rank loss. In this section, we conduct more ablation studies on the
low-rank loss L;.4..x, where we choose Stable Diffusion 1.5 and two additional datasets (Cyberpunk
and ElementFire) for the experiment. The results are shown in Tab. [7, where we can see that the
mode without £,.,,,1 always tends to get a worse CLIP score, indicating a significant performance
drop. Therefore, the low-rank loss is quite necessary in our model to keep the model prior.

9 ANALYSIS ON TRAINING EFFICIENCY

In Sec.4.4 of the main paper, we propose unstructural backpropagation, which allows selective PEFT
to store and update only the gradients of trainable parameters, significantly reducing memory usage

10
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Prompt Dataset SaRA (Ours) LT-SFT FishMask DiffPruning Tuning Largest Param

A futuristic sci-fi scene
in space, featuring a
spaceship who is
traveling, evoking an
adventurous feeling.

A futuristic mythology
scene in a mountain,
featuring a cyber-
dragon who is flying,
evoking a powerful
feeling.

A vintage nature scene
in a garden, featuring a
butterfly who is
fluttering, evoking a
delicate feeling.

A cartoon portrait scene
in a desert, featuring a
camel who is journeying,
evoking a determined
feeling.

A cartoon naturve scene
in a garden, featuring a
vabbit who is hopping,
evoking a playful feeling.

Figure 11: More qualitative comparison with the existing Selective PEFT methods (LT-SFT
2021)), FishMask (Sung et al,[2021)), DiffPruning (Guo et al.,[2020)), and the ablated model

that fine-tunes the largest parameters) on SD 1.5.

Cyberpunk ElementFire
method ‘ FID CLIP| FID CLIP
SaRA 121.67 2730 | 13267 26.77

SaRA w/o. Lyqnr | 12033 26.52 | 131.56  25.88

Table 7: More ablation studies on the low-rank 10sS L, 4k-

during training. We conducted experiments on the Stable Diffusion 2.0 model using an 80G NVIDIA
A100 GPU, comparing the memory usage and training time of LT-SFT (Selective PEFT method),
LoRA, and our method across different batch sizes. The results, shown in Fig. 5 of the main paper,
demonstrate that our method achieves the lowest memory consumption and training time under all
batch sizes. Compared to LT-SFT, we reduce memory usage by a fixed 9.2G (equivalent to the total
gradient size of fixed parameters) and achieve over 45% memory reduction for smaller batch sizes.
Furthermore, compared to LoRA, our method saves over 52% memory and 49% training time for
larger batch sizes, showcasing the efficiency of our SaRA in model fine-tuning.

10 FURTHER ANALYSIS TO UNDERSTAND WHAT SARA HAVE LEARNED

The Correlation between A P and P. We further investigate what exactly is learned by the sparse
parameter matrix A Pp,,,.s obtained through our method. Firstly, we examine the relationship be-
tween AP and the pre-trained parameter matrix P. We want to know whether A P has learned new
knowledge that is not present in P, or it amplifies some existing but previously not emphasized
knowledge in P. To answer this question, we study the subspaces of AP and P. We first conduct
SVD decomposition on A P,,,s, and obtain the left and right singular-vector matrices Ua p,,, ... and
Vi, oure We then project P into the first r-dimensional subspace of AP using Uap,,,. PVA% Poure”
We quantify the correlation between P and the first r-dimensional subspace of AP by calculating

11
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Rank =4 =16 =64
Matrices Ajt)Ours APLORA P APOurs APLORA P APOurs APLORA P
|UPVT|p 0.17 034 936 | 048 114 1482 | 268 390 2391
Amplification 25.72 13.45 - 6.50 4.05 - 1.64 1.18 -

Table 8: The correlation between the learned parameter matrices AP and the pretrained weights
P. Our learned parameter matrix A Pg,,,.s amplifies the directions that are not emphasized in the
pretrained weights P, and has a larger amplification factor than LoRA, indicating our model learns
more task-specific knowledge than LoRA.

the Frobenius norm of this projection ||[Uap,,,,,. PVAp, ||, where a smaller norm indicates lower
correlation between the subspace of AP and P.

For a valid reference, we further decompose the parameter matrix APy, 4 learned by LoRA us-
ing SVD to obtain the respective Uap,,,, and Vap, .,  matrices, and project the pre-trained

parameter matrix P into the first 7-dimensional subspace of APr,r4 using Uap, o a PVAP, 54 T

In addition, we calculate an amplification factor to determine how much the parameter matrix AP
amplifies the directions that are not emphasized by P. The amplification factor is computed as

fo= %. The higher the amplification factor is, the more task-specific knowledge is learned.

We investigate the relationship between the first » = 4, 16, 64 dimensional subspaces of AP and P.
The results are shown in Tab. [§'} from which we can draw the following conclusions:

1. The learned sparse matrix A Ppy,-s from our model has a significant amplification factor, such as
25.72 times for r = 4, which indicates the correlation between the first 4-dimensional subspace of
APpuyrs and P is low, and APg.,,s primarily amplifies the directions that are not emphasized in P.

2. Compared to the low-rank parameter matrix APy ,ra learned by LoRA, our model achieves a
higher amplification factor across different values of r, indicating that our method can learn more
knowledge that is not emphasized in P than LoRA.

3. As r increases, the amplification factor gradually decreases, suggesting that the knowledge
learned by AP is mostly contained within P, and the primary role of AP is to amplify some of
the existing but previously not emphasized knowledge in P (if new knowledge that is not present in
P has been learned by AP, the correlation should remain low as 7 increases, and the amplification
factor should remain high, which is not the case presented in our experiments).

The Correlation between P + AP and P. We aim to further understand whether our learned
parameter matrix A Py, disrupts the information in the original parameter space (spanned by the
pretrained weights P), which may lead to overfitting and loss of prior information. To analyze the
preservation of prior information, we calculate the correlation between the final updated parameter
matrix (P 4+ AP) and the pretrained weights P. Specifically, we calculate the similarity between
the subspaces of (P + AP) and P. We decompose (P + AP) and P using Singular Value Decom-
position (SVD) to obtain the left-singular unitary matrices U, and examine the similarity between
the subspaces spanned by the first r; singular vectors of Upap and the first r; singular vectors
of Up. We quantify the subspace similarity using the normalized subspace similarity based on the
Grassmann distance (Hu et al.| 2021):
_ or v |

¢(P17P2,7’ia7’j)—me[071]7 @)
ir Ty

where Uy X, ViE = SVD(Py), k = {1,2}.

We calculate the similarity between the pre-trained parameter matrix P and the updated parameter
matrices obtained from three approaches: 1) our model (P + APpy.s), 2) LoORA (P 4+ AProra),
and 3) a random parameter matrix added to the pre-trained parameters (P + APgrandom ). The re-
sults are shown in Fig. As a reference, the subspace similarity ¢(P+APgrandom, P,7i,7;) of
randomly updated parameters approaches zero across different dimensions r; and r;, indicating ran-

"NAP,yrs||r = 4.40 and || AProga|lr = 4.62.
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Figure 12: Subspace similarity between P + AP and P. The similarity ¢(P + APoyrs, P,7i,7})
between our updated parameter matrix and the pretrained parameter matrix achieves a similarity
larger than 96 % across different dimensions of the subspace (r;, ;). The results indicare the learned
sparse parameter matrix AP of our model keeps the prior information in the pretrained parameters

P well.
«C ..
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Figure 13: Subspace similarity between AP; and AP under thresholds 2e — 3 and 8e — 4. The
total similarity between their learned matrices exceeds 60% (when r is around 650), compared to
only 40% similarity between AP; and the pre-trained weights P, demonstrating the learned ma-
trices from different thresholds learn similar task-specific knowledge, while emphasizing different
directions (relative smaller similarity when r is small).

dom weights will destroy the prior information in the pre-trained weights absolutely. In contrast, the
similarity ¢(P+APouyrs, P, 1;,7;) between our learned parameter matrix added to the pre-trained
parameters and the original parameter matrix exceeds 96% across different subspace dimensions
(ri,7;), indicating that our learned parameter matrix effectively preserves the information in the
original parameter matrix. In addition, compared to the parameter matrix (P+APr,,.,) updated
by LoRA, our updated parameter matrix (P + A Pgp,s) shows greater subspace similarity with the
pre-trained parameters P, demonstrating that our model’s learned sparse parameter matrix better
preserves the prior information of the pre-trained parameters, effectively avoiding model overfit-
ting. Combining this with the conclusions from the previous section, we can further conclude that
Our model can learn more task-specific knowledge, while more effectively preserving the prior
information of the pre-trained parameter matrix than LoRA.

The Correlation between A P under Different Thresholds. We further investigate the relation-
ship between the learned parameter matrices A P under different thresholds. Our experiments focus
on the matrices for Key Wy and Value Wy, from the medium block’s attention modules in SD1.5.
In this experiments, we select two thresholds, 2e — 3 and 8e — 4 (corresponding to AP; and AP),
and compute the similarity of their subspaces using Eq. (). For comparison, we also calculate the
similarity between the parameter matrix A P; learned with a threshold of 2e — 3 and the pre-trained
parameter matrix P. The results are shown in Fig. [I3] It can be observed that the overall simi-
larity between the parameter matrices learned under the two thresholds exceeds 60% (peaking at
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Figure 14: The comparison results on different learning rates and thresholds. The model with a
larger threshold should employ a larger learning rate to learn the target-domain information well
(red boxes indicate the best results).

around r = 650), indicating that the knowledge learned under different thresholds is roughly sim-
ilar, but with different emphases (lower similarity at smaller 7). In contrast, the similarity between
AP, and the pre-trained parameters P is consistently below 40%. The higher similarity between
AP, and A P; suggests that the learned parameter matrices from different thresholds indeed capture
similar task-specific knowledge, which supports the feasibility of fine-tuning the model with fewer
parameters.

11 HYPERPARAMETER ANALYSIS

In this section, we conduct experiments on different hyperparameters in our model: learning rate,
progressive iteration (the iteration for progressive parameter adjustment), and the weight for rank
loss Arqank- We chose Stable Diffusion 1.5 and Expedition dataset for the following experiments (if
not specified, the threshold §; = 2e — 3) and evaluated the results by FID, CLIP Score, and VLHI.

Learning Rates and Thresholds. We first investigate the two most critical hyperparameters: learn-
ing rate and threshold. We selected learning rates {1e—4, 2e—4, 5e—4,8e—4, 1e—3} and thresholds
{2e — 4,5e — 4,8e — 4, 2e — 3, 5e — 3} for our experiments, resulting in a total of 25 models. The
quantitative results are shown in Fig.[T4] It can be observed that, for the same learning rate, as the
threshold increases, the model’s FID gradually decreases while the CLIP Score gradually increases.
This indicates that a larger learnable parameter set can learn more task-specific information, but is
also more likely to lose pre-trained prior knowledge. For the same threshold, increasing the learning
rate yields similar results. However, for relatively large thresholds (e.g., 5e — 3), a high learning rate
(e.g., 8¢ —4 and le — 3 in the figure) may cause the model training to collapse. Therefore, selecting
an appropriate learning rate is crucial for achieving good results.

We further use the VLHI metric to analyze the

performance of the models trained with differ-

ent learning rates under various thresholds by Learning-Rate

balancing FID and CLIP scores, as shown in le31 @ e Data Points

the third column in Fig.[T4} The optimal learn- T ftCurvery = le37exp(350 )

ing rate for each threshold is marked with a 8e-41

red box. It can be seen that as the threshold

increases, a gradually decreasing learning rate

should be used to prevent severe overfitting.

Conversely, as the threshold decreases, a larger

learning rate should be employed to enhance

the model’s ability to learn task-specific knowl-

edge. In summary, there is a negative correla-

tion between the learning rate and the threshold. s re3 403 6e3  8e3 12

To adaptively select an optimal learning rate, Threshold

we fit an exponential function f(z) = a x €®

using the five data points shown in the figure. Figure 15: The fit curve of the best pairs of learn-
ing rate and threshold.

o
®
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®
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14



Published as a conference paper at ICLR 2025

Learning Rate-Iteration
FIDY CLIP Score

-154 -27.7 17
1e-3
-148 -27.3 15
o 8e4
O
e 142 26.9 13
E’ 5e-4
£ 137 26.6 12
3
— 2e-4
131 26.2 1.0
1e-4
125 25.8 0.8
1000 2000 2500 3000 4000 1000 2000 2500 3000 4000 1000 2000 2500 3000 4000
Iteration Iteration Iteration

Figure 16: The comparison results on different learning rates and progressive iterations. A larger
learning rate or progressive iteration improves the FID while sacrificing the CLIP Score.

The resulting function for adaptively comput-

ing the learning rate for different thresholds is

shown in Fig.[T3] The curve fits the five data points well, and when the threshold approaches 0, the
learning rate is approximately le — 3, which does not result in an excessively high learning rate.
Similarly, for larger thresholds (e.g., 1e — 2), the learning rate is around 3e — 5, comparable to the
learning rate used in full fine-tuning, avoiding an excessively low learning rate. We do not consider
even larger thresholds, as these parameters are highly effective in the model, and fine-tuning them
would contradict the purpose of our method. Therefore, we derive a function to adaptively compute
a good learning rate Lr based on the threshold 6;:

Lr =1073 x ¢ 3500 (5)

Learning Rates and Progressive Iteration. We then study the effects of learning rate and
progressive iteration (the iteration for progressive parameter adjustment) together. We train the
models with learning rates {le — 4,2e — 4,5e¢ — 4,8¢ — 4,1e — 3} and progressive iteration
{1000, 2000, 2500, 3000, 4000}, which forms 25 models in total. The quantitative results are shown
in Fig. @ For all the metrics (FID, CLIP Score, and VLHI), the brighter the color is, the better the
model performs. It can be seen that, as the learning rate or progressive iteration grows, the model
learns more task-specific knowledge (a better FID), while the CLIP score becomes worse. Therefore,
we should balance both the learning rate and progressive iterations, where the model with learning
rate 5e — 4 and progressive iteration 2000 achieves the best VLHI, reaching both a good FID and
CLIP Score.

Arank and Progressive Iteration. We then analyze the influence of the weight for rank loss Ayqnk
and progressive iteration at the same time. We train the models with A,,,x {le — 4,5e — 4, 1le —
3,5e — 3, 1e — 2} and progressive iteration {1000, 2000, 2500, 3000, 4000}, which constitutes 25
models in total. The quantitative results are shown in Fig. It can be seen that as \,.,,,; increases,
the FID becomes worse while the CLIP Score performs better, demonstrating that A, helps the
model keep the prior information in the pre-trained weights, but with a less effect in fitting the
target domain. Therefore, to simultaneously reach a relatively good FID and CLIP Score, we choose
Arank = be — 3 with progressive iteration 2500, which results in the best VLHI.

12 MORE ANALYSIS ON THE LEARNED WEIGHT MATRIX AP

The Correlation between A P and P under Different Thresholds. We compute the subspace sim-
ilarity between the learned matrices Deltap under different thresholds and the pre-trained weights
P by Eq. (6) of the main paper. The results are shown in Fig.[T8] It demonstrates that AP does
not contain the top singular directions of W, since the overall similarity between the singular di-
rections in the learned matrices AP and the top 32 directions of P is barely around 4%. And it
further validates that the matrices A P contain more task-specific information rather than repeating
the directions that are already emphasized in the pre-trained weights. Moreover, by comparing the
AP from different thresholds, we can find that as the thresholds grow, the subspace similarity be-
tween AP and P becomes smaller, indicating that a larger threshold can learn more task-specific
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Figure 17: The comparison results on different weights A, for rank loss and progressive itera-
tions. A larger A, improves the CLIP Score while sacrificing the FID.
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Figure 18: Subspace similarity between A P and P under different thresholds.

information, therefore a large threshold can contribute to a better FID as shown in Tab. 1 of the main
paper.

More Analysis on AP from Different Layers. In the main paper, we have analyzed the sub-
space similarity between the learned matrices A P from different thresholds, and concluded that the
matrices from different thresholds learn similar task-specific knowledge, but emphasize different
directions. To further validate this conclusion, we conduct more quantitative analysis between dif-
ferent thresholds (6; = 2e — 3 and 8¢ — 4) from the attention layers in the bottom, medium, and
up blocks. Moreover, we take all the learnable matrices in the attention module into consideration,
including the Query, Key, Value, and FFN matrices (corresponds to Wq, Wi, Wy, and W, re-
spectively). The results can be referred to in Fig.[T9the x-axis and y-axis represent §; = 2e — 3 and
0; = 8e — 4 respectively., where the heatmaps show almost the same color and distributions, indi-
cating that our conclusion is consistent for the learned matrices from different modules and different
attention layers.

Further Analysis of AP across Different Threshold Pairs. In the main paper, we analyzed the
subspace similarity between the learned matrices AP from thresholds of 2e — 3 and 8¢ — 4, con-
cluding that the learned matrices from different thresholds capture similar task-specific knowledge
while emphasizing different directions. In this section, we extend our quantitative analysis to ad-
ditional threshold pairs: (2e — 3,8¢ — 4), (2¢ — 3,2e — 4), and (8¢ — 4,2e — 4). We consider
all learnable matrices in the attention module, including the Query, Key, Value, and FFN matrices
(corresponding to Wq, Wi, Wy, and Wo,,, respectively). The results are presented in Fig. a
The subspace similarity between the thresholds (2e — 3, 2e — 4) is lower than that of (2¢ — 3, 8¢ — 4
and (8e — 4, 2e — 4), suggesting that matrices learned from a closer threshold pair exhibits greater
subspace similarity and acquire more similar knowledge.
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Figure 19: Subspace similarity between AP from threshold 6; = 2e — 3 (50M parameters) and
0: = 8e — 4 (20M parameters), in different attention layers, where the x-axis and y-axis represent
0; = 2e — 3 and 0; = 8e — 4 respectively. The subspace similarity across different layers exhibits
consistent behavior, demonstrating that the knowledge learned by A P remains invariant across lay-
ers and modules, indicating strong robustness.

13 LIMITATIONS

Our SaRA focuses on fine-tuning the ineffective parameters of a pre-trained model. However, if the
model size is relatively small (e.g., not as large as diffusion models, which typically exceed 100M
parameters), the number of ineffective parameters may be insufficient to effectively adapt the model
to the downstream dataset. As a result, SaRA is better suited for fine-tuning large models rather
than smaller ones. Additionally, since there is no rigorous proof that parameters with the smallest
absolute values are always ineffective, caution is warranted to account for potential exceptions,
which could lead to reduced performance of SaRA in certain scenarios.
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