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Abstract
In real-world online web systems, multiple users usually arrive sequentially into1

the system. For applications like click fraud and fake reviews, some users can2

maliciously perform corrupted (disrupted) behaviors to trick the system. There-3

fore, it is crucial to design efficient online learning algorithms to robustly learn4

from potentially corrupted user behaviors and accurately identify the corrupted5

users in an online manner. Existing works propose bandit algorithms robust to6

adversarial corruption. However, these algorithms are designed for a single user,7

and cannot leverage the implicit social relations among multiple users for more8

efficient learning. Moreover, none of them consider how to detect corrupted users9

online in the multiple-user scenario. In this paper, we present an important on-10

line learning problem named LOCUD to learn and utilize unknown user relations11

from disrupted behaviors to speed up learning, and identify the corrupted users in12

an online setting. To robustly learn and utilize the unknown relations among po-13

tentially corrupted users, we propose a novel bandit algorithm RCLUB-WCU. To14

detect the corrupted users, we devise a novel online detection algorithm OCCUD15

based on RCLUB-WCU’s inferred user relations. We prove a regret upper bound16

for RCLUB-WCU, which asymptotically matches the lower bound with respect17

to T up to logarithmic factors, and matches the state-of-the-art results in degen-18

erate cases. We also give a theoretical guarantee for the detection accuracy of19

OCCUD. With extensive experiments, our methods achieve superior performance20

over previous bandit algorithms and high corrupted user detection accuracy.21

1 Introduction22

In real-world online recommender systems, data from many users arrive in a streaming fashion23

[4, 15, 2, 7]. There may exist some corrupted (malicious) users, whose behaviors (e.g., click, rating)24

can be adversarially corrupted (disrupted) over time to fool the system [26, 27, 12, 10, 9]. These25

corrupted behaviors could disrupt the user preference estimations of the algorithm. As a result, the26

system would easily be misled and make sub-optimal recommendations [14, 22, 7], which would27

hurt the user experience. Therefore, it is essential to design efficient online learning algorithms to28

robustly learn from potentially disrupted behaviors and detect corrupted users in an online manner.29

There exist some works on bandits with adversarial corruption [26, 9, 21, 5, 12]. However, they30

have the following limitations. First, existing algorithms are initially designed for robust online31

preference learning of a single user. In real-world scenarios with multiple users, they cannot robustly32

infer and utilize the implicit user relations for more efficient learning. Second, none of them consider33

how to identify corrupted users online in the multiple-user scenario. Though there also exist some34

works on corrupted user detection [31, 6, 34, 25, 13], they all focus on detection with known user35

information in an offline setting, thus can not be applied to do online detection from bandit feedback.36

To address these limitations, we propose a novel bandit problem “Learning and Online Corrupted37

Users Detection from bandit feedback” (LOCUD). To model and utilize the relations among users,38

we assume there is an unknown clustering structure over users, where users with similar preferences39

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



lie in the same cluster [8, 18, 20]. The agent can infer the clustering structure to leverage the40

information of similar users for better recommendations. Among these users, there exists a small41

fraction of corrupted users. They can occasionally perform corrupted behaviors to fool the agent [12,42

26, 27, 9] while mimicking the behaviors of normal users most of the time to make themselves hard43

to discover. The agent not only needs to learn the unknown user preferences and relations robustly44

from potentially disrupted feedback, balance the exploration-exploitation trade-off to maximize the45

cumulative reward, but also needs to detect the corrupted users online from bandit feedback.46

The LOCUD problem is very challenging. First, the corrupted behaviors would cause inaccurate47

user preference estimations, which could lead to erroneous user relation inference and sub-optimal48

recommendations. Second, it is nontrivial to detect corrupted users online since their behaviors49

are dynamic over time (sometimes regular while sometimes corrupted), whereas, in the offline set-50

ting, corrupted users’ information can be fully represented by static embeddings and the existing51

approaches [17, 29] can typically do binary classifications offline, which are not adaptive over time.52

We propose a novel learning framework composed of two algorithms to address these challenges.53

RCLUB-WCU. To robustly estimate user preferences, learn the unknown relations from potentially54

corrupted behaviors, and perform high-quality recommendations, we propose a novel bandit algo-55

rithm “Robust CLUstering of Bandits With Corrupted Users” (RCLUB-WCU), which maintains a56

dynamic graph over users to represent the learned clustering structure, where users linked by edges57

are inferred to be in the same cluster. RCLUB-WCU adaptively deletes edges and recommends58

arms based on aggregated interactive information in clusters. We do the following to ensure robust59

clustering structure learning. (i) To relieve the estimation inaccuracy caused by disrupted behaviors,60

we use weighted ridge regressions for robust user preference estimations. Specifically, we use the61

inverse of the confidence radius to weigh each sample. If the confidence radius associated with user62

it and arm at is large at t, the learner is quite uncertain about the estimation of it’s preference on63

at, indicating the sample at t is likely to be corrupted. Therefore, we use the inverse of the confi-64

dence radius to assign minor importance to the possibly disrupted samples when doing estimations.65

(ii) We design a robust edge deletion rule to divide the clusters by considering the potential effect66

of corruptions, which, together with (i), can ensure that after some interactions, users in the same67

connected component of the graph are in the same underlying cluster with high probability.68

OCCUD. To detect corrupted users online, based on the learned clustering structure of RCLUB-69

WCU, we devise a novel algorithm named “Online Cluster-based Corrupted User Detection” (OC-70

CUD). At each round, we compare each user’s non-robustly estimated preference vector (by ridge71

regression) and the robust estimation (by weighted regression) of the user’s inferred cluster. If the72

gap exceeds a carefully-designed threshold, we detect this user as corrupted. The intuitions are as73

follows. With misleading behaviors, the non-robust preference estimations of corrupted users would74

be far from ground truths. On the other hand, with the accurate clustering of RCLUB-WCU, the ro-75

bust estimations of users’ inferred clusters should be close to ground truths. Therefore, for corrupted76

users, their non-robust estimates should be far from the robust estimates of their inferred clusters.77

We summarize our contributions as follows.78

• We present a novel online learning problem LOCUD, where the agent needs to (i) robustly learn79

and leverage the unknown user relations to improve online recommendation qualities under the80

disruption of corrupted user behaviors; (ii) detect the corrupted users online from bandit feedback.81

• We propose a novel online learning framework composed of two algorithms, RCLUB-WCU and82

OCCUD, to tackle the challenging LOCUD problem. RCLUB-WCU robustly learns and utilizes the83

unknown social relations among potentially corrupted users to efficiently minimize regret. Based on84

RCLUB-WCU’s inferred user relations, OCCUD accurately detects corrupted users online.85

• We prove a regret upper bound for RCLUB-WCU, which matches the lower bound asymptotically86

in T up to logarithmic factors and matches the state-of-the-art results in several degenerate cases.87

We also give a theoretical performance guarantee for the online detection algorithm OCCUD.88

• Experiments on both synthetic and real-world data clearly show the advantages of our methods.89

2 Related Work90

Our work is related to bandits with adversarial corruption and bandits leveraging user relations.91

The work [26] first studies stochastic bandits with adversarial corruption, where the rewards are92

corrupted with the sum of corruption magnitudes in all rounds constrained by the corruption level C.93

They propose a robust elimination-based algorithm. The paper [9] proposes an improved algorithm94
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with a tighter regret bound. The paper [21] first studies stochastic linear bandits with adversarial95

corruptions. To tackle the contextual linear bandit setting where the arm set changes over time, the96

work [5] proposes a variant of the OFUL [1] that achieves a sub-linear regret. A recent work [12]97

proposes the CW-OFUL algorithm that achieves a nearly optimal regret bound. All these works98

focus on designing robust bandit algorithms for a single user; none consider how to robustly learn99

and leverage the implicit relations among potentially corrupted users for more efficient learning.100

Moreover, none of them consider how to online detect corrupted users in the multiple-user case.101

Some works study how to leverage user relations to accelerate the bandit learning process in the102

multiple-user case. The work [33] utilizes a known user adjacency graph to share context and payoffs103

among neighbors. To adaptively learn and utilize unknown user relations, the paper [8] proposes the104

clustering of bandits (CB) problem where there is an unknown user clustering structure to be learned105

by the agent. The work [19] uses collaborative effects on items to guide the clustering of users.106

The paper [18] studies the CB problem in the cascading bandit setting. The work [20] considers the107

setting where users in the same cluster share both the same preference and the same arrival rate. The108

paper [24] studies the federated CB problem, considering privacy and communication issues. All109

these works only consider utilizing the relations among normal users; none of them consider how to110

robustly learn the user relations from potentially disrupted behaviors, thus would easily be misled by111

corrupted users. Also, none of them consider how to detect corrupted users from bandit feedback.112

To the best of our knowledge, this is the first work to study the problem to (i) learn the unknown user113

relations and preferences from potentially corrupted feedback, and leverage the learned relations to114

speed up learning; (ii) adaptively detect the corrupted users online from bandit feedback.115

3 Problem Setup116
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Figure 1: Illustration of LOCUD. The unknown user
relations are represented by dotted circles, e.g., user 3,
7 have similar preferences and thus can be in the same
user segment (i.e., cluster). Users 6 and 8 are corrupted
users with dynamic behaviors over time (e.g., for user
8, the behaviors are normal at t1 and t3 (blue), but
are adversarially corrupted at t2 and t4 (red)[26, 12]),
making them hard to be detected online. The agent
needs to learn user relations to utilize information
among similar users to speed up learning, and detect
corrupted users 6, 8 online from bandit feedback.

This section formulates the problem117

of “Learning and Online Corrupted118

Users Detection from bandit feedback”119

(LOCUD) (illustrated in Fig.1). We denote120

∥x∥M =
√
x⊤Mx, [m] = {1, . . . ,m},121

number of elements in set A as |A|.122

In LOCUD, there are u users, which we123

denote by set U = {1, 2, . . . , u}. Some124

of them are corrupted users, denoted by125

set Ũ ⊆ U . These corrupted users, on126

the one hand, try to mimic normal users127

to make themselves hard to detect; on the128

other hand, they can occasionally perform129

corrupted behaviors to fool the agent into130

making sub-optimal decisions. Each user131

i ∈ U , no matter a normal one or corrupted132

one, is associated with a (possibly mim-133

icked for corrupted users) preference fea-134

ture vector θi ∈ Rd that is unknown and135

∥θi∥2 ≤ 1. There is an underlying cluster-136

ing structure among all the users representing the similarity of their preferences, but it is unknown to137

the agent and needs to be learned via interactions. Specifically, the set of users U can be partitioned138

into m (m ≪ u) clusters, V1, V2, . . . Vm, where ∪j∈[m]Vj = U , and Vj ∩ Vj′ = ∅, for j ̸= j′. Users139

in the same cluster have the same preference feature vector, while users in different clusters have140

different preference vectors. We use θj to denote the common preference vector shared by users in141

the j-th cluster Vj , and use j(i) to denote the index of cluster user i belongs to (i.e., i ∈ Vj(i)). For142

any two users k, i ∈ U , if k ∈ Vj(i), then θk = θj(i) = θi; otherwise θk ̸= θi. We assume the arm143

set A ⊆ Rd is finite. Each arm a ∈ A is associated with a feature vector xa ∈ Rd with ∥xa∥2 ≤ 1.144

The learning process of the agent is as follows. At each round t ∈ [T ], a user it ∈ U comes to be145

served, and the learning agent receives a set of arms At ⊆ A to choose from. The agent infers the146

cluster Vt that user it belongs to based on the interaction history, and recommends an arm at ∈ At147

according to the aggregated information gathered in the cluster Vt. After receiving the recommended148

arm at, a normal user it will give a random reward with expectation x⊤
at
θit to the agent.149
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To model the behaviors of corrupted users, following [26, 9, 5, 12], we assume that they can occa-150

sionally corrupt the rewards to mislead the agent into recommending sub-optimal arms. Specifically,151

at each round t, if the current served user is a corrupted user (i.e., it ∈ Ũ), the user can corrupt the152

reward by ct. In summary, we model the reward received by the agent at round t as153

rt = x⊤
at
θit + ηt + ct ,

where ct = 0 if it is a normal user, (i.e., it /∈ Ũ), and ηt is 1-sub-Gaussian random noise.154

As the number of corrupted users is usually small, and they only corrupt the rewards occasionally155

with small magnitudes to make themselves hard to detect, we assume the sum of corruption magni-156

tudes in all rounds is upper bounded by the corruption level C, i.e.,
∑T

t=1 |ct| ≤ C [26, 9, 5, 12].157

We assume the clusters, users, and items satisfy the following assumptions. Note that all these158

assumptions basically follow the settings from classical works on clustering of bandits [8, 18, 24].159

Assumption 1 (Gap between different clusters). The gap between any two preference vectors for160

different clusters is at least an unknown positive constant γ161 ∥∥∥θj − θj′
∥∥∥
2
≥ γ > 0 ,∀j, j′ ∈ [m] , j ̸= j′ .

Assumption 2 (Uniform arrival of users). At each round t, a user it comes uniformly at random162

from U with probability 1/u, independent of the past rounds.163

Assumption 3 (Item regularity). At each round t, the feature vector xa of each arm a ∈ At is drawn164

independently from a fixed unknown distribution ρ over {x ∈ Rd : ∥x∥2 ≤ 1}, where Ex∼ρ[xx
⊤]’s165

minimal eigenvalue λx > 0. At ∀t, for any fixed unit vector z ∈ Rd, (θ⊤z)2 has sub-Gaussian tail166

with variance no greater than σ2.167

Let a∗t ∈ argmaxa∈At
x⊤
a θit denote an optimal arm with the highest expected reward at round t.168

One objective of the learning agent is to minimize the expected cumulative regret169

R(T ) = E[
∑T

t=1(x
⊤
a∗
t
θit − x⊤

at
θit)] . (1)

Another objective is to detect corrupted users online accurately. Specifically, at round t, the agent170

will give a set of users Ũt as the detected corrupted users, and we want Ũt to be as close to the171

ground-truth set of corrupted users Ũ as possible.172

4 Algorithms173

This section introduces our algorithms RCLUB-WCU (Algo.1) and OCCUD (Algo.2). RCLUB-174

WCU robustly learns the unknown user clustering structure and preferences from corrupted feed-175

back, and leverages the cluster-based information to accelerate learning. Based on the clustering176

structure learned by RCLUB-WCU, OCCUD can accurately detect corrupted users online.177

4.1 RCLUB-WCU178

The corrupted behaviors may cause inaccurate preference estimations, leading to erroneous relation179

inference and sub-optimal decisions. In this case, how to learn and utilize unknown user relations to180

accelerate learning becomes non-trivial. Motivated by this, we design RCLUB-WCU as follows.181

Assign the inferred cluster Vt for user it. RCLUB-WCU maintains a dynamic undirected graph182

Gt = (U , Et) over users, which is initialized to be a complete graph (Algo.1 Line 2). Users with183

similar learned preferences will be connected with edges in Et. The connected components in the184

graph represent the inferred clusters by the algorithm. At round t, user it comes to be served with185

a feasible arm set At for the agent to choose from (Line 4). In Line 5, RCLUB-WCU detects the186

connected component Vt in the graph containing user it to be the current inferred cluster for it.187

Robust preference estimation of cluster Vt. After determining the cluster Vt, RCLUB-WCU esti-188

mates the common preferences for users in Vt using the historical feedback of all users in Vt and rec-189

ommends an arm accordingly. The corrupted behaviors could cause inaccurate preference estimates,190

which can easily mislead the agent. To address this, inspired by [35, 12], we use weighted ridge re-191

gression to make corruption-robust estimations. Specifically, RCLUB-WCU robustly estimates the192

common preference vector of cluster Vt by solving the following weighted ridge regression193

θ̂Vt,t−1 = argmin
θ∈Rd

∑
s∈[t−1]
is∈Vt

wis,s(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (2)
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Algorithm 1 RCLUB-WCU
1: Input: Regularization parameter λ, confidence radius parameter β, threshold parameter α, edge

deletion parameter α1, f(T ) =
√

(1 + ln(1 + T ))/(1 + T ).
2: Initialization: M i,0 = 0d×d, bi,0 = 0d×1, M̃ i,0 = 0d×d, b̃i,0 = 0d×1, Ti,0 = 0 , ∀i ∈ U ;

A complete graph G0 = (U , E0) over U .
3: for all t = 1, 2, . . . , T do
4: Receive the index of the current served user it ∈ U , get the feasible arm set at this round At.
5: Determine the connected components Vt in the current maintained graph Gt−1 = (U , Et−1)

such that it ∈ Vt.
6: Calculate the robustly estimated statistics for the cluster Vt:

MVt,t−1 = λI +
∑

i∈Vt
M i,t−1 , bVt,t−1 =

∑
i∈Vt

bi,t−1 , θ̂Vt,t−1 = M−1
Vt,t−1bVt,t−1 ;

7: Select an arm at with largest UCB index in Eq.(3) and receive the corresponding reward rt;
8: Update the statistics for robust estimation of user it:

M it,t = M it,t−1 + wit,t−1xat
x⊤
at
, bit,t = bit,t−1 + wit,t−1rtxat

, Tit,t = Tit,t−1 + 1 ,

M ′
it,t = λI +M it,t, θ̂it,t = M ′−1

it,t
bit,t , wit,t = min{1, α/∥xat

∥M ′−1
it,t

} ;
9: Keep robust estimation statistics of other users unchanged:

M ℓ,t = M ℓ,t−1, bℓ,t = bℓ,t−1, Tℓ,t = Tℓ,t−1 , θ̂ℓ,t = θ̂ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it;
10: Delete the edge (it, ℓ) ∈ Et−1, if∥∥∥θ̂it,t − θ̂ℓ,t

∥∥∥
2
≥ α1

(
f(Tit,t) + f(Tℓ,t) + αC

)
,

and get an updated graph Gt = (U , Et);
11: Use the OCCUD Algorithm (Algo.2) to detect the corrupted users.
12: end for

where λ > 0 is a regularization coefficient. Its closed-form solution is θ̂Vt,t−1 = M−1
Vt,t−1bVt,t−1 ,194

where MVt,t−1 = λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as

, bVt,t−1 =
∑

s∈[t−1]
is∈Vt

wis,sras
xas

.195

We set the weight of sample for user is in Vt at round s as wis,s = min{1, α/ ∥xas
∥M ′−1

is,s
}, where196

α is a coefficient to be determined later. The intuitions of designing these weights are as follows.197

The term ∥xas
∥M ′−1

is,s
is the confidence radius of arm as for user is at s, reflecting how confident198

the algorithm is about the estimation of is’s preference on as at s. If ∥xas
∥M ′−1

is,s
is large, it means199

the agent is uncertain of user is’s preference on as, indicating this sample is probably corrupted.200

Therefore, we use the inverse of confidence radius to assign a small weight to this round’s sample if201

it is potentially corrupted. In this way, uncertain information for users in cluster Vt is assigned with202

less importance when estimating the Vt’s preference vector, which could help relieve the estimation203

inaccuracy caused by corruption. For technical details, please refer to Section 5.1 and Appendix.204

Recommend at with estimated preference of cluster Vt. Based on the corruption-robust pref-205

erence estimation θ̂Vt,t−1 of cluster Vt, in Line 7, the agent recommends an arm using the upper206

confidence bound (UCB) strategy to balance exploration and exploitation207

at = argmaxa∈At
x⊤
a θ̂Vt,t−1 + β ∥xa∥M−1

Vt,t−1
≜ R̂a,t + Ca,t , (3)

where β =
√
λ+
√
2 log(1δ ) + d log(1 + T

λd )+αC is the confidence radius parameter, R̂a,t denotes208

the estimated reward of arm a at t, Ca,t denotes the confidence radius of arm a at t. The design of209

Ca,t theoretically relies on Lemma 2 that will be given in Section 5.210

Update the robust estimation of user it. After receiving rt, the algorithm updates the estimation211

statistics of user it, while keeping the statistics of others unchanged (Line 8 and Line 9). Specifically,212

RCLUB-WCU estimates the preference vector of user it by solving a weighted ridge regression213

θ̂it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

wis,s(rs − x⊤
as
θ)2 + λ ∥θ∥22 (4)

with closed-form solution θ̂it,t = (λI +M it,t)
−1

bit,t , where M it,t =
∑

s∈[t]
is=it

wis,sxas
x⊤
as

,214

bit,t =
∑

s∈[t]
is=it

wis,srasxas , and we design the weights in the same way by the same reasoning.215

Update the dynamic graph. Finally, with the updated statistics of user it, RCLUB-WCU checks216
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Algorithm 2 OCCUD (At round t, used in Line 11 in Algo.1)

1: Initialize Ũt = ∅; input probability parameter δ.
2: Update the statistics for non-robust estimation of user it

M̃ it,t = M̃ it,t−1 + xat
x⊤
at

, b̃it,t = b̃it,t−1 + rtxat
, θ̃it,t = (λI + M̃ it,t)

−1b̃it,t ,
3: Keep non-robust estimation statistics of other users unchanged

M̃ ℓ,t = M̃ ℓ,t−1, b̃ℓ,t = b̃ℓ,t−1, θ̃ℓ,t = θ̃ℓ,t−1, for all ℓ ∈ U , ℓ ̸= it .
4: for all connected component Vj,t ∈ Gt do
5: Calculate the robust estimation statistics for the cluster Vj,t:

MVj,t,t = λI +
∑

ℓ∈Vj,t
M ℓ,t , TVj,t,t =

∑
ℓ∈Vj,t

Tℓ,t ,

bVj,t,t =
∑

ℓ∈Vj,t
bℓ,t , θ̂Vj,t,t = M−1

Vj,t,t
bVj,t,t ;

6: for all user i ∈ Vj,t do
7: Detect user i to be a corrupted user and add user i to the set Ũt if the following holds:

∥∥∥θ̃i,t − θ̂Vi,t,t

∥∥∥
2
>

√
d log(1 +

Ti,t

λd
) + 2 log( 1

δ
) +

√
λ√

λmin(M̃ i,t) + λ
+

√
d log(1 +

TVi,t,t

λd
) + 2 log( 1

δ
) +

√
λ+ αC√

λmin(MVi,t,t)
,

(5)

where λmin(·) denotes the minimum eigenvalue of the matrix argument.
8: end for
9: end for

whether the inferred it’s preference similarities with other users are still true, and updates the graph217

accordingly. Precisely, if gap between the updated estimation θ̂it,t of it and the estimation θ̂ℓ,t of218

user ℓ exceeds a threshold in Line 10, RCLUB-WCU will delete the edge (it, ℓ) in Gt−1 to split them219

apart. The threshold is carefully designed to handle the estimation uncertainty from both stochastic220

noises and potential corruptions. The updated graph Gt = (U , Et) will be used in the next round.221

4.2 OCCUD222

Based on the inferred clustering structure of RCLUB-WCU, we devise a novel online detection223

algorithm OCCUD (Algo.2). The design ideas and process of OCCUD are as follows.224

Besides the robust preference estimations (with weighted regression) of users and clusters kept by225

RCLUB-WCU, OCCUD also maintains the non-robust estimations for each user by online ridge226

regression without weights (Line 2 and Line 3). Specifically, at round t, OCCUD updates the non-227

robust estimation of user it by solving the following online ridge regression:228

θ̃it,t = argmin
θ∈Rd

∑
s∈[t]
is=it

(rs − x⊤
as
θ)2 + λ ∥θ∥22 , (6)

with solution θ̃it,t = (λI + M̃ it,t)
−1

b̃it,t , where M̃ it,t =
∑

s∈[t]
is=it

xasx
⊤
as

, b̃it,t =
∑

s∈[t]
is=it

rasxas .229

With the robust and non-robust preference estimations, OCCUD does the following to detect cor-230

rupted users based on the clustering structure inferred by RCLUB-WCU. First, OCCUD finds the231

connected components in the graph kept by RCLUB-WCU, which represent the inferred clusters.232

Then, for each inferred cluster Vj,t ∈ Gt: (1) OCCUD computes its robustly estimated preferences233

vector θ̂Vi,t,t (Line 5). (2) For each user i whose inferred cluster is Vj,t (i.e.,i ∈ Vj,t), OCCUD234

computes the gap between user i’s non-robustly estimated preference vector θ̃i,t and the robust es-235

timation θ̂Vi,t,t for user i’s inferred cluster Vj,t. If the gap exceeds a carefully-designed threshold,236

OCCUD will detect user i as corrupted and add i to the detected corrupted user set Ũt (Line 7).237

The intuitions of OCCUD are as follows. On the one hand, after some interactions, RCLUB-WCU238

will infer the user clustering structure accurately. Thus, at round t, the robust estimation θ̂Vi,t,t for239

user i’s inferred cluster should be pretty close to user i’s ground-truth preference vector θi. On the240

other hand, since the feedback of normal users are always regular, at round t, if user i is a normal241

user, the non-robust estimation θ̃i,t should also be close to the ground-truth θi. However, the non-242

robust estimation of a corrupted user should be quite far from the ground truth due to corruptions.243

Based on this reasoning, OCCUD compares each user’s non-robust estimation and the robust esti-244
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(b) OCCUD

Figure 2: Algorithm illustrations. Users 6 and 8 are corrupted users (orange), and the others are
normal (green). (a) illustrates RCLUB-WCU, which starts with a complete user graph, and adap-
tively deletes edges between users (dashed lines) with dissimilar robustly learned preferences. The
corrupted behaviors of users 6 and 8 may cause inaccurate preference estimations, leading to erro-
neous relation inference. In this case, how to delete edges correctly is non-trivial, and RCLUB-WCU
addresses this challenge (detailed in Section 4.1). (b) illustrates OCCUD at some round t, where per-
son icons with triangle hats represent the non-robust user preference estimations. The gap between
the non-robust estimation of user 6 and the robust estimation of user 6’s inferred cluster (circle C1)
exceeds the threshold r6 at this round (Line 7 in Algo.2), so OCCUD detects user 6 to be corrupted.

mation of the user’s inferred cluster to detect the corrupted users. For technical details, please refer245

to Section 5.2 and Appendix. Simple illustrations of our proposed algorithms can be found in Fig.2.246

5 Theoretical Analysis247

In this section, we theoretically analyze the performances of our proposed algorithms, RCLUB-248

WCU and OCCUD. Due to the page limit, we put the proofs in the Appendix.249

5.1 Regret Analysis of RCLUB-WCU250

This section gives an upper bound of the expected regret (defined in Eq.(1)) for RCLUB-WCU.251

The following lemma provides a sufficient time T0(δ), after which RCLUB-WCU can cluster all the252

users correctly with high probability.253

Lemma 1. With probability at least 1− 3δ, RCLUB-WCU will cluster all the users correctly after254

T0(δ) ≜ 16u log(
u

δ
) + 4umax{ 288d

γ2α
√
λλ̃x

log(
u

δ
),

16

λ̃2
x

log(
8d

λ̃2
xδ

),
72

√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

for some δ ∈ (0, 1
3 ), where λ̃x ≜

∫ λx

0
(1− e−

(λx−x)2

2σ2 )Kdx, |At| ≤ K,∀t ∈ [T ].255

After T0(δ), the following lemma gives a bound of the gap between θ̂Vt,t−1 and the ground-truth256

θit in direction of action vector xa for RCLUB-WCU, which supports the design in Eq.(3).257

Lemma 2. With probability at least 1− 4δ for some δ ∈ (0, 1
4 ), ∀t ≥ T0(δ), we have:258 ∣∣∣xT

a (θ̂Vt,t−1 − θit)
∣∣∣ ≤ β ∥xa∥M−1

Vt,t−1
≜ Ca,t .

With Lemma 1 and 2, we prove the following theorem on the regret upper bound of RCLUB-WCU.259

Theorem 3 (Regret Upper Bound of RCLUB-WCU). With the assumptions in Section 3, and260

picking α =
√
d+

√
λ

C , the expected regret of the RCLUB-WCU algorithm for T rounds satisfies261

R(T ) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T )
)
+O

(
d
√
mT log(T )

)
+O

(
mCd log1.5(T )

)
. (7)

Discussion and Comparison. The regret bound in Eq.(7) has three terms. The first term is the time262

needed to get enough information for accurate robust estimations such that RCLUB-WCU could263

cluster all users correctly afterward with high probability. This term is related to the corruption264

level C, which is inevitable since, if there are more corrupted user feedback, it will be harder for the265

algorithm to learn the clustering structure correctly. The last two terms correspond to the regret after266

T0 with the correct clustering. Specifically, the second term is caused by stochastic noises when267

leveraging the aggregated information within clusters to make recommendations; the third term268

associated with the corruption level C is the regret caused by the disruption of corrupted behaviors.269
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When the corruption level C is unknown, we can use its estimated upper bound Ĉ ≜
√
T to replace270

C in the algorithm. In this way, if C ≤ Ĉ, the bound will be replacing C with Ĉ in Eq.(7); when271

C >
√
T , R(T ) = O(T ), which is already optimal for a large class of bandit algorithms [12].272

The following theorem gives a regret lower bound of the LOCUD problem.273

Theorem 4 (Regret lower bound for LOCUD). There exists a problem instance for the LOCUD274

problem such that for any algorithm275

R(T ) ≥ Ω(d
√
mT + dC) .

Its proof and discussions can be found in Appendix D. The upper bound in Theorem 3 asymptotically276

matches this lower bound in T up to logarithmic factors, showing our regret bound is nearly optimal.277

We then compare our regret upper bound with several degenerated cases. First, when C = 0, i.e.,278

all users are normal, our setting degenerates to the classic CB problem [8]. In this case the bound279

in Theorem 3 becomes O(1/λ̃2
x · u log(T )) + O(d

√
mT log(T )), perfectly matching the state-of-280

the-art results in CB [8, 18, 20]. Second, when m = 1 and u = 1, i.e., there is only one user, our281

setting degenerates to linear bandits with adversarial corruptions [21, 12], and the bound in Theorem282

3 becomes O(d
√
T log(T )) + O(Cd log1.5(T )), it also perfectly matches the nearly optimal result283

in [12]. The above comparisons also show the tightness of the regret bound of RCLUB-WCU.284

5.2 Theoretical Performance Guarantee for OCCUD285

The following theorem gives a performance guarantee of the online detection algorithm OCCUD.286

Theorem 5 (Theoretical Guarantee for OCCUD). With assumptions in Section 3, at ∀t ≥ T0(δ),287

for any detected corrupted user i ∈ Ũt, with probability at least 1− 5δ, i is indeed a corrupted user.288

This theorem guarantees that after RCLUB-WCU learns the clustering structure accurately, with289

high probability, the corrupted users detected by OCCUD are indeed corrupted, showing the high290

detection accuracy of OCCUD. The proof of Theorem 5 can be found in Appendix D.291

6 Experiments292

This section shows experimental results on synthetic and real data to evaluate RCLUB-WCU’s rec-293

ommendation quality and OCCUD’s detection accuracy. We compare RCLUB-WCU to LinUCB294

[1] with a single non-robust estimated vector for all users, LinUCB-Ind with separate non-robust295

estimated vectors for each user, CW-OFUL [12] with a single robust estimated vector for all users,296

CW-OFUL-Ind with separate robust estimated vectors for each user, CLUB[8], and SCLUB[20].297

More description of these baselines are in Appendix F. To show that the design of OCCUD is non-298

trivial, we develop a straightforward detection algorithm GCUD, which leverages the same cluster299

structure as OCCUD but detects corrupted users by selecting users with highest
∥∥∥θ̂i,t − θ̂Vi,t,t−1

∥∥∥
2

300

in each inferred cluster. GCUD selects users according to the underlying percentage of corrupted301

users, which is unrealistic in practice, but OCCUD still performs better in this unfair condition.302

Remark. The offline detection methods [34, 6, 17, 29] need to know all the user information in303

advance to derive the user embedding for classification, so they cannot be directly applied in online304

detection with bandit feedback thus cannot be directly compared to OCCUD. However, we observe305

the AUC achieved by OCCUD on Amazon and Yelp (in Tab.1) is similar to recent offline methods306

[17, 29]. Additionally, OCCUD has rigorous theoretical performance guarantee (Section 5.2).307

6.1 Experiments on Synthetic Dataset308

We use u = 1, 000 users and m = 10 clusters, where each cluster contains 100 users. We randomly309

select 100 users as the corrupted users. The preference and arm (item) vectors are drawn in d − 1310

(d = 50) dimensions with each entry a standard Gaussian variable and then normalized, added one311

more dimension with constant 1, and divided by
√
2 [20]. We fix an arm set with |A| = 1000 items,312

at each round, 20 items are randomly selected to form a set At to choose from. Following [35, 3],313

in the first k rounds, we always flip the reward of corrupted users by setting rt = −xT
at
θit,t + ηt.314

And we leave the remaining T − k rounds intact. Here we set T = 1, 000, 000 and k = 20, 000.315

Fig.3(a) shows the recommendation results. RCLUB-WCU outperforms all baselines and achieves316

a sub-linear regret. LinUCB and CW-OFUL perform worst as they ignore the preference differences317

among users. CW-OFUL-Ind outperforms LinUCB-Ind because it considers the corruption, but318

worse than RCLUB-WCU since it does not consider leveraging user relations to speed up learning.319
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Figure 3: Recommendation results on the synthetic and real-world datasets
The detection results are shown in Tab.1. We test the AUC of OCCUD and GCUD in every 200, 000320

rounds. OCCUD’s performance improves over time with more interactions, while GCUD’s perfor-321

mance is much worse as it detects corrupted users only relying on the robust estimations. OCCUD322

finally achieves an AUC of 0.855, indicating it can identify most of the corrupted users.323

6.2 Experiments on Real-world Datasets324

We use three real-world data Movielens [11], Amazon[28], and Yelp [30]. The Movielens data does325

not have the corrupted users’ labels, so following [23], we manually select the corrupted users. On326

Amazon data, following [34], we label the users with more than 80% helpful votes as normal users,327

and label users with less than 20% helpful votes as corrupted users. The Yelp data contains users328

and their comments on restaurants with true labels of the normal users and corrupted users.329

We select 1,000 users and 1,000 items for Movielens; 1,400 users and 800 items for Amazon; 2,000330

users and 2,000 items for Yelp. The ratios of corrupted users on these data are 10%, 3.5%, and331

30.9%, respectively. We generate the preference and item vectors following [32, 20]. We first332

construct the binary feedback matrix through the users’ ratings: if the rating is greater than 3, the333

feedback is 1; otherwise, the feedback is 0. Then we use SVD to decompose the extracted binary334

feedback matrix Ru×m = θSXT, where θ = (θi), i ∈ [u] and X = (xj), j ∈ [m], and select d =335

50 dimensions. We have 10 clusters on Movielens and Amazon, and 20 clusters on Yelp. We use the336

same corruption mechanism as the synthetic data with T = 1, 000, 000 and k = 20, 000. We conduct337

more experiments in different environments to show our algorithms’ robustness in Appendix.G.338

Dataset Alg
Time 0.2M 0.4M 0.6M 0.8M 1M

Synthetic OCCUD 0.599 0.651 0.777 0.812 0.855
GCUD 0.477 0.478 0.483 0.484 0.502

Movielens OCCUD 0.65 0.750 0.785 0.83 0.85
GCUD 0.450 0.474 0.485 0.489 0.492

Amazon OCCUD 0.639 0.735 0.761 0.802 0.840
GCUD 0.480 0.480 0.486 0.500 0.518

Yelp OCCUD 0.452 0.489 0.502 0.578 0.628
GCUD 0.473 0.481 0.496 0.500 0.510

Table 1: Detection results on synthetic and real datasets

The recommendation results are shown in339

Fig.3(b)-(d). RCLUB-WCU outperforms340

all baselines. On the Amazon dataset, the341

percentage of corrupted users is lowest,342

RCLUB-WCU’s advantages over base-343

lines decrease because of the weakened344

corruption. The corrupted user detection345

results are provided in Tab.1. OCCUD’s346

performance improves over time and is347

much better than GCUD. On the Movie-348

lens dataset, OCCUD achieves an AUC349

of 0.85; on the Amazon dataset, OCCUD350

achieves an AUC of 0.84; and on the Yelp dataset, OCCUD achieves an AUC of 0.628. According351

to recent works on offline settings [17, 29], our results are relatively high.352

7 Conclusion353

In this paper, we are the first to propose the novel LOCUD problem, where there are many users with354

unknown preferences and unknown relations, and some corrupted users can occasionally perform355

disrupted actions to fool the agent. Hence, the agent not only needs to learn the unknown user pref-356

erences and relations robustly from potentially disrupted bandit feedback, balance the exploration-357

exploitation trade-off to minimize regret, but also needs to detect the corrupted users over time. To358

robustly learn and leverage the unknown user preferences and relations from corrupted behaviors, we359

propose a novel bandit algorithm RCLUB-WCU. To detect the corrupted users in the online bandit360

setting, based on the learned user relations of RCLUB-WCU, we propose a novel detection algo-361

rithm OCCUD. We prove a regret upper bound for RCLUB-WCU, which matches the lower bound362

asymptotically in T up to logarithmic factors and matches the state-of-the-art results in degener-363

ate cases. We also give a theoretical guarantee for the detection accuracy of OCCUD. Extensive364

experiments show that our proposed algorithms achieve superior performance over previous bandit365

algorithms and high corrupted user detection accuracy.366
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Appendix462

A Proof of Lemma 1463

We first prove the following result:464

With probability at least 1− δ for some δ ∈ (0, 1), at any t ∈ [T ]:465 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u )√

λ+ λmin(M i,t)
,∀i ∈ U , (8)

where β(Ti,t,
δ
u ) ≜

√
2 log(uδ ) + d log(1 +

Ti,t

λd ) +
√
λ+ αC.466

θ̂i,t − θj(i) = (λI +M i,t)
−1bi,t − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
⊤
as
)−1

∑
s∈[t]
is=i

wis,sxasrs − θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxasx
⊤
as
)−1

(∑
s∈[t]
is=i

wis,sxas(x
⊤
as
θis + ηs + cs)

)
− θj(i)

= (λI +
∑
s∈[t]
is=i

wis,sxas
x⊤
as
)−1

[
(λI +

∑
s∈[t]
is=i

wis,sxas
x⊤
as
)θj(i) − λθj(i) +

∑
s∈[t]
is=i

wis,sxas
ηs

+
∑
s∈[t]
is=i

wis,sxas
cs

]
− θj(i)

= −λM ′−1
i,t θj(i) +M ′−1

i,t

∑
s∈[t]
is=i

wis,sxas
ηs +M ′−1

i,t

∑
s∈[t]
is=i

wis,sxas
cs ,

where we denote M ′
i,t = M i,t + λI , and the above equations hold by definition.467

Therefore, we have468

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤ λ

∥∥∥M ′−1
i,t θj(i)

∥∥∥
2
+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

+

∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

.

(9)
We then bound the three terms in Eq.(9) one by one. For the first term:469

λ
∥∥∥M ′−1

i,t θj(i)
∥∥∥
2
≤ λ

∥∥∥M ′− 1
2

i,t

∥∥∥2
2

∥∥∥θj(i)
∥∥∥
2
≤

√
λ√

λmin(M
′
i,t)

, (10)

where we use the Cauchy–Schwarz inequality, the inequality for the operator norm of matrices, and470

the fact that λmin(M
′
i,t) ≥ λ.471

For the second term in Eq.(9), we have472 ∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(11)

=

∥∥∥∑ s∈[t]
is=i

wis,sxas
ηs

∥∥∥
M ′−1

i,t√
λmin(M

′
i,t)

, (12)

where Eq.(11) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm473

of matrices, and Eq.(12) follows by the Courant-Fischer theorem.474

12



Let x̃s ≜
√
wis,sxas , η̃s ≜

√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas∥2 ≤ 1, η̃s is still475

1-sub-gaussian (since ηs is 1-sub-gaussian and √
wis,s ≤ 1), M ′

i,t = λI +
∑

s∈[t]
is=i

x̃sx̃
⊤
s , and the476

nominator in Eq.(12) becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

i,t

. Then, following Theorem 1 in [1] and by union477

bound, with probability at least 1− δ for some δ ∈ (0, 1), for any i ∈ U , we have:478 ∥∥∥∥∥∥∥
∑
s∈[t]
is=i

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

i,t

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

i,t

≤

√
2 log(

u

δ
) + log(

det(M ′
i,t)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

Ti,t

λd
) , (13)

where det(·) denotes the determinant of matrix arguement, Eq.(13) is because det(M ′
i,t) ≤479 (

trace(λI+
∑

s∈[t]
is=i

wis,sxasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) = λd.480

For the third term in Eq.(9), we have481 ∥∥∥∥∥∥∥M ′−1
i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥∥M ′− 1
2

i,t

∑
s∈[t]
is=i

wis,sxas
cs

∥∥∥∥∥∥∥
2

∥∥∥M ′− 1
2

i,t

∥∥∥
2

(14)

=

∥∥∥∑ s∈[t]
is=i

wis,sxas
cs

∥∥∥
M ′−1

i,t√
λmin(M

′
i,t)

(15)

≤

∑
s∈[t]
is=i

|cs|wi,s ∥xas
∥M ′−1

i,t√
λmin(M

′
i,t)

≤ αC√
λmin(M

′
i,t)

(16)

where Eq.(14) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm482

of matrices, Eq.(15) follows by the Courant-Fischer theorem, and Eq.(16) is because by defini-483

tion wi,s ≤ α
∥xas∥M

′−1
i,s

≤ α
∥xas∥M

′−1
i,t

(since M ′
i,t ⪰ M ′

i,s, M ′−1
i,s ⪰ M ′−1

i,t , ∥xas
∥M ′−1

i,s
≥484

∥xas
∥M ′−1

i,t
),
∑T

t=1 |ct| ≤ C.485

Combining the above bounds of these three terms, we can get that Eq.(8) holds.486

We then prove the following technical lemma.487

Lemma 6. Under Assumption 3, at any time t, for any fixed unit vector θ ∈ Rd488

Et[(θ
⊤xat)

2| |At|] ≥ λ̃x ≜
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Kdx , (17)

where K is the upper bound of |At| for any t.489

Proof. The proof of this lemma mainly follows the proof of Claim 1 in [8], but with more careful490

analysis, since their assumption on the arm generation distribution is more stringent than our As-491

sumption 3 by putting more restrictions on the variance upper bound σ2 (specifically, they require492

σ2 ≤ λ2

8 log(4K) ).493
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Denote the feasible arms at round t by At = {xt,1,xt,2, . . . ,xt,|At|}. Consider the corresponding494

i.i.d. random variables θi = (θ⊤xt,i)
2 − Et[(θ

⊤xt,i)
2| |At|], i = 1, 2, . . . , |At|. By Assumption 3,495

θi s are sub-Gaussian random variables with variance bounded by σ2. Therefore, for any α > 0 and496

any i ∈ [|At|], we have:497

Pt(θi < −α| |At|) ≤ e−
α2

2σ2 ,

where we use Pt(·) to be the shorthand for the conditional probability498

P(·|(i1,A1, r1), . . . , (it−1,At−1, rt−1), it).499

By Assumption 3, we can also get that Et[(θ
⊤xt,i)

2| |At| = Et[θ
⊤xt,ix

⊤
t,iθ| |At|] ≥500

λmin(Ex∼ρ[xx
⊤]) ≥ λx. With these inequalities above, we can get501

Pt( min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ λx − α| |At|) ≥ (1− e−

α2

2σ2 )K .

Therefore, we can get502

Et[(θ
⊤xat)

2| |At|] ≥ Et[ min
i=1,...,|At|

(θ⊤xt,i)
2| |At|]

≥
∫ ∞

0

Pt( min
i=1,...,|At|

(θ⊤xt,i)
2 ≥ x| |At|)dx

≥
∫ λx

0

(1− e−
(λx−x)2

2σ2 )Kdx ≜ λ̃x

503

Note that wi,s = min{1, α
∥xas∥M

′−1
i,t

}, and we have

α

∥xas
∥M ′−1

i,t

=
α√

x⊤
as
M ′−1

i,t xas

≥ α√
λmin(M

′−1
i,t )

= α
√
λmin(M

′
i,t) ≥ α

√
λ.

Since α
√
λ < 1 typically holds, we have wi,s ≥ α

√
λ.504

Then, with the item regularity assumption stated in Assumption 3, the technical Lemma 6, together505

with Lemma 7 in [18], with probability at least 1 − δ, for a particular user i, at any t such that506

Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
), we have:507

λmin(M
′
i,t) ≥ 2α

√
λλ̃xTi,t + λ . (18)

With this result, together with Eq.(8), we can get that for any t such that Ti,t ≥ 16
λ̃2
x

log( 8d
λ̃2
xδ
), with508

probability at least 1− δ for some δ ∈ (0, 1), ∀i ∈ U , we have:509 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
≤

β(Ti,t,
δ
u )√

λmin(M
′
i,t)

≤
β(Ti,t,

δ
u )√

2α
√
λλ̃xTi,t + λ

≤
β(Ti,t,

δ
u )√

2α
√
λλ̃xTi,t

=

√
2 log(uδ ) + d log(1 +

Ti,t

λd ) +
√
λ+ αC√

2α
√
λλ̃xTi,t

. (19)

Then, we want to find a sufficient time Ti,t for a fixed user i such that510 ∥∥∥θ̂i,t − θj(i)
∥∥∥
2
<

γ

4
. (20)
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To do this, with Eq.(19), we can get it by letting511

√
λ√

2α
√
λλ̃xTi,t

<
γ

12
, (21)

αC√
2α

√
λλ̃xTi,t

<
γ

12
, (22)

√
2 log(uδ ) + d log(1 +

Ti,t

λd )√
2α

√
λλ̃xTi,t

<
γ

12
. (23)

For Eq.(21), we can get512

Ti,t >
72
√
λ

αγ2λ̃x

. (24)

For Eq.(22), we can get513

Ti,t >
72αC2

γ2
√
λλ̃x

. (25)

For Eq.(23), we have514

2 log(uδ ) + d log(1 +
Ti,t

λd )

2α
√
λλ̃xTi,t

<
γ2

144
. (26)

Then it is sufficient to get Eq.(26) if the following holds515

2 log(uδ )

2α
√
λλ̃xTi,t

<
γ2

288
, (27)

d log(1 +
Ti,t

λd )

2α
√
λλ̃xTi,t

<
γ2

288
. (28)

For Eq.(27), we can get516

Ti,t >
288 log(uδ )

γ2α
√
λλ̃x

(29)

For Eq.(28), we can get517

Ti,t >
144d

γ2α
√
λλ̃x

log(1 +
Ti,t

λd
) . (30)

Following Lemma 9 in [18], we can get the following sufficient condition for Eq.(30):518

Ti,t >
288d

γ2α
√
λλ̃x

log(
288

γ2α
√
λλ̃x

) . (31)

Then, since typically u
δ > 288

γ2α
√
λλ̃x

, we can get the following sufficient condition for Eq.(29) and519

Eq.(31)520

Ti,t >
288d

γ2α
√
λλ̃x

log(
u

δ
) . (32)

Together with Eq.(24), Eq.(25), and the condition for Eq.(18) we can get the following sufficient521

condition for Eq.(20) to hold522

Ti,t > max{ 288d

γ2α
√
λλ̃x

log(
u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

),
72

√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} . (33)

Then, with Assumption 2 on the uniform arrival of users, following Lemma 8 in [18], and by union523

bound, we can get that with probability at least 1− δ, for all524

t ≥ T0 ≜ 16u log(
u

δ
) + 4umax{ 288d

γ2α
√
λλ̃x

log(
u

δ
),
16

λ̃2
x

log(
8d

λ̃2
xδ

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

} , (34)
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Eq.(32) holds for all i ∈ U , and therefore Eq.(20) holds for all i ∈ U . With this, we can show that525

RCLUB-WCU will cluster all the users correctly after T0. First, if RCLUB-WCU deletes the edge526

(i, l), then user i and user j belong to different ground-truth clusters, i.e., ∥θi − θl∥2 > 0. This527

is because by the deletion rule of the algorithm, the concentration bound, and triangle inequality,528

∥θi − θl∥2 =
∥∥∥θj(i) − θj(l)

∥∥∥
2
≥
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
−
∥∥∥θj(l) − θl,t

∥∥∥
2
−
∥∥∥θj(i) − θi,t

∥∥∥
2
> 0. Sec-529

ond, we show that if ∥θi − θl∥ ≥ γ, RCLUB-WCU will delete the edge (i, l). This is because530

if ∥θi − θl∥ ≥ γ, then by the triangle inequality, and
∥∥∥θ̂i,t − θj(i)

∥∥∥
2
< γ

4 ,
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
< γ

4 ,531

θi = θj(i), θl = θj(l), we have
∥∥∥θ̂i,t − θ̂l,t

∥∥∥
2
≥ ∥θi − θl∥ −

∥∥∥θ̂i,t − θj(i)
∥∥∥
2
−
∥∥∥θ̂l,t − θj(l)

∥∥∥
2
>532

γ − γ
4 − γ

4 = γ
2 >

√
λ+

√
2 log(u

δ )+d log(1+
Ti,t
λd )√

λ+2λ̃xTi,t

+
√
λ+

√
2 log(u

δ )+d log(1+
Tl,t
λd )√

λ+2λ̃xTl,t

, which will trigger the533

deletion condition Line 10 in Algo.1.534

B Proof of Lemma 2535

After T0, if the clustering structure is correct, i.e., Vt = Vj(it), then we have536

θ̂Vt,t−1 − θit = M−1
Vt,t−1bVt,t−1 − θit

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1(

∑
s∈[t−1]
is∈Vt

wis,sxas
rs)− θit

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1
( ∑

s∈[t−1]
is∈Vt

wis,sxas
(x⊤

as
θit + ηs + cs)

)
− θit (35)

= (λI +
∑

s∈[t−1]
is∈Vt

wis,sxas
x⊤
as
)−1

( ∑
s∈[t−1]
is∈Vt

(wis,sxas
x⊤
as

+ λI)θit − λθit

+
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs +

∑
s∈[t−1]
is∈Vt

wis,sxas
cs)

)
− θit

= −λM ′−1
Vt,t−1θit −M ′−1

Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
ηs +M ′−1

Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
cs ,

where we denote M ′
Vt,t−1 = MVt,t−1 + λI , and Eq.(35) is because Vt = Vj(it) thus θis =537

θit ,∀is ∈ Vt.538

Therefore, we have539

∣∣∣x⊤
a (θ̂Vt,t−1 − θit)

∣∣∣ ≤ λ
∣∣∣x⊤

a M
′−1
Vt,t−1θit

∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
ηs

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣x⊤

a M
′−1
Vt,t−1

∑
s∈[t−1]
is∈Vt

wis,sxas
cs

∣∣∣∣∣∣∣
≤ ∥xa∥M ′−1

Vt,t−1

(√
λ+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

+

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
cs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

)
,

(36)

where Eq.(36) is by Cauchy–Schwarz inequality, matrix operator inequality, and540 ∣∣∣x⊤
a M

′−1
Vt,t−1θit

∣∣∣ ≤ λ
∥∥∥M ′− 1

2

Vt,t−1

∥∥∥
2
∥θit∥2 = λ 1√

λmin(MVt,t−1)
∥θit∥2 ≤

√
λ since541

λmin(MVt,t−1) ≥ λ and ∥θit∥2 ≤ 1.542

Let x̃s ≜
√
wis,sxas

, η̃s ≜
√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas

∥2 ≤ 1, η̃s is543

still 1-sub-gaussian (since ηs is 1-sub-gaussian and √
wis,s ≤ 1), M ′

i,t = λI +
∑

s∈[t]
is=i

x̃sx̃
⊤
s ,544
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and
∥∥∥∑ s∈[t−1]

is∈Vt

wis,sxas
ηs

∥∥∥
M ′−1

Vt,t−1

becomes
∥∥∥∑ s∈[t]

is=i
x̃sη̃s

∥∥∥
M ′−1

Vt,t−1

. Then, following Theorem 1545

in [1], with probability at least 1− δ for some δ ∈ (0, 1), we have:546 ∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxas
ηs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

=

∥∥∥∥∥∥∥
∑
s∈[t]
is=i

x̃sη̃s

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤

√
2 log(

u

δ
) + log(

det(M ′
Vt,t−1)

det(λI)
)

≤
√
2 log(

u

δ
) + d log(1 +

T

λd
) , (37)

And for
∥∥∥∑ s∈[t−1]

is∈Vt

wis,sxascs

∥∥∥
M ′−1

Vt,t−1

, we have547

∥∥∥∥∥∥∥
∑

s∈[t−1]
is∈Vt

wis,sxascs

∥∥∥∥∥∥∥
M ′−1

Vt,t−1

≤
∑

s∈[t−1]
is∈Vt

wis,s |cs| ∥xas
∥M ′−1

Vt,t−1
≤ αC , (38)

where we use
∑T

t=1 |ct| ≤ C, wis,s ≤ α
∥xas∥M

′−1
is,t−1

≤ α
∥xas∥M

′−1
Vt,t−1

.548

Plugging Eq.(38) and Eq.(37) into Eq.(36), together with Lemma 1, we can complete the proof of549

Lemma 2.550

C Proof of Theorem 3551

After T0, we define event552

E = {the algorithm clusters all the users correctly for all t ≥ T0} . (39)

Then, with Lemma 1 and picking δ = 1
T , we have553

R(T ) = P(E)I{E}R(T ) + P(E)I{E}R(T )

≤ I{E}R(T ) + 4× 1

T
× T

= I{E}R(T ) + 4 .

(40)

Then it remains to bound I{E}R(T ). For the first T0 rounds, we can upper bound the regret in the554

first T0 rounds by T0. After T0, under event E and by Lemma 2, we have that with probability at555

least 1− δ, for any xa:556 ∣∣∣xT
a (θ̂Vt,t−1 − θit)

∣∣∣ ≤ β ∥xa∥M−1
Vt,t−1

≜ Ca,t . (41)

Therefore, for the instantaneous regret Rt at round t, with E , with probability at least 1 − δ, at557

∀t ≥ T0:558

Rt = x⊤
a∗
t
θit − x⊤

at
θit

= x⊤
a∗
t
(θit − θ̂Vt,t−1) + (x⊤

a∗
t
θ̂Vt,t−1 + Ca∗

t ,t
)− (x⊤

at
θ̂Vt,t−1 + Cat,t)

+ x⊤
at
(θ̂V t,t−1 − θit) + Cat,t − Ca∗

t ,t

≤ 2Cat,t ,

(42)

where the last inequality holds by the UCB arm selection strategy in Eq.(3) and Eq.(41).559
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Therefore, for I{E}R(T ):560

I{E}R(T ) ≤ R(T0) + E[I{E}
T∑

t=T0+1

Rt]

≤ T0 + 2E[I{E}
T∑

t=T0+1

Cat,t] . (43)

Then it remains to bound E[I{E}
∑T

t=T0+1 Cat,t]. For
∑T

t=T0+1 Cat,t, we can distinguish it into561

two cases:562

T∑
t=T0+1

Cat,t ≤ β

T∑
t=1

∥xat∥M−1
Vt,t−1

= β
∑

t∈[T ]:wit,t=1

∥xat∥M−1
Vt,t−1

+ β
∑

t∈[T ]:wit,t<1

∥xat∥M−1
Vt,t−1

. (44)

Then, we prove the following technical lemma.563

Lemma 7.
T∑

t=T0+1

min{I{it ∈ Vj} ∥xat∥
2
M−1

Vj,t−1
, 1} ≤ 2d log(1 +

T

λd
),∀j ∈ [m] . (45)

Proof.

det(MVj ,T ) = det

(
MVj ,T−1 + I{iT ∈ Vj}xaT

x⊤
aT

)
= det(MVj ,T−1)det

(
I + I{iT ∈ Vj}M

− 1
2

Vj ,T−1xaT
x⊤
aT

M
− 1

2

Vj ,T−1

)
= det(MVj ,T−1)

(
1 + I{iT ∈ Vj} ∥xaT

∥2M−1
Vj,T−1

)
= det(MVj ,T0)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

)

≥ det(λI)

T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat

∥2M−1
Vj,t−1

)
. (46)

∀x ∈ [0, 1], we have x ≤ 2 log(1 + x). Therefore564

T∑
t=T0+1

min{I{it ∈ Vj} ∥xat∥
2
M−1

Vj,t−1
, 1} ≤ 2

T∑
t=T0+1

log

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

)

= 2 log

( T∏
t=T0+1

(
1 + I{it ∈ Vj} ∥xat∥

2
M−1

Vj,t−1

))
≤ 2[log(det(MVj ,T ))− log(det(λI))]

≤ 2 log

(
trace(λI +

∑T
t=1 I{it ∈ Vj}xat

x⊤
at
)

λd

)d

≤ 2d log(1 +
T

λd
) . (47)

565
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Denote the rounds with wit,t = 1 as {t̃1, . . . , t̃l1}, and gram matrix G̃Vt̃τ
,t̃τ−1 ≜ λI +566 ∑

s∈[τ]
is∈V

t̃τ

xat̃s
x⊤
at̃s

; denote the rounds with wit,t < 1 as {t′1, . . . , t′l2}, gram matrix G′
Vt′τ

,t′τ−1 ≜567

λI +
∑

s∈[τ]
is∈V

t′τ

wit′s
,t′s
xat′s

x⊤
at′s

.568

Then we have569

∑
t∈[T ]:wit,t=1

∥xat∥M−1
Vt,t−1

=

m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥
M−1

V
t̃τ ,t̃τ−1

≤
m∑
j=1

l1∑
τ=1

I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥
G̃

−1

V
t̃τ

,t̃τ−1

(48)

≤
m∑
j=1

√√√√ l1∑
τ=1

I{it̃τ ∈ Vj}
l1∑

τ=1

min{1, I{it̃τ ∈ Vj}
∥∥∥xat̃τ

∥∥∥2
G̃

−1

V
t̃τ

,t̃τ−1

}

(49)

≤
m∑
j=1

√
TVj ,T × 2d log(1 +

T

λd
) (50)

≤

√√√√2m

m∑
j=1

TVj ,T d log(1 +
T

λd
) =

√
2mdT log(1 +

T

λd
) , (51)

where Eq.(48) is because G̃
−1

Vt̃τ
,t̃τ−1 ⪰ M−1

Vt̃τ
,t̃τ−1

in Eq.(49) we use Cauchy–Schwarz inequality,570

in Eq.(50) we use Lemma 7 and
∑l1

τ=1 I{it̃τ ∈ Vj} ≤ TVj ,T , in Eq.(51) we use Cauchy–Schwarz571

inequality and
∑m

j=1 TVj ,T = T .572

For the second part in Eq.(44), Let x′
at′τ

≜
√
wit′τ

,t′τ
xat′τ

, then573

∑
t:wit,t<1

∥xat∥M−1
Vt,t−1

=
∑

t:wit,t<1

∥xat∥
2
M−1

Vt,t−1

∥xat∥M−1
Vt,t−1

=
∑

t:wit,t<1

wit,t ∥xat∥
2
M−1

Vt,t−1

α
(52)

=

m∑
j=1

l2∑
τ=1

I{it′τ ∈ Vj}
wit′τ

,t′τ

α

∥∥∥xat′τ

∥∥∥2
M−1

V
t′τ

,t′τ−1

≤
m∑
j=1

∑l2
τ=1 min{1, I{it′τ ∈ Vj}

∥∥∥x′
at′τ

∥∥∥2
G′−1

V
t′τ

,t′τ−1

}

α
(53)

≤
m∑
j=1

2d log(1 + T
λd )

α
=

2md log(1 + T
λd )

α
(54)

where in Eq.(52) we use the definition of the weights, in Eq.(53) we use G′−1
Vt′τ

,t′τ−1 ⪰ M−1
Vt′τ

,t′τ−1,574

and Eq.(54) uses Lemma 7.575
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Then, with Eq.(54), Eq.(51), Eq.(44), Eq.(40), Eq.(43), δ = 1
T , and β =

√
λ +576 √

2 log(T ) + d log(1 + T
λd ) + αC, we can get577

R(T ) ≤ 4 + T0 +
(
2
√
λ+

√
2 log(T ) + d log(1 +

T

λd
) + αC

)
×
(√

2mdT log(1 +
T

λd
)

+
2md log(1 + T

λd )

α

)
= 4 + 16u log(uT ) + 4umax{ 288d

γ2α
√
λλ̃x

log(uT ),
16

λ̃2
x

log(
8dT

λ̃2
x

),
72
√
λ

αγ2λ̃x

,
72αC2

γ2
√
λλ̃x

}

+
(
2
√
λ+

√
2 log(T ) + d log(1 +

T

λd
) + αC

)
×
(√

2mdT log(1 +
T

λd
)

+
2md log(1 + T

λd )

α

)
.

Picking α =
√
λ+

√
d

C , we can get578

R(T ) ≤ O
(
(
C
√
d

γ2λ̃x

+
1

λ̃2
x

)u log(T )
)
+O

(
d
√
mT log(T )

)
+O

(
mCd log1.5(T )

)
. (55)

Thus we complete the proof of Theorem 3.579

D Proof and Discussions of Theorem 4580

Table 1 of the work [12] gives a lower bound for linear bandits with adversarial corruption for a581

single user. The lower bound of R(T ) is given by: R(T ) ≥ Ω(d
√
T + dC). Therefore, suppose582

our problem with multiple users and m underlying clusters where the arrival times are Ti for each583

cluster, then for any algorithms, even if they know the underlying clustering structure and keep m584

independent linear bandit algorithms to leverage the common information of clusters, the best they585

can get is R(T ) ≥ dC +
∑

i∈[m] d
√
Ti. For a special case where Ti = T

m ,∀i ∈ [m], we can get586

R(T ) ≥ dC +
∑

i∈[m] d
√

T
m = d

√
mT + dC, which gives a lower bound of Ω(d

√
mT + dC) for587

the LOCUD problem.588

Recall that the regret upper bound of RCLUB-WCU shown in Theorem 3 is of O

(
(C

√
d

γ2λ̃x
+589

1
λ̃2
x

)u log(T )

)
+ O

(
d
√
mT log(T )

)
+ O

(
mCd log1.5(T )

)
, asymptotically matching this lower590

bound with respect to T up to logarithmic factors and with respect to C up to O(
√
m) factors,591

showing the tightness of our theoretical results (where m are typically very small for real applica-592

tions).593

We conjecture that the gap for the m factor in the mC term of the lower bound is due to the strong594

assumption that cluster structures are known to prove our lower bound, and whether there exists a595

tighter lower bound will be left for future work.596

E Proof of Theorem 5597

We prove the theorem using the proof by contrapositive. Specifically, in Theorem 5, we need to598

prove that for any t ≥ T0, if the detection condition in Line 7 of Algo.2 for user i, then with599

probability at least 1− 5δ, user i is indeed a corrupted user. By the proof by contrapositive, we can600

prove Theorem 5 by showing that: for any t ≥ T0, if user i is a normal user, then with probability at601

least 1− 5δ, the detection condition in Line 7 of Algo.2 will not be satisfied for user i.602

If the clustering structure is correct at t, then for any normal user i603

θ̃i,t − θ̂Vi,t,t = θ̃i,t − θi + θi − θ̂Vi,t,t , (56)
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where θ̃i,t is the non-robust estimation of the ground-truth θi, and θ̂Vi,t,t−1 is the robust estimation604

of the inferred cluster Vi,t for user i at round t. Since the clustering structure is correct at t, θ̂Vi,t,t−1605

is the robust estimation of user i’s ground-truth cluster’s preference vector θj(i) = θi at round t.606

We have607

θ̃i,t − θi = (λI + M̃ i,t)
−1b̃i,t − θi

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1(

∑
s∈[t]
is=i

xas
rs)− θi

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1
( ∑

s∈[t]
is=i

xas
(x⊤

as
θi + ηs)

)
− θi (57)

= (λI +
∑
s∈[t]
is=i

xas
x⊤
as
)−1
(
(λI +

∑
s∈[t]
is=i

xas
x⊤
as
)θi − λθi +

∑
s∈[t]
is=i

xas
ηs)
)
− θi

= −λM̃
′−1

i,t θi + M̃
′−1

i,t

∑
s∈[t]
is=i

xasηs ,

where we denote M̃
′
i,t ≜ λI +

∑
s∈[t]
is=i

xas
x⊤
as

, and Eq.(57) is because since user i is normal, we608

have cs = 0,∀s : is = i.609

Then, we have610

∥∥∥θ̃i,t − θi

∥∥∥
2
≤
∥∥∥λM̃ ′−1

i,t θi

∥∥∥
2
+

∥∥∥∥∥∥∥M̃
′−1

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

≤ λ

∥∥∥∥M̃ ′− 1
2

i,t

∥∥∥∥2
2

∥θi∥2 +

∥∥∥∥∥∥∥M̃
′− 1

2

i,t

∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
2

∥∥∥∥M̃ ′− 1
2

i,t

∥∥∥∥
2

(58)

≤

√
λ+

∥∥∥∑ s∈[t]
is=i

xasηs

∥∥∥
M̃

′−1
i,t√

λmin(M̃
′
i,t)

, , (59)

where Eq.(58) follows by the Cauchy–Schwarz inequality and the inequality for the operator norm611

of matrices, and Eq.(59) follows by the Courant-Fischer theorem and the fact that λmin(M̃
′
i,t) ≥ λ.612

Following Theorem 1 in [1], for a fixed normal user i, with probability at least 1 − δ for some613

δ ∈ (0, 1) we have:614 ∥∥∥∥∥∥∥
∑
s∈[t]
is=i

xas
ηs

∥∥∥∥∥∥∥
M̃

′−1
i,t

≤

√
2 log(

1

δ
) + log(

det(M̃
′
i,t)

det(λI)
)

≤
√

2 log(
1

δ
) + d log(1 +

Ti,t

λd
) , (60)

where Eq.(60) is because det(M̃
′
i,t) ≤

(
trace(λI+

∑
s∈[t]
is=i

xasx
⊤
as

)

d

)d

≤
(λd+Ti,t

d

)d
, and det(λI) =615

λd.616

Plugging this into Eq.(59), we can get617

∥∥∥θ̃i,t − θi

∥∥∥
2
≤

√
λ+

√
2 log(1δ ) + d log(1 +

Ti,t

λd )√
λmin(M̃

′
i,t)

. (61)
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Then we need to bound
∥∥∥θi − θ̂Vi,t,t

∥∥∥
2
. With the correct clustering, Vi,t = Vj(i), we have618

θ̂Vi,t,t − θi = M−1
Vi,t,t

bVj,t,t

= (λI +
∑
s∈[t]

is∈Vj(i)

wis,sxasx
⊤
as
)−1(

∑
s∈[t]

is∈Vj(i)

wis,sxasrs)− θi
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is∈Vj(i)

wis,sxas
x⊤
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)−1(
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is∈Vj(i)

wis,sxas
(x⊤
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θi + ηs + cs)))− θi (62)
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x⊤
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+
∑
s∈[t]
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∑
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)
− θi

= −λM−1
Vi,t,t

θi +M−1
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wis,sxas
ηs +M−1
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∑
s∈[t]

is∈Vj(i)

wis,sxas
cs . (63)

Therefore, we have619
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(64)
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√
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(65)

Let x̃s ≜
√
wis,sxas

, η̃s ≜
√
wis,sηs, then we have: ∥x̃s∥2 ≤

∥∥√wis,s

∥∥
2
∥xas

∥2 ≤ 1, η̃s is still620

1-sub-gaussian (since ηs is 1-sub-gaussian and √
wis,s ≤ 1), MVi,t,t = λI +

∑
s∈[t]

is∈Vj(i)

x̃sx̃
⊤
s , and621 ∥∥∥∥∑ s∈[t]
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wis,sxas
ηs
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M−1
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x̃sη̃s
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M−1

Vi,t,t

. Then, following Theorem 1 in622

[1], with probability at least 1− δ for some δ ∈ (0, 1), for a fixed normal user i, we have623 ∥∥∥∥∥∥∥∥
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s∈[t]

is∈Vj(i)
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det(λI)
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2 log(

1

δ
) + d log(1 +
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where Eq.(60) is because det(MVi,t,t) ≤

( trace(λI+
∑

s∈[t]
is∈Vj(i)

xasx
⊤
as

)

d

)d

≤
(λd+TVi,t,t

d

)d
, and624

det(λI) = λd.625
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For
∥∥∥∥∑ s∈[t]
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wis,sxas
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, we have626
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where Eq.(67) is because wis,s ≤ α
∥xas∥M

′−1
is,s

≤ α
∥xas∥M

′−1
is,t

≤ α
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), and628 ∑

s∈[t] |cs| ≤ C.629

Therefore, we have630
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With Eq.(68), Eq.(61) and Eq.(56), together with Lemma 1, we have that for a normal user i, for any631

t ≥ T0, with probability at least 1− 5δ for some δ ∈ (0, 1
5 )632 ∥∥∥θ̃i,t − θ̂Vi,t,t
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,

(69)

which is exactly the detection condition in Line 7 of Algo.2.633

Therefore, by the proof by contrapositive, we complete the proof of Theorem 5.634

F Description of Baselines635

We compare RCLUB-WCU to the following five baselines for recommendations.636

• LinUCB[16]: A state-of-the-art bandit approach for a single user without corruption.637

• LinUCB-Ind: Use a separate LinUCB for each user.638

• CW-OFUL[12]: A state-of-the-art bandit approach for single user with corruption.639

• CW-OFUL-Ind: Use a separate CW-OFUL for each user.640

• CLUB[8]: A graph-based clustering of bandits approach for multiple users without corrup-641

tion.642

• SCLUB[20]: A set-based clustering of bandits approach for multiple users without corrup-643

tion.644

G More Experiments645

G.1 Different Corruption Levels646

To see our algorithm’s performance under different corruption levels, we conduct the experiments647

under different corruption levels for RCLUB-WCU, CLUB, and SCLUB on Amazon and Yelp648

datasets. Recall the corruption mechanism in Section 6.1, we set k as 1,000; 10,000; 100,000. The649

results are shown in Fig.4. All the algorithms’ performance becomes worse when the corruption650

level increases. But RCLUB-WCU is much robust than the baselines.651
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Figure 4: Cumulative regret in different corruption levels
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Figure 5: Cumulative regret with different cluster numbers

G.2 Different Cluster numbers652

Following [18], we test the performances of the cluster-based algorithms (RCLUB-WCU, CLUB,653

SCLUB) when the underlying cluster number changes. We set m as 5, 10, 20, and 50. The results654

are shown in Fig.5. All these algorithms’ performances decrease when the cluster numbers increase,655

matching our theoretical results. The performances of CLUB and SCLUB decrease much faster656

than RCLUB-WCU, indicating that RCLUB-WCU is more robust when the underlying user cluster657

number changes.658
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