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1 APPENDIX OVERVIEW

Source code is available at https://sjtuplayer.github.io/projects/SaRA. This ap-
pendix provides additional analysis and experiments related to SaRA, including:

• More implementation details (Sec. 2);
• More comparison results on downstream dataset fine-tuning (Sec. 3);
• More comparison results on image customization (Sec. 4);
• Comparison experiments on controllable video generation (Sec. 5);
• Scaling weight for SaRA parameter (Sec. 6);
• Merging different SaRA parameters (Sec. 7);
• More ablation studies (Sec. 8);
• Analysis on training efficiency (Sec. 9);
• Further analysis to understand what SaRA have learned (Sec. 10);
• Hyperparameter analysis (Sec. 11);
• More analysis on the learned matrix ∆P (Sec. 12);
• Limitations (Sec. 13).

2 MORE IMPLEMENTATION DETAILS

Metrics. We evaluate the generation models by three metrics: 1) Fréchet Inception Distance
(FID) (Heusel et al., 2017) to measure the similarity between the generated image distribution and
target image distribution, where a lower score indicates better similarity; 2) CLIP Score to measure
the matching degree between the given prompts and generated images with a CLIP L/14 back-
bone (Radford et al., 2021), where a higher score indicates better consistency; 3) Additionally, since
FID and CLIP scores exhibit a certain degree of mutual exclusivity in finetuning a text-to-image
model to downstream tasks (i.e., an overfitted model will result in the best FID but the worst CLIP
score), we introduce a new metric, the Visual-Linguistic Harmony Index (VLHI), which is calcu-
lated by adding the normalized FID and CLIP scores, to balance the evaluation of style (FID) and
the preservation of model priors (CLIP score), where a higher score indicates better performance.

Visual-Linguistic Harmony Index (VLHI). We propose VLHI to evaluate both the style and the
generalization of each PEFT method, by balancing FID and CLIP Score. For a group of FIDs
{FIDi}ni=1 and CLIP Scores {CLIPi}ni=1, we compute the normalized FID and CLIP Score as
VLHI:

V LHIi =
max({FIDi}ni=1)− FIDi

max({FIDi}ni=1)−min({FIDi}ni=1)
+

CLIPi −min({CLIPi}ni=1)

max({CLIPi}ni=1)−min({CLIPi}ni=1)
(1)

∗Equal Contribution
†Corresponding Author
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For downstream dataset fine-tuning experiments, we regard the methods in one Stable Diffusion
version and one dataset as a group.

Dataset details. In the downstream dataset fine-tuning experiments, we choose 5 widely-used
datasets from CIVITAI with 5 different styles to conduct the fine-tuning experiments, which are
Barbie Style, Cyberpunk Style, Elementfire Style, Expedition Style, and Hornify Style. Each dataset
contains about 200 ∼ 400 images, and for each image, we employ BLIP model (Li et al., 2022) to
generate its text annotations. The detailed number of images in each dataset is recorded in Tab. 1

Dataset Barbie Cyberpunk ElementFile Expedition Hornify
Image Number 316 440 156 396 236

Table 1: The number of images in each dataset.

Training Details. We use AdamW (Loshchilov et al., 2017) optimizer to train the methods for 5000
iterations with batch size 4, with a cosine learning rate scheduler, where the initial learning rate lr
is calculated corresponds to the thresholds θt: lr = 10−3 × e−350θt (refer to Sec. 11). For the
training images and labeled captions, we recaption them by adding a prefix ‘name style, ’ (name
corresponds to the dataset name) before each caption, which is a common trick in fine-tuning Stable
Diffusion models to a new domain.

Algorithm 1 SaRA Fine-tuning Pseudocode
1: model = Initialize model()
2: # optimizer = AdamW(model.parameters())

optimizer = AdamW-SaRA(model, threshold = θt)
3: for epoch = 1 to N do
4: for each mini-batch (x, y) do
5: ypred = model(x; θ)
6: loss = Loss Func(ypred, y)
7: loss.backward()
8: optimizer.step()
9: end for

10: end for

Implementation of SaRA. To enable easy im-
plementation of SaRA, we have efficiently en-
capsulated it, allowing users to perform SaRA-
based fine-tuning by modifying just a single
line of training code. As shown in Algorithm 1,
we integrate SaRA into the optimizer class, so
users only need to replace the original PyTorch
optimizer with the SaRA optimizer to auto-
matically initiate SaRA training (The code that
needs to be modified is highlighted in green.).
The learning rate will be automatically assigned
based on the threshold θt if it is not specified.

3 MORE COMPARISON RESULTS ON
DOWNSTREAM DATASET FINE-TUNING

Visualization results. We compare our model with LoRA (Hu et al., 2021), Adaptformer (Chen
et al., 2022), LT-SFT (Ansell et al., 2021) and full-parameter finetuning method. We train all meth-
ods for 5,000 iterations and use the trained models to generate 500 images based on 500 text de-
scriptions (generated by GPT-4). The quantitative results are presented in the main paper. In this
section, we show more qualitative results on Stable Diffusion 1.5, 2.0, and 3.0 with resolutions 512,
768, and 1,024. The results from Stable Diffusion 1.5, 2.0, and 3.0 are shown in Figs. 1- 3 respec-
tively. It can be seen that our model generates images that contain most of the features in the target
domain and are well consistent with the given prompts under different datasets. Moreover, to show
the generation diversity of Our SaRA, we further generate more images by the trained SaRA weights
on Stable Diffusion 1.5, 2.0, and 3.0, where for each SaRA weight, we generate 5 images with the
same prompt and different random seeds. The generated results are shown in Fig. 4- 6. It can be seen
that SaRA can generate the target-domain images with high diversity, while keeping the semantics
consistent with the given prompts, demonstrating a good preservation of the model prior.

More compared methods. In this section, we compare our model with additional state-of-the-
art parameter fine-tuning methods on Stable Diffusion 1.5, including DoRA (Liu et al., 2024) and
DiffPruning (Guo et al., 2020), which are the representative reparameterized PEFT and selective
PEFT approaches, respectively. The comparison results are presented in Tab. 2. The results show
that DoRA performs comparably to LoRA, while DiffPruning cannot learn enough tas-specified
knowledge, which results in an extremely high FID. In contrast, our model achieves the best perfor-
mance as evaluated by VLHI, attaining the lowest FID and competitive CLIP score. Moreover, to
demonstrate the effectiveness of our SaRA method among various selective PEFT approaches, we
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Backbone Params Model
BarbieCore Cyberpunk ElementFire Expedition Hornify Mean

FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑

SD 1.5

50M

DoRA 158.40 29.48 1.43 119.06 28.16 1.49 171.96 27.67 1.41 131.33 26.94 1.24 150.33 26.83 1.44 146.22 27.82 1.53
LoRA 161.88 29.93 1.34 117.49 28.22 1.62 181.66 27.47 1.20 136.31 27.39 1.32 156.36 26.80 1.28 150.74 27.96 1.45

Adaptformer 166.09 29.00 1.00 126.21 27.13 0.64 151.27 26.57 1.29 138.01 26.41 0.63 151.53 26.20 1.18 146.62 27.06 1.18
LT-SFT 157.80 23.80 0.54 123.59 25.71 0.37 171.67 25.11 0.44 139.29 27.81 1.46 158.52 26.35 1.06 150.18 25.76 0.49

SaRA (Ours) 148.54 28.60 1.75 121.67 27.30 1.02 132.67 26.77 1.63 131.56 27.34 1.48 140.36 25.40 1.15 134.96 27.08 1.55

20M

DoRA 158.85 29.22 1.37 116.23 28.42 1.78 169.91 27.33 1.31 133.80 26.86 1.09 148.97 26.82 1.47 145.55 27.73 1.51
LoRA 159.64 29.65 1.40 117.21 28.43 1.71 174.79 27.61 1.35 136.38 27.00 1.07 155.85 27.16 1.43 148.77 27.97 1.52

Adaptformer 159.02 29.08 1.34 123.88 28.07 1.11 174.17 26.53 0.95 137.03 26.67 0.83 157.09 26.63 1.20 150.24 27.39 1.21
LT-SFT 156.60 23.76 0.59 119.75 25.33 0.53 191.01 25.96 0.49 144.57 28.01 1.37 165.47 26.89 1.10 155.48 25.99 0.42

SaRA (Ours) 153.68 29.33 1.63 116.69 28.24 1.69 138.64 26.63 1.50 129.98 27.04 1.36 145.62 26.40 1.39 136.92 27.53 1.69

5M

DoRA 156.61 29.07 1.45 113.26 27.62 1.74 178.70 27.57 1.28 135.59 26.88 1.02 161.21 27.34 1.37 149.07 27.70 1.38
LoRA 163.80 29.93 1.25 117.58 28.32 1.65 184.99 27.74 1.25 137.96 27.10 1.07 153.57 26.93 1.40 151.58 28.00 1.44

Adaptformer 164.22 29.37 1.14 120.98 28.11 1.33 184.84 26.66 0.84 143.01 27.35 1.01 171.34 26.85 0.94 156.88 27.67 1.13
LT-SFT 169.24 24.23 0.08 127.01 25.43 0.03 202.47 26.90 0.68 153.49 27.96 0.97 176.41 27.34 1.00 165.72 26.37 0.27

SaRA (Ours) 153.69 29.39 1.64 118.74 28.17 1.52 174.86 27.04 1.13 134.45 27.06 1.18 157.24 26.97 1.33 147.80 27.73 1.44
10M DiffPruning 217.43 31,41 1.00 180.25 28.43 1.00 241.72 27.49 0.91 184.56 28.67 1.00 206.73 28.30 1.00 206.14 28.86 1.00

860M Full-finetune 147.81 27.77 1.65 120.22 27.84 1.47 136.49 25.10 0.95 129.07 26.75 1.21 134.86 24.64 1.00 133.69 26.42 1.30

Table 2: Comparison with different parameter-efficient fine-tuning methods (including additional
DoRA and DiffPrune) on Stable Diffusion 1.5. For most of the conditions, our model achieves the
best FID and VLHI score, indicating that our model learns domain-specific knowledge successfully
while keeping the prior information well.

Backbone Params Model
BarbieCore Cyberpunk ElementFire Expedition Hornify Mean

FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑ FID ↓ CLIP ↑ VLHI ↑

SD XL

50M

DoRA 164.42 31.76 1.77 126.45 29.20 1.76 175.78 28.23 0.74 139.84 27.60 1.12 164.53 27.29 0.90 154.20 28.82 1.06
Lora 168.59 31.68 1.51 132.38 28.96 1.26 134.27 27.65 1.25 130.37 27.30 1.34 154.78 27.32 1.38 144.08 28.58 1.45

Adaptformer 171.33 30.69 1.06 135.74 28.71 0.83 139.71 27.34 0.92 135.68 27.11 0.98 151.20 26.94 1.15 146.73 28.16 1.06
LT-SFT 165.41 30.20 1.24 131.08 28.65 1.16 140.62 27.48 0.97 126.10 26.97 1.30 150.94 27.11 1.34 142.83 28.08 1.21

SaRA (Ours) 162.53 30.67 1.54 126.04 29.01 1.79 129.92 28.73 2.00 124.48 27.18 1.51 144.28 26.66 1.18 137.45 28.45 1.71

20M

DoRA 165.18 31.41 1.62 124.22 28.95 1.75 177.07 28.25 0.72 138.72 27.64 1.20 163.20 27.28 0.95 153.68 28.71 1.03
Lora 163.46 31.58 1.77 132.38 28.96 1.26 139.89 28.02 1.31 131.63 27.52 1.43 157.04 27.32 1.27 144.88 28.68 1.46

Adaptformer 168.54 31.25 1.38 137.61 28.99 0.87 155.14 28.12 0.94 137.73 27.56 1.19 159.13 27.38 1.24 151.63 28.66 1.10
LT-SFT 178.51 31.44 0.88 131.72 29.01 1.34 149.82 28.01 1.03 140.51 27.91 1.30 154.82 27.16 1.21 151.08 28.71 1.16

SaRA (Ours) 162.38 31.61 1.84 128.55 29.21 1.72 142.60 28.22 1.35 135.44 27.72 1.39 153.33 27.44 1.58 144.46 28.84 1.58

5M

DoRA 166.21 31.19 1.49 124.68 29.09 1.81 174.47 28.05 0.66 139.24 27.37 1.00 165.32 27.26 0.83 153.98 28.59 0.94
Lora 169.38 30.97 1.25 126.76 29.01 1.73 151.41 27.80 0.86 138.03 27.41 1.07 157.21 27.01 0.94 148.56 28.44 1.13

Adaptformer 178.61 30.88 0.71 138.76 29.21 0.92 160.38 27.99 0.72 144.51 27.63 0.94 161.77 26.96 0.68 156.81 28.53 0.76
LT-SFT 174.77 31.65 1.16 129.10 29.15 1.64 165.69 28.08 0.62 147.41 27.58 0.78 165.84 27.11 0.65 156.56 28.71 0.88

SaRA (Ours) 174.95 31.84 1.20 127.01 29.33 1.92 144.27 28.40 1.41 137.07 27.66 1.28 158.02 27.45 1.36 148.26 28.94 1.44
Full-finetune 2085M 160.72 28.55 1.00 128.94 27.81 0.77 144.56 27.01 0.59 124.59 26.41 1.00 146.60 26.48 0.89 141.08 27.25 0.81

Table 3: Comparison with different parameter-efficient fine-tuning methods on Stable Diffusion
XL. For most of the conditions, our model achieves the best FID and VLHI score, indicating that
our model learns domain-specific knowledge successfully while keeping the prior information well.

compare SaRA with LT-SFT (Ansell et al., 2021), FishMask (Sung et al., 2021), DiffPruning (Guo
et al., 2020), and an ablated method that fine-tunes the largest parameters on Stable Diffusion 1.5
with 50M trainable parameters. The qualitative comparison results are shown in Fig. 11. It can be
observed that LT-SFT does not learn the target style well in the ElementFire and Horinfy datasets.
FishMask tends to generate artifacts as it tunes some effective parameters in the pretrained weights,
disrupting part of the model priors. DiffPruning fails to capture task-specific information, resulting
in outputs that differ significantly from the target style (despite the fact that we have tried different
hyperparameters). Additionally, the ablated model that fine-tunes the largest parameters tends to
overfit, similar to the full-parameter fine-tuning model. Since the most important parameters are all
fine-tuned, it is prone to overfitting to the target domain, leading to generated images that do not
align well with the given prompts. In contrast, our SaRA fits the five datasets well while preserving
the model priors, indicating superior performance among the different selective PEFT methods.

More experiments on Stable Diffusion XL. In this section, we present additional comparison
experiments on one of the most widely used stable diffusion models, Stable Diffusion XL 1.0 (Podell
et al., 2023), capable of generating images at a resolution of 1024× 1024. The results, summarized
in Tab. 3, demonstrate that our SaRA consistently achieves the best performance on Stable Diffusion
XL 1.0, further validating the effectiveness and robustness of our approach.

More evaluation metrics. While the CLIP score (Radford et al., 2021) measures overall similarity
between images and text, it may overlook finer details during evaluation. To address this, we incor-
porate the attribute evaluation metric (denoted as B-VQA) from T2I-CompBench++ (Huang et al.,
2023), which assesses the alignment between generated images and input text prompts at a more
granular level. The comparison results are presented in Tab. 4, showing that our model achieves the
best or second-best B-VQA score in most cases, demonstrating its ability to preserve fine-grained
details described in the input text prompts.
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Backbone Params Model
BarbieCore Cyberpunk ElementFire Expedition Hornify Mean

FID ↓ B-VQA ↑ VLHI ↑ FID ↓ B-VQA ↑ VLHI ↑ FID ↓ B-VQA ↑ VLHI ↑ FID ↓ B-VQA ↑ VLHI ↑ FID ↓ B-VQA ↑ VLHI ↑ FID ↓ B-VQA ↑ VLHI ↑

SD 1.5

50M

DoRA 158.40 0.37 1.16 119.06 0.42 0.58 171.96 0.48 0.96 131.33 0.52 1.39 150.33 0.49 1.31 146.22 0.46 1.20
Lora 161.88 0.40 1.26 117.49 0.47 1.35 181.66 0.51 0.89 136.31 0.52 1.23 156.36 0.49 1.15 150.74 0.48 1.22

Adaptformer 166.09 0.38 0.82 126.21 0.46 0.56 151.27 0.68 1.73 138.01 0.53 1.22 151.53 0.50 1.37 146.62 0.51 1.60
LT-SFT 157.80 0.38 1.27 123.59 0.46 0.81 171.67 0.46 0.93 139.29 0.54 1.35 158.52 0.51 1.25 150.18 0.47 1.19

SaRA (Ours) 148.54 0.40 1.84 121.67 0.47 1.05 132.67 0.50 1.58 132.54 0.53 1.48 140.36 0.51 1.73 135.15 0.48 1.75

20M

DoRA 158.85 0.37 1.14 116.23 0.44 0.98 169.91 0.48 0.99 133.80 0.52 1.29 148.97 0.49 1.36 145.55 0.46 1.25
Lora 159.64 0.40 1.36 117.21 0.47 1.35 174.79 0.50 0.97 136.38 0.52 1.22 155.85 0.49 1.23 148.77 0.48 1.29

Adaptformer 159.02 0.38 1.22 123.88 0.46 0.72 174.17 0.49 0.96 137.03 0.51 0.98 157.09 0.48 1.09 150.24 0.46 1.13
LT-SFT 156.60 0.38 1.30 119.75 0.48 1.40 191.01 0.50 0.73 144.57 0.54 1.19 165.47 0.51 1.08 155.48 0.48 1.12

SaRA (Ours) 153.68 0.40 1.64 116.69 0.47 1.50 138.64 0.50 1.49 129.98 0.54 1.75 145.62 0.50 1.53 136.92 0.48 1.72

5M

DoRA 156.21 0.37 1.21 113.26 0.44 1.29 178.70 0.47 0.84 135.59 0.52 1.24 161.21 0.48 1.01 148.99 0.46 1.12
Lora 163.80 0.41 1.25 117.58 0.46 1.27 184.99 0.50 0.83 137.96 0.52 1.17 153.57 0.49 1.22 151.58 0.48 1.20

Adaptformer 164.22 0.34 0.64 120.98 0.46 1.03 184.84 0.49 0.82 143.01 0.53 1.11 171.34 0.49 0.79 156.88 0.46 0.94
LT-SFT 169.24 0.40 0.91 127.01 0.49 1.00 202.47 0.52 0.61 153.49 0.56 1.00 176.41 0.53 1.00 165.72 0.50 0.94

SaRA (Ours) 153.69 0.41 1.70 118.74 0.47 1.34 174.86 0.51 1.00 134.45 0.52 1.30 157.24 0.50 1.21 147.80 0.48 1.36
Full-finetune 860M 147.81 0.30 1.00 120.22 0.47 1.15 136.49 0.26 0.95 129.07 0.48 1.00 134.86 0.40 1.00 133.69 0.38 1.00

Table 4: Comparison on FID and B-VQA from T2i-compbench++ (Huang et al., 2023) with different
parameter-efficient fine-tuning methods on Stable Diffusion 1.5.

A cartoon nature scene 
in a garden, featuring a 
rabbit who is hopping, 

evoking a playful feeling.

A futuristic mythology 
scene in a mountain, 
featuring a cyber-

dragon who is flying, 
evoking a powerful 

feeling.

A cartoon portrait scene 
in a desert, featuring a 
camel who is journeying, 
evoking a determined 

feeling.

A vintage nature scene 
in a garden, featuring a 

butterfly who is 
fluttering, evoking a 

delicate feeling.

A futuristic sci-fi scene 
in space, featuring a 

spaceship who is 
traveling, evoking an 
adventurous feeling.

Prompt SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tuneDataset

Figure 1: Comparison results between different PEFT methods on Stable Diffusion 1.5.

4 MORE COMPARISON RESULTS ON IMAGE CUSTOMIZATION

Image Customization. Image customization aims to learn a common subject from a few images
and then apply it to new images. Dreambooth (Van Le et al., 2023) trains the UNet of a diffusion
model to bind the target subject to a rare token and then generates images with the specified content
based on the rare token. Since Dreambooth requires fine-tuning the UNet network, we compare the
performance of full-finetune (original Dreambooth), LoRA, Adaptformer, LT-SDT, and our method
in image customization. We compute the CLIP-Text score and CLIP-IMG Score for the generated
data, along with VLHI balancing both the two metrics. As shown in Tab. 5, LoRA achieves a high
CLIP-IMG score but the lowest CLIP-Text score, indicating a severe overfitting problem. Other
PEFT methods, including full-parameter fine-tuning, achieve relatively low CLIP-IMG and CLIP-
Text scores. In contrast, our method achieves the best CLIP-Text score, a competitive CLIP-IMG
score (only lower than the overfitted LoRA), and the best average VLHI score across three datasets,
demonstrating its effectiveness in image customization tasks. We further conduct the qualitative
comparison on fine-tuning Dreambooth. As shown in Fig. 7, our method can learn the subject
content well while preserving the prior information of the diffusion model, thereby improving the
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A magical winter 
wonderland with ice-

skating and snow 
sculptures.

A bustling carnival with 
rides, games, and ferris 

wheel.

A bustling train station 
in the 1930s, with 

steam engines, 
passengers in period 
attire, and porters 
carrying luggage

A vintage nature scene 
in a garden, featuring a 
rose who is blooming, 
evoking a beautiful 

feeling.

A tranquil countryside 
bike ride through fields 

of wildflowers.

Prompt SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tuneDataset

Figure 2: Comparison results between different PEFT methods on Stable Diffusion 2.0.

SaRA (Ours) LoRA Adaptformer LT-SFT Full Fine-tuneDataset

A vintage portrait scene 
in a desert, featuring a 
knight who is fighting, 

evoking an angry feeling.

A minimalist mythology 
scene in a mountain, 

featuring a phoenix who 
is rising, evoking a 

rebirth feeling.

A surreal fantasy scene 
in a forest, featuring a 
unicorn who is walking, 
evoking a primal feeling.

A surreal abstract scene 
in an underwater, 

featuring a jellyfish who 
is glowing, evoking a 

mystical feeling.

A cartoon fantasy scene 
in a forest, featuring a 
sprite who is playing, 

evoking a joyful feeling.

Prompt

Figure 3: Comparison results between different PEFT methods on Stable Diffusion 3.0.

consistency between the generated images and the given texts, which demonstrates the effectiveness
of SaRA in image customization.
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in a garden, featuring a 
rabbit who is hopping, 

evoking a playful feeling.
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evoking a powerful 
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A cartoon portrait scene 
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in space, featuring a 
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Prompt SaRA (Ours)Dataset

Figure 4: More generation results by SaRA for different downstream datasets on SD 1.5.
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of wildflowers.

Prompt SaRA (Ours)Dataset

Figure 5: More generation results by SaRA for different downstream datasets on SD 2.0.
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SaRA (Ours)Dataset
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evoking an angry feeling.
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featuring a phoenix who 
is rising, evoking a 

rebirth feeling.
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in a forest, featuring a 
unicorn who is walking, 
evoking a primal feeling.

A surreal abstract scene 
in an underwater, 

featuring a jellyfish who 
is glowing, evoking a 

mystical feeling.

A cartoon fantasy scene 
in a forest, featuring a 
sprite who is playing, 

evoking a joyful feeling.

Prompt

Figure 6: More generation results by SaRA for different downstream datasets on SD 3.0.

Methods Dog Clock Backpack Mean
CLIP-I ↑ CLIP-T↑ VLHI ↑ CLIP-I ↑ CLIP-T ↑ VLHI ↑ CLIP-I ↑ CLIP-T ↑ VLHI ↑ CLIP-I ↑ CLIP-T ↑ VLHI ↑

Textual Inversion 0.788 23.94 0.36 0.789 24.15 1.00 0.654 24.09 0.00 0.744 24.06 0.39
Dreambooth + Full Fine-tune 0.776 25.85 1.13 0.894 22.39 1.13 0.856 25.44 1.76 0.842 24.56 1.36
Dreambooth + LoRA 0.895 23.64 1.00 0.913 21.71 1.00 0.917 25.23 1.84 0.908 23.53 1.00
Dreambooth + Adaptformer 0.772 25.42 0.91 0.885 23.18 1.38 0.873 25.25 1.69 0.843 24.62 1.41
Dreambooth + LT-DFT 0.757 23.94 0.13 0.893 22.45 1.14 0.869 25.00 1.49 0.840 23.80 0.79
Dreambooth + SaRA (Ours) 0.790 25.87 1.24 0.887 23.51 1.53 0.886 25.27 1.76 0.854 24.88 1.67

Table 5: Quantitative comparisons between different PEFT methods on image customization.

5 CONTROLLABLE VIDEO GENERATION.

We further investigate the effectiveness of our method in fine-tuning video generation models. An-
imateDiff (Guo et al., 2023) is a representative video generation model based on Stable Diffu-
sion (Rombach et al., 2022), which inserts temporal attention modules between the original spatial
attention modules to model temporal correlations, enabling a diverse text-to-video generation. To
achieve more controllable generation, AnimateDiff fine-tunes the temporal attention module using
different camera motion data, such as Pan Left, Pan Right, Zoom In, and Zoom Out, to control
the camera movements precisely. We compare the effectiveness of various PEFT methods in fine-
tuning AnimateDiff for three types of camera movements, including Zoom In, Zoom Out, and Pan
Right. Specifically, we collected 1,000 video-text pairs with identical camera movements for each
type of camera motion. The temporal attention modules are fine-tuned using full fine-tuning, LoRA,
Adaptformer, LT-SDT, and our SaRA. As shown in Fig. 8, the compared methods usually suffer
from generating artifacts in the results (shown in red boxes), indicating that these methods have lost
some model priors of specific content during the fine-tuning process. Moreover, for the sea turtle
examples, full fine-tuning, LoRA, and LT-SFT exhibit noticeable content degradation. And for the
pan-right examples, all the compared methods fail to capture the photographer, indicating a signif-
icant model overfitting problem. In contrast, our method achieves excellent camera motion control
while achieving good consistency between the video content and the text.
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Figure 7: Qualitative comparisons among different PEFT methods on image customization by fine-
tuning the UNet model in Dreambooth (Van Le et al., 2023). Our model can accurately capture the
target feature while preventing the model from overfitting, outperforming Dreambooth with other
PEFT methods and Textual inversion (Gal et al., 2022).

A sea turtle swim in the deep sea.

SaRA
(Ours)

LoRA

Adapt-
former

LT-SFT

Full
Fine-tune

Zoom In Zoom Out Pan Right
A photographer capturing autumn leaves in a forest.A rock climber scaling a steep cliff face.

Figure 8: The comparison results of the video generation model (Guo et al., 2023), fine-tuned using
different PEFT methods on three video datasets featuring zoom-in, zoom-out, and pan-right camera
motions. The red boxes highlight artifacts generated by the compared methods, indicating that these
methods have lost some model priors of specific content during the fine-tuning process. In the sea
turtle examples, full fine-tuning, LoRA, and LT-SFT exhibit noticeable content degradation. And
for the pan-right examples, all the compared methods fail to capture the photographer, indicating
significant model overfitting. In contrast, our method achieves excellent camera motion control
while preserving video content well.

6 SCALING WEIGHT FOR SARA PARAMETERS

Our SaRA aims to learn a sparse low-rank parameter matrix ∆P , which is added to the pre-trained
weights P0. Similar to LoRA (Hu et al., 2021), when applying the learned parameter ∆P to the
pre-trained one, we can assign a scaling weight α for the ∆P to control the emphasis extent on the
learned target-domain knowledge by:

P = P + α∆P. (2)
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Figure 9: The generated results from different weight α for the learned SaRA parameters by Stable
Diffusion 1.5. As α increases, the generated image contains more tar-get domain features.

We show the results on different α ranging from 0 to 2 on five datasets in Fig. 9. It can be seen
that as the scaling weight α increases, the model tends to generate images with more target-domain
features, but may lose part of the information specified by the given texts.

7 MERGING DIFFERENT SARA PARAMETERS

For two SaRA parameters ∆P1 and ∆P2 learned from two different datasets, we aim to find whether
they can be combined to form new parameters that contain the knowledge from both the two datasets.
We combine the two parameters by:

∆P = α1∆P1 + α2∆P2. (3)

Then, we employ the combined SaRA parameter ∆P to generate images. We choose four com-
binations: ’Barbie Style’ +’Cyberpunk style’, ’Cyberpunk Style’ +’ElementFire style’, ’Element-
Fire Style’ +’Expedition style’, and ’Hornify Style’ +’Cyberpunk style’, where we simply assign
α1 = α2 = 0.6. The generated images are shown in Fig. 10. It can be seen that, after combining the
SaRA parameters learned from two different datasets, the output images contain the features from
both two datasets, which indicates that we can merge different SaRA parameters together, enabling
more flexible and abundant generation results.

8 MORE ABLATION STUDIES.

Ablation study on threshold. In SaRA, the threshold is an important hyperparameters that influence
the size of the parameter space directly. We conduct experiments on different thresholds ranging
from 2e-4 to 1e-1 on the Expedition dataset and Stable Diffusion 1.5, and evaluate the generated
images by FID and CLIP score. The results are shown in Tab. 6. It can be seen that when the
threshold is too small (e.g., 2e-4), the FID becomes much higher, indicating learning less target

9



Published as a conference paper at ICLR 2025
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Barbie Style + Cyberpunk Style
A futuristic space colony on a distant planet, with domed 

habitats and alien flora.

A bustling carnival with rides, games, and cotton candy.
Cyberpunk Style + ElementFire Style

A bustling food truck festival with gourmet offerings.

A magical castle floating in the sky with clouds and rainbows.
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A magical garden, with talking flowers, enchanted fountains, 
and a fairy queen.

A fantasy scene in a forest, featuring a sprite who is playing, 
evoking a joyful feeling.

Hornify Style + Cyberpunk Style
A magical garden, with talking flowers, enchanted fountains, 

and a fairy queen.

Figure 10: Combining the SaRA parameters learned from two different datasets, the model can
generate images with features from both datasets. We show the combination results for ’Barbie
Style’ +’Cyberpunk style’, ’Cyberpunk Style’ +’ElementFire style’, ’ElementFire Style’ +’Expedi-
tion style’, and ’Hornify Style’ +’Cyberpunk style’ in this figure.

domain knowledge. And when the threshold is large (i.e., threshold≤2e-3), the model performs quite
stably. Since we have a low-rank loss, the model with a high threshold also keeps the CLIP score
well. In summary, our SaRA performs well in different thresholds, demonstrating the robustness of
our model.

Threshold 2e-4 8e-4 2e-3 5e-3 1e-2 5e-2 1e-1

FID ↓ 134.45 129.98 132.54 131.05 130.42 130.71 129.88
CLIP ↑ 27.06 27.04 27.38 27.21 27.15 27.04 27.02

Table 6: Ablation study on the threshold.

More ablation study on the low-rank loss. In this section, we conduct more ablation studies on the
low-rank loss Lrank, where we choose Stable Diffusion 1.5 and two additional datasets (Cyberpunk
and ElementFire) for the experiment. The results are shown in Tab. 7, where we can see that the
mode without Lrank always tends to get a worse CLIP score, indicating a significant performance
drop. Therefore, the low-rank loss is quite necessary in our model to keep the model prior.

9 ANALYSIS ON TRAINING EFFICIENCY

In Sec.4.4 of the main paper, we propose unstructural backpropagation, which allows selective PEFT
to store and update only the gradients of trainable parameters, significantly reducing memory usage
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Figure 11: More qualitative comparison with the existing Selective PEFT methods (LT-SFT (Ansell
et al., 2021), FishMask (Sung et al., 2021), DiffPruning (Guo et al., 2020)), and the ablated model
that fine-tunes the largest parameters) on SD 1.5.

method Cyberpunk ElementFire
FID CLIP FID CLIP

SaRA 121.67 27.30 132.67 26.77
SaRA w/o. Lrank 120.33 26.52 131.56 25.88

Table 7: More ablation studies on the low-rank loss Lrank.

during training. We conducted experiments on the Stable Diffusion 2.0 model using an 80G NVIDIA
A100 GPU, comparing the memory usage and training time of LT-SFT (Selective PEFT method),
LoRA, and our method across different batch sizes. The results, shown in Fig. 5 of the main paper,
demonstrate that our method achieves the lowest memory consumption and training time under all
batch sizes. Compared to LT-SFT, we reduce memory usage by a fixed 9.2G (equivalent to the total
gradient size of fixed parameters) and achieve over 45% memory reduction for smaller batch sizes.
Furthermore, compared to LoRA, our method saves over 52% memory and 49% training time for
larger batch sizes, showcasing the efficiency of our SaRA in model fine-tuning.

10 FURTHER ANALYSIS TO UNDERSTAND WHAT SARA HAVE LEARNED

The Correlation between ∆P and P . We further investigate what exactly is learned by the sparse
parameter matrix ∆POurs obtained through our method. Firstly, we examine the relationship be-
tween ∆P and the pre-trained parameter matrix P . We want to know whether ∆P has learned new
knowledge that is not present in P , or it amplifies some existing but previously not emphasized
knowledge in P . To answer this question, we study the subspaces of ∆P and P . We first conduct
SVD decomposition on ∆POurs, and obtain the left and right singular-vector matrices U∆POurs

and
V T
∆POurs

. We then project P into the first r-dimensional subspace of ∆P using U∆POurs
PV T

∆POurs
.

We quantify the correlation between P and the first r-dimensional subspace of ∆P by calculating

11
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Rank r=4 r=16 r=64
Matrices ∆POurs ∆PLoRA P ∆POurs ∆PLoRA P ∆POurs ∆PLoRA P

∥UPV T ∥F 0.17 0.34 9.36 0.48 1.14 14.82 2.68 3.90 23.91
Amplification 25.72 13.45 - 6.50 4.05 - 1.64 1.18 -

Table 8: The correlation between the learned parameter matrices ∆P and the pretrained weights
P . Our learned parameter matrix ∆POurs amplifies the directions that are not emphasized in the
pretrained weights P , and has a larger amplification factor than LoRA, indicating our model learns
more task-specific knowledge than LoRA.

the Frobenius norm of this projection ∥U∆POurs
PV T

∆POurs
∥F , where a smaller norm indicates lower

correlation between the subspace of ∆P and P .

For a valid reference, we further decompose the parameter matrix ∆PLoRA learned by LoRA us-
ing SVD to obtain the respective U∆PLoRA

and V ∆PLoRA
T matrices, and project the pre-trained

parameter matrix P into the first r-dimensional subspace of ∆PLoRA using U∆PLoRA
PV∆PLoRA

T .

In addition, we calculate an amplification factor to determine how much the parameter matrix ∆P
amplifies the directions that are not emphasized by P . The amplification factor is computed as
fa = ∥∆P∥F

∥UPV T ∥F
. The higher the amplification factor is, the more task-specific knowledge is learned.

We investigate the relationship between the first r = 4, 16, 64 dimensional subspaces of ∆P and P .
The results are shown in Tab. 81, from which we can draw the following conclusions:

1. The learned sparse matrix ∆POurs from our model has a significant amplification factor, such as
25.72 times for r = 4, which indicates the correlation between the first 4-dimensional subspace of
∆POurs and P is low, and ∆POurs primarily amplifies the directions that are not emphasized in P .

2. Compared to the low-rank parameter matrix ∆PLoRA learned by LoRA, our model achieves a
higher amplification factor across different values of r, indicating that our method can learn more
knowledge that is not emphasized in P than LoRA.

3. As r increases, the amplification factor gradually decreases, suggesting that the knowledge
learned by ∆P is mostly contained within P , and the primary role of ∆P is to amplify some of
the existing but previously not emphasized knowledge in P (if new knowledge that is not present in
P has been learned by ∆P , the correlation should remain low as r increases, and the amplification
factor should remain high, which is not the case presented in our experiments).

The Correlation between P + ∆P and P . We aim to further understand whether our learned
parameter matrix ∆POurs disrupts the information in the original parameter space (spanned by the
pretrained weights P ), which may lead to overfitting and loss of prior information. To analyze the
preservation of prior information, we calculate the correlation between the final updated parameter
matrix (P + ∆P ) and the pretrained weights P . Specifically, we calculate the similarity between
the subspaces of (P +∆P ) and P . We decompose (P +∆P ) and P using Singular Value Decom-
position (SVD) to obtain the left-singular unitary matrices U , and examine the similarity between
the subspaces spanned by the first ri singular vectors of UP+∆P and the first rj singular vectors
of UP . We quantify the subspace similarity using the normalized subspace similarity based on the
Grassmann distance (Hu et al., 2021):

ϕ(P1, P2, ri, rj) =
∥UriT

1 U
rj
2 ∥2F

min(ri, rj)
∈ [0, 1],

where UkΣkV
T
K = SV D(Pk), k = {1, 2}.

(4)

We calculate the similarity between the pre-trained parameter matrix P and the updated parameter
matrices obtained from three approaches: 1) our model (P +∆POurs), 2) LoRA (P +∆PLoRA),
and 3) a random parameter matrix added to the pre-trained parameters (P + ∆PRandom). The re-
sults are shown in Fig. 12. As a reference, the subspace similarity ϕ(P+∆PRandom, P, ri, rj) of
randomly updated parameters approaches zero across different dimensions rj and rj , indicating ran-

1∥∆Pours∥F = 4.40 and ∥∆PLoRA∥F = 4.62.
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Figure 12: Subspace similarity between P +∆P and P . The similarity ϕ(P +∆POurs, P, ri, rj)
between our updated parameter matrix and the pretrained parameter matrix achieves a similarity
larger than 96% across different dimensions of the subspace (ri, rj). The results indicare the learned
sparse parameter matrix ∆P of our model keeps the prior information in the pretrained parameters
P well.
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Figure 13: Subspace similarity between ∆P1 and ∆P2 under thresholds 2e − 3 and 8e − 4. The
total similarity between their learned matrices exceeds 60% (when r is around 650), compared to
only 40% similarity between ∆P1 and the pre-trained weights P , demonstrating the learned ma-
trices from different thresholds learn similar task-specific knowledge, while emphasizing different
directions (relative smaller similarity when r is small).

dom weights will destroy the prior information in the pre-trained weights absolutely. In contrast, the
similarity ϕ(P+∆POurs, P, ri, rj) between our learned parameter matrix added to the pre-trained
parameters and the original parameter matrix exceeds 96% across different subspace dimensions
(ri, rj), indicating that our learned parameter matrix effectively preserves the information in the
original parameter matrix. In addition, compared to the parameter matrix (P+∆PLora) updated
by LoRA, our updated parameter matrix (P +∆POurs) shows greater subspace similarity with the
pre-trained parameters P , demonstrating that our model’s learned sparse parameter matrix better
preserves the prior information of the pre-trained parameters, effectively avoiding model overfit-
ting. Combining this with the conclusions from the previous section, we can further conclude that
Our model can learn more task-specific knowledge, while more effectively preserving the prior
information of the pre-trained parameter matrix than LoRA.

The Correlation between ∆P under Different Thresholds. We further investigate the relation-
ship between the learned parameter matrices ∆P under different thresholds. Our experiments focus
on the matrices for Key WK and Value WV from the medium block’s attention modules in SD1.5.
In this experiments, we select two thresholds, 2e− 3 and 8e− 4 (corresponding to ∆P1 and ∆P2),
and compute the similarity of their subspaces using Eq. (4). For comparison, we also calculate the
similarity between the parameter matrix ∆P1 learned with a threshold of 2e− 3 and the pre-trained
parameter matrix P . The results are shown in Fig. 13. It can be observed that the overall simi-
larity between the parameter matrices learned under the two thresholds exceeds 60% (peaking at
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Figure 14: The comparison results on different learning rates and thresholds. The model with a
larger threshold should employ a larger learning rate to learn the target-domain information well
(red boxes indicate the best results).

around r = 650), indicating that the knowledge learned under different thresholds is roughly sim-
ilar, but with different emphases (lower similarity at smaller r). In contrast, the similarity between
∆P1 and the pre-trained parameters P is consistently below 40%. The higher similarity between
∆P1 and ∆P2 suggests that the learned parameter matrices from different thresholds indeed capture
similar task-specific knowledge, which supports the feasibility of fine-tuning the model with fewer
parameters.

11 HYPERPARAMETER ANALYSIS

In this section, we conduct experiments on different hyperparameters in our model: learning rate,
progressive iteration (the iteration for progressive parameter adjustment), and the weight for rank
loss λrank. We chose Stable Diffusion 1.5 and Expedition dataset for the following experiments (if
not specified, the threshold θt = 2e− 3) and evaluated the results by FID, CLIP Score, and VLHI.

Learning Rates and Thresholds. We first investigate the two most critical hyperparameters: learn-
ing rate and threshold. We selected learning rates {1e−4, 2e−4, 5e−4, 8e−4, 1e−3} and thresholds
{2e− 4, 5e− 4, 8e− 4, 2e− 3, 5e− 3} for our experiments, resulting in a total of 25 models. The
quantitative results are shown in Fig. 14. It can be observed that, for the same learning rate, as the
threshold increases, the model’s FID gradually decreases while the CLIP Score gradually increases.
This indicates that a larger learnable parameter set can learn more task-specific information, but is
also more likely to lose pre-trained prior knowledge. For the same threshold, increasing the learning
rate yields similar results. However, for relatively large thresholds (e.g., 5e−3), a high learning rate
(e.g., 8e− 4 and 1e− 3 in the figure) may cause the model training to collapse. Therefore, selecting
an appropriate learning rate is crucial for achieving good results.
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Figure 15: The fit curve of the best pairs of learn-
ing rate and threshold.

We further use the VLHI metric to analyze the
performance of the models trained with differ-
ent learning rates under various thresholds by
balancing FID and CLIP scores, as shown in
the third column in Fig. 14. The optimal learn-
ing rate for each threshold is marked with a
red box. It can be seen that as the threshold
increases, a gradually decreasing learning rate
should be used to prevent severe overfitting.
Conversely, as the threshold decreases, a larger
learning rate should be employed to enhance
the model’s ability to learn task-specific knowl-
edge. In summary, there is a negative correla-
tion between the learning rate and the threshold.
To adaptively select an optimal learning rate,
we fit an exponential function f(x) = a × eb

using the five data points shown in the figure.
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Figure 16: The comparison results on different learning rates and progressive iterations. A larger
learning rate or progressive iteration improves the FID while sacrificing the CLIP Score.

The resulting function for adaptively comput-
ing the learning rate for different thresholds is
shown in Fig. 15. The curve fits the five data points well, and when the threshold approaches 0, the
learning rate is approximately 1e − 3, which does not result in an excessively high learning rate.
Similarly, for larger thresholds (e.g., 1e − 2), the learning rate is around 3e − 5, comparable to the
learning rate used in full fine-tuning, avoiding an excessively low learning rate. We do not consider
even larger thresholds, as these parameters are highly effective in the model, and fine-tuning them
would contradict the purpose of our method. Therefore, we derive a function to adaptively compute
a good learning rate Lr based on the threshold θt:

Lr = 10−3 × e−350θt . (5)

Learning Rates and Progressive Iteration. We then study the effects of learning rate and
progressive iteration (the iteration for progressive parameter adjustment) together. We train the
models with learning rates {1e − 4, 2e − 4, 5e − 4, 8e − 4, 1e − 3} and progressive iteration
{1000, 2000, 2500, 3000, 4000}, which forms 25 models in total. The quantitative results are shown
in Fig. 16. For all the metrics (FID, CLIP Score, and VLHI), the brighter the color is, the better the
model performs. It can be seen that, as the learning rate or progressive iteration grows, the model
learns more task-specific knowledge (a better FID), while the CLIP score becomes worse. Therefore,
we should balance both the learning rate and progressive iterations, where the model with learning
rate 5e − 4 and progressive iteration 2000 achieves the best VLHI, reaching both a good FID and
CLIP Score.

λrank and Progressive Iteration. We then analyze the influence of the weight for rank loss λrank

and progressive iteration at the same time. We train the models with λrank {1e − 4, 5e − 4, 1e −
3, 5e − 3, 1e − 2} and progressive iteration {1000, 2000, 2500, 3000, 4000}, which constitutes 25
models in total. The quantitative results are shown in Fig. 17. It can be seen that as λrank increases,
the FID becomes worse while the CLIP Score performs better, demonstrating that λrank helps the
model keep the prior information in the pre-trained weights, but with a less effect in fitting the
target domain. Therefore, to simultaneously reach a relatively good FID and CLIP Score, we choose
λrank = 5e− 3 with progressive iteration 2500, which results in the best VLHI.

12 MORE ANALYSIS ON THE LEARNED WEIGHT MATRIX ∆P

The Correlation between ∆P and P under Different Thresholds. We compute the subspace sim-
ilarity between the learned matrices DeltaP under different thresholds and the pre-trained weights
P by Eq. (6) of the main paper. The results are shown in Fig. 18. It demonstrates that ∆P does
not contain the top singular directions of W, since the overall similarity between the singular di-
rections in the learned matrices ∆P and the top 32 directions of P is barely around 4%. And it
further validates that the matrices ∆P contain more task-specific information rather than repeating
the directions that are already emphasized in the pre-trained weights. Moreover, by comparing the
∆P from different thresholds, we can find that as the thresholds grow, the subspace similarity be-
tween ∆P and P becomes smaller, indicating that a larger threshold can learn more task-specific
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Figure 17: The comparison results on different weights λrank for rank loss and progressive itera-
tions. A larger λrank improves the CLIP Score while sacrificing the FID.
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Figure 18: Subspace similarity between ∆P and P under different thresholds.

information, therefore a large threshold can contribute to a better FID as shown in Tab. 1 of the main
paper.

More Analysis on ∆P from Different Layers. In the main paper, we have analyzed the sub-
space similarity between the learned matrices ∆P from different thresholds, and concluded that the
matrices from different thresholds learn similar task-specific knowledge, but emphasize different
directions. To further validate this conclusion, we conduct more quantitative analysis between dif-
ferent thresholds (θt = 2e − 3 and 8e − 4) from the attention layers in the bottom, medium, and
up blocks. Moreover, we take all the learnable matrices in the attention module into consideration,
including the Query, Key, Value, and FFN matrices (corresponds to WQ, WK , WV , and WOut re-
spectively). The results can be referred to in Fig. 19 the x-axis and y-axis represent θt = 2e− 3 and
θt = 8e − 4 respectively., where the heatmaps show almost the same color and distributions, indi-
cating that our conclusion is consistent for the learned matrices from different modules and different
attention layers.

Further Analysis of ∆P across Different Threshold Pairs. In the main paper, we analyzed the
subspace similarity between the learned matrices ∆P from thresholds of 2e − 3 and 8e − 4, con-
cluding that the learned matrices from different thresholds capture similar task-specific knowledge
while emphasizing different directions. In this section, we extend our quantitative analysis to ad-
ditional threshold pairs: (2e − 3, 8e − 4), (2e − 3, 2e − 4), and (8e − 4, 2e − 4). We consider
all learnable matrices in the attention module, including the Query, Key, Value, and FFN matrices
(corresponding to WQ, WK , WV , and WOut, respectively). The results are presented in Fig. 20.
The subspace similarity between the thresholds (2e−3, 2e−4) is lower than that of (2e−3, 8e−4)
and (8e − 4, 2e − 4), suggesting that matrices learned from a closer threshold pair exhibits greater
subspace similarity and acquire more similar knowledge.
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Figure 19: Subspace similarity between ∆P from threshold θt = 2e − 3 (50M parameters) and
θt = 8e − 4 (20M parameters), in different attention layers, where the x-axis and y-axis represent
θt = 2e − 3 and θt = 8e − 4 respectively. The subspace similarity across different layers exhibits
consistent behavior, demonstrating that the knowledge learned by ∆P remains invariant across lay-
ers and modules, indicating strong robustness.

13 LIMITATIONS

Our SaRA focuses on fine-tuning the ineffective parameters of a pre-trained model. However, if the
model size is relatively small (e.g., not as large as diffusion models, which typically exceed 100M
parameters), the number of ineffective parameters may be insufficient to effectively adapt the model
to the downstream dataset. As a result, SaRA is better suited for fine-tuning large models rather
than smaller ones. Additionally, since there is no rigorous proof that parameters with the smallest
absolute values are always ineffective, caution is warranted to account for potential exceptions,
which could lead to reduced performance of SaRA in certain scenarios.
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Figure 20: Subspace similarity between ∆P across different threshold pairs: (2e − 3, 8e − 4),
(2e− 3, 2e− 4), and (8e− 4, 2e− 4) (from top to bottom).
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