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A PROOFS

A.1 PROOF OF THEOREM 1

Theorem 1. (Theorem 2, Masegosa (2020)) For any distribution ρ̂ on F

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤ Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
−V(ρ̂) (1)

where V(ρ̂) is a variance term defined as

V(ρ̂) = E(y,x)∼D

[
1

2maxw p(y|x;w)
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
. (2)

We need to bound V(ρ̂) and Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
using their empirical versions. We will

use a labeled training set Z to bound the term Ew∼ρ̂

[
Lℓnll
(y,x)∼D(f(x;w))

]
and an unlabeled set U

to bound V(ρ̂). To bound the terms we will use existing PAC-Bayes bounds. The variance term has
to be rewritten in the form Ew∼ρ̂E(y,x)∼D [L(y,x,w)] in which PAC-Bayes bounds are directly
applicable.

Let us assume as in Masegosa (2020) that the model likelihood is bounded:
Assumption 1. Masegosa (2020) There exists a constant C < ∞ such that ∀x ∈ X ,
maxy,w p(y|x;w) ≤ C.

Note that this assumption holds for the classification setting with C = 1. Then the variance can be
written as

V(ρ̂) =
1

2
E(y,x)∼D

[
Ew∼ρ̂

[
(p(y|x,w)−Ew∼ρ̂ (p(y|x,w)))2

]]
=

1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D [Ew∼ρ̂p(y|x,w)]

2

=
1

2
E(y,x)∼DEw∼ρ̂

[
p(y|x,w)2

]
− 1

2
E(y,x)∼D [Ew∼ρ̂p(y|x,w)Ew′∼ρ̂p(y|x,w′)]

=
1

2
E(y,x)∼DEρ̂(w,w′)

[
p(y|x,w)2 − p(y|x,w)p(y|x,w′)

]
=

1

2
E(y,x)∼DEρ̂(w,w′) [L(y,x,w,w

′)]

(3)

where L(y,x,w,w′) = p(y|x,w)2 − p(y|x,w)p(y|x,w′) and ρ̂(w,w′) = ρ̂(w)ρ̂(w′).

We can then use the following PAC-Bayes theorem to lower bound V(ρ̂) through it’s empirical
estimate, noting that L(y,x,w,w′) ≤ 1 which is a requirement for this bound.
Theorem 2. (PAC-Bayes-λ, Thiemann et al. (2017)). For any probability distribution π on F that
is independent of U and any δ1 ∈ (0, 1), with probability at least 1 − δ1 over a random draw of a
sample U , for all distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously and a bounded loss L ≤ 1

Ew∼ρ̂E(y,x)∼D [L(y,x,w)] ≥
(
1− γ

2

)
Ew∼ρ̂

1

m

∑
(y,x)∈U

[L(y,x,w)]− KL(ρ̂||π) + ln(2
√
m/δ)

γm

(4)
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We then turn to the term Ew∼ρ̂

[
Lℓnll

(y,x)∼D(f(x;w))
]

where L is unbounded due to the NLL loss.
We will use the following bound:
Theorem 3. ( Alquier et al. (2016)). For any probability distribution π on F that is independent of
Z and any δ2 ∈ (0, 1), with probability at least 1 − δ2 over a random draw of a sample Z, for all
distributions ρ̂ on F and γ > 0

Ew∼ρ̂

[
Lℓnll

(y,x)∼D(f(x;w))
]
≤ Ew∼ρ̂

[
L̂ℓnll
Z (f(x;w))

]
+

KL(ρ̂||π) + ln( 1δ ) + ψπ,D(γ, n)

γn
(5)

where

ψπ,D(γ, n) = lnEπED

[
e
γn

(
Lℓnll

(y,x)∼D(f(x;w))−L̂ℓnll
Z (f(x;w))

)]
. (6)

By setting γ1 = γ2 = γ/2 and taking a union bound we then get:
Theorem 4. For any probability distribution π on F that is independent of U and Z and any
δ ∈ (0, 1), with probability at least 1 − δ over a random draw of a sample U and Z, for all
distributions ρ̂ on F and all γ ∈ (0, 2) simultaneously

E(y,x)∼D [− lnEw∼ρ̂ [p(y|x, f(x;w))]] ≤

Ew∼ρ̂

[
L̂ℓnll

Z (f(x;w))
]
+

KL(ρ̂||π) + ln(1/δ) + ψπ,D(γ, n)

γn

−
(
1− γ

2

)
V̂(ρ̂) +

KL(ρ̂||π) + ln(2
√
m/δ)

γm
.

(7)

What remains is to define the prior π and posterior ρ̂ distributions appropriately. We first set
ρ̂(w) = 1

K

∑
i δ(w = ŵi) which denotes an ensemble. We then follow Masegosa (2020) in

properly defining the KL between ρ̂(w) and a given prior. Specifically, we restrict ourselves to
a new family of priors, denoted πF (w). For any prior πF (w) within this family, its support
is contained in wF , which denotes the space of real number vectors of dimension M that can
be represented under a finite-precision scheme using F bits to encode each element of the vec-
tor. So we have supp(πF ) ⊆ wF ⊆ RM . This prior distribution πF can be expressed as,
πF (w) =

∑
w′∈wF

ww′δ(w = w′) where ww′ are positive scalar values parametrizing this prior
distribution. They satisfy ww′ ≥ 0 and

∑
ww′ = 1. In this way, we can define a finite-precision

counterpart to the Gaussian distribution where ww′ = 1
Ae

−||w′||22 and A is an appropriate normal-
ization constant.

Puting everything back in equation 7 we get

E(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ 1

K

∑
i

[
L̂ℓnll
Z (f(x; ŵi))

]
−
(
1− γ

2

)
V̂(ρ̂) +

1

K

∑
i

h
(
∥ŵi∥22

)
, (8)

where

h
(
∥ŵi∥22

)
=

∥ŵi∥22 + lnA+K ln(1/δ) +Kψπ,D(γ, n)

γn
+
∥ŵi∥22 + lnA+K ln(2

√
m/δ)

γm
, (9)

and which holds for any δ ∈ (0, 1), with probability at least 1 − δ over a random draw of a sample
U and Z.

Some further technical points need to be discussed at this point. Formally, Theorem 3 holds for a
single value of γ. In order to combine both PAC-Bayes bounds we would need to form a grid over
γ in the range (0, 2) and do a union bound over this grid. The combined bound would then hold
only for values on this grid. This results analysis only results in a negligible loosening of the bound
(Dziugaite & Roy, 2017) and as such we neglect this discussion.
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Since we have defined our bound in the discrete setting we cannot technically take derivatives of
the resulting objective. However, as discussed in Masegosa (2020) during optimization we simply
use the continuous version of all functions, knowing that we will arrive withing a solution of finite
precision.

B ADDITIONAL CONDITIONS FOR A HIGH-PROBABILITY BOUND

Given inequality 8, we can take the expectation over the proposed algorithm, ρ̂ ∼ A, to obtain

Eρ̂∼AE(y,x)∼D

[
− ln

1

K

∑
i

[p(y|x, f(x; ŵi))]

]

≤ Eρ̂∼A

[
1

K

∑
i

[
L̂ℓnll

Z (f(x; ŵi))
]]

−
(
1− γ

2

) K − 1

2cK
+Eρ̂∼A

[
1

K

∑
i

h
(
∥ŵi∥22

)]
, (10)

which holds for any δ ∈ (0, 1), with probability at least 1 − δ over a random draw of a sample U
and Z.

Then, setting L1(ρ̂) = 1
K

∑
i

[
L̂ℓnll
Z (f(x; ŵi))

]
and L2(ρ̂) = 1

K

∑
i h
(
∥ŵi∥22

)
we note

that both L1 and L2 are in general unbounded. To obtain a high-probability bound on
Eρ̂∼AE(y,x)∼D

[
− ln 1

K

∑
i [p(y|x, f(x; ŵi))]

]
we need additional conditions on A namely that

it outputs ρ̂ such that L1(ρ̂) ≤ B and L2(ρ̂) ≤ C where B,C are positive constants.

Then, for a finite sample R ∈ Ar and using Hoeffding’s inequality and applying a union bound we
can write

Eρ̂∼AE(y,x)∼D

− ln
1

K

∑
i∈ρ̂

[p(y|x, f(x; ŵi))]


≤ 1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

[
L̂ℓnll
Z (f(x; ŵi))

]+

√
B2 ln 1/b

2r

−
(
1− γ

2

) K − 1

2cK
+

1

r

∑
ρ̂∈R

 1

K

∑
i∈ρ̂

h
(
∥ŵi∥22

)+

√
C2 ln 1/c

2r
,

which holds with probability 1 − (δ + b + c) over the random draws of U ∈ Dm, Z ∈ Dn and
R ∈ Ar for b, c ∈ (0, 1). The bound still holds for the expectation over ρ̂ ∼ A and not with high
probability for a single draw from A. It guarantees that on average, ensembles that fit the training
data and the randomly labeled data well, while having low complexity will generalize well to unseen
data. In our experimental section, however, we have found that optimizing a single ensemble using
our ν-ensemble objective achieves all the desirable properties.

C TOY EXAMPLE

We investigate using a toy example the effect of varying the number of training and unlabeled sam-
ples. We first generate labeled data by setting y = sin(x). We then create multiple pseudo-labeled
datasets by sampling x ∼ N (0, I) once and then sampling yx ∼ N (0, I)∀x, K times where K is
the ensemble size. We compare two predictors. One is a single SVM that fits only the training data
(black curve). The second is an ensemble of K SVMs where each regressor fits the training data
together with one of the K unlabeled datasets (purple curve). We fit the data using a support vector
regressor with a gaussian kernel and the default hyperparameter values of scikit-learn Buitinck et al.
(2013). In 1a when the number of training samples is small and the number of unlabeled samples
is not too large, our ensemble learns to both fit the training data as well as have high uncertainty
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(a) |Ztrain| = 10, |Zunlabeled| =
10

(b) |Ztrain| = 10, |Zunlabeled| =
200

(c) |Ztrain| =
200, |Zunlabeled| = 10

Figure 1: Left: the ensemble fits the training data and also has high uncertainty out-of-sample.
Middle: the ensemble underfits the training dataset. Right: the size of the training dataset is large
making the unlabeled data redundant or even detrimental to performance.

out-of-sample. In 1b when the unlabeled dataset becomes too large it also covers the space that the
training datapoints cover. We see that then the ensemble underfits the data. In 1c when the size of
the training dataset is large we do not need unlabeled data (and we might even hurt performance if
we force our ensemble to fit an unlabeled dataset).

D SAMPLING WITHOUT REPLACEMENT

Proposition 1. Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling distribution
R which for each sample (x, ·) ∈ U selects K ≤ c labels from [1, . . . , c] randomly without replace-
ment such that yr ∈ [1, . . . , c]K . Let A be an algorithm that takes yr as input and generates an
ensemble ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=
K − 1

2cK
(11)

where the randomness is over yr and we suppress the index for the different unlabeled points.

Proof. We first discuss some preliminaries. We assume that each ensemble member fits the label
assigned to it perfectly. Given a sample (x, y) and K randomly sampled labels yr ∈ [1, . . . , c]K ,
without replacement, where only the ath label is the true label y, we have p(y|x,wa) = 1 and
p(y|x,wi) = 0, ∀i ̸= a.

The expectation of the variance term can now be simply obtained by separating the cases when y is
in the random labels yr ∈ [1, . . . , c]K and the cases when it is not. We get

Eρ̂∼A

[
V̂(ρ̂)

]
= Eρ̂∼A

 1

2m

∑
(x,y)∈U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

2m

∑
U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2
 ·
∫

I{y in randomized labels}dr

+
1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2
 ·
∫

I{y not in randomized labels}dr


=

1

2m

∑
U

[
K − 1

K2
·
∫

I{y in randomized labels}dr + 0 ·
∫

I{y not in randomized labels}dr
]

=
1

2m

∑
U

K − 1

K2
· K
c

=
K − 1

2cK
.

(12)
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In line 4 we used the fact that the probability of sampling label y in K trials without replacement
from a pool of c labels is K

c .

In line 3 we used the fact that the term 1
K

∑
j

[(
p(y|x,wj)− 1

K

∑
i (p(y|x,wi))

)2]
only has two

possible values.

Let the true label y be in the K sampled labels, specifically let us assume that it is the ath sampled
label. We can write

1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

K

∑
j


p(y|x,wj)−

1

K

p(y|x,wa) +
∑
i ̸=a

p(y|x,wi)

2


=
1

K

∑
j

[(
p(y|x,wj)−

1

K
(1 + 0)

)2
]

=
1

K

[(p(y|x,wa)−
1

K

)2
]
+
∑
j ̸=a

[(
p(y|x,wj)−

1

K

)2
]

=
1

K

([(
1− 1

K

)2
]
+ (K − 1) ·

[(
0− 1

K

)2
])

=
K − 1

K2
.

(13)

Now let the true label y not be in the K sampled labels. We get

1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

K

∑
j

[(
p(y|x,wj)−

1

K
· 0
)2
]

=
1

K

∑
j

[
(0− 0)

2
]

= 0,

(14)

where we use the fact that p(y|x,wi) = 0, ∀i if ensemble member i does not fit the true label y but
another random label.

E SAMPLING WITH REPLACEMENT

Here we analyze the more complicated case of sampling with replacement. The crucial point is
taking into account that the value of the variance term can be cast as the expectation of a function
determined only by the number of times we draw the correct class y. We then use the fact that being
successful r times in K independent trials with a probability p = 1

c of success corresponds to a
Binomial distribution with parameters K and p = 1

c .

Proposition 2. Assume an unlabeled set U ∈ Dm, c number of classes, and a labeling distribution
R which for each sample (x, ·) ∈ U selectsK ≤ c labels from [1, . . . , c] randomly with replacement

5
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such that yr ∈ [1, . . . , c]K . Let A be an algorithm that takes yr as input and generates an ensemble
ρ̂(w) = 1

K

∑
i δ(w = ŵi) such that ∀i, f(x, ŵi) perfectly fits yr[i]

Eρ̂∼A

[
V̂(ρ̂)

]
=

1

2

[∑
r

h(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

(15)

where h(r) = 1
K

[
r ·
(
1− r

K

)2
+ (K − r) ·

(
r
K

)2]
, the randomness is over yr and we suppress

the index for the different unlabeled points.

Proof. To analyze this case we need to first assume that given a datasample (x, y) the value of
1
K

∑
j

[(
p(y|x,wj)− 1

K

∑
i (p(y|x,wi))

)2]
only depends on r the number of times we sample

the true label y in K trials with replacement from a pool of c possible labels. Let’s then assume that
the values are given from a function h(r), it is obvious that what we are evaluating is the expectation
of the function h(r) under the Binomial distribution. We get

Eρ̂∼A

[
V̂(ρ̂)

]
= Eρ̂∼A

 1

2m

∑
U

 1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

2m

∑
U

[∑
r

h(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

=
1

2

[∑
r

h(r)

(
K

r

)(
1

c

)r (
1− 1

c

)K−r
]

(16)

where in line 3 we used the fact that the internal expectation is the same for all values in U .

To derive the form of h(r) we first assume that given a sample (x, y) only r out of K trials with
replacement sample the true label y. Denote the set of r ensemble members that fit the true label y
as S. We then get

1

K

∑
j

(p(y|x,wj)−
1

K

∑
i

(p(y|x,wi))

)2


=
1

K

∑
j

(p(y|x,wj)−
1

K

(∑
i∈S

p(y|x,wi) +
∑
i/∈S

p(y|x,wi)

))2


=
1

K

∑
j

[(
p(y|x,wj)−

1

K
(r · 1 + 0)

)2
]

=
1

K

∑
j∈S

[(
p(y|x,wj)−

r

K

)2]
+
∑
j /∈S

[(
p(y|x,wj)−

r

K

)2]
=

1

K

[
r ·
(
1− r

K

)2
+ (K − r) ·

(
0− r

K

)2]
=

1

K

[
r ·
(
1− r

K

)2
+ (K − r) ·

( r
K

)2]
= h(r)

(17)
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Figure 2: We consider c = 10 and K ∈ [1, . . . , 10] and plot the variance term Eρ̂∼A

[
V̂(ρ̂)

]
with

and without replacement. We see that sampling with replacement results in higher variance for the
same number of ensemble members and thus higher diversity for the corresponding ensemble.

Table 1: With replacement vs without replacement. We analyze the case of ID performance,
1000 training samples, 10 ensemble members. Sampling the random labels in ν-ensembles without
replacement, on average results in improvements in calibration metrics such the ECE, the Brier Reli-
ability and the Negative Log-Likelihood. The accuracy and the TACE remain relatively unchanged.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓
CIFAR-10 w/ replacement 0.510 0.137 0.030 0.120 1.680 1.236
/ LeNet w/o replacement 0.514 0.131 0.028 0.117 1.650 1.245

CIFAR-10 w/ replacement 0.401 0.083 0.022 0.087 1.753 1.650
/ MLP w/o replacement 0.401 0.098 0.023 0.092 1.767 1.559
CIFAR-10 w/ replacement 0.520 0.016 0.020 0.090 1.471 0.699
/ ResNet22 w/o replacement 0.525 0.013 0.018 0.087 1.460 0.691

CIFAR-100 w/ replacement 0.145 0.220 0.006 0.151 5.343 1.988
/ LeNet w/o replacement 0.147 0.155 0.006 0.113 4.846 1.654
CIFAR-100 w/ replacement 0.103 0.116 0.005 0.078 4.447 3.047
/ MLP w/o replacement 0.103 0.040 0.004 0.049 4.171 2.807
CIFAR-100 w/ replacement 0.134 0.093 0.006 0.074 4.266 1.086
/ ResNet22 w/o replacement 0.134 0.135 0.006 0.099 4.892 1.476

mean diff. w/o - w/ -0.001 -0.015 -0.0006 -0.010 -0.033 -0.031

F SAMPLING WITH REPLACEMENT VS SAMPLING WITHOUT REPLACEMENT

We first plot the theoretical variance when sampling with replacement compared to when sampling
without replacement. We see that sampling with replacement results in higher variance for the same
number of ensemble members and thus higher diversity for the corresponding ensemble.

We perform the CIFAR-10 and CIFAR-100 experiments with an ensemble size of 10, using sampling
with and without replacement and compare the results in Table 1. In the last row we compute the
average difference between the metrics when sampling without replacement compared to sampling
with replacement. We see that on average sampling without replacement results in improvements
across different calibration metrics such as the ECE, Brier Reliability and Negative Log-Likelihood.
The accuracy and the TACE remain relatively unchanged. At the same time the diversity of the
ensemble also improves. These results validate our theoretical analysis, and further motivate im-
proving the ensemble diversity using labels sampled without replacement.
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Table 2: ID performance, 1000 training samples, 10 ensemble members. ν-ensembles retain ap-
proximately the same accuracy as standard ensembles. At the same time, they achieve significantly
better calibration in all calibration metrics. These results are consistent with the experiments for the
CIFAR-10 and the CIFAR-100. The only outlier is the ResNet22 architecture for the STL10 dataset,
where ν-ensembles underfit the data.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓
SVHN Standard 0.618 0.138 0.028 0.114 1.679 1.561
/ LeNet ν-ensembles 0.605 0.083 0.023 0.102 1.371 1.792

SVHN Standard 0.474 0.252 0.047 0.170 2.748 1.733
/ MLP ν-ensembles 0.471 0.157 0.037 0.128 2.008 1.653
SVHN Standard 0.707 0.070 0.019 0.098 1.012 0.921
/ ResNet22 ν-ensembles 0.700 0.070 0.019 0.096 0.988 0.906

STL10 Standard 0.309 0.045 0.018 0.051 1.91 1.821
/ LeNet ν-ensembles 0.310 0.020 0.017 0.043 1.896 1.854

STL10 Standard 0.302 0.021 0.016 0.037 1.905 1.714
/ MLP ν-ensembles 0.302 0.013 0.015 0.033 1.897 1.660
STL10 Standard 0.302 0.037 0.018 0.045 1.898 0.865
/ ResNet22 ν-ensembles 0.278 0.217 0.050 0.134 2.423 0.642

G ADDITIONAL DATASETS

Here we explore additional datasets, the SVHN dataset (Buitinck et al., 2013) and the STL10 dataset
(Coates et al., 2011). We use 1000 training samples, 3000 validation samples, 1000 unlabeled
samples and the original test sets for both datasets. We plot the results in table 2. We see that
on average the results much those for the CIFAR-10 and CIFAR-100 case. ν-ensembles achieve
improvements in calibration while typically not hurting accuracy.

H EXPERIMENTS WITH MULTIPLE SEEDS

Here we conduct experiments with multiple seeds so as to ensure that our results are robust. Specifi-
cally, we repeat the experiments for Standard and ν-ensembles on CIFAR-10 and CIFAR-100 with 3
seeds for each ensemble member and plot the results in 3. We see that the results are approximately
the same as single seed experiments.

I EXPERIMENTAL SETUP

We ran all experiments using A100, and V100 NVIDIA GPUs on our cluster. In to-
tal, the experiments consumed approximately 10000 hours of GPU time. The im-
plementations were done in JAX Bradbury et al. (2018). While data loading was
done in Tensorflow Abadi et al. (2015). For ν-ensembles, for the LeNet architec-
ture we investigated epochs in the range [100, 120, 140, 160, 180, 200, 220, 240, 260],
for the MLP [100, 120, 140, 160, 180, 200, 220, 240, 260], for the ResNet
[200, 220, 250, 270, 300, 320, 350, 370, 400]. For the regularization strength, we searched in
the range [1, 0.1, 0.05, 0.01, 0] and for the optimizer learning rate in [0.0001, 0.001]. We investi-
gated the same epoch and learning rate ranges for Standard ensembles. Agree to Disagree ensembles
contain a single hyperparameter α. We tested values in the range [1, 0.1, 0.01, 0.001, 0.0001].
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Table 3: ID performance, 1000 training samples, 10 ensemble members, 3 seeds. ν-ensembles
retain the same performance as the single seed experiments.

Dataset / Aug Method Acc ↑ ECE ↓ TACE ↓ Brier Rel. ↓ NLL ↓ MI ↓
CIFAR-10 Standard 0.516 0.176 0.034 0.133 2.043 1.320
/ LeNet ν-ensembles 0.506 0.133 0.028 0.118 1.664 1.201

CIFAR-10 Standard 0.399 0.205 0.043 0.144 2.078 1.622
/ MLP ν-ensembles 0.399 0.086 0.023 0.087 1.782 1.525

CIFAR-10 Standard 0.527 0.087 0.024 0.106 1.690 0.939
/ ResNet22 ν-ensembles 0.527 0.014 0.017 0.082 1.436 0.675

CIFAR-100 Standard 0.149 0.300 0.007 0.212 8.817 2.276
/ LeNet ν-ensembles 0.147 0.186 0.006 0.131 5.115 1.826

CIFAR-100 Standard 0.101 0.183 0.007 0.114 5.173 3.142
/ MLP ν-ensembles 0.103 0.156 0.006 0.106 4.906 3.014

CIFAR-100 Standard 0.137 0.196 0.007 0.141 7.810 1.688
/ ResNet22 ν-ensembles 0.135 0.135 0.006 0.099 4.922 1.475
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