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Figure 5: Average test SSIM in various scenarios, across a range of acceleration factors R. Higher R indicates
a smaller number of acquired measurements. Our approach mostly shows the best performance and lowest
reconstruction variance both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence
intervals. Note that we trained baselines on MVUE images and hence these numerical values should not be
compared with those in literature trained on RSS images (see Appendix A.1 for a more detailed discussion).

A Appendix: Additional Metrics

Figure 5 shows the test SSIM evaluated in the same conditions as Figure 2 in the main text. This
highlights that our model is also robust in this metric.

We observe that our method has significant noise in the background. Hence, we also report the
masked SSIM and PSNR values in Figures 6 and 7. The mask zeros out all coordinates whose
absolute value is smaller than 0.05 times the maximum absolute value in the fully-sampled MVUE.

A.1 MVUE vs. RSS

The difference in numerical values between our results and the publicly available fastMRI leaderboard,
as well as original results in the published baseline papers baselines comes from training and
evaluating all methods on MVUE instead of RSS images. This is a design choice that we have made
for all baselines, since our goal is to compare with a wide range of previous methods in a fair way.

Algorithms that output a complex-valued image (such as ours and L1-Wavelet) as a solution to the
optimization in Eqn (2) will artificially perform worse (w.r.t. E2E methods) when compared to the
RSS ground truth, even when the output is of similar or higher quality, due to the bias in the RSS.
Since there is no way to obtain a good RSS score with these algorithms, this justifies our choice to
train and evaluate all methods on MVUE.

To the best of our knowledge, a rigorous, reproducible comparison between end-to-end models
trained on RSS or MVUE images has not been made in prior work. The recent work of [33] has also
discussed this point. To illustrate our claim of incompatibility between the two estimates, as well as
the importance of qualitative inspection, we provide two simple, easy-to-verify examples.
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Figure 6: Average test SSIM, with masking, in various scenarios across a range of acceleration factors R. The
mask zeros out all coordinates whose absolute value is smaller than 0.05 times the maximum absolute value in
the fully-sampled MVUE, and this reduces the effect of noise in the background. Higher R indicates a smaller
number of acquired measurements. Our approach mostly shows the best performance and lowest reconstruction
variance both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence intervals. Note
that we trained baselines on MVUE images and hence these numerical values should not be compared with those
in literature trained on RSS images (see Appendix A.1 for a more detailed discussion).

1. We compare the fully sampled MVUE reconstruction (with ESPiRIT estimated maps) with
the fully sampled RSS reconstruction, on T2 brain scans: we find that the SSIM is slightly
larger than 0.8. This is a large penalty (as per Fig. 1), even though the two images are
virtually indistinguishable and known to be clinically equivalent (see discussions of SENSE
vs. GRAPPA in [33]). This would unfairly penalize the family of methods that explicitly
solve the inverse problem. Since E2E methods can be trained to target the MVUE directly,
this justifies our choice for using the MVUE as the reference image.

2. We point to the public knee fastMRI leaderboard at https://fastmri.org/leaderboards. Select-
ing "Multi-coil Knee" and "4x" acceleration, we inspect the two following submissions:

• "zero-filling", which does zero-filling RSS reconstruction, has an SSIM of 0.804 and
considerable artifacts.

• "Baseline Classical Reconstruction Model", which applies compressed sensing with
the ESPiRIT algorithm, has a much poorer SSIM score of 0.6275, but produces
qualitatively superior reconstructions.

B Appendix: Theory

Lemma B.1 (Wq implies (δ, α)-W∞). If two distributions µ and ν satisfyWq(µ, ν) ≤ ε for some
q ≥ 1, then they satisfy (δ, δ)-W∞(µ, ν) ≤ ε/δ1/q . Futhermore, there exist distributions that satisfy
(δ, δ)-W∞(µ, ν) ≤ ε, butWq(µ, ν) =∞ for all q ≥ 1.
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Figure 7: Average test PSNR, with masking, in various scenarios across a range of acceleration factors R. The
mask zeros out all coordinates whose absolute value is smaller than 0.05 times the maximum absolute value in
the fully-sampled MVUE, and this reduces the effect of noise in the background. Higher R indicates a smaller
number of acquired measurements. Our approach mostly shows the best performance and lowest reconstruction
variance both in- and out-of-distribution at test-time. Shaded regions indicate 95% confidence intervals. Note
that we trained baselines on MVUE images and hence these numerical values should not be compared with those
in literature trained on RSS images (see Appendix A.1 for a more detailed discussion).

Proof. Let Γ be a coupling between µ, ν such that E(u,v)∼Γ [‖u− v‖q] ≤ εq . Then an application of
Markov’s inequality gives

Pr[‖u− v‖ ≥ ε/δ1/q] ≤ δ. (5)

Now, we can split the distribution Γ into two unnormalized components Γ′,Γ′′ defined as

Γ′(u, v) = Γ(u, v)1{‖u− v‖ < ε/δ1/q},
Γ′′(u, v) = Γ(u, v)1{‖u− v‖ ≥ ε/δ1/q}.

Using Γ′,Γ′′, we can define measures µ′, µ′′, ν′, ν′′, via

µ′(B) := Γ′(B,Ω),

µ′′(B) := Γ′′(B,Ω),

ν′(B) := Γ′(Ω, B),

ν′′(B) := Γ′′(Ω, B),

where B is any measurable set and Ω is the state-space.
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Since Γ is a valid coupling between µ, ν, and Γ′,Γ′′ are disjoint distributions, for any measurable
B ⊆ Ω, we have:

µ(B) = Γ(B,Ω),

= Γ′(B,Ω) + Γ′′(B,Ω),

= µ′(B) + µ(B′′),

= µ′(Ω)
µ′(B)

µ′(Ω)
+ µ′′(Ω)

µ′′(B)

µ′′(Ω)
.

Using Eqn (5), we can conclude that µ′(Ω) ≥ 1 − δ, µ′′(Ω) ≤ δ. Setting µ′ ← µ′/µ′(Ω) and
µ′′ ← µ′′/µ′′(Ω), we can now rewrite µ as µ = (1 − δ)µ′ + δµ′′. A similar argument for ν gives
ν = (1− δ)ν′ + δν′′.

By construction, µ′, ν′ can beW∞ coupled via Γ′ to within a distance of ε/δ1/q. This shows that
(δ, δ)-W∞(µ, ν) ≤ ε/δ1/q .

Now we need to show that two distributions can be close in (δ, δ)-W∞, but Wq = ∞ for all q.
Consider two scalar distributions µ, ν defined as

µ =

{
0 with probability 1− δ,
r with probability δ,

,

ν =

{
ε with probability 1− δ,
−r with probability δ.

Clearly, these distributions satisfy (δ, δ)-W∞(µ, ν) ≤ ε, butWq(µ, ν) ≈ r for all q. As r →∞, we
getWq(µ, ν)→∞ for all q ≥ 1.

B.1 Proof of Theorem 3.3

In order to prove the Theorem, we make use of the following three Lemmas from [45].

Lemma B.2. [45] For c ∈ [0, 1], letH := (1−c)H0+cH1 be a mixture of two absolutely continuous
distributions H0, H1 admitting densities h0, h1. Let y be a sample from the distribution H , such that
y|z∗ ∼ Hz∗ where z∗ ∼ Bernoulli(c).

Define ĉy = ch1(y)
(1−c)h0(y)+ch1(y) , and let ẑ|y ∼ Bernoulli(ĉy) be the posterior sampling of z∗ given

y. Then we have
Pr

z∗,y,ẑ
[z∗ = 0, ẑ = 1] ≤ 1− TV (H0, H1).

Lemma B.3. [45] Let y be generated from x∗ by a Gaussian measurement process with noise rate σ.
For a fixed x̃ ∈ Rn, and parameters η > 0, c ≥ 4e2, let Pout be a distribution supported on the set

Sx̃,out := {x ∈ Rn : ‖x− x̃‖ ≥ c(η + σ)}.

Let Px̃ be a distribution which is supported within an η−radius ball centered at x̃.

For a fixed A, let Hx̃ denote the distribution of y when x∗ ∼ Px̃. Let Hout denote the corresponding
distribution of y when x∗ ∼ Pout. Then we have:

E
A

[TV (Hx̃, Hout)] ≥ 1− 4e−
m
2 log( c

4e2
).

Lemma B.4. [45] Let R,P, denote arbitrary distributions over Rn such thatW∞(R,P ) ≤ ε.
Let x∗ ∼ R and z∗ ∼ P and let y and u be generated from x∗ and z∗ via a Gaussian measurement
process with m measurements and noise rate σ. Let x̂ ∼ P (·|y,A) and ẑ ∼ P (·|u,A). For any
d > 0, we have

Pr
x∗,A,w,x̂

[‖x∗ − x̂‖ ≥ d+ ε] ≤e−Ω(m) + e(
4ε(ε+2σ)m

2σ2
) Pr
z∗,A,w,ẑ

[‖z∗ − ẑ‖ ≥ d] .
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Theorem 3.3. Let δ, α ∈ [0, 1], and ε > 0 be parameters. Let µ, ν be arbitrary distributions over
RN satisfying (δ, α)-W∞(µ, ν) ≤ ε. Let x∗ ∼ µ and suppose y = Ax∗ + w, where A ∈ RM×N
and w ∈ RM are i.i.d. Gaussian normalized such that Aij ∼ N (0, 1/M) and wi ∼ N (0, σ2/M),
with σ & ε. Given y and the fixed matrix A, let x̂ be the output of posterior sampling with respect to
ν.

Then for M ≥ O
(

log
(

1
1−α

)
+ min(log Covσ,δ(µ), log Covσ,δ(ν))

)
, there exists a universal con-

stant c > 0 such that with probability at least 1− e−Ω(M) over A,w,

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ c(ε+ σ)] ≤ δ + e−Ω(M).

Proof. We know from (δ, α)-W∞(µ, ν) ≤ ε that there exist µ′, ν′, µ′′, ν′′ and a finite distribution Q
supported on a set S such that

1. W∞(µ′, ν′) ≤ ε,

2. min{W∞(ν′, Q),W∞(µ′, Q)} ≤ σ,

3. µ = (1− δ)µ′ + δµ′′ and ν = (1− α)ν′ + αν′′.

SupposeW∞(ν′, Q) ≤ σ. If not, thenW∞(µ′, Q) ≤ σ, and by (1), we see thatW∞(ν′, Q) ≤ σ+ ε,
and we will use this in the proof instead. By decomposing µ = (1− δ)µ′ + δµ′′, we have

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ δ + (1− δ) Pr
x∗∼µ′,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] .

(6)

We now bound the second term on the right hand side of the above equation. For this term, consider
the joint distribution over x∗, A,w, x̂. By Lemma B.4, we can replace x∗ ∼ µ′ with z∗ ∼ ν′, replace
y = Ax∗ +w with u = Az∗ +w, and replace x̂ ∼ ν(·|A, y) with ẑ ∼ ν(·|A, u) to get the following
bound

Pr
x∗∼µ′,A,w,x̂∼ν(·|A,y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ e−Ω(m) + e(
2ε(ε+2σ)m

σ2
) Pr
z∗∼ν′,A,w,ẑ∼ν(·|u,A)

[‖z∗ − ẑ‖ ≥ (2c+ 1)σ] .

(7)

We now bound the second term in the right hand side of the above inequality. Let Γ denote an optimal
W∞−coupling between ν′ and Q.

For each z̃ ∈ S, the conditional coupling can be defined as

Γ(·|z̃) =
Γ(·, z̃)
Q(z̃)

.

By theW∞ condition, each Γ(·|z̃) is supported on a ball of radius σ around z̃.

Let E = {z∗, ẑ ∈ Rn : ‖z∗ − ẑ‖ ≥ (2c+ 1)σ} denote the event that z∗, ẑ are far apart. By the
coupling, we can express ν′ as

ν′ =
∑
z̃∈S

Q(z̃)Γ(·|z̃).

This gives

Pr
z∗∼ν′,A,w,ẑ∼ν(·|A,u)

[E] =
∑
z̃∗∈S

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u)

[1E ] .

For each z̃∗ ∈ S, we now bound Q(z̃∗)Ez∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u) [1E ] .

For each z̃∗ ∈ S, we can write ν as ν = (1− α)Qz̃∗νz̃∗,0 + cz̃∗,1νz̃∗,1 + cz̃∗,2νz̃∗,2, where the
components of the mixture are defined in the following way. The first component νz̃∗,0 is Γ(·|z̃∗),
the second component is supported within a 2cσ radius of z̃∗, and the third component is supported
outside a 2cσ radius of z̃∗.
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Formally, let Bz̃∗ denote the ball of radius cσ centered at z̃∗, and let Bcz̃∗ be its complement. The
constants are defined via the following Lebesque integrals, and the mixture components for any Borel
measurable B are defined as

cz̃∗,1 :=

∫
Bz̃∗

dν − (1− α)Qz̃∗

∫
Bz̃∗

dΓ(·|z̃∗),

cz̃∗,2 :=

∫
Bc
z̃∗

dν − (1− α)Qz̃∗

∫
Bc
z̃∗

dΓ(·|z̃∗),

νz̃∗,0(B) := Γ(B ∩Bz̃∗ |z̃∗) = Γ(B|z̃∗) since supp(Γ(·|z̃∗)) ⊂ Bz̃∗ ,

νz̃∗,1(B) :=

{
1

cz̃∗,1
ν(B ∩Bz̃∗)− 1−α

cz̃∗,1
Qz̃∗Γ(B ∩Bz̃∗ |z̃∗) if cz̃∗,1 > 0,

do not care otherwise.
,

νz̃∗,2(B) :=

{
1

cz̃∗,2
ν(B ∩Bcz̃∗)− 1−α

cz̃∗,2
Qz̃∗Γ(B ∩Bcz̃∗ |z̃∗) if cz̃∗,2 > 0,

do not care otherwise.
.

Notice that if z∗ is sampled from Γ(·|z̃∗), then by the W∞ condition, we have ‖z∗ − z̃∗‖ ≤ σ.
Furthermore, if ẑ is (2c+ 1)σ far from z∗, an application of the triangle inequality implies that it
must be distributed according to νz̃∗,2. That is,

Q(z̃∗) E
z∗∼Γ(·|z̃∗),A,w,ẑ∼ν(·|A,u)

[1E ] ≤ E
A,w,z∗

Pr [z∗ ∼ νz̃∗,0, ẑ ∼ νz̃∗,2(·|u)]

≤ 1

1− α
E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] ,

where Hz̃∗,0, Hz̃∗,2 are the push-forwards of νz̃∗,0, νz̃∗,2 for A fixed and the last inequality follows
from Lemma B.2.

Notice that if we sum over all z̃∗ ∈ S, then the LHS of the above inequality is an expectation over
z∗ ∼ ν′. This gives:

Pr
z∗∼ν′,A,w,ẑ∼ν(·|u,A)

[E] ≤ 1

1− α
∑
z̃∗∈S

E
A

[1− TV (Hz̃∗,0, Hz̃∗,2)] .

Notice that νz̃∗,0 is supported within an σ−ball around z̃∗, and νz̃∗,2 is supported outside a 2cσ−ball
of z̃∗. By Lemma B.3 we have

E
A

[TV (Hz̃∗,0, Hz̃∗,2)] ≥1− 4e−
m
2 log( c

4e2
).

This implies

Pr
z∗∼ν′,A,w,ẑ∼ν(·|u,A)

[‖z∗ − ẑ‖ ≥ (2c+ 1)σ] ≤ 1

1− α
∑
z̃∗∈S

E
A

[(1− TV (Hz̃∗,0, Hz̃∗,2))] ,

≤ 1

1− α
4|S|e−

m
2 log( c

4e2
),

≤ 4e−
m
4 log( c

4e2
),

where the last inequality is satisfied if m ≥ 4 log
(

1
1−α

)
+ 4 log (|S|) .

Substituting in Eqn (7), if c > 4 exp
(

2 + 8ε(ε+2σ)
σ2

)
, we have

Pr
x∗∼µ′,A,w,x̂∼ν(·|A,y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤e−Ω(m).
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This implies that there exists a set SA,w over A,w satisfying PrA,w[SA,w] ≥ 1− e−Ω(m), such that
for all A,w ∈ SA,w, we have

Pr
x∗∼µ′,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ e−Ω(m).

Substituting in Eqn (6), we have

Pr
x∗∼µ,x̂∼ν(·|y)

[‖x∗ − x̂‖ ≥ (2c+ 1)σ + ε] ≤ δ + e−Ω(m).

Rescaling c gives us our result.

At the beginning of the proof, we had assumed thatW∞(ν′, Q) ≤ σ. If insteadW∞(µ′, Q) ≤ σ,
then we need to replace σ in the above bound by σ + ε. Rescaling c in the above bound gives us the
Theorem statement.

B.2 Proof of Theorem 3.4

Theorem 3.4. Let d(·, ·) be an arbitrary metric over RN × RN . Let x∗ ∼ µ and let y = A(x∗) be
measurements generated from x∗ for some arbitrary forward operator A : RN → RM . Then if there
exists an algorithm that uses y as inputs and outputs x′ such that

d(x∗, x′) ≤ ε with probability 1− δ,
then posterior sampling x̂ ∼ µ(·|y) will satisfy

d(x∗, x̂) ≤ 2ε with probability ≥ 1− 2δ.

Proof. By the statement of the Lemma, and conditioning on the measurements y, we have
1− δ = Pr[d(x∗, x′) ≤ ε] = E

y
(Pr[d(x∗, x′) ≤ ε|y]) .

Using a similar conditioning for the event d(x∗, x̂) ≤ 2ε, we get
Pr[d(x∗, x̂) ≤ 2ε] = E

y
(Pr[d(x∗, x̂) ≤ 2ε|y]) ,

≥ E
y

(Pr[d(x∗, x′) ≤ ε ∧ d(x′, x̂) ≤ ε|y]) ,

= E
y

(Pr[d(x∗, x′) ≤ ε|y] · Pr[d(x′, x̂) ≤ ε|y]) ,

= E
y

(
Pr[d(x∗, x′) ≤ ε|y]2

)
,

≥
(
E
y

(Pr[d(x∗, x′) ≤ ε|y])

)2

,

= (1− δ)2 ≥ 1− 2δ,

where the second line follows from a triangle inequality, the third line follows since x∗, x̂ are
independent conditioned on y, the fourth line follows since x̂|y is distributed according to x∗|y, and
the fifth line follows from Jensen’s inequality.

C Appendix: fastMRI Brain

C.1 Examples of Sampling Masks

Figure 8 shows example of some of the masks used throughout the experiments in the paper and their
corresponding reconstructions. Note that the type of mask used is coupled with the scan parameters
(e.g., two-dimensional slices from a three-dimensional scan will use a 2D grid of points).

We also highlight that, in all cases, a central region of the k-space is kept fully sampled and is
used to estimate the coil sensitivity maps for all methods. The bottom row of Figure 8 shows naive
reconstructions of a single coil image using the zero-filled k-space. This shows that different types of
masks lead to different types of aliasing patterns in the image domain, motivating the need for robust
image reconstruction algorithms.
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Figure 8: Examples of sampling patterns used throughout the experiments (top) and naive reconstructions
(bottom). Top: The leftmost image shows the log-magnitude of the fully sampled k-space measurements
corresponding to a single coil. The remaining images show three possible sampling masks, all with acceleration
factor R = 4 but drastically different patterns. Bottom: Each image shows the magnitude of the reconstruction
obtained by a two-dimensional IFFT applied to the sampled k-space.

C.2 More Exemplar Reconstructions

Figures 9 throughout 14 show detailed qualitative reconstructions on different brain scans from
the fastMRI dataset. We highlight Figures 13 and 14, which represent a contrast shift from the
in-distribution data (T1 and FLAIR vs. T2, respectively). Our method still produces excellent
qualitative reconstructions.
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Fully-Sampled MVUE

SSIM: 0.94    PSNR: 38.37dB

L1-Wavelet

SSIM: 0.82    PSNR: 35.55dB

ConvDecoder

SSIM: 0.96    PSNR: 38.73dB

MoDL

SSIM: 0.96    PSNR: 38.95dB

E2E-Varnet

SSIM: 0.94    PSNR: 37.47dB

Langevin (Ours)

SSIM: 0.92    PSNR: 37.17dB SSIM: 0.84    PSNR: 33.88dB SSIM: 0.93    PSNR: 36.75dB SSIM: 0.94    PSNR: 37.73dB SSIM: 0.91    PSNR: 35.88dB

SSIM: 0.92    PSNR: 37.24dB SSIM: 0.84    PSNR: 34.91dB SSIM: 0.93    PSNR: 36.98dB SSIM: 0.94    PSNR: 37.76dB SSIM: 0.90    PSNR: 35.72dB

SSIM: 0.88    PSNR: 33.85dB SSIM: 0.80    PSNR: 33.26dB SSIM: 0.92    PSNR: 35.55dB SSIM: 0.92    PSNR: 35.89dB SSIM: 0.89    PSNR: 34.70dB

SSIM: 0.96    PSNR: 40.71dB SSIM: 0.89    PSNR: 39.95dB SSIM: 0.98    PSNR: 43.03dB SSIM: 0.98    PSNR: 43.27dB SSIM: 0.97    PSNR: 41.86dB

Figure 9: In-distribution brain reconstructions, at an acceleration factor of R = 3 and an equispaced
vertical mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI
dataset. These results show that our method is competitive with state-of-the-art methods such as
E2E-VarNet.
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Fully-Sampled MVUE

SSIM: 0.73    PSNR: 25.38dB

L1-Wavelet

SSIM: 0.62    PSNR: 24.94dB

ConvDecoder

SSIM: 0.90    PSNR: 30.69dB

MoDL

SSIM: 0.89    PSNR: 30.50dB

E2E-Varnet

SSIM: 0.89    PSNR: 35.95dB

Langevin (Ours)

SSIM: 0.74    PSNR: 26.19dB SSIM: 0.77    PSNR: 31.15dB SSIM: 0.86    PSNR: 29.72dB SSIM: 0.89    PSNR: 31.73dB SSIM: 0.87    PSNR: 33.87dB

SSIM: 0.76    PSNR: 26.85dB SSIM: 0.77    PSNR: 31.68dB SSIM: 0.88    PSNR: 31.47dB SSIM: 0.89    PSNR: 32.33dB SSIM: 0.85    PSNR: 33.68dB

SSIM: 0.71    PSNR: 25.50dB SSIM: 0.64    PSNR: 26.64dB SSIM: 0.84    PSNR: 29.25dB SSIM: 0.88    PSNR: 31.31dB SSIM: 0.86    PSNR: 32.96dB

SSIM: 0.76    PSNR: 28.11dB SSIM: 0.85    PSNR: 34.67dB SSIM: 0.94    PSNR: 35.46dB SSIM: 0.93    PSNR: 36.00dB SSIM: 0.94    PSNR: 40.24dB

Figure 10: In-distribution brain reconstructions, at an acceleration factor of R = 6 and an equispaced
vertical mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI
dataset. These results show that our method retains its performance at higher acceleration factors.
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Fully-Sampled MVUE

SSIM: 0.61    PSNR: 20.59dB

L1-Wavelet

SSIM: 0.56    PSNR: 20.75dB

ConvDecoder

SSIM: 0.72    PSNR: 21.86dB

MoDL

SSIM: 0.75    PSNR: 23.10dB

E2E-Varnet

SSIM: 0.85    PSNR: 30.33dB

Langevin (Ours)

SSIM: 0.65    PSNR: 22.21dB SSIM: 0.66    PSNR: 23.18dB SSIM: 0.73    PSNR: 22.96dB SSIM: 0.78    PSNR: 24.13dB SSIM: 0.79    PSNR: 27.20dB

SSIM: 0.66    PSNR: 22.78dB SSIM: 0.65    PSNR: 26.57dB SSIM: 0.74    PSNR: 23.42dB SSIM: 0.78    PSNR: 24.34dB SSIM: 0.75    PSNR: 26.47dB

SSIM: 0.62    PSNR: 22.56dB SSIM: 0.52    PSNR: 22.37dB SSIM: 0.69    PSNR: 23.08dB SSIM: 0.75    PSNR: 24.35dB SSIM: 0.78    PSNR: 26.58dB

SSIM: 0.68    PSNR: 24.63dB SSIM: 0.77    PSNR: 30.38dB SSIM: 0.78    PSNR: 25.92dB SSIM: 0.80    PSNR: 27.10dB SSIM: 0.89    PSNR: 33.88dB

Figure 11: Brain reconstructions, at an acceleration factor of R = 12 and an equispaced vertical
mask in k-space. Our model was trained on T2-weighted brain images from the fastMRI dataset.
These results show that our method has significantly fewer artifacts than baselines.
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Fully-Sampled MVUE

SSIM: 0.96    PSNR: 40.52dB

L1-Wavelet

SSIM: 0.82    PSNR: 36.94dB

ConvDecoder

SSIM: 0.97    PSNR: 40.02dB

MoDL

SSIM: 0.91    PSNR: 34.18dB

E2E-Varnet

SSIM: 0.95    PSNR: 38.44dB

Langevin (Ours)

SSIM: 0.96    PSNR: 41.45dB SSIM: 0.88    PSNR: 37.06dB SSIM: 0.94    PSNR: 37.85dB SSIM: 0.91    PSNR: 33.47dB SSIM: 0.94    PSNR: 38.90dB

SSIM: 0.96    PSNR: 41.17dB SSIM: 0.83    PSNR: 35.64dB SSIM: 0.94    PSNR: 37.97dB SSIM: 0.90    PSNR: 33.93dB SSIM: 0.94    PSNR: 38.54dB

SSIM: 0.94    PSNR: 38.35dB SSIM: 0.83    PSNR: 34.57dB SSIM: 0.94    PSNR: 37.38dB SSIM: 0.90    PSNR: 33.10dB SSIM: 0.92    PSNR: 37.49dB

SSIM: 0.96    PSNR: 43.67dB SSIM: 0.90    PSNR: 39.27dB SSIM: 0.98    PSNR: 44.45dB SSIM: 0.95    PSNR: 36.98dB SSIM: 0.97    PSNR: 43.47dB

Figure 12: Brain reconstructions under a mask shift, at an acceleration of R = 3. MoDL and
E2E-VarNet were trained using an equispaced vertical mask, while these experiments were run using
an equispaced horizontal mask. Our method is robust to the mask shift, as our generative prior was
trained without any knowledge of the measurement process. ConvDecoder and L1-Wavelets are
untrained methods, and hence are robust to the mask shift.
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Ground truth MVUE L1-Wavelet ConvDecoder MoDL-MVUE E2E-Varnet Langevin Dynamics (Ours)

Figure 13: Brain reconstructions under a contrast shift, at an acceleration of R = 4. Our method was
trained on T2-weighted brains, while these are T1-weighted brains, and our method is clearly robust
to this contrast shift.
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Ground truth MVUE L1-Wavelet ConvDecoder MoDL-MVUE E2E-Varnet Langevin Dynamics (Ours)

Figure 14: Brain reconstructions under a contrast shift, at an acceleration of R = 4. Our method was
trained on T2-weighted brains, while these are FLAIR brains, and our method is clearly robust to this
contrast shift.
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Fully-Sampled MVUE

SSIM: 0.89    PSNR: 34.32dB

L1-Wavelet

SSIM: 0.83    PSNR: 33.82dB

ConvDecoder

SSIM: 0.94    PSNR: 38.44dB

MoDL

SSIM: 0.82    PSNR: 32.66dB

E2E-Varnet

SSIM: 0.83    PSNR: 35.73dB

Langevin (Ours)

SSIM: 0.86    PSNR: 33.68dB SSIM: 0.77    PSNR: 31.82dB SSIM: 0.81    PSNR: 31.46dB SSIM: 0.81    PSNR: 32.15dB SSIM: 0.82    PSNR: 33.28dB

SSIM: 0.86    PSNR: 32.54dB SSIM: 0.83    PSNR: 34.17dB SSIM: 0.89    PSNR: 34.72dB SSIM: 0.79    PSNR: 30.56dB SSIM: 0.86    PSNR: 35.24dB

SSIM: 0.91    PSNR: 36.43dB SSIM: 0.85    PSNR: 34.21dB SSIM: 0.91    PSNR: 35.58dB SSIM: 0.81    PSNR: 31.46dB SSIM: 0.83    PSNR: 34.84dB

SSIM: 0.82    PSNR: 29.99dB SSIM: 0.81    PSNR: 31.32dB SSIM: 0.89    PSNR: 32.96dB SSIM: 0.77    PSNR: 28.64dB SSIM: 0.84    PSNR: 32.78dB

Figure 15: fastMRI knee reconstructions at an acceleration factor of R = 4 and a random vertical
mask in k-space. All methods were trained on fastMRI brains, and this shows that our method is
more robust than other methods with respect to anatomy shift.

D Appendix: fastMRI Knee

Figure 15 and Figure 16 show further examples of proton density knee reconstructions.

Figure 18 and Figure 19 show comparisons of our method and baselines on knees with meniscus
tears. Figure 17 shows uncertainty estimates from our algorithm on a knee with a meniscus tear.

Figure 20 shows PSNR and SSIM on fat-suppressed(FS) knees. Our approach is not optimal
numerically, likely due to a much lower signal-to-noise ratio in FS knees than the brain training
data. However, Figures 18, 19, 21, 22 show that our qualitative reconstructions are competitive, and
recovers fine details (like meniscus tears) better than the deep learning baselines.
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Fully-Sampled MVUE

SSIM: 0.74    PSNR: 27.94dB

L1-Wavelet

SSIM: 0.76    PSNR: 28.83dB

ConvDecoder

SSIM: 0.81    PSNR: 29.25dB

MoDL

SSIM: 0.67    PSNR: 27.37dB

E2E-Varnet

SSIM: 0.79    PSNR: 34.24dB

Langevin (Ours)

SSIM: 0.76    PSNR: 29.55dB SSIM: 0.69    PSNR: 29.49dB SSIM: 0.79    PSNR: 30.98dB SSIM: 0.66    PSNR: 26.48dB SSIM: 0.72    PSNR: 27.78dB

SSIM: 0.75    PSNR: 27.41dB SSIM: 0.67    PSNR: 25.66dB SSIM: 0.76    PSNR: 28.88dB SSIM: 0.69    PSNR: 26.75dB SSIM: 0.79    PSNR: 26.42dB

SSIM: 0.78    PSNR: 28.59dB SSIM: 0.74    PSNR: 28.96dB SSIM: 0.77    PSNR: 27.90dB SSIM: 0.70    PSNR: 26.72dB SSIM: 0.80    PSNR: 32.96dB

SSIM: 0.71    PSNR: 25.87dB SSIM: 0.66    PSNR: 26.78dB SSIM: 0.72    PSNR: 26.28dB SSIM: 0.59    PSNR: 23.51dB SSIM: 0.77    PSNR: 29.17dB

Figure 16: fastMRI knee reconstructions at an acceleration factor of R = 8 and a random vertical
mask in k-space. All methods were trained on fastMRI brains, and this shows that our method is
more robust than other methods with respect to anatomy shift.
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Figure 17: Our method successfully recovers fine details and can provide an estimate of the reconstruction error.
The left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear (indicated by
red arrow in zoomed inset). Given measurements at an acceleration factor of R = 4, we obtain 48 independent
reconstructions via posterior sampling. The second column shows the pixel-wise average of reconstructions,
the third column shows the pixel-wise standard deviation, and the fourth column shows the magnitude of the
error between the ground truth and the mean reconstruction. Note that our generative prior has never seen such
pathology, as it was trained on T2-weighted brain scans.
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Figure 18: The left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear
(indicated by red arrow in zoomed inset). Given measurements at an acceleration factor of R = 4, we observe
that our method preserves fine details better than the baselines. None of the methods have seen such a pathology,
as they were all trained on T2-weighted brain scans.

Figure 19: The left column shows a knee from the fastMRI dataset, along with an annotated meniscus tear
(indicated by red arrow in zoomed inset). Given measurements at an acceleration factor of R = 4, we observe
that our method preserves fine details better than the baselines. None of the methods have seen such a pathology,
as they were all trained on T2-weighted brain scans.
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Figure 20: Average test PSNR and SSIM on fat-suppressed (FS) knees, across a range of acceleration factors R
and a random vertical mask in k-space. Higher R indicates a smaller number of acquired measurements. All
methods were trained on fastMRI brains. Our approach is not optimal numerically, likely due to a much lower
signal-to-noise ratio in FS knees than the brain training data. However, Figures 18, 19, 21, 22 show that our
qualitative reconstructions are competitive, and recover fine details like meniscus tears better than the deep
learning baselines. Shaded regions indicate 95% confidence intervals. Note that we trained baselines on MVUE
images and hence these numerical values should not be compared with those in literature trained on RSS images
(see Appendix A.1 for a more detailed discussion).
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Fully-Sampled MVUE

SSIM: 0.74    PSNR: 30.38dB

L1-Wavelet

SSIM: 0.62    PSNR: 28.26dB

ConvDecoder

SSIM: 0.74    PSNR: 31.52dB

MoDL

SSIM: 0.58    PSNR: 23.66dB

E2E-Varnet

SSIM: 0.64    PSNR: 28.26dB

Langevin (Ours)

SSIM: 0.61    PSNR: 27.62dB SSIM: 0.56    PSNR: 26.42dB SSIM: 0.67    PSNR: 29.27dB SSIM: 0.52    PSNR: 22.43dB SSIM: 0.40    PSNR: 21.82dB

SSIM: 0.79    PSNR: 32.18dB SSIM: 0.72    PSNR: 30.84dB SSIM: 0.79    PSNR: 33.01dB SSIM: 0.57    PSNR: 20.47dB SSIM: 0.75    PSNR: 29.97dB

SSIM: 0.84    PSNR: 34.33dB SSIM: 0.77    PSNR: 31.97dB SSIM: 0.83    PSNR: 34.80dB SSIM: 0.68    PSNR: 25.29dB SSIM: 0.82    PSNR: 33.59dB

SSIM: 0.71    PSNR: 28.83dB SSIM: 0.63    PSNR: 27.90dB SSIM: 0.72    PSNR: 30.62dB SSIM: 0.59    PSNR: 23.51dB SSIM: 0.71    PSNR: 29.88dB

Figure 21: fastMRI fat-suppressed(FS) knee reconstructions at an acceleration factor of R = 4 and a random
vertical mask in k-space. All methods were trained on fastMRI brains. Our approach is not optimal numerically,
likely due to a much lower signal-to-noise ratio in FS knees than the brain training data. However, the
reconstructions in this figure and Figures 18, 19, 22 show that our qualitative reconstructions are competitive,
and recovers fine details like meniscus tears better than the deep learning baselines.
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Fully-Sampled MVUE

SSIM: 0.65    PSNR: 27.83dB

L1-Wavelet

SSIM: 0.55    PSNR: 26.74dB

ConvDecoder

SSIM: 0.59    PSNR: 26.57dB

MoDL

SSIM: 0.52    PSNR: 22.35dB

E2E-Varnet

SSIM: 0.62    PSNR: 27.46dB

Langevin (Ours)

SSIM: 0.54    PSNR: 25.89dB SSIM: 0.39    PSNR: 23.61dB SSIM: 0.54    PSNR: 26.24dB SSIM: 0.42    PSNR: 20.74dB SSIM: 0.41    PSNR: 22.08dB

SSIM: 0.68    PSNR: 28.06dB SSIM: 0.61    PSNR: 26.33dB SSIM: 0.71    PSNR: 29.98dB SSIM: 0.52    PSNR: 21.10dB SSIM: 0.68    PSNR: 26.65dB

SSIM: 0.75    PSNR: 30.68dB SSIM: 0.69    PSNR: 30.18dB SSIM: 0.72    PSNR: 30.17dB SSIM: 0.66    PSNR: 25.40dB SSIM: 0.74    PSNR: 29.84dB

SSIM: 0.63    PSNR: 27.00dB SSIM: 0.53    PSNR: 25.12dB SSIM: 0.59    PSNR: 26.68dB SSIM: 0.52    PSNR: 21.40dB SSIM: 0.66    PSNR: 27.62dB

Figure 22: fastMRI fat-suppressed knee reconstructions at an acceleration factor of R = 8 and a random vertical
mask in k-space. All methods were trained on fastMRI brains. Our approach is not optimal numerically, likely
due to a much lower signal-to-noise ratio in FS knees than the brain training data. However, the reconstructions
in this figure and Figures 18, 19, 21 show that our qualitative reconstructions are competitive, and recovers fine
details like meniscus tears better than the deep learning baselines.
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Figure 23: Comparative reconstructions of a 2D abdominal scan with uniform random under-sampling in the
horizontal direction at R = 4. None of the methods were trained to reconstruct abdomen MRI. Our method uses
a score-based generative model trained on brain images (as explained) and obtains good reconstructions. The
red arrows indicate missing details or artifacts in the kidney structure.
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Figure 24: Reconstruction SSIM and PSNR on Stanford Knees as a function of the acceleration
R. This dataset is considerably different from the others, as they are 3D scans. We sample k-space
measurements according to Poisson masks, which gives improved incoherence, and hence we find no
statistical difference between L1-Wavelet, MoDL, and our method. Note that all hyper-parameter
selection and model training was done on brains from the fastMRI dataset.

E Appendix: Abdomen

Figure 23 shows an additional example of a reconstructed abdominal scan. This is obtained from the
same volume as the figure in the main text, and has a resolution of 158 × 320 voxels, but a much
larger field of view, leading to a resolution shift for all models.

F Appendix: Stanford Knee

Figures 24 and 25 show quantitative and qualitative reconstruction under an anatomy shift induced
by testing axial knee scans. In this case, we first obtain a complete three-dimensional fast spin
echo (3D-FSE) knee scan from the publicly available repository at mridata.org. To obtain two-
dimensional slices, we apply an IFFT operator on the readout axis and select 24 equally spaced slices
for evaluation. Each slice has a resolution of 320× 256 pixels.
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Ground truth MVUE L1-Wavelet MoDL ConvDecoder E2E-Varnet Ours

Figure 25: Qualitative reconstructions obtained by all methods on the Stanford Knees dataset at an
acceleration of R = 5.62. This dataset is considerably different from the others, as they are 3D scans.
We sample k-space measurements according to Poisson masks, which gives improved incoherence,
and hence we find no statistical difference between L1-Wavelet, MoDL, and our method. Note that
all hyper-parameter selection and model training was done on brains from the fastMRI dataset.
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G Appendix: Implementation

G.1 Score-Based Generative Model

Training the model We use the implementation from https://github.com/ermongroup/
ncsnv2. As raw MRI scans are complex valued, we changed the generator such that the out-
put and input have two channels, one each for the real and imaginary components. We did not change
the architecture otherwise.

We used the FlickrFaces (FFHQ) configs file from the NCSNv2 repo, except we set sigma_begin
= 232, and sigma_end = 0.0066. This is because of the smaller number of channels in MRI when
compared to FFHQ.

Dynamic range of the data. MRI data exhibits a lot of variation in the dynamic range. For example,
the fastMRI dataset has max pixel value on the order of 10−4, while the abdomen and Stanford knee
data has max pixels on the order of 105. In order to deal with this variation, during training, we
normalize each image by the 99 percentile pixel value. During inference time, when we do not have
access to the ground-truth image, we normalize the reconstruction using the 99 percentile pixel value
of the pseudo-inverse complex image. We observe that this heuristic is sufficient to get good results.

Invariance to image shapes. Due to the convolutional nature of NCSNv2, although we trained on
384× 384 images, we can still apply them to knees, T1-weighted & FLAIR brains, and abdomens,
although all of these have different dimension shapes.

Hyperparameters We tuned our hyperparameters on two validation brain scans, at an acceleration
of R = 4. We then reused these hyperparameters on all anatomies, all accelerations. Please see
our GitHub link: https://github.com/utcsilab/csgm-mri-langevin for the hyperparameter
values.

G.2 E2E-VarNet Baseline

We use the architecture publicly available in the fastMRI official repository. The backbone for the
image reconstruction network is a U-Net with a depth of four stages, and 18 hidden channels in the
first stage, for a total of 29 million learnable parameters. This model also include a smaller deep
neural network that is used to estimate the sensitivity maps. This is also a U-Net, with four stages,
but only eight hidden channels after the first stage, for an additional 0.7 million parameters. The
model is trained for a number of 12 unrolls, and separate image networks are used at each unroll.

We train this model from scratch for a number of 40 epochs, using an Adam optimizer with default
PyTorch parameters and a learning rate of 2e−4, decayed by 0.5 after 20 epochs, as well as gradient
clipping to a maximum magnitude of 1. We use the fully-sampled MVUE reconstructions from the
brain T2 contrast in fastMRI to train all methods. We use a batch size of 1 and a supervised SSIM
loss between the absolute values of ground truth MVUE and the absolute value of the complex output
of the network at acceleration factors R = {3, 6} (chosen with equal probability), using a vertical,
equispaced sampling pattern, same as all other baselines.

Finally, it is worth mentioning that the network used to estimate the sensitivity maps explicitly uses
the fully-sampled, vertical ACS region, as shown in Figure 8, both during training and inference. This
makes testing with other mask patterns non-trivial for this baseline. To alleviate this, we always feed
the image obtained from the vertical ACS region (for example, in the case of horizontal masks, we
intentionally zero out other sampled lines that would fall in this region), to not introduce incoherent
aliasing in this image.

G.3 MoDL Baseline

We use the PyTorch MoDL implementation publicly available at https://github.com/utcsilab/
deep-jsense and train a MoDL model that uses a backbone residual network with a depth of six
layers, three equispaced residual connections (that feed hidden signals from the first three layers to
the last three layers) and 64 hidden channels, with a total of 220000 trainable parameters. Unlike
E2E-VarNet, the same backbone network is used across all unrolls, and the data consistency term is
given by a Conjugate Gradient (CG) operator, truncated to six steps.
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Anatomy MoDL ConvDec Ours
Knee 1.87(0.34) 2.97(0.18) 1.17(0.45)

Abdomen 1.87(0.76) 2.17(0.93) 1.97(0.71)
Brain 2.00(0.82) 2.07(0.77) 1.93(0.85)

Table 1: Ranking of algorithms by experts. A lower ranking is better: the best possible ranking is 1,
and the worst 3. The values show the average and standard deviation (in parentheses) of the ranking
for each anatomy, using a total of 30 data points (3 participants x 10 scans per anatomy).

We train MoDL for a number of six unrolls, leading to a total of 36 CG steps and six network
applications in the unroll. We use the Adam optimizer with default PyTorch parameters and learning
rate 2e−4, as well as gradient clipping to a maximum magnitude of 1. We train for 15 epochs and
decay the learning rate by 0.5 after 8 epochs, using a batch size of 1 on exactly the same T2 brain
scans as all methods and a supervised SSIM loss at R = {3, 6} (chosen with equal probability)
between the magnitude of the ground-truth MVUE image and the magnitude of the complex network
output. We find that, although relatively small, the backbone network architecture is sufficient to
achieve good in-distribution reconstruction, and serve as a strong baseline.

Since MoDL and all other methods (including ours) except E2E-VarNet, require external sensitivity
map estimates to be provided to them, we use the ESPIRiT algorithm from the BART toolbox [86]
without any eigenvalue cropping to estimate a single set of sensitivity maps, one for each coil.

H Appendix: Radiologist Study

We performed a preliminary image quality assessment experiment with two board-certified radiolo-
gists and a faculty member that uses neuro-imaging in their research.

The three external experts were not involved with our research and have performed the image quality
assessment blindly. Each of them was presented with ten scans from the following anatomies and
scan parameters: abdominal scans, knee scans and brain scans with a horizontal readout direction,
leading to a total of 30 quality assessment questions. Note that all anatomies represent test-time
distributional shifts in at least one aspect.

In each question, the experts were shown four images:

• The fully-sampled reference image, explicitly marked as "Reference".

• The results of three reconstruction algorithms at acceleration factor R=3: MoDL, ConvDe-
coder and our method. The order of the reconstructions was shuffled for each question, and
the reconstructions were labeled as "1", "2" and "3".

We chose to compare with MoDL and ConvDecoder since these method had the best overall quantita-
tive and qualitative (according to our own pre-assessment) robust performance. The participants were
instructed to rank the three reconstructions from best to worst quality, while using the "Reference"
image as a perceptual guideline. Table 1 shows the average and standard deviation (in parentheses) of
the ranking for each anatomy, obtained using a total of 30 data points (3 participants x 10 scans per
anatomy).

In Table 1, a lower ranking is better, the best possible ranking is 1, and the worst 3. We draw the
following conclusions:

• Participants consistently ranked our method as best on the knee scans, which supports the
distributional shift robustness claimed in the main paper, and detailed in Appendices D, E
and A.

• Participants did not perceive a significant difference between all methods when applied to
abdominal or brain scans with a horizontal phase encode direction. In the brain case, this
supports the qualitative results shown in Appendix C, Figure 9.

• In the abdominal case, this partially correlates with Figure 2c, regarding the quantitative tie
between our approach and MoDL.
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Anatomy Ours vs. MoDL Ours vs. ConvDec
Knee 1.53e− 10 2.77e− 6

Abdomen 0.610 0.340
Brain 0.767 0.550

Table 2: p-values from the Wilcoxson Rank Sum test to determine if the rankings of different
algorithms are drawn from different populations. There is a significant difference in the case of knees,
and no significant difference in the case of abdomens and brains.

Anatomy ICC2 p-value 95% CI
Knee 0.980 0.0004 [0.81, 1]

Abdomen −0.222 0.576 [−0.89, 0.92]
Brain −0.818 0.907 [−0.98, 0.59]

Table 3: p-values and confidence intervals for differences in ranking between our method and
baselines.

To quantify the statistical significance of the above results, we perform a Wilcoxson Rank Sum test to
determine if the rankings of different algorithms are drawn from different populations. We evaluate if
our proposed method leads to different rankings than MoDL and the ConvDecoder, and show the
p-values in Table 2.

The results show a significant difference in the case of knees, while no significant difference is present
for abdomen and brain. Finally, to evaluate inter-observer agreement between the three reviewers, we
calculated the intra-class correlation (ICC) coefficient separately for each anatomy by aggregating
the ten questions related to that anatomy and evaluating the ICC2 coefficient [2] in a pairwise manner
at a 5% significance level.

The results are shown in Table 3, where we also include the p-value and the 95% confidence interval
for the ICC2 estimate. This indicates that there exists a very strong consensus regarding the ranking
on the knee anatomy, while for abdomen and brain this consensus is much weaker, which together
with Table 2 indicates that the images were considered equivalent.

This preliminary image quality assessment gives additional evidence (in addition to the quantitative
metrics of SSIM and PSNR) that our method maintains robustness to distribution shifts at test time.
As our quantitative results show, other methods maintain robustness in some but not all cases. Due
to time limitations, we were not able to ask the reviewers to evaluate every algorithm and every
distribution shift including different levels of acceleration. We stress that this preliminary study is
not a substitute for a rigorous clinical evaluation which is necessary before considering using our
proposed method in a clinical setting.
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