
Bi-Level Motion Imitation for Humanoid Robots

Anonymous Author(s)
Affiliation
Address
email

Abstract: Imitation learning from human motion capture (MoCap) data provides1

a promising way to train humanoid robots. However, due to differences in mor-2

phology, such as varying degrees of joint freedom and force limits, exact replica-3

tion of human behaviors may not be feasible for humanoid robots. Consequently,4

incorporating physically infeasible MoCap data in training datasets can adversely5

affect the performance of the robot policy. To address this issue, we propose a6

bi-level optimization-based imitation learning framework that alternates between7

optimizing both the robot policy and the target MoCap data. Specifically, we first8

develop a generative latent dynamics model using a novel self-consistent auto-9

encoder, which learns sparse and structured motion representations while captur-10

ing desired motion patterns in the dataset. The dynamics model is then utilized11

to generate reference motions while the latent representation regularizes the bi-12

level motion imitation process. Experiments conducted on a simulated realistic13

humanoid robot demonstrate that our proposed method enhances the robot policy14

by modifying reference motions to be physically consistent.15

Keywords: Humanoid Robots, Imitation Learning, Latent Dynamics Model16

1 Introduction17

The use of human motion capture (MoCap) data as reference trajectories offers a promising way18

to design powerful humanoid robot controllers [1, 2, 3, 4]. After appropriate motion retargeting19

these close-expert reference trajectories can be directly imitated by robots, reducing the need for20

extensive reward engineering typically required in reinforcement learning [5, 3]. Existing motion21

imitation works either learn the motion styles in a generative adversarial way [6, 2, 7, 3] or directly22

learn to track the provided motion trajectories [1, 8]. While the former method, based on generative23

adversarial imitation learning (GAIL) [9], avoids the exact definition of similarity between reference24

motions and robot trajectories, its min-max computational formulation usually suffers from unstable25

learning and sample inefficiency [10, 11]. The latter method, however, can also be problematic be-26

cause the reference motion is often noisy and physically infeasible for realistic humanoid robots due27

to embodiment differences such as different force and joint limits between humans and robots [4].28

Consequently, including such data may degenerate the policy learning of the robot [4].29

The aforementioned issues arising from noisy and physically infeasible reference motion have been30

mainly studied in the field of motion retargeting [12, 13, 14]. For example, in order to create natural31

motions for various animated characters, researchers pursue retargeting the human MoCap motions32

into physically consistent motions of new characters, which in our case corresponds to humanoid33

robots. The common approach used in physics-based retargeting hinges on trajectory optimization34

with known dynamics of the target robot and constraints that arise from the reference trajectories [14,35

15]. However, the resulting optimization problem is often complex and includes specific domain36

knowledge. There is therefore an emergent need for a learning-based method that does not rely on37

an explicit dynamics model while guaranteeing physical consistency at the same time. We address38

this need by proposing the Bi-Level Motion Imitation (BMI) framework.39

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.

Our method shares a similar bi-level optimization idea with differential optimal control [15] but40

does not need a prior dynamics model and human-specified constraints. Specifically, BMI first41

learns a generative latent dynamics model based on a novel self-consistent generative auto-encoder42

(SCAE) from the reference motions. SCAE regularizes normal auto-encoder training with a latent43

reconstruction error and captures the essential motion patterns with sparse and well-structured latent44

representations. This enables us to sample latent parameters and reconstruct new motions, which are45

used to train the humanoid robot policy (pre-training step). After pre-training, BMI further finetunes46

both the decoder and the robot policy as a bi-level optimization problem. In this way, the decoder47

learns to return reference motions that are physically consistent. At the same time, the robot further48

improves its policy by imitating updated reference motions. We constrain the decoder updates to49

ensure that the reconstructed motions stay close to the original motions in the latent space, which50

prevents the decoder from degenerating into trivial motions that are far from the desired motion51

patterns in the human MoCap data.52

We evaluate BMI on the MIT Humanoid Robot [16] in simulation, where we imitate motions from53

human MoCap data. The experiments first show that the proposed SCAE-based latent dynamics54

model learns structured motion representations. In the subsequent pre-training, the improved latent55

representation learned by SCAE also enhances policy learning compared to the baseline latent dy-56

namics model. Finally, our bi-level fine-tuning with latent space regularization updates the decoder57

to construct reference motions that are physically consistent for the robot and retain the original58

patterns at the same time. Our experiments show that the robot policy can be further improved by59

imitating the updated motions.60

The key contributions of this paper can be summarized as follows: (i) We propose a self-consistent61

latent dynamics model that is able to learn sparse and structured representations for human motions.62

(ii) We propose a bi-level motion imitation framework to update the decoder and the robot policy at63

the same time, which enhances the generated motions with physical consistency and closeness to the64

original human MoCap trajectories. (iii) We evaluate our method on a humanoid robot and imitate65

up to 13 different motions with a single policy. The experiments highlight improved policy learning66

with the proposed latent dynamics model and bi-level motion imitation framework.67

2 Related Work68

We first discuss existing reference-based humanoid imitation learning methods. Methods addressing69

the problem of physically inconsistent reference motions are discussed subsequently.70

Humanoid Motion Imitation Imitating from human MoCap data is an efficient way for humanoid71

robots to learn agile and natural-looking skills [1]. Recent works [7, 17] based on generative ad-72

versarial imitation learning (GAIL) [9, 2] in animation have succeeded in training humanoid robots73

to track various human motions using a large MoCap dataset such as AMASS [18]. Nonetheless,74

the success may be partially attributed to the unrealistic humanoid robot that is used. With up to75

69 DoFs, unlimited force, and even assistive external forces [19], the simulated robot is massively76

overactuated and can, in principle, perfectly track the given reference motions. It is therefore un-77

clear whether the approaches in animation [7, 17] can be transferred to more realistic robots. As78

the reference motions can be physically infeasible for robots, including them in the training dataset79

can result in sub-optimal mimicking behaviors or even complete failure in imitation [13]. There-80

fore, it is important to distinguish which motions are applicable to realistic humanoid robots. The81

authors from [20] train whole-body humanoid controllers that only replicate upper-body movements82

while the lower body is restricted to track a given forward velocity for the base. An alternation has83

been proposed in [4] where the infeasible motions are explicitly removed by a privileged simulated84

imitator. Fourier Latent Dynamics (FLD) [8] employs a fallback mechanism to replace the given85

reference motions with default motions when the reference is far from the training motions.86

Physically Consistent Motion Retargeting Motion retargeting describes the process of mapping87

the human MoCap data to target robot configurations such that downstream motion imitation can be88

2

performed. While common motion retargeting methods [21, 13] such as inverse kinematics-based89

methods can generate visually convincing motions, these motions could be physically infeasible for90

humanoid robots. In order to obtain physically consistent motion retargeting, existing methods are91

usually formulated as trajectory optimization problems constrained by robot dynamics [22, 12, 14,92

15]. For instance, differential optimal control [15] alternatively optimizes the retargeting parameters93

with manually defined contact constraints and the robot trajectories based on the retargeting as a94

bi-level optimization problem. However, it is often tedious to model the complex robot dynamics95

and these methods are therefore hard to generalize across different robots. In contrast, our method96

is purely data-driven.97

3 Preliminaries98

Our method involves modifying a latent dynamics model, which maps the motions through an auto-99

encoder [23] into latent space and back, in order to generate motions for the robot that are physically100

consistent and at the same time close to the desired motion patterns in the original MoCap dataset.101

However, measuring the closeness between the original trajectory and the generated physically-102

consistent reference motion for the robot, is challenging [24]. We address this problem by introduc-103

ing a structured motion representation and incentivizing closeness in the latent space. Our proposed104

latent dynamics model is inspired by FLD [8], a structured motion representation method that ex-105

plicitly enforces the periodicity of motions in the latent space by transforming the learned latent106

representation into the frequency domain [25].107

The structure of FLD is illustrated in Figure 7 in the appendix. We denote a given trajectory segment108

of length H in d-dimensional state space by τt = (st−H+1, · · · , st) ∈ Rd×H , where t denotes time109

and st the state at time t. The trajectory segment τt represents the input to the auto-encoder, where110

the encoder embeds the original motion trajectory into a latent space with c channels, denoted by111

zt ∈ Rc×H . In order to explicitly account for the periodicity of the motions, FLD builds on earlier112

work on Periodic Autoencoders (PAEs) [25] and includes a differentiable Fast Fourier Transform113

(FFT) layer. The FFT layer returns the frequency ft, amplitude at, and offset bt of the latent motion114

embeddings, while a separate phase ϕt is computed by an additional fully connected (FC) layer and115

an atan2 operation. This transformation is denoted as p:116

zt = enc(τt), (ϕt, ft, at, bt) = p(zt), (1)

where ϕt, ft, at, bt ∈ Rc and enc is the encoder. Particularly, FLD improves PAE with a multi-step117

forward prediction to approximate the subsequent latent vectors by unrolling the latent phase. For a118

local range of N subsequent trajectory segments {τt, τt+1, · · · τt+N}, we assume that the segments119

share the same latent parameters ft, at, bt while differing only in their phases ϕt+i. Furthermore,120

ϕt+i can be approximated by ϕt+i ≈ ϕt + ift∆t, where ∆t denotes the step time. This results in,121

ẑ′t+i = p̂(ϕt + ift∆t, ft, at, bt), τ̂ ′t+i = dec(ẑ′t+i), (2)

where dec is the decoder. We denote p̂ the embedding reconstruction process from the frequency122

domain,123

ẑt = p̂(ϕt, ft, at, bt) = atsin(2π(ftT + ϕt)) + bt, (3)
where T represents a known time window with H evenly spaced samples [25]. We note that124

ẑ′t+i, ŝ
′
t+i are different from ẑt, ŝt as they are approximated by the multi-step forward prediction125

from the trajectory τt. This motivates the following loss function that is used in FLD,126

LN
FLD =

N∑
i=0

αi|τ̂ ′t+i − τt+i|2, (4)

where α is a decay factor and | · | denotes the Euclidean distance.127

4 Method128

The proposed method involves a three-stage training procedure. (i) In the first stage, we learn a gen-129

erative latent dynamics model from the original MoCap data that has been kinematically retargeted130

3

Trajectory segment

Convolution layers

Latent embedding

FC+BN+Atan2 FFT

Sinusoidal reconstruction

Convolution layers

Rreconstructed segment

Convolution layers

Latent embedding

FC+BN+Atan2 FFT

Sinusoidal reconstruction

Figure 1: Structure of the proposed self-consistent auto-encoder (SCAE)

to the humanoid. We introduce a self-consistent auto-encoder trained using both reconstruction error131

and latent regularization, to capture the desired patterns embedded in the noisy kinematic motions132

more effectively. (ii) The second stage samples latent parameters encoded by the self-consistent133

dynamics model and then decodes these latent samples into the state space. The decoded states are134

used as the reference motions to pre-train the robot policy. (iii) We perform bi-level imitation by135

fine-tuning the policy and updating the decoder at the same time. Crucially, this bi-level optimiza-136

tion is constrained within the latent space, ensuring that the decoder generates motions that closely137

adhere to physics-based robot trajectories while preserving the original motion patterns intended for138

imitation. The following paragraphs explain the three-step procedure in detail.139

4.1 Self-Consistent Latent Dynamics140

Although FLD learns structured latent representations and shows accurate reconstruction, we find141

that the decoded motions with small reconstruction errors are not guaranteed to stay close to the142

original motions in the latent space. This means that the learned latent representation overfits to143

current data and is not robust to noise in the motions. In contrast, with our bi-level motion imitation144

framework, we introduce a latent representation that focuses on the general motion patterns instead145

of nuances and noise. This is important, since the nuances are likely to change when converted to146

be physically consistent in the fine-tuning step.147

We address the above gap by a Self-Consistent Auto-Encoder (SCAE). Specifically, we propose148

to regularize FLD learning with a latent reconstruction error. A similar idea has been applied to149

VAE [26] but has not been investigated in deterministic auto-encoders for motion generation. Fig-150

ure 1 shows the structure of SCAE, where the reconstructed trajectory τ̂t is fed into the encoder151

again in order to obtain a reconstructed latent representation ˆ̄zt from the decoded motion τ̂t. We152

retain the multi-step prediction in FLD and thus our SCAE training loss is153

LN
SCAE =

N∑
i=0

αi(|τ̂ ′t+i − τt+i|2 + β|ˆ̄z′t+i − ẑ′t+i|2), (5)

where β is the coefficient of the latent reconstruction error and where we evaluate the loss on the154

entire dataset. The reconstructed latent representation ˆ̄z′t+i is computed by feeding the reconstructed155

trajectory τ̂ ′t+i into the encoder, the Fourier transform layer and the sinusoidal reconstruction layer.156

Note that τ̂ ′t+i is obtained by the multi-step forward prediction in Equation 2.157

With a perfect decoder, the reconstructed motion τ̂t is exactly the same as the original motion τt158

leading to zero latent reconstruction error |ˆ̄z′t+i − ẑ′t+i|2. However, this is usually not achievable.159

Although |ˆ̄z′t+i − ẑ′t+i|2 generally decreases as the decoder learns to reconstruct the trajectory, our160

experiments show that |ˆ̄z′t+i− ẑ′t+i|2 is not minimized when only optimizing the motion reconstruc-161

tion error |τ̂ ′t+i − τt+i|2. In contrast, due to the latent reconstruction regularization, SCAE enforces162

the learned latent representation to be consistent with its decoded motions.163

4

Latent sampler

FC+BN+Atan2 FFT

Sinusoidal reconstruction

Convolution layers

Target

Convolution layers

Latent embedding

FC+BN+Atan2 FFT

Sinusoidal reconstruction

Policy

Robot state

Figure 2: Structure of the proposed bi-level motion fine-tuning (BMI)

4.2 Pre-Training Policy164

In this stage, we train our robot policy to track the given reference motions regardless of the fea-165

sibility of these motions as done in existing motion imitation works [1, 4]. In contrast to directly166

sampling trajectories from the original motion dataset to train the robot policy, we sample from167

the latent space of the SCAE and inform the robot policy with the sampled latent parameters as168

the target motion information. The self-consistent latent dynamics model provides two advantages169

compared to using the original datasets. (i) We can interpolate latent parameters to generate motion170

transitions and new motions, as discussed in FLD [8] and PAE [25]; (ii) We observe that a learned171

latent representation as the tracking goal for the robot is more concise with essential motion patterns172

and focuses less on motion nuances, which is beneficial for policy learning.173

The policy pre-training procedure is illustrated in Figure 2 without the green arrow modules (these174

are only used in the next fine-tuning stage). For each episode, we sample a set of latent variables zt175

from the pre-collected buffer pz(z) during SCAE training. We then obtain (ϕt, ft, at, bt) = p(zt)176

by the following FC and FFT layers. Note that instead of taking the learned phase ϕt, we uniformly177

sample an initial phase variable ϕ0 ∈ Rc from a fixed range and update ϕt according to the latent178

dynamics in Equation 2,179

ϕt = ϕt−1 + ft−1∆t, {ft, at, bt} = θt = θt−1. (6)

We maintain the same frequency ft, amplitude at, and offset bt for the episode. The latent variables180

are then used to reconstruct a motion trajectory181

{ŝt−H+1, · · · , ŝt} = τ̂t = dec(p̂(ft, at, bt, ϕt)), (7)

where the most recent state ŝt serves as the target state to compute the robot tracking reward at the182

current timestep. The policy is learned using proximal policy optimization [27].183

4.3 Bi-Level Fine-Tuning184

This step ensures physical consistency of the reference motions generated by the decoder. Obtaining185

reference motions that are physically consistent is important as it facilitates policy learning and186

encourages the robot to learn a versatile set of skills, in particular when the humanoid robots are187

under-actuated and have restricted torque limits [7, 20, 4]. We propose to convert these unphysical188

motions into physically consistent ones by a bi-level fine-tuning to maximize the benefit of human189

MoCap data. This represents an important difference from recent works that address this problem190

by only tracking upper body movements [20] or filtering out the unlearnable motions [4].191

Figure 2 shows the structure of our bi-level fine-tuning. In this stage, we alternatively optimize the192

policy π and the decoder dec while freezing the convolutional encoder enc and the FC, BN layers.193

5

In this way, the decoder is encouraged to generate motions close to the robot trajectories, which are194

physically consistent by design. We further regularize the decoder optimization by constraining the195

generated motions to be close to the original motions in the latent space. This prevents the decoder196

from generating trivial motions by simply copying the robot, failing to improve the robot policy197

further. The bi-level optimization problem is formulated as,198

min
θdec

Ezt∼pz(z),st∼πθ∗π
[|ŝt − st|2 + β| ˆ̄zt − ẑt|2],

θ∗π ∈ argmin
θπ

Ezt∼pz(z),st∼πθπ
[|ŝt − st|2],

(8)

where θdec denotes the parameters of the decoder and πθπ the robot policy with parameters θπ .199

With the proposed regularized bi-level motion imitation, the decoder is updated to generate motions200

physically consistent with the robot while retaining the desired motion patterns in the dataset. As a201

result, we observed that the robot further improves the policy during this fine-tuning step.202

5 Experiments203

We evaluate BMI on the MIT humanoid robot [16] in Isaac Gym [28] while keeping the joint and204

force limits unchanged. We extend the dataset from FLD [8] by including four additional difficult205

motions, i.e., jump, kick, spin-kick, and cross-over [1]. In total, we have trajectories from 13 different206

motions in the dataset. In our experiments, we first show the reconstruction accuracy and analyze207

the motion representations learned by our latent dynamics model. We then compare the motion208

performance of the pre-trained policies based on SCAE and FLD, with the BMI fine-tuned policy.209

5.1 Analysis of Learned Latent Dynamics Model210

Motion and Latent Reconstruction Figure 3b shows that our method and FLD can reconstruct211

the original motions with comparable accuracy. However, our method with explicit self-consistency212

constraints achieves significantly lower latent reconstruction error, i.e., |ˆ̄z′t+i − ẑ′t+i|2, as shown in213

Figure 3a. Samples of reconstructed motions can be found in Figure 9 in the appendix, where both214

methods accurately reconstruct the original motions. The proposed self-consistent regularization215

improves the latent reconstruction without sacrificing the motion reconstruction accuracy.

0 1000 2000 3000 4000 5000
Training Iteration

0
2
4
6
8

10
12
14
16

La
te

nt
 R

ec
on

st
ru

ct
io

n
Er

ro
r

FLD
SCAE

(a) Latent reconstruction error

0 1000 2000 3000 4000 5000
Training Iteration

0

10

20

30

40

50

60

M
ot

io
n

Re
co

ns
tru

ct
io

n
Er

ro
r

FLD
SCAE

(b) Motion reconstruction error

Figure 3: Reconstruction error during training: (a) The reconstruction error of latent embeddings.
(b) The reconstruction error of the original motion states.

216

Visualization of Learned Latent Manifold We visualize the learned latent amplitude ft and la-217

tent phase ϕt in eight latent channels, computed as in Equation 1, for four motions run, jog, step fast,218

jump in Figure 4, where each row denotes the same motion. Thanks to the latent regularization, our219

method learns a much sparser representation than FLD, as SCAE takes fewer frequency components220

to reconstruct the same motions with most channels’ amplitudes around zero. This observation is221

consistent for all 13 different motions, as shown in Figure 8 in the appendix. Such a sparse repre-222

sentation helps our latent dynamics model capture the most relevant patterns while discarding the223

motion nuances, which is important for maintaining the desired motion patterns but modifying the224

motion details to be physically consistent for our robots.225

6

Learned Phase Timing 8x2

(a) FLD

Learned Phase Timing 8x2

(b) SCAE (Ours)

Figure 4: The figure displays the learned latent phases of four motions. Each row corresponds to
one motion. Each circle represents a latent channel where the radius is the amplitude and the black
bar is the phase timing. Compared to FLD, SCAE takes fewer frequency components and lower
amplitudes to represent the same motion.

(a) Original (b) FLD

0
1
2
3
4
5
6
7
8
9
10
11
12

(c) SCAE (Ours)

Figure 5: The figure shows the latent manifolds for 13 motions. Each color corresponds to a trajec-
tory segment from a motion type. The arrows denote the motion evolution direction. The manifold
induced by SCAE shows consistent structures across different motions.

In Figure 5, we further compare the latent structure induced by SCAE with that by FLD, where226

Figure 5a visualizes the principal components of the original motions for comprehensive analysis.227

Notably, SCAE demonstrates the most consistent structure across 13 different motions. The cir-228

cles connecting points with the same color represent the primary period of individual motions and229

each point denotes a trajectory segment. The radius of a rough circle means that the high-level fea-230

tures throughout a motion can be constant, such as velocity, frequency, etc. The well-shaped latent231

manifolds learned by SCAE show that our method successfully captures essential motion patterns.232

5.2 Performance of Pre-Trained Policy Based on SCAE233

We find, perhaps surprisingly, that without further fine-tuning SCAE improves robot policy learn-234

ing in the pre-taining stage. Note that since the target reference motions are noisy and sometimes235

physically inconsistent for the robot, the commonly used mean square error from the reference mo-236

tions is not an ideal performance metric anymore. Although both our SCAE-based and FLD-based237

pre-training policies can achieve similar tracking errors, we observe that the SCAE-based policy238

shows better capacity to do challenging motions such as jump and kick. In Table 1, we find that239

SCAE achieves the highest hang time percentage in 10 jump trajectories, which is computed as the240

proportion of time when both feet are off the ground. Note that each trajectory includes multiple241

jump trials. Figure 6b also shows that SCAE achieves better stability while kicking. We hypothesize242

that the policy improvement in pre-training is due to the change of latent parameterizations used to243

inform the policy. SCAE learns a sparser representation that makes policy learning easier. More244

results on the other motions can be found in the supplementary videos.245

7

Table 1: Results on two selected challenging motions: kick and jump.
Motion (Metric)\Algo. FLD SCAE(Ours) BMI(Ours)
Kick (Time (%)) 64.4 61.2 71.3
Kick (Height (m)) 0.157 0.152 0.164
Jump (Time (%)) 32.5 36.2 35.2

0 25 50 75 100 125 150 175
Step

0.10

0.15

0.20

0.25

He
ig

ht
 (m

)

(a) Kicking foot height when kicking

0 25 50 75 100 125 150 175
Step

0.050

0.075

0.100

0.125

He
ig

ht
 (m

)

BMI(Ours)
SCAE(Ours)
FLD

(b) Standing foot height when kicking

Figure 6: Comparison on the challenging kick task: The left figure shows the height of the kicking
foot during one kick trajectory with multiple trials, where both SCAE and BMI outperform FLD in
each kick (one mode of the curve). The right figure shows the height of the standing foot where BMI
and SCAE are more stable with a lower height of the standing foot.

5.3 Bi-Level Fine-tuned Policy246

Although the pre-trained policy demonstrates significant tracking ability on most feasible motions,247

as shown in the supplementary video, some physically inconsistent references can dominate the loss248

leading to a sub-optimal policy for certain motions. We apply the bi-level fine-tuning to alleviate249

this problem and further improve our policy. Table 1 shows that BMI achieves the longest kicking250

time, defined as the percentage of time the kicking foot is off the ground. Moreover, thanks to our251

bi-level optimization modifying the target motions, our robot learns to further stabilize its standing252

foot when performing kicks, as illustrated in Figure 6b. In contrast, the baseline policy tends to253

stagger the standing foot when jumping. The experiments (see also video attachment) therefore254

confirm our hypothesis that by updating the decoder the robot policy can be further improved.255

6 Limitations256

While the proposed bi-level motion imitation framework alleviates problems arising from physically257

inconsistent reference motions, the approach relies on a decent robot policy in the pre-training stage.258

When the human MoCap dataset consists of impractical motions for the humanoid robot and exhibits259

large perturbations, it is still under-investigated to what extent our method can recover physically260

consistent motions while maintaining the general motion patterns. Moreover, since the given refer-261

ences obtained by motion retargeting from human MoCap data are not the optimal targets for robot262

imitation, the choice of metric to quantify robot tracking performance is an open question.263

7 Conclusion264

This paper presents BMI, a novel bi-level motion imitation framework that minimizes the robot265

tracking error by alternatively optimizing the robot policy and the motion generation model while266

being regularized by latent space constraints. Our proposed self-consistent auto-encoder captures267

the essential motion patterns with sparse and well-structured latent representations, which provides268

a reliable anchor to regularize the decoder to stay close to the desired motion patterns in the dataset.269

In contrast to existing optimal control methods, BMI addresses the difficulty of including physically270

inconsistent reference motions in a purely data-driven way and is scalable to large-scale human271

MoCap datasets. Our experiments on the realistic MIT humanoid robot show that BMI not only272

improves the pre-trained policy on challenging tasks but also further stabilizes the learned motions.273

8

References274

[1] X. B. Peng, P. Abbeel, S. Levine, and M. Van de Panne. DeepMimic: Example-guided deep re-275

inforcement learning of physics-based character skills. ACM Transactions On Graphics (TOG),276

37(4):1–14, 2018.277

[2] X. B. Peng, Z. Ma, P. Abbeel, S. Levine, and A. Kanazawa. AMP: Adversarial motion priors278

for stylized physics-based character control. ACM Transactions on Graphics (TOG), 40(4):279

1–20, 2021.280

[3] A. Tang, T. Hiraoka, N. Hiraoka, F. Shi, K. Kawaharazuka, K. Kojima, K. Okada, and M. Inaba.281

HumanMimic: Learning natural locomotion and transitions for humanoid robot via Wasser-282

stein adversarial imitation. arXiv preprint arXiv:2309.14225, 2023.283

[4] T. He, Z. Luo, W. Xiao, C. Zhang, K. Kitani, C. Liu, and G. Shi. Learning human-to-humanoid284

real-time whole-body teleoperation. arXiv preprint arXiv:2403.04436, 2024.285

[5] J. Koenemann, F. Burget, and M. Bennewitz. Real-time imitation of human whole-body mo-286

tions by humanoids. In Proceedings of the 2014 IEEE International Conference on Robotics287

and Automation (ICRA), pages 2806–2812, 2014.288

[6] J. Merel, Y. Tassa, D. TB, S. Srinivasan, J. Lemmon, Z. Wang, G. Wayne, and N. Heess.289

Learning human behaviors from motion capture by adversarial imitation. arXiv preprint290

arXiv:1707.02201, 2017.291

[7] Z. Luo, J. Cao, K. Kitani, W. Xu, et al. Perpetual humanoid control for real-time simulated292

avatars. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages293

10895–10904, 2023.294

[8] C. Li, E. Stanger-Jones, S. Heim, and S. Kim. FLD: Fourier latent dynamics for structured295

motion representation and learning. arXiv preprint arXiv:2402.13820, 2024.296

[9] J. Ho and S. Ermon. Generative adversarial imitation learning. In Proceedings of the Advances297

in Neural Information Processing Systems, 2016.298

[10] M. Orsini, A. Raichuk, L. Hussenot, D. Vincent, R. Dadashi, S. Girgin, M. Geist, O. Bachem,299

O. Pietquin, and M. Andrychowicz. What matters for adversarial imitation learning? In300

Proceedings of the Advances in Neural Information Processing Systems, 2021.301

[11] D. Jung, H. Lee, and S. Yoon. Sample-efficient adversarial imitation learning. Journal of302

Machine Learning Research, 25(31):1–32, 2024.303

[12] G. Bin Hammam, P. M. Wensing, B. Dariush, and D. E. Orin. Kinodynamically consistent304

motion retargeting for humanoids. International Journal of Humanoid Robotics, 12(04), 2015.305

[13] T. Yoon, D. Kang, S. Kim, M. Ahn, S. Coros, and S. Choi. Spatio-temporal motion retargeting306

for quadruped robots. arXiv preprint arXiv:2404.11557, 2024.307

[14] M. Al Borno, L. Righetti, M. J. Black, S. L. Delp, E. Fiume, and J. Romero. Robust physics-308

based motion retargeting with realistic body shapes. Computer Graphics Forum, 37:81–92,309

2018.310

[15] R. Grandia, F. Farshidian, E. Knoop, C. Schumacher, M. Hutter, and M. Bächer. DOC: Dif-311

ferentiable optimal control for retargeting motions onto legged robots. ACM Transactions on312

Graphics (TOG), 42(4):1–14, 2023.313

[16] M. Chignoli, D. Kim, E. Stanger-Jones, and S. Kim. The MIT humanoid robot: Design,314

motion planning, and control for acrobatic behaviors. In Proceedings of the 2020 IEEE-RAS315

20th International Conference on Humanoid Robots (Humanoids), 2021.316

9

[17] Z. Luo, J. Cao, J. Merel, A. Winkler, J. Huang, K. Kitani, and W. Xu. Universal humanoid317

motion representations for physics-based control. arXiv preprint arXiv:2310.04582, 2023.318

[18] N. Mahmood, N. Ghorbani, N. F. Troje, G. Pons-Moll, and M. J. Black. AMASS: Archive of319

motion capture as surface shapes. In Proceedings of the IEEE/CVF international conference320

on computer vision, pages 5442–5451, 2019.321

[19] Y. Yuan and K. Kitani. Residual force control for agile human behavior imitation and extended322

motion synthesis. In Proceedings of the Advances in Neural Information Processing Systems,323

2020.324

[20] X. Cheng, Y. Ji, J. Chen, R. Yang, G. Yang, and X. Wang. Expressive whole-body control for325

humanoid robots. arXiv preprint arXiv:2402.16796, 2024.326

[21] K.-J. Choi and H.-S. Ko. Online motion retargetting. The Journal of Visualization and Com-327

puter Animation, 11(5):223–235, 2000.328

[22] S. Tak and H.-S. Ko. A physically-based motion retargeting filter. ACM Transactions on329

Graphics (TOG), 24(1):98–117, 2005.330

[23] G. Alain and Y. Bengio. What regularized auto-encoders learn from the data-generating distri-331

bution. The Journal of Machine Learning Research, 15(1):3563–3593, 2014.332

[24] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Martius. Learning agile skills333

via adversarial imitation of rough partial demonstrations. In Proceedings of the Conference on334

Robot Learning, pages 342–352, 2023.335

[25] S. Starke, I. Mason, and T. Komura. DeepPhase: Periodic autoencoders for learning motion336

phase manifolds. ACM Transactions on Graphics (TOG), 41(4):1–13, 2022.337

[26] T. Cemgil, S. Ghaisas, K. Dvijotham, S. Gowal, and P. Kohli. The autoencoding variational338

autoencoder. In Proceedings of the Advances in Neural Information Processing Systems, 2020.339

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization340

algorithms. arXiv preprint arXiv:1707.06347, 2017.341

[28] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively342

parallel deep reinforcement learning. In Proceedings of the Conference on Robot Learning,343

pages 91–100, 2022.344

[29] J. Tan, K. Liu, and G. Turk. Stable proportional-derivative controllers. IEEE Computer Graph-345

ics and Applications, 31(4):34–44, 2011.346

10

A Appendix347

Contents348

A.1 Structure of FLD . 11349

A.2 Pseudo Code of BMI . 11350

A.3 Experiment Settings . 12351

A.3.1 Dataset . 12352

A.3.2 State and Action Spaces . 13353

A.3.3 SCAE Training . 13354

A.3.4 Policy Training . 14355

A.3.5 BMI Training . 15356

A.4 More Experiment Results . 16357

A.4.1 More Results on Latent Dynamics Model Learning 16358

A.4.2 Visualization of Learned Policy . 17359

A.1 Structure of FLD360

The structure of FLD follows PAE [25] using an auto-encoder to learn a generative dynamics model,361

where the encoder and the decoder are composed of 1D convolutional layers. In order to enforce the362

periodicity in the latent manifolds, PAE parameterized each latent channel as a sinusoidal function363

where the amplitude, frequency, and offset are computed by a differentiable Fast Fourier Transform364

layer while the phase is determined with a fully connected layer followed by an Atan2 operation.365

Inspired by the observation that the learned latent frequency, amplitude, and offset by PAE stay366

nearly constant along the trajectories, FLD improves PAE by combining the structure with a multi-367

step prediction step as in Equation 4.368

Trajectory segment

Convolution layers

Latent embedding

FC+BN+Atan2 FFT

Sinusoidal reconstruction

Convolution layers

Rreconstructed segment

Figure 7: Multi-step forward prediction structure of FLD.

A.2 Pseudo Code of BMI369

Algorithm 1 shows the details of BMI training.370

11

Algorithm 1 Bi-Level Motion Imitation (BMI)

Input: SCAE encoder enc and decoder dec, latent parameters of the original motions pz(z),
Pre-trained policy πθπ based on SCAE, initial buffer D
for k = 1 to K do

Policy Learning:
for i = 1 to M1 do

Sample latent targets zi ∼ pz(z)
Extract the target states {ŝt−H+1, · · · , ŝt} = τ̂t = dec(p̂(ft, at, bt, ϕt))
Rollout robot trajectory τi ∼ p(πθπ , dec, pz)
Collect the trajectory and latent parameter pairs in the buffer D = {(zi, τi)|i ∼ M1}
Update robot policy πθπ with PPO or another RL algorithm according to the bottom ob-

jective in Equation 8
end for
Decoder dec Update:
for i = 1 to M2 do

Sample latent parameters and robot trajectories from D
Update the decoder dec according to the upper objective in Equation 8

end for
end for

A.3 Experiment Settings371

In this section, we provide more detailed experiment settings. We first introduce our dataset and then372

explain the state and action spaces used in SCAE and the policy. Finally, we list the architectures373

and hyper-parameters used in both the dynamics model learning and policy learning.374

A.3.1 Dataset375

We use the same dataset as FLD [8] which was originally released in DeepMimic [1]. The human376

MoCap data were manually processed and retargeted to the humanoid robot. Note that even with377

careful kinematic retargeting the reference motions can be physically inconsistent to the robot dy-378

namics. Our dataset consists of 13 different motions: run, jog, step fast, jump, spin-kick, back, side379

left, jog slow, side right, cross-over, kick, stride, step and each motion has 10 trajectories collected380

from different demonstrations. In each trajectory of length 240 steps, the demonstrator performs381

multiple trials of the same action. For example, in one kick trajectory, the demonstrator may con-382

tinuously kick 5 times as shown in Figure 6a. In total, we have 13 × 10 × 240 = 31200 data383

points. Each data point corresponds to a state vector of length 52, where the elements are listed in384

the following Table 2.

Table 2: Elements of one data point (step) in the dataset
Entry Symbol Dimensions
base position pb 0:3
base rotation qb 3:7
base linear velocity v 7:10
base angular velocity w 10:13
projected gravity g 13:16
joint positions q 16:34
joint velocity q̇ 34:52

385

Note that FLD experiments only on nine motions: run, jog, step fast, back, side left, jog slow, side386

right, stride, step, referred to as normal motions, which present a mild difficulty for the robot to track.387

However, our experiments include an additional four motions, jump, spin-kick, cross-over, kick, that388

are significantly more challenging. FLD fails to learn these complex motions satisfactorily without389

a specifically designed reward function tailored to each individual motion, while our methods show390

improved performance on the challenging kick and jump with unchanged reward design.391

12

A.3.2 State and Action Spaces392

In this section, we introduce the state space used in the latent dynamics model and the observation393

and action spaces for the robot policy.394

State Space of Latent Dynamics Model The state space used in the latent dynamics model is395

composed of the linear and angular velocities of the robot base v, w in the robot frame, measurement396

of the gravity vector g in the robot frame, and joint positions q as in Table 3. Note that we use the397

same setting for both FLD and SCAE.398

Table 3: Elements of the state space for latent dynamics model
Entry Symbol Dimensions
base linear velocity v 0:3
base angular velocity w 3:6
projected gravity g 6:9
joint positions q 9:27

Observation Space of Robot Policy In addition to the state information used in the latent dy-399

namics model, the robot observes extra information such as joint velocities q̇ and its last action a′.400

Moreover, we provide the latent parameters to the robot as the target motion information. Therefore,401

the observation space is shown as Table 4. Note that we apply domain randomization to the policy402

training including the observation noises, mass noises, and pushing noises as used in FLD [8].

Table 4: Elements of the observation space for robot policy
Entry Symbol Dimensions Noise level
base linear velocity v 0:3 0.2
base angular velocity w 3:6 0.05
projected gravity g 6:9 0.05
joint positions q 9:27 0.01
joint velocities q̇ 27:45 0.75
last actions a′ 45:63 0.0
latent phase sinϕ 63:71 0.0
latent phase cosϕ 71:79 0.0
latent frequency f 79:87 0.0
latent amplitude a 87:95 0.0
latent offset b 95:103 0.0

403

Action Space of Robot Policy The action space of our robot is of 18 dimensions which represent404

the target positions of 18 joints in the robot. An underlying PD controller [29] is used to compute the405

torques to drive each joint. The PD gains are set to (30.0, 5.0) for lower body joints and (40.0, 5.0)406

for upper body joints, respectively.407

A.3.3 SCAE Training408

We introduce first the architecture of neural networks used in SCAE, which is the same as FLD.409

Then we list the hyper-parameters for training the latent dynamics model.410

Architecture of SCAE SCAE shares the same architecture as FLD. The architectures of the en-411

coder enc and decoder dec are shown in Table 5. BN denotes batch normalization and ELU repre-412

sents the exponential linear unit.413

Hyper-Parameters for SCAE Training SCAE uses the same hyper-parameters for training FLD414

as in Table 6. The extra coefficient of the latent reconstruction regularization used in SCAE, i.e., β415

in Equation 5, is set to 1. Adam is used as the optimizer for training the latent dynamics model.416

13

Table 5: Architecture of the neural networks used in SCAE
Network Layer Output size Kernel size Normalization Activation

encoder
Conv1d 64x51 51 BN ELU
Conv1d 64x51 51 BN ELU
Conv1d 8x51 51 BN ELU

phase encoder Linear 8x2 – BN Atan2

decoder
Conv1d 64x51 51 BN ELU
Conv1d 64x51 51 BN ELU
Conv1d 27x51 51 BN ELU

Table 6: Hyper-parameters of SCAE training
Parameter Symbol Value
step time seconds ∆t 0.02
max training iterations – 5000
learning rate – 0.0001
weight decay – 0.0005
learning epochs – 5
mini-batches – 4
latent channels c 8
trajectory segment length H 51
multi-step prediction length N 50
propagation decay α 1.0

A.3.4 Policy Training417

Architecture of Policy & Value function The neural network architectures of the learning policy418

π and the value function V used in PPO are shown in Table 7.419

Table 7: Architecture of the neural networks used in policy training
Network Type Hidden Output size Activation
policy π MLP 128, 128, 128 18 ELU
value function V MLP 128, 128, 128 1 ELU

Hyper-Parameters for Policy Training We use Adam as the optimizer for the policy and value420

function with an adaptive learning rate with a KL divergence target of 0.01. The policy runs at 50421

Hz. We parallize 4096 environments in Isaac Gym to collect samples. The summary of the policy422

training hyper-parameters can be found in Table 8.

Table 8: Hyper-parameters of policy training
Parameter Symbol Value
step time seconds ∆t 0.02
max training iterations – 3000
max episode time seconds – 20
learning rate – 0.001
steps per iteration – 24
learning epochs – 5
mini-batches – 4
KL divergence target – 0.01
discount factor γ 0.99
clip range ϵ 0.2
entropy coefficient – 0.01
parallel training environments – 4096

423

14

Reward Function for Policy Training The reward function used to train the robot policy consists424

of two categories r = rT + rR, where rT denotes the tracking rewards and rR represents the425

regularization rewards. The tracking reward calculates the weighted sum of individual rewards on426

each dimension bounded in [0, 1] with their weights in Table 9,427

rT = wvrv + wwrw + wgrg + wqlegrqleg + wqarmrqarm . (9)

The reward of each dimension is generally formulated as,428

ri = e−σi|d̂i−di|2 , (10)

where i denotes the ith dimension. di denotes the target value of this dimension while d̂i represents429

the reconstructed value. σi is a temperature factor for each reward and can be found in Table 10.430

Table 9: Weights of the tracking rewards
Weight wv ww wg wqleg wqarm

Value 1.0 1.0 1.0 1.0 1.0

Table 10: Temperature factors of the tracking rewards
Weight σv σw σg σqleg σqarm

Value 0.2 0.2 1.0 1.0 1.0

The regularization reward is formulated as Equation 11, where the weights can be found in Table 11431

and each term is detailed as follows.432

rR = warrar + wqarqa + wqTrqT (11)

Action rate433

rar = |a′ − a|2, (12)

where a′ and a denote the previous and current actions.434

Joint acceleration435

rqa = | q̇
′ − q̇

∆t
|2, (13)

where q̇′ and q̇ denote the previous and current joint velocity. ∆t represents the step time interval.436

Joint torque437

rqT = |T |2, (14)

where T denotes the joint torques.438

Table 11: Weights of the regularization rewards
Weight war wqa wqT
Value −0.01 −2.5× 10−7 −1.0× 10−5

A.3.5 BMI Training439

In the bi-level fine-tuning process, we retain most of the hyperparameters from the pre-training stage.440

Notable exceptions include the following: (i) We set a lower learning rate for the decoder update441

compared to the rate used in SCAE training. (ii) To align the magnitudes of the latent reconstruction442

loss and the motion reconstruction loss in Equation 8, we increase the coefficient β to 200. The key443

hyper-parameters used in BMI are summarized in Table 12. These hyper-parameters may be further444

tuned for improved results. As this is an initial study of bi-level fine-tuning, we tested only a limited445

number of hyper-parameter configurations in our experiments.446

15

Table 12: Hyper-parameters of BMI fine-tuning
Parameter Symbol Value
coefficient of latent reconstruction loss β 200
learning rate for decoder – 0.00001
number of mini-batch for decoder – 2
max training iteration – 50
epochs for decoder – 1
steps per iteration – 24
parallel training environments – 4096

A.4 More Experiment Results447

We show more experiment results in this section, including experiments for both the latent dynamics448

model learning and the policy learning.449

A.4.1 More Results on Latent Dynamics Model Learning450

Figure 8 compares the learned latent phases across all the 13 motions with different methods. We451

observe that our method SCAE consistently achieves sparser representations than FLD with fewer452

frequency components and lower amplitudes.453

Learned Phase Timing 8x2

(a) FLD

Learned Phase Timing 8x2

(b) SCAE (Ours)

Figure 8: Learned latent phases of 13 different motions. From top to bottom, the motions are: run,
jog, step fast, jump, spin-kick, back, side left, jog slow, side right, cross-over, kick, stride, step.

16

SCAE learns sparse and well-shaped latent representations. Nonetheless, it retains accurate mo-454

tion reconstruction as FLD. As shown in Figure 9, both FLD and SCAE accurately reconstruct the455

motions, which is also validated by the training loss in Figure 3b.456

Run

Motion Reconstruction (Flattened) 1x1377

Reconstructed
Target

Jog

Step Fast

Jump

(a) FLD

Run

Motion Reconstruction (Flattened) 1x1377

Reconstructed
Target

Jog

Step Fast

Jump

(b) SCAE (Ours)

Figure 9: Motion reconstruction performance.

A.4.2 Visualization of Learned Policy457

We visualize the motions learned by BMI. In addition to normal motions, such as stride in Fig-458

ure 10a, which can be effectively learned by FLD, BMI successfully acquires two challenging mo-459

tions kick and jump in which FLD fails. Figure 11a shows that BMI policy can naturally lift the460

kicking foot while maintaining the stability of the standing foot. Similarly, Figure 11b illustrates461

that the robot successfully jumps, with both feet leaving the ground.462

(a) Stride

(b) Back

Figure 10: Normal motions learned by BMI.

However, we note that our policy still struggles with the difficult spin-kick and cross-over motions463

which are highly dynamic and can significantly influence the robot balance. Consequently, the robot464

prioritizes maintaining balance over replicating these motion patterns. For example, the robot rarely465

lifts its kicking foot in spin-kick, and the legs do not fully cross in cross-over, as shown in Figure 12.466

17

(a) Kick

(b) Jump

Figure 11: Challenging motions learned by BMI.

(a) Spin-Kick

(b) Cross-Over

Figure 12: Unsatisfying motions learned by BMI.

18

	Introduction
	Related Work
	Preliminaries
	Method
	Self-Consistent Latent Dynamics
	Pre-Training Policy
	Bi-Level Fine-Tuning

	Experiments
	Analysis of Learned Latent Dynamics Model
	Performance of Pre-Trained Policy Based on SCAE
	Bi-Level Fine-tuned Policy

	Limitations
	Conclusion
	Appendix
	Structure of FLD
	Pseudo Code of BMI
	Experiment Settings
	Dataset
	State and Action Spaces
	SCAE Training
	Policy Training
	BMI Training

	More Experiment Results
	More Results on Latent Dynamics Model Learning
	Visualization of Learned Policy

