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Abstract: Imitation learning from human motion capture (MoCap) data provides
a promising way to train humanoid robots. However, due to differences in mor-
phology, such as varying degrees of joint freedom and force limits, exact replica-
tion of human behaviors may not be feasible for humanoid robots. Consequently,
incorporating physically infeasible MoCap data in training datasets can adversely
affect the performance of the robot policy. To address this issue, we propose a
bi-level optimization-based imitation learning framework that alternates between
optimizing both the robot policy and the target MoCap data. Specifically, we first
develop a generative latent dynamics model using a novel self-consistent auto-
encoder, which learns sparse and structured motion representations while captur-
ing desired motion patterns in the dataset. The dynamics model is then utilized
to generate reference motions while the latent representation regularizes the bi-
level motion imitation process. Experiments conducted on a simulated realistic
humanoid robot demonstrate that our proposed method enhances the robot policy
by modifying reference motions to be physically consistent.

Keywords: Humanoid Robots, Imitation Learning, Latent Dynamics Model

1 Introduction

The use of human motion capture (MoCap) data as reference trajectories offers a promising way
to design powerful humanoid robot controllers [1, 2, 3, 4]. After appropriate motion retargeting
these close-expert reference trajectories can be directly imitated by robots, reducing the need for
extensive reward engineering typically required in reinforcement learning [5, 3]. Existing motion
imitation works either learn the motion styles in a generative adversarial way [6, 2, 7, 3] or directly
learn to track the provided motion trajectories [1, 8]. While the former method, based on generative
adversarial imitation learning (GAIL) [9], avoids the exact definition of similarity between reference
motions and robot trajectories, its min-max computational formulation usually suffers from unstable
learning and sample inefficiency [10, 11]. The latter method, however, can also be problematic be-
cause the reference motion is often noisy and physically infeasible for realistic humanoid robots due
to embodiment differences such as different force and joint limits between humans and robots [4].
Consequently, including such data may degenerate the policy learning of the robot [4].

The aforementioned issues arising from noisy and physically infeasible reference motion have been
mainly studied in the field of motion retargeting [12, 13, 14]. For example, in order to create natural
motions for various animated characters, researchers pursue retargeting the human MoCap motions
into physically consistent motions of new characters, which in our case corresponds to humanoid
robots. The common approach used in physics-based retargeting hinges on trajectory optimization
with known dynamics of the target robot and constraints that arise from the reference trajectories [14,
15]. However, the resulting optimization problem is often complex and includes specific domain
knowledge. There is therefore an emergent need for a learning-based method that does not rely on
an explicit dynamics model while guaranteeing physical consistency at the same time. We address
this need by proposing the Bi-Level Motion Imitation (BMI) framework.
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Our method shares a similar bi-level optimization idea with differential optimal control [15] but
does not need a prior dynamics model and human-specified constraints. Specifically, BMI first
learns a generative latent dynamics model based on a novel self-consistent generative auto-encoder
(SCAE) from the reference motions. SCAE regularizes normal auto-encoder training with a latent
reconstruction error and captures the essential motion patterns with sparse and well-structured latent
representations. This enables us to sample latent parameters and reconstruct new motions, which are
used to train the humanoid robot policy (pre-training step). After pre-training, BMI further finetunes
both the decoder and the robot policy as a bi-level optimization problem. In this way, the decoder
learns to return reference motions that are physically consistent. At the same time, the robot further
improves its policy by imitating updated reference motions. We constrain the decoder updates to
ensure that the reconstructed motions stay close to the original motions in the latent space, which
prevents the decoder from degenerating into trivial motions that are far from the desired motion
patterns in the human MoCap data.

We evaluate BMI on the MIT Humanoid Robot [16] in simulation, where we imitate motions from
human MoCap data. The experiments first show that the proposed SCAE-based latent dynamics
model learns structured motion representations. In the subsequent pre-training, the improved latent
representation learned by SCAE also enhances policy learning compared to the baseline latent dy-
namics model. Finally, our bi-level fine-tuning with latent space regularization updates the decoder
to construct reference motions that are physically consistent for the robot and retain the original
patterns at the same time. Our experiments show that the robot policy can be further improved by
imitating the updated motions.

The key contributions of this paper can be summarized as follows: (i) We propose a self-consistent
latent dynamics model that is able to learn sparse and structured representations for human motions.
(ii) We propose a bi-level motion imitation framework to update the decoder and the robot policy at
the same time, which enhances the generated motions with physical consistency and closeness to the
original human MoCap trajectories. (iii) We evaluate our method on a humanoid robot and imitate
up to 13 different motions with a single policy. The experiments highlight improved policy learning
with the proposed latent dynamics model and bi-level motion imitation framework.

2 Related Work

We first discuss existing reference-based humanoid imitation learning methods. Methods addressing
the problem of physically inconsistent reference motions are discussed subsequently.

Humanoid Motion Imitation Imitating from human MoCap data is an efficient way for humanoid
robots to learn agile and natural-looking skills [1]. Recent works [7, 17] based on generative ad-
versarial imitation learning (GAIL) [9, 2] in animation have succeeded in training humanoid robots
to track various human motions using a large MoCap dataset such as AMASS [18]. Nonetheless,
the success may be partially attributed to the unrealistic humanoid robot that is used. With up to
69 DoFs, unlimited force, and even assistive external forces [19], the simulated robot is massively
overactuated and can, in principle, perfectly track the given reference motions. It is therefore un-
clear whether the approaches in animation [7, 17] can be transferred to more realistic robots. As
the reference motions can be physically infeasible for robots, including them in the training dataset
can result in sub-optimal mimicking behaviors or even complete failure in imitation [13]. There-
fore, it is important to distinguish which motions are applicable to realistic humanoid robots. The
authors from [20] train whole-body humanoid controllers that only replicate upper-body movements
while the lower body is restricted to track a given forward velocity for the base. An alternation has
been proposed in [4] where the infeasible motions are explicitly removed by a privileged simulated
imitator. Fourier Latent Dynamics (FLD) [8] employs a fallback mechanism to replace the given
reference motions with default motions when the reference is far from the training motions.

Physically Consistent Motion Retargeting Motion retargeting describes the process of mapping
the human MoCap data to target robot configurations such that downstream motion imitation can be
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performed. While common motion retargeting methods [21, 13] such as inverse kinematics-based
methods can generate visually convincing motions, these motions could be physically infeasible for
humanoid robots. In order to obtain physically consistent motion retargeting, existing methods are
usually formulated as trajectory optimization problems constrained by robot dynamics [22, 12, 14,
15]. For instance, differential optimal control [15] alternatively optimizes the retargeting parameters
with manually defined contact constraints and the robot trajectories based on the retargeting as a
bi-level optimization problem. However, it is often tedious to model the complex robot dynamics
and these methods are therefore hard to generalize across different robots. In contrast, our method
is purely data-driven.

3 Preliminaries

Our method involves modifying a latent dynamics model, which maps the motions through an auto-
encoder [23] into latent space and back, in order to generate motions for the robot that are physically
consistent and at the same time close to the desired motion patterns in the original MoCap dataset.
However, measuring the closeness between the original trajectory and the generated physically-
consistent reference motion for the robot, is challenging [24]. We address this problem by introduc-
ing a structured motion representation and incentivizing closeness in the latent space. Our proposed
latent dynamics model is inspired by FLD [8], a structured motion representation method that ex-
plicitly enforces the periodicity of motions in the latent space by transforming the learned latent
representation into the frequency domain [25].

The structure of FLD is illustrated in Figure 7 in the appendix. We denote a given trajectory segment
of length H in d-dimensional state space by 7 = (s;_g11, - ,5¢) € R¥H where ¢ denotes time
and s; the state at time ¢. The trajectory segment 7 represents the input to the auto-encoder, where
the encoder embeds the original motion trajectory into a latent space with ¢ channels, denoted by
z; € RO In order to explicitly account for the periodicity of the motions, FLD builds on earlier
work on Periodic Autoencoders (PAEs) [25] and includes a differentiable Fast Fourier Transform
(FFT) layer. The FFT layer returns the frequency f;, amplitude a;, and offset b; of the latent motion
embeddings, while a separate phase ¢; is computed by an additional fully connected (FC) layer and
an atan2 operation. This transformation is denoted as p:

2y = enc(Ty), (¢¢, frrat,bs) = p(2t), (D
where ¢4, fi, at, by € R° and enc is the encoder. Particularly, FLD improves PAE with a multi-step
forward prediction to approximate the subsequent latent vectors by unrolling the latent phase. For a
local range of N subsequent trajectory segments {7, T¢41, - - - Tv+ v }» We assume that the segments
share the same latent parameters f;, a, by while differing only in their phases ¢, ;. Furthermore,
¢¢1; can be approximated by ¢4 ; ~ ¢ + i fi A, where A, denotes the step time. This results in,

Zy i = D(de +ifiDg, fr, ae,by), T = dec(,,), 2)
where dec is the decoder. We denote p the embedding reconstruction process from the frequency
domain,

Ze = p(9t, frr a1, b) = asinr(fi T + ¢¢)) + by, 3)
where 7T represents a known time window with H evenly spaced samples [25]. We note that
2y 14, 8,4, are different from 2, §; as they are approximated by the multi-step forward prediction
from the trajectory 7. This motivates the following loss function that is used in FLD,

N
Litp = Y a'|#4; — 7yl €)
i=0
where « is a decay factor and | - | denotes the Euclidean distance.

4 Method

The proposed method involves a three-stage training procedure. (i) In the first stage, we learn a gen-
erative latent dynamics model from the original MoCap data that has been kinematically retargeted
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Figure 1: Structure of the proposed self-consistent auto-encoder (SCAE)

to the humanoid. We introduce a self-consistent auto-encoder trained using both reconstruction error
and latent regularization, to capture the desired patterns embedded in the noisy kinematic motions
more effectively. (ii) The second stage samples latent parameters encoded by the self-consistent
dynamics model and then decodes these latent samples into the state space. The decoded states are
used as the reference motions to pre-train the robot policy. (iii) We perform bi-level imitation by
fine-tuning the policy and updating the decoder at the same time. Crucially, this bi-level optimiza-
tion is constrained within the latent space, ensuring that the decoder generates motions that closely
adhere to physics-based robot trajectories while preserving the original motion patterns intended for
imitation. The following paragraphs explain the three-step procedure in detail.

4.1 Self-Consistent Latent Dynamics

Although FLD learns structured latent representations and shows accurate reconstruction, we find
that the decoded motions with small reconstruction errors are not guaranteed to stay close to the
original motions in the latent space. This means that the learned latent representation overfits to
current data and is not robust to noise in the motions. In contrast, with our bi-level motion imitation
framework, we introduce a latent representation that focuses on the general motion patterns instead
of nuances and noise. This is important, since the nuances are likely to change when converted to
be physically consistent in the fine-tuning step.

We address the above gap by a Self-Consistent Auto-Encoder (SCAE). Specifically, we propose
to regularize FLD learning with a latent reconstruction error. A similar idea has been applied to
VAE [26] but has not been investigated in deterministic auto-encoders for motion generation. Fig-
ure 1 shows the structure of SCAE, where the reconstructed trajectory 7; is fed into the encoder
again in order to obtain a reconstructed latent representation Z; from the decoded motion 7. We
retain the multi-step prediction in FLD and thus our SCAE training loss is

N
Licag = ZQZ(WH — eyl + Bl — 2l (&)
i=0
where [ is the coefficient of the latent reconstruction error and where we evaluate the loss on the
entire dataset. The reconstructed latent representation Z; _; is computed by feeding the reconstructed
trajectory 7/, ; into the encoder, the Fourier transform layer and the sinusoidal reconstruction layer.
Note that 7/ ; is obtained by the multi-step forward prediction in Equation 2.

With a perfect decoder, the reconstructed motion 7; is exactly the same as the original motion 7y
leading to zero latent reconstruction error |Z,,; — %, ,;|*. However, this is usually not achievable.
Although |z i 2 +i|2 generally decreases as the decoder learns to reconstruct the trajectory, our
experiments show that |Z; ; — 2/ ;|? is not minimized when only optimizing the motion reconstruc-
tion error |7}, ; — T¢+;|*. In contrast, due to the latent reconstruction regularization, SCAE enforces
the learned latent representation to be consistent with its decoded motions.
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Figure 2: Structure of the proposed bi-level motion fine-tuning (BMI)

4.2 Pre-Training Policy

In this stage, we train our robot policy to track the given reference motions regardless of the fea-
sibility of these motions as done in existing motion imitation works [1, 4]. In contrast to directly
sampling trajectories from the original motion dataset to train the robot policy, we sample from
the latent space of the SCAE and inform the robot policy with the sampled latent parameters as
the target motion information. The self-consistent latent dynamics model provides two advantages
compared to using the original datasets. (i) We can interpolate latent parameters to generate motion
transitions and new motions, as discussed in FLD [8] and PAE [25]; (ii) We observe that a learned
latent representation as the tracking goal for the robot is more concise with essential motion patterns
and focuses less on motion nuances, which is beneficial for policy learning.

The policy pre-training procedure is illustrated in Figure 2 without the green arrow modules (these
are only used in the next fine-tuning stage). For each episode, we sample a set of latent variables z;
from the pre-collected buffer p.(z) during SCAE training. We then obtain (¢, fi, ar,b:) = p(2¢)
by the following FC and FFT layers. Note that instead of taking the learned phase ¢;, we uniformly
sample an initial phase variable ¢y € R® from a fixed range and update ¢; according to the latent
dynamics in Equation 2,

O = pr—1 + fi_1At, {fe,ae,be} =6, =6;_1. 6)

We maintain the same frequency f;, amplitude a;, and offset b, for the episode. The latent variables
are then used to reconstruct a motion trajectory

(t—pmq1, -+, 8} = 7o = dec(D(fr, ar, b, Pr)), @)

where the most recent state $; serves as the target state to compute the robot tracking reward at the
current timestep. The policy is learned using proximal policy optimization [27].

4.3 Bi-Level Fine-Tuning

This step ensures physical consistency of the reference motions generated by the decoder. Obtaining
reference motions that are physically consistent is important as it facilitates policy learning and
encourages the robot to learn a versatile set of skills, in particular when the humanoid robots are
under-actuated and have restricted torque limits [7, 20, 4]. We propose to convert these unphysical
motions into physically consistent ones by a bi-level fine-tuning to maximize the benefit of human
MoCap data. This represents an important difference from recent works that address this problem
by only tracking upper body movements [20] or filtering out the unlearnable motions [4].

Figure 2 shows the structure of our bi-level fine-tuning. In this stage, we alternatively optimize the
policy 7 and the decoder dec while freezing the convolutional encoder enc and the FC, BN layers.
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In this way, the decoder is encouraged to generate motions close to the robot trajectories, which are
physically consistent by design. We further regularize the decoder optimization by constraining the
generated motions to be close to the original motions in the latent space. This prevents the decoder
from generating trivial motions by simply copying the robot, failing to improve the robot policy
further. The bi-level optimization problem is formulated as,

rglinEthpz(z)ﬁtNﬂs* [|$¢ — St\2 + B4 — ZAtm»
dec L

. . (3)
9; € argemln EZthz(Z)ystNﬂ'eﬂ [|st - 5t|2}7

where 4. denotes the parameters of the decoder and my_ the robot policy with parameters 6.
With the proposed regularized bi-level motion imitation, the decoder is updated to generate motions
physically consistent with the robot while retaining the desired motion patterns in the dataset. As a
result, we observed that the robot further improves the policy during this fine-tuning step.

S Experiments

We evaluate BMI on the MIT humanoid robot [16] in Isaac Gym [28] while keeping the joint and
force limits unchanged. We extend the dataset from FLD [8] by including four additional difficult
motions, i.e., jump, kick, spin-kick, and cross-over [1]. In total, we have trajectories from 13 different
motions in the dataset. In our experiments, we first show the reconstruction accuracy and analyze
the motion representations learned by our latent dynamics model. We then compare the motion
performance of the pre-trained policies based on SCAE and FLD, with the BMI fine-tuned policy.

5.1 Analysis of Learned Latent Dynamics Model

Motion and Latent Reconstruction Figure 3b shows that our method and FLD can reconstruct
the original motions with comparable accuracy. However, our method with explicit self-consistency
constraints achieves significantly lower latent reconstruction error, i.e., |2, ; — %;,,|%, as shown in
Figure 3a. Samples of reconstructed motions can be found in Figure 9 in the appendix, where both
methods accurately reconstruct the original motions. The proposed self-consistent regularization
improves the latent reconstruction without sacrificing the motion reconstruction accuracy.
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(a) Latent reconstruction error (b) Motion reconstruction error

Figure 3: Reconstruction error during training: (a) The reconstruction error of latent embeddings.
(b) The reconstruction error of the original motion states.

Visualization of Learned Latent Manifold We visualize the learned latent amplitude f; and la-
tent phase ¢, in eight latent channels, computed as in Equation 1, for four motions run, jog, step fast,
Jjump in Figure 4, where each row denotes the same motion. Thanks to the latent regularization, our
method learns a much sparser representation than FLD, as SCAE takes fewer frequency components
to reconstruct the same motions with most channels’ amplitudes around zero. This observation is
consistent for all 13 different motions, as shown in Figure 8 in the appendix. Such a sparse repre-
sentation helps our latent dynamics model capture the most relevant patterns while discarding the
motion nuances, which is important for maintaining the desired motion patterns but modifying the
motion details to be physically consistent for our robots.
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Figure 4: The figure displays the learned latent phases of four motions. Each row corresponds to
one motion. Each circle represents a latent channel where the radius is the amplitude and the black
bar is the phase timing. Compared to FLD, SCAE takes fewer frequency components and lower
amplitudes to represent the same motion.

(a) Original (b) FLD (c) SCAE (Ours)

Figure 5: The figure shows the latent manifolds for 13 motions. Each color corresponds to a trajec-
tory segment from a motion type. The arrows denote the motion evolution direction. The manifold
induced by SCAE shows consistent structures across different motions.

In Figure 5, we further compare the latent structure induced by SCAE with that by FLD, where
Figure 5a visualizes the principal components of the original motions for comprehensive analysis.
Notably, SCAE demonstrates the most consistent structure across 13 different motions. The cir-
cles connecting points with the same color represent the primary period of individual motions and
each point denotes a trajectory segment. The radius of a rough circle means that the high-level fea-
tures throughout a motion can be constant, such as velocity, frequency, etc. The well-shaped latent
manifolds learned by SCAE show that our method successfully captures essential motion patterns.

5.2 Performance of Pre-Trained Policy Based on SCAE

We find, perhaps surprisingly, that without further fine-tuning SCAE improves robot policy learn-
ing in the pre-taining stage. Note that since the target reference motions are noisy and sometimes
physically inconsistent for the robot, the commonly used mean square error from the reference mo-
tions is not an ideal performance metric anymore. Although both our SCAE-based and FLD-based
pre-training policies can achieve similar tracking errors, we observe that the SCAE-based policy
shows better capacity to do challenging motions such as jump and kick. In Table 1, we find that
SCAE achieves the highest hang time percentage in 10 jump trajectories, which is computed as the
proportion of time when both feet are off the ground. Note that each trajectory includes multiple
Jjump trials. Figure 6b also shows that SCAE achieves better stability while kicking. We hypothesize
that the policy improvement in pre-training is due to the change of latent parameterizations used to
inform the policy. SCAE learns a sparser representation that makes policy learning easier. More
results on the other motions can be found in the supplementary videos.
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Table 1: Results on two selected challenging motions: kick and jump.
Motion (Metric)\Algo. FLD SCAE(Ours) BMI(Ours)

Kick (Time (%)) 64.4 61.2 71.3
Kick (Height (m)) 0.157 0.152 0.164
Jump (Time (%)) 32.5 36.2 35.2
0.125 1 —— BMI(Ours)
E 9100 — ?fDAE(OUFS)
% 0.0751
T
0.050 1
0 25 50 75 100 125 150 175
Step
(a) Kicking foot height when kicking (b) Standing foot height when kicking

Figure 6: Comparison on the challenging kick task: The left figure shows the height of the kicking
foot during one kick trajectory with multiple trials, where both SCAE and BMI outperform FLD in
each kick (one mode of the curve). The right figure shows the height of the standing foot where BMI
and SCAE are more stable with a lower height of the standing foot.

5.3 Bi-Level Fine-tuned Policy

Although the pre-trained policy demonstrates significant tracking ability on most feasible motions,
as shown in the supplementary video, some physically inconsistent references can dominate the loss
leading to a sub-optimal policy for certain motions. We apply the bi-level fine-tuning to alleviate
this problem and further improve our policy. Table 1 shows that BMI achieves the longest kicking
time, defined as the percentage of time the kicking foot is off the ground. Moreover, thanks to our
bi-level optimization modifying the target motions, our robot learns to further stabilize its standing
foot when performing kicks, as illustrated in Figure 6b. In contrast, the baseline policy tends to
stagger the standing foot when jumping. The experiments (see also video attachment) therefore
confirm our hypothesis that by updating the decoder the robot policy can be further improved.

6 Limitations

While the proposed bi-level motion imitation framework alleviates problems arising from physically
inconsistent reference motions, the approach relies on a decent robot policy in the pre-training stage.
When the human MoCap dataset consists of impractical motions for the humanoid robot and exhibits
large perturbations, it is still under-investigated to what extent our method can recover physically
consistent motions while maintaining the general motion patterns. Moreover, since the given refer-
ences obtained by motion retargeting from human MoCap data are not the optimal targets for robot
imitation, the choice of metric to quantify robot tracking performance is an open question.

7 Conclusion

This paper presents BMI, a novel bi-level motion imitation framework that minimizes the robot
tracking error by alternatively optimizing the robot policy and the motion generation model while
being regularized by latent space constraints. Our proposed self-consistent auto-encoder captures
the essential motion patterns with sparse and well-structured latent representations, which provides
a reliable anchor to regularize the decoder to stay close to the desired motion patterns in the dataset.
In contrast to existing optimal control methods, BMI addresses the difficulty of including physically
inconsistent reference motions in a purely data-driven way and is scalable to large-scale human
MoCap datasets. Our experiments on the realistic MIT humanoid robot show that BMI not only
improves the pre-trained policy on challenging tasks but also further stabilizes the learned motions.
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360 A.l1 Structure of FLD

ss1  The structure of FLD follows PAE [25] using an auto-encoder to learn a generative dynamics model,
ss2  where the encoder and the decoder are composed of 1D convolutional layers. In order to enforce the
363 periodicity in the latent manifolds, PAE parameterized each latent channel as a sinusoidal function
se4 where the amplitude, frequency, and offset are computed by a differentiable Fast Fourier Transform
ses layer while the phase is determined with a fully connected layer followed by an Atan2 operation.
ses Inspired by the observation that the learned latent frequency, amplitude, and offset by PAE stay
367 nearly constant along the trajectories, FLD improves PAE by combining the structure with a multi-
see  step prediction step as in Equation 4.
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Figure 7: Multi-step forward prediction structure of FLD.

369 A.2 Pseudo Code of BMI

370 Algorithm 1 shows the details of BMI training.
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Algorithm 1 Bi-Level Motion Imitation (BMI)

Input: SCAE encoder enc and decoder dec, latent parameters of the original motions p,(z),
Pre-trained policy 7p_ based on SCAE, initial buffer D
for k =1to K do
Policy Learning:
for . = 1to M, do
Sample latent targets z; ~ p,(2)
Extract the target states {$;_ g1, , St} = 7t = dec(B(f, ar, bt, Pr))
Rollout robot trajectory 7; ~ p(mg_, dec, p,)
Collect the trajectory and latent parameter pairs in the buffer D = {(z;, ;)| ~ M1}
Update robot policy mg,_ with PPO or another RL algorithm according to the bottom ob-
jective in Equation 8
end for
Decoder dec Update:
for : = 1 to M5 do
Sample latent parameters and robot trajectories from D
Update the decoder dec according to the upper objective in Equation 8
end for
end for

A.3 Experiment Settings

In this section, we provide more detailed experiment settings. We first introduce our dataset and then
explain the state and action spaces used in SCAE and the policy. Finally, we list the architectures
and hyper-parameters used in both the dynamics model learning and policy learning.

A.3.1 Dataset

We use the same dataset as FLD [8] which was originally released in DeepMimic [1]. The human
MoCap data were manually processed and retargeted to the humanoid robot. Note that even with
careful kinematic retargeting the reference motions can be physically inconsistent to the robot dy-
namics. Our dataset consists of 13 different motions: run, jog, step fast, jump, spin-kick, back, side
left, jog slow, side right, cross-over, kick, stride, step and each motion has 10 trajectories collected
from different demonstrations. In each trajectory of length 240 steps, the demonstrator performs
multiple trials of the same action. For example, in one kick trajectory, the demonstrator may con-
tinuously kick 5 times as shown in Figure 6a. In total, we have 13 x 10 x 240 = 31200 data
points. Each data point corresponds to a state vector of length 52, where the elements are listed in
the following Table 2.

Table 2: Elements of one data point (step) in the dataset

Entry Symbol  Dimensions
base position Db 0:3
base rotation aQv 3:7
base linear velocity v 7:10
base angular velocity w 10:13
projected gravity g 13:16
joint positions q 16:34
joint velocity q 34:52

Note that FLD experiments only on nine motions: run, jog, step fast, back, side left, jog slow, side
right, stride, step, referred to as normal motions, which present a mild difficulty for the robot to track.
However, our experiments include an additional four motions, jump, spin-kick, cross-over, kick, that
are significantly more challenging. FLD fails to learn these complex motions satisfactorily without
a specifically designed reward function tailored to each individual motion, while our methods show
improved performance on the challenging kick and jump with unchanged reward design.
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A.3.2 State and Action Spaces

In this section, we introduce the state space used in the latent dynamics model and the observation
and action spaces for the robot policy.

State Space of Latent Dynamics Model The state space used in the latent dynamics model is
composed of the linear and angular velocities of the robot base v, w in the robot frame, measurement
of the gravity vector g in the robot frame, and joint positions ¢ as in Table 3. Note that we use the
same setting for both FLD and SCAE.

Table 3: Elements of the state space for latent dynamics model

Entry Symbol Dimensions
base linear velocity v 0:3
base angular velocity w 3:6
projected gravity g 6:9
joint positions q 9:27

Observation Space of Robot Policy In addition to the state information used in the latent dy-
namics model, the robot observes extra information such as joint velocities ¢ and its last action a’.
Moreover, we provide the latent parameters to the robot as the target motion information. Therefore,
the observation space is shown as Table 4. Note that we apply domain randomization to the policy
training including the observation noises, mass noises, and pushing noises as used in FLD [8].

Table 4: Elements of the observation space for robot policy

Entry Symbol Dimensions Noise level
base linear velocity v 0:3 0.2
base angular velocity w 3:6 0.05
projected gravity g 6:9 0.05
joint positions q 9:27 0.01
joint velocities q 27:45 0.75
last actions ! 45:63 0.0
latent phase sin ¢ 63:71 0.0
latent phase cos ¢ 71:79 0.0
latent frequency f 79:87 0.0
latent amplitude a 87:95 0.0
latent offset b 95:103 0.0

Action Space of Robot Policy The action space of our robot is of 18 dimensions which represent
the target positions of 18 joints in the robot. An underlying PD controller [29] is used to compute the
torques to drive each joint. The PD gains are set to (30.0, 5.0) for lower body joints and (40.0, 5.0)
for upper body joints, respectively.

A.3.3 SCAE Training

We introduce first the architecture of neural networks used in SCAE, which is the same as FLD.
Then we list the hyper-parameters for training the latent dynamics model.

Architecture of SCAE SCAE shares the same architecture as FLD. The architectures of the en-
coder enc and decoder dec are shown in Table 5. BN denotes batch normalization and ELU repre-
sents the exponential linear unit.

Hyper-Parameters for SCAE Training SCAE uses the same hyper-parameters for training FLD

as in Table 6. The extra coefficient of the latent reconstruction regularization used in SCAE, i.e., 8
in Equation 5, is set to 1. Adam is used as the optimizer for training the latent dynamics model.
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Table 5: Architecture of the neural networks used in SCAE

Network Layer  Outputsize Kernel size Normalization Activation
Convld 64x51 51 BN ELU
encoder Convld 64x51 51 BN ELU
Convld 8x51 51 BN ELU
phase encoder  Linear 8x2 - BN Atan2
Convld 64x51 51 BN ELU
decoder Convld 64x51 51 BN ELU
Convld 27x51 51 BN ELU

Table 6: Hyper-parameters of SCAE training

Parameter Symbol  Value
step time seconds At 0.02
max training iterations - 5000
learning rate - 0.0001
weight decay - 0.0005
learning epochs - 5
mini-batches - 4
latent channels c 8
trajectory segment length H 51
multi-step prediction length N 50
propagation decay «a 1.0

A.3.4 Policy Training

Architecture of Policy & Value function The neural network architectures of the learning policy

7 and the value function V' used in PPO are shown in Table 7.

Table 7: Architecture of the neural networks used in policy training

Network Type Hidden Output size  Activation
policy 7 MLP 128, 128, 128 18 ELU
value function V' MLP 128, 128, 128 1 ELU

Hyper-Parameters for Policy Training We use Adam as the optimizer for the policy and value
function with an adaptive learning rate with a KL divergence target of 0.01. The policy runs at 50
Hz. We parallize 4096 environments in Isaac Gym to collect samples. The summary of the policy

training hyper-parameters can be found in Table 8.

Table 8: Hyper-parameters of policy training

Parameter Symbol  Value
step time seconds At 0.02
max training iterations - 3000
max episode time seconds - 20
learning rate - 0.001
steps per iteration - 24
learning epochs - 5
mini-batches - 4
KL divergence target - 0.01
discount factor v 0.99
clip range € 0.2
entropy coefficient - 0.01
parallel training environments - 4096
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Reward Function for Policy Training The reward function used to train the robot policy consists
of two categories » = r’ + rf, where T denotes the tracking rewards and 7% represents the
regularization rewards. The tracking reward calculates the weighted sum of individual rewards on
each dimension bounded in [0, 1] with their weights in Table 9,

T
= WyTy + Wy T + wgrg + wqwgrqwg + wqarmrqurm . (9)
The reward of each dimension is generally formulated as,

Ty = e_”i‘d}_d"lz, (10)

where i denotes the iy, dimension. d; denotes the target value of this dimension while cii represents
the reconstructed value. o; is a temperature factor for each reward and can be found in Table 10.

Table 9: Weights of the tracking rewards
Weight  w, 1wy, Wy Wq, W
Value 1.0 1.0 10 1.0 1.0

Table 10: Temperature factors of the tracking rewards
Weight o0, 0w 04 04y Ogum

Value 02 02 10 10 1.0

The regularization reward is formulated as Equation 11, where the weights can be found in Table 11

and each term is detailed as follows.
rft = WarTar + WqaTqa + WqTTqT (an

Action rate
2
Tar = ‘a/_a‘| ) (12)

where a’ and a denote the previous and current actions.
Joint acceleration
¢ —q 2

At
where ¢’ and ¢ denote the previous and current joint velocity. At represents the step time interval.

Tqa = | (13)

Joint torque
rqr = |T)%, (14)

where 7" denotes the joint torques.
Table 11: Weights of the regularization rewards

Weight Wy Wqa Wyt
Value —0.01 —-25x1077 —1.0x107°

A.3.5 BMI Training

In the bi-level fine-tuning process, we retain most of the hyperparameters from the pre-training stage.
Notable exceptions include the following: (i) We set a lower learning rate for the decoder update
compared to the rate used in SCAE training. (ii) To align the magnitudes of the latent reconstruction
loss and the motion reconstruction loss in Equation 8, we increase the coefficient 8 to 200. The key
hyper-parameters used in BMI are summarized in Table 12. These hyper-parameters may be further
tuned for improved results. As this is an initial study of bi-level fine-tuning, we tested only a limited
number of hyper-parameter configurations in our experiments.
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Table 12: Hyper-parameters of BMI fine-tuning

Parameter Symbol  Value
coefficient of latent reconstruction loss I} 200
learning rate for decoder - 0.00001
number of mini-batch for decoder - 2
max training iteration - 50
epochs for decoder - 1
steps per iteration - 24
parallel training environments - 4096

A.4 More Experiment Results

We show more experiment results in this section, including experiments for both the latent dynamics
model learning and the policy learning.

A.4.1 More Results on Latent Dynamics Model Learning

Figure 8 compares the learned latent phases across all the 13 motions with different methods. We
observe that our method SCAE consistently achieves sparser representations than FLD with fewer
frequency components and lower amplitudes.

Learned Phase Timing 8x2 Learned Phase Timing 8x2
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(a) FLD (b) SCAE (Ours)

Figure 8: Learned latent phases of 13 different motions. From top to bottom, the motions are: run,
jog, step fast, jump, spin-kick, back, side left, jog slow, side right, cross-over, kick, stride, step.
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SCAE learns sparse and well-shaped latent representations. Nonetheless, it retains accurate mo-
tion reconstruction as FLD. As shown in Figure 9, both FLD and SCAE accurately reconstruct the
motions, which is also validated by the training loss in Figure 3b.

Motion Reconstruction (Flattened) 1x1377 Motion Reconstruction (Flattened) 1x1377
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Figure 9: Motion reconstruction performance.

A.4.2 Visualization of Learned Policy

We visualize the motions learned by BMI. In addition to normal motions, such as stride in Fig-
ure 10a, which can be effectively learned by FLD, BMI successfully acquires two challenging mo-
tions kick and jump in which FLD fails. Figure 11a shows that BMI policy can naturally lift the
kicking foot while maintaining the stability of the standing foot. Similarly, Figure 11b illustrates
that the robot successfully jumps, with both feet leaving the ground.

(b) Back

Figure 10: Normal motions learned by BMI.

However, we note that our policy still struggles with the difficult spin-kick and cross-over motions
which are highly dynamic and can significantly influence the robot balance. Consequently, the robot
prioritizes maintaining balance over replicating these motion patterns. For example, the robot rarely
lifts its kicking foot in spin-kick, and the legs do not fully cross in cross-over, as shown in Figure 12.
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(b) Jump

Figure 11: Challenging motions learned by BMI.

(b) Cross-Over

Figure 12: Unsatisfying motions learned by BMI.
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