
A Literature Reviews

We discuss some of related literature and shed lights on the relationship between our work with
others.

A.1 Explicit Generative Models

Explicit generative models are interested in fitting each instance with a scalar (unnormalized) density
expected to explicitly capture the distribution behind data. Such densities are often up to a constant
and called as energy functions which are common in undirected graphical models [24]. Hence,
explicit generative models are also termed as energy-based models. An early version of energy-based
models is the FRAME (Filters, Random field, And Maximum Entropy) model [53, 45]. Later on,
some works leverage deep neural networks to model the energy function [32, 49] and pave the way
for researches on deep energy model (DEM) (e.g., [29, 22, 50, 17, 8, 34]). Apart from DEM, there
are also some other forms of deep explicit models based on deep belief networks [19] and deep
Boltzmann machines [38].

The normalized constant under the energy function requires an intractable integral over all possible
instances, which makes the model hard to learn via Maximum Likelihood Estimation (MLE). To
solve this issue, some works propose to approximate the constant by MCMC methods [10, 31].
However, MCMC requires an inner-loop samples in each training, which induces high computational
costs. Another solution is to optimize an alternate surrogate loss function. For example, contrastive
divergence (CD) [29] is proposed to measure how much KL divergence can be improved by running
a small numbers of Markov chain steps towards the intractable likelihood, while score matching (SM)
[21] detours the constant by minimizing the distance for gradients of log-likelihoods. A recent study
[15] uses Stein discrepancy to train unnormalized model. The Stein discrepancy does not require the
normalizing constant and makes the training tractable. Moreover, the intractable normalized constant
makes it hard to sample from. To obtain an accurate samples from unnormalized densities, many
studies propose to approximate the generation by diffusion-based processes, like generative flow [33]
and variational gradient descent ([28]). Also, a recent work [20] leverages Stein discrepancy to design
a neural sampler from unnormalized densities. The fundamental disadvantage of explicit model is
that the energy-based learning is difficult to accurately capture the distribution of true samples due to
the low manifold of real-world instances [29].

A.2 Implicit Generative Models

Implicit generative models focus on a generation mapping from random noises to generated samples.
Such mapping function is often called as generator and possesses better flexibility compared with
explicit models. One typical implicit model is Generative Adversarial Networks (GAN) [14]. GAN
targets an adversarial game between the generator and a discriminator (or critic in WGAN) that aims
at discriminating the generated and true samples. In this paper, we focus on GAN and its variants
(e.g., WGAN [2], WGAN-GP [16], DCGAN [36], etc.) as the implicit generative model and we leave
the discussions on other implicit models as future work.

Two important issues concerning GAN and its variants are instability of training and local optima.
The typical local optima for GAN can be divided into two categories: mode-collapse (the model
fails to capture all the modes in data) and mode-redundance (the model generates modes that do
not exist in data). Recently there are many attempts to solve these issues from various perspectives.
One perspective is from regularization. Two typical regularization methods are likelihood-based and
entropy-based regularization with the prominent examples [43] and [25] that respectively leverage
denoising feature matching and implicit gradient approximation to enforce the regularization con-
straints. The likelihood and entropy regularizations could respectively help the generator to focus
on data distribution and encourage more diverse samples, and a recent work [41] uses Langevin
dynamics to indicate that i) the entropy and likelihood regularizations are equivalent and share an
opposite relationship in mathematics, and ii) both regularizations would make the model converge
to a surrogate point with a bias from original data distribution. Then [41] proposes a variational
annealing strategy to empirically unite two regularizations and tackle the biased distributions.

To deal with the instability issue, there are also some recent literatures from optimization perspectives
and proposes different algorithms to address the non-convergence of minimax game optimization (for

14

instance, [11, 26, 12]). Moreover, the disadvantage of implicit models is the lack of explicit densities
over instances, which disables the black-box generator to characterize the distributions behind data.

A.3 Attempts to Combine Both of the Worlds

Recently, there are several studies that attempt to combine explicit and implicit generative models
from different ways. For instance, [52] proposes energy-based GAN that leverages energy model as
discriminator to distinguish the generated and true samples. The similar idea is also used by [22] and
[5] which let the discriminator estimate a scaler energy value for each sample. Such discriminator
is optimized to give high energy to generated samples and low energy to true samples while the
generator aims at generating samples with low energy. The fundamental difference is that [52] and
[5] both aim at minimizing the discrepancy between distributions of generated and true samples
while the motivation of [22] is to minimize the KL divergence between estimated densities and true
samples. [22] adopts contrastive divergence (CD) to link MLE for energy model over true data with
the adversarial training of energy-based GAN. However, both CD-based method and energy-based
GAN have limited power for both generator and discriminator. Firstly, if the generated samples
resemble true samples, then the gradients for discriminator given by true and generated samples are
just the opposite and will counteract each other, and the training will stop before the discriminitor
captures accurate data distribution. Second, since the objective boils down to minimizing the KL
divergence (for [22]) or Wasserstein distance (for [5]) between model and true distributions, the
issues concerning GAN (or WGAN) like training instability and mode-collapse would also bother
these methods.

Another way for combination is by cooperative training. [47] (and its improved version [46]) leverages
the samples of generator as the MCMC initialization for energy-based model. The synthesized
samples produced from finite-step MCMC are closer to the energy model and the generator is
optimized to make the finite-step MCMC revise its initial samples. Also, a recent work [7] proposes
to regard the explicit model as a teacher net who guides the training of implicit generator as a
student net to produce samples that could overcome the mode-collapse issue. The main drawback
of cooperative training is that they indirectly optimize the discrepancy between the generator and
data distribution via the energy model as a ‘mediator’, which leads to a fact that once the energy
model gets stuck in a local optimum (e.g., mode-collapse or mode-redundance) the training for the
generator would be affected. In other words, the training for two models would constrain rather
than exactly compensate each other. Different from existing methods, our model considers three
discrepancies simultaneously as a triangle to jointly train the generator and the estimator, enabling
them to compensate and reinforce each other.

B Background for Stein Discrepancy

Assume q(x) to be a continuously differentiable density supported on X ⇢ Rd and f : Rd ! Rd
0

a
smooth vector function. Define Aq[f(x)] = rx log q(x)f(x)> +rxf(x) as a Stein operator. If f is
a Stein class (satisfying some mild boundary conditions) then we have the following Stein identity
property:

Ex⇠q[Aq[f(x)]] = Ex⇠q[rx log q(x)f(x)
> +rxf(x)] = 0.

Such property induces Stein discrepancy between distributions P : p(x) and Q : q(x), x 2 X :
S(Q,P) = sup

f2F
�(Ex⇠q[Ap[f(x)]]) = sup

f2F
{�(Ex⇠q[rx log p(x)f(x)

> +rxf(x)])}, (8)

where f is what we call Stein critic that exploits over function space F and if F is large enough then
S(Q,P) = 0 if and only if Q = P. Note that in (1), we do not need the normalized constant for p(x)
which enables Stein discrepancy to deal with unnormalized density.

If F is a unit ball in a Reproducing Kernel Hilbert Space (RKHS) with a positive definite kernel
function k(·, ·), then the supremum in (1) would have a close form (see [27, 4, 35] for more details):

SK(Q,P) = Ex,x0⇠q[up(x,x
0)], (9)

where up(x,x0) = rx log p(x)>k(x,x0)rx log p(x0) + rx log p(x)>rxk(x,x0) +
rxk(x,x0)>rx log p(x0) + tr(rx,x0k(x,x0)). This (9) gives the Kernel Stein Discrepancy
(KSD). An equivalent definition is

SK(Q,P) = Ex,x0⇠P[(rx log dP/dQ(x))>k(x,x0)rx log dP/dQ(x0)],

15

C Proofs of Results in Section 4.1

C.1 Proof of Theorem 1

Proof. Applying Kantorovich’s duality on W(PG,Preal) and using the exhaustiveness assumption
on the generator, we rewrite the problem as

min
E,P

max
D

{EP[D]� EPreal [D] + �1S(Preal,PE) + �2S(P,PE)}, (10)

where the minimization with respect to E is over all energy functions, the minimization with respect
to P is over all probability distributions with continuous density, and the maximization with respect
to D is over all 1-Lipschitz continuous functions. Recall the definition of kernel Stein discrepancy

S(P,PE) = Ex,x0⇠P[(rx log dP/dPE(x))
>
k(x,x0)rx log dP/dPE(x

0)],

where dP/dPE is the Radon-Nikodym derivative. Observe that S(P,PE) is infinite if P is not
absolutely continuous with respect to PE . Hence, to minimize the objective of (10), it suffices to
consider those P’s that are absolutely continuous with respect to PE .

Fixing E, we claim that we can swap minh and maxD in (10). Indeed, introducing a change of
variable H(x) = log dP/dPE , then problem (10) becomes

min
E,h

max
D

�
EPE [e

H
D]� EPreal [D] + �1S(Preal,PE) + �2Ex,x0⇠P[rxH(x)>k(x,x0)rxH(x0)]

.

The objective function is linear in D and convex in H due to the convexity of the exponential
function, the linearity of expectation operator and differential operator, and the positive definiteness
of k. Without loss of generality, we can restrict D to be such that D(x0) = 0 for some element x0,
as a constant shift does not change the value of EPE [(1 + h)D] � EPreal [D]. The set of Lipschitz
functions that vanish at x0 is a Banach space, and the set of 1-Lipschitz functions is compact [44].
Moreover, L1(PE) is also a Banach space and the objective function is linear in both h and D. The
above verifies the condition of Sion’s minimax theorem, and thus the claim is proved.

Swapping minh and maxD in (11). Introducing a variable replacement h := e
H � 1 = dP/dPE � 1,

then problem (10) becomes

min
E

max
D

min
h

⇢
EPE [(1 + h)D]� EPreal [D] + �1S(Preal,PE)

+ �2 · Ex,x0⇠P[rx log(1 + h(x))>k(x,x0)rx log(1 + h(x0))]

�
,

(11)

where the minimization with respect to h is over all L1(PE) functions with PE-expectation zero.
Fixing E and D, we consider

min
h:EPE [h]=0

{EPE [hD] + �2 · Ex,x0⇠P[rx log(1 + h(x))>k(x,x0)rx log(1 + h(x0))]}

= min
h:EPE [h]=0

⇢
EPE [hD] + �2 · Ex,x0⇠P

rxh(x)>

1 + h(x)
k(x,x0)

rxh(x0)

1 + h(x0)

��

= min
h:EPE [h]=0

�
EPE [hD] + �2 · Ex,x0⇠PE

⇥
rxh(x)

>
k(x,x0)rxh(x

0)
⇤

,

where the first equality follows from the chain rule of the derivative, and the second equality follows
from a change of measure dP = (1 + h)dPE . Introducing an auxiliary variable r so that r2 is an
upper bound of Ex,x0⇠PE

⇥
rxh(x)>k(x,x0)rxh(x0)

⇤
, we have that

min
h:EPE [h]=0

�
EPE [hD] + �2 · Ex,x0⇠PE

⇥
rxh(x)

>
k(x,x0)rxh(x

0)
⇤

=min
r�0

min
h:EPE [h]=0

�
EPE [hD] + �2r

2 : Ex,x0⇠PE

⇥
rxh(x)

>
k(x,x0)rxh(x

0)
⇤
 r

2

=min
r�0

min
h:EPE [h]=0

�
rEPE [hD] + �2r

2 : Ex,x0⇠PE

⇥
rxh(x)

>
k(x,x0)rxh(x

0)
⇤
 1

=min
r�0

n
�2r

2 � r kDk
H�1(PE ;k)

o

=� 1

4�2
kDk2

H�1(PE ;k) ,

16

where the first equality holds because the minimization over r forces r
2 =

Ex,x0⇠PE [rxh(x)>k(x,x0)rxh(x0)] at optimality; the second equality follows from a change of
variable from h to rh; and the third equality follows from the definition of the kernel Sobolev dual
norm. Plugging back in (11) yields the ideal result.

C.2 Proof for Theorem 2

Proof. Applying the definition of Stein discrepancy on S(PE ,PG) and under the exhaustiveness
assumption of G, we rewrite the problem as

min
E,P

max
f

{�1S(Preal,PE) + �2Ey⇠P[APE f(y)] +W(Preal,P)},

where the minimization with respect to E is over the set of all engergy functions; the minimization
with respect to P is over all distributions; and the maximization with respect to f is over the Stein class
for PE . Observe that by definition, EP[APE f(y)] equals EP[ry log dPE/dP(y)f(y)> +ryf(y)],
which is infinite if P is not absolutely continuous in PE , hence those P’s that are not absolutely
continuous in PE are automatically ruled out.

Let us fix E. Using a similar argument as in the proof of Theorem 1, it suffices to restrict P on the
set of distributions that are absolutely continuous with respect to PE , which can be identified as the
set of L1(PE) functions with PE-mean zero and is thus Banach. Together with the compactness
assumption of the Stein class, using Sion’s minimax theorem, we can swap the minimization over P
and the maximization over f . Now, fixing further f , consider

min
P

{�2Ey⇠P[APE f(y)] +W(Preal,P)}. (12)

Recall the definition of Wasserstein metric

W(Preal,P) = min
�

E(x,y)⇠� [kx� yk],

where the minimization is over all joint distributions of (x,y) with x-marginal Preal and y-marginal
P. We rewrite problem (12) as

min
P,�

{E(x,y)⇠� [�2 APE f(y) + ||x� y||]},

where � has marginals Preal and P. Since P is unconstrained, the above problem is further equivalent
to

min
�

{E(x,y)⇠� [�2APE f(y)] + ||x� y||]},

where the minimization is over all joint distributions of (x,y) with x-marginal being Preal. Using
the law of total expectation, the problem above is equivalent to

min
{�x}x2suppPreal

Ex⇠Preal

⇥
Ey⇠�x [�2APE f(y) + ||x� y|| | x]

⇤

= Ex⇠Preal

min
�x

n
Ey⇠�x [�2APE f(y) + ||x� y|| | x]

o�

= Ex⇠Preal

min
y2X

{�2APE f(y) + ||x� y||}
�

,

where the minimization in the first line of the equation is over �x, the set of all conditional distributions
of y given x where x is over the support supp Preal of Preal; the exchanging of min and E in the
first equality follows from the interchangebability principle [40]; the second equality holds because
the infimum can be restricted to the set of point masses. This is because the inner minimization
over �x in the second line above can be attained at a Dirac mass concentrated on the minimizer
argminy{�2APE f(y) + ||x � y||}, provided that the minimizer exists; otherwise we can use an
approximation argument to show it suffices to only consider point masses. Finally, the original
problem is equivalent to

min
E

max
f

⇢
�1S(Preal,PE) + Ex⇠Preal

min
y2X

{�2APE f(y) + ||x� y||}
��

.

Therefore, the proof is completed using the definition of Moreau-Yosida regularization.

17

D Details and Proofs in Section 4.2

D.1 One-Dimensional Case

Proposition 2. Using alternate SGD for (6) geometrically decreases the square norm Nt = | t|2 +
|✓ � 1|2 + |�+ 1|2, for any 0 < ⌘ < 1 with �1 = �2 = 1,

Nt+1 = (1� ⌘2(1� ⌘)2)Nt. (13)

Proof. Instead of directly studying the optimization for (6), we first prove the following problem will
converge to the unique optimum,

min
✓

max

min
�

✓ + ✓�+
1

2
✓
2 + �

2
. (14)

Applying alternate SGD we have the following iterations:

 t+1 = t + ⌘ ⇤ ✓t,

�t+1 = �t � ⌘ ⇤ (✓t + 2�t) = (1� 2⌘)�t � ⌘✓t,

✓t+1 = ✓t � ⌘(t+1 + �t+1 + ✓t) = �⌘(1� 2⌘)�t + (1� ⌘)✓t � ⌘ t.

Then we obtain the relationship between adjacent iterations:
"
 t+1

�t+1

✓t+1

#
=

"
1 0 ⌘

0 1� 2⌘ �⌘
�⌘ �⌘(1� 2⌘) 1� ⌘

#
·
"
 t

�t

✓t

#
= M ·

"
 t

�t

✓t

#

We further calculate the eigenvalues for matrix M and have the following equations (assume the
eigenvalue as �):

(�� 1)3 + 3⌘(�� 1)2 + 2⌘2(1 + ⌘)(�� 1) + 2⌘3 = 0.

One can verify that the solutions to the above equation satisfy |�| <
p
(1� ⌘ + ⌘2)(1 + ⌘ � ⌘2).

Then we have the following relationship
�����

"
 t+1

�t+1

✓t+1

#�����

2

2

=

�����[t �t ✓t] ·M>
M ·

"
 t

�t

✓t

#�����

2

2

 �2
m
·

�����

"
 t

�t

✓t

#�����

2

2

where �m denotes the eigenvalue with the maximum absolute value of matrix M . Hence, we have

2
t+1 + �

2
t+1 + ✓

2
t+1 (1� ⌘ + ⌘

2)(1 + ⌘ � ⌘2)[2
t
+ �

2
t
+ ✓

2
t
].

We proceed to replace , � and ✓ in (14) by 0, �0 and ✓0 respectively and conduct a change of
variable: let ✓0 = 1� ✓ and �0 = �1� �. Then we get the conclusion in the proposition.

As shown in Fig. 3(b), Stein Bridging achieves a good convergence to the right optimum. Compared
with (4), the objective (6) adds a new bilinear term � · ✓, which acts like a connection between the
generator and estimator, and two other quadratic terms, which help to penalize the increasing of
values through training. The added terms and original terms in (6) cooperate to guarantee convergence
to a unique optimum. In fact, the added terms �1

2 (1 + �)2 + �2
2 (✓+ �)2 in (6) and the original terms

 � · ✓ in WGAN play both necessary roles to guarantee the convergence to the unique optimum
points [⇤

, ✓
⇤
,�

⇤] = [0, 1,�1]. If we remove the critic and optimize ✓ and � with the remaining loss
terms, we would find that the training would converge but not necessarily to [⇤

, ✓
⇤] = [0, 1] (since

the optimum points are not unique in this case). On the other hand, if we remove the estimator, the
system degrades to (4) and would not converge to the unique optimum point [⇤

, ✓
⇤] = [0, 1]. If we

consider both of the world and optimize three terms together, the training would converge to a unique
global optimum [⇤

, ✓
⇤
,�

⇤] = [0, 1,�1].

18

D.2 Generalization to Bilinear Systems

Our analysis in the one-dimension case inspires us that we can add affiliated variable to modify the
objective and stabilize the training for general bilinear system. The bilinear system is of wide interest
for researchers focusing on stability of GAN training ([13, 26, 12, 11, 51]). The general bilinear
function can be written as

F (,✓) = ✓>A � b>✓ � c> , (15)
where ,✓ are both r-dimensional vectors and the objective is min

✓
max

F (,✓) which can be seen

as a basic form of various GAN objectives. Unfortunately, if we directly use simultaneous (resp.
alternate) SGD to optimize such objectives, one can obtain divergence (resp. fluctuation). To solve
the issue, some recent papers propose several optimization algorithms, like extrapolation from the
past ([12]), crossing the curl ([11]) and consensus optimization ([26]). Also, [26] shows that it is the
interaction term which generates non-zero values for r✓ F and r ✓F that leads to such instability
of training. Different from previous works that focused on algorithmic perspective, we propose to
add new affiliated variables which modify the objective function and allow the SGD algorithm to
achieve convergence without changing the optimum points.

Based on the minimax objective of (15) we add affiliated r-dimensional variable � (corresponding to
the estimator in our model) the original system and tackle the following problem:

min
✓

max

min
�

F (,✓) + ↵H(�,✓), (16)

where H(�,✓) = 1
2 (✓ + �)>B(✓ + �), B = (AA>)

1
2 and ↵ is a non-negative constant. The-

oretically, the new problem keeps the optimum points of (15) unchanged. Let L(,�,✓) =
F (,✓) + ↵G(�,✓).
Proposition 3. Assume the optimum point of min

✓
max

F (,✓) are [⇤
,✓⇤], then the optimum

points of (16) would be [⇤
,✓⇤,�⇤] where �⇤ = �✓⇤.

Proof. The condition tells us that r✓F (⇤
,✓) = 0 and r F (,✓⇤) = 0. Then we derive the

gradients for L(,�, ✓),
r L(⇤

,�,✓) = r✓F (⇤
,✓) = 0, (17)

r✓L(,�,✓⇤) = r✓F (,✓⇤) +r✓H(�,✓⇤) =
1

2
(B+B>)(✓⇤ + �), (18)

r�L(,�,✓) = r�H(�,✓) =
1

2
(B+B>)(�+ ✓), (19)

Combining (18) and (19) we get �⇤ = �✓⇤. Hence, the optimum point of (16) is [⇤
,✓⇤,�⇤] where

�⇤ = �✓⇤.

The advantage of the new problem is that it can be solved by SGD algorithm and guarantees
convergence theoretically. We formulate the results in the following theorem.
Theorem 3. For problem min

✓
max

min
�

L(,�,✓) using alternate SGD algorithm, i.e.,

 t+1 = t + ⌘r L(✓t, t,�t),

�t+1 = �t � ⌘r�L(✓t, t+1,�t),

✓t+1 = ✓t � ⌘r✓L(✓t, t+1,�t+1),

(20)

we can achieve convergence to [⇤
,✓⇤,�⇤] where �⇤ = �✓⇤ with at least linear rate of (1� ⌘1 +

⌘
2
2)(1 + ⌘2 � ⌘21) where ⌘1 = ⌘�min, ⌘2 = ⌘�max and �min (resp. �max) denotes the maximum

(resp. minimum) singular value of matrix A.

To prove Theorem 3, we can prove a more general argument.
Proposition 1. If we consider any first-order optimization method on (16), i.e.,

 t+1 2 0 + span(L(0,�,✓), · · · , F (t,�,✓)), 8t 2 N,
�t+1 2 0 + span(L(,�0,✓), · · · , L(,�t,✓)), 8t 2 N,

19

✓t+1 2 0 + span(L(,�,✓0), · · · , L(,�,✓t)), 8t 2 N,
Then we have

e t = V>(t � ⇤), e�t = U>(�t � �⇤), e✓t = U>(✓t � ✓⇤),

where U and V are the singular vectors decomposed by matrix A using SVD decomposition, i.e.,
A = UDV> and the triple ([e t]i, [e�t]i, [e✓t]i)1ir follows the update rule with step size �i⌘ as
the same optimization method on a unidimensional problem

min
✓

max

min
�

✓ + ✓�+
1

2
✓
2 +

1

2
�
2
, (21)

with step size ⌘, where �i denotes the i-th singular value on the diagonal of D.

Proof. The proof is extended from the proof of Lemma 3 in [12]. The general class of first-order
optimization methods derive the following updations:

 t+1 = 0 +
t+1X

s=0

⇢st(A
>✓s � c) = 0 +

t+1X

s=0

⇢stA
>(✓s � ✓⇤),

�t+1 = �0 +
1

2

t+1X

s=0

�st(B+B>)(✓s + �s),

✓t+1 = ✓0 +
t+1X

s=0

µst[A(s � ⇤) +
1

2
(B+B>)(✓s + �s)],

where ⇢st, �st, µst 2 R depend on specific optimization method (for example, in SGD, ⇢tt = �tt =
µtt remain as a non-zero constant for 8t and other coefficients are zero).

Using SVD A = UDV> and the fact ✓⇤ = ��⇤, B = (UDD>U>) = D, we have

V>(t+1 � ⇤) = V>(0 � ⇤) +
t+1X

s=0

⇢stD
>U>(✓s � ✓⇤)

U>(�t+1 � �⇤) = U>(�0 � �⇤) +
t+1X

s=0

�stU
>D(✓s � ✓⇤) +U>D(�s � �⇤),

U>(✓t+1�✓⇤) = U>(✓0�✓⇤)+
t+1X

s=0

⇢st[DV>(s� ⇤)+U>D(✓s�✓⇤)+U>D(�s��⇤)],

and equivalently,

e t+1 = e 0 +
t+1X

s=0

⇢stD
>e✓t, e�t = e�0 +

t+1X

s=0

�stD(e✓t + e�t),

e✓t+1 = e✓0 +
t+1X

s=0

⇢stD(e t + e✓t + e�t).

Note that D is a rectangular matrix with non-zero elements on a diagonal block of size r. Hence, the
above r-dimensional problem can be reduced to r unidimensional problems:

[e t+1]i = [e 0]i +
t+1X

s=0

⇢st�i[e✓t]i, [e�t]i = [e�0]i +
t+1X

s=0

�st�i([e✓t]i + [e�t]i),

[e✓t+1]i = [e✓0]i +
t+1X

s=0

⇢st�i([e t]i + [e✓t]i + [e�t]i).

The above iterations can be conducted independently in each dimension where the optimization in
i-th dimension follows the same updating rule with step size �i⌘ as problem in (21).

20

Furthermore, since problem (21) can achieve convergence with a linear rate of (1�⌘+⌘2)(1+⌘�⌘2)
using alternate SGD (the proof is similar to that of (14)), the multi-dimensional problem in (16) can
achieve convergence by SGD with at least a rate of (1� ⌘1 + ⌘

2
2)(1 + ⌘2 � ⌘21) where ⌘1 = ⌘�max,

⌘2 = ⌘�min and �max (resp. �min) denotes the maximum (resp. minimum) singular value of matrix
A. We conclude the proof for Theorem 4.

Theorem 3 suggests that the added term H(�,✓) with affiliated variables � could help the SGD
algorithm achieve convergence to the the same optimum points as directly optimizing F (,✓).
Our method is related to consensus optimization algorithm ([26]) which adds a regularization term
kr✓F (,✓)k + kr F (,✓)k to (15) resulting extra quadratic terms for ✓ and . The disadvantage
of such method is the requirement of Hessian matrix of F (,✓) which is computational expensive
for high-dimensional data. By contrast, our solution only requires the first-order derivatives.

E Details for Implementations

E.1 Synthetic Datasets

We provide the details for two synthetic datasets. The Two-Circle dataset consists of 24 Gaussian
mixtures where 8 of them are located in an inner circle with radius r1 = 4 and 16 of them lie
in an outer circle with radius r2 = 8. For each Gaussian component, the covariance matrix is✓
0.2 0
0 0.2

◆
= �1I and the mean value is [r1 cos t, r1 sin t], where t = 2⇡·k

8 , k = 1, · · · , 8, for the

inner circle, and [r2 cos t, r2 sin t], where t = 2⇡·k
16 , k = 1, · · · , 16 for the outer circle. We sample

N1 = 2000 points as true observed samples for model training.

The Two-Spiral dataset contains 100 Gaussian mixtures whose centers locate on two spiral-shaped

curves. For each Gaussian component, the covariance matrix is
✓
0.5 0
0 0.5

◆
= �2I and the mean

value is [�c1 cos c1, c1 sin c1], where c1 = 2⇡
3 + linspace(0, 0.5, 50) · 2⇡, for one spiral, and

[c2 cos c2,�c2 sin c2], where c2 = 2⇡
3 + linspace(0, 0.5, 50) · 2⇡ for another spiral. We sample

N2 = 5000 points as true observed samples.

E.2 Model Specifications and Training Algorithm

In different tasks, we consider different model specifications in order to meet the demand of capacify
as well as test the effectiveness under various settings. Our proposed framework (3) adopts Wasser-
stein distance for the first term and two Stein discrepancies for the second and the third terms. We
can write (3) as a more general form

min
✓,�

D1(Preal,PG) + �1D2(Preal,PE) + �2D3(PG,PE), (22)

where D1, D2, D3 denote three general discrepancy measures for distributions. As stated in our
remark, D1 can be specified as arbitrary discrepancy measures for implicit generative models. Here
we also use JS divergence, the objective for valina GAN. To well distinguish them, we call the model
using Wasserstein distance (resp. JS divergence) as Joint-W (resp. Joint-JS) in our experiments. On
the other hand, the two Stein discrepancies in (3) can be specified by KSD (as defined by Sk in (9)) or
general Stein discrepancy with an extra critic (as defined by S in (1)). Hence, the two specifications
for D1 and the two for D2 (D3) compose four different combinations in total, and we organize the
objectives in each case in Table 4.

In our experiments, we use KSD with RBF kernels for D2 and D3 in Joint-W and Joint-JS on two
synthetic datasets. For MNIST with conditional training (given the digit class as model input), we
also use KSD with RBF kernels. For MNIST and CIFAR with unconditional training (the class is not
given as known information), we find that KSD cannot provide desirable results so we adopt general
Stein discrepancy for higher model capacity.

The objectives in Table 4 appear to be comutationally expensive. In the worst case (using general
Stein discrepancy), there are two minimax operations where one is from GAN or WGAN and one
is from Stein discrepancy estimation. To guarantee training efficiency, we alternatively update the
generator, estimator, Wasserstein critic and Stein critic over the parameters ✓, �, and ⇡ respectively.

21

Table 4: Objectives for different specifications of D1(Preal,PG), D2(Preal,PE) and D3(PG,PE).
We specify D1 as Wasserstein distance or JS divergence in our paper and for D2 and D3 we consider
the general Stein discrepancy or kernel Stein discrepancy. Here we use W , JS to denote Wasserstein
distance and JS divergence respectively, and S , Sk to represent general Stein discrepancy and kernel
Stein discrepancy respectively. We omit the gradient penalty term for Wasserstein distance here but
use it in experiments.

D1 D2 D3 Objective

W S S min✓min�max max⇡ Ex⇠Pdata [d (x)]� Ez⇠p0 [d (G✓(z))]
+�1Ex⇠Pdata [Ap� [f⇡(x)]] + �2Ez⇠p0 [Ap� [f⇡(G✓(z))]]

W Sk Sk

min✓min�max Ex⇠Pdata [d (x)]� Ez⇠p0 [d (G✓(z))]
+�1Ex,x0⇠Pdata [up�(x, x

0)] + �2Ez,z0⇠p0 [up�(G✓(z), G✓(z0))]

JS S S min✓min�max max⇡ Ex⇠Pr [log(d (x))] + Ez⇠p0 [log(1� d (G✓(z)))]
+�1Ex⇠Pdata [Ap� [f⇡(x)]] + �2Ez⇠p0 [Ap� [f⇡(G✓(z))]]

JS Sk Sk

min✓min�max Ex⇠Pr [log(d (x))] + Ez⇠p0 [log(1� d (G✓(z)))]
+�1Ex,x0⇠Pdata [up�(x, x

0)] + �2Ez,z0⇠p0 [up�(G✓(z), G✓(z0))]

Specifically, in one iteration, we optimize the generator over ✓ and the estimator over � with one step
respectively, and then optimize the Wasserstein critic over with nd steps and the Stein critic over ⇡
with nc steps. Such training approach guarantees the same time complexity order of proposed method
as that of GAN or WGAN, and the training time for our model can be bounded within constant times
the time for training GAN model. In our experiment, we set nd = nc = 5 and empirically find
that our model Stein Bridging would be two times slower than WGAN on average. We present the
training algorithm for Stein Bridging in Algorithm 1.

E.3 Implementation Details

We give the information of network architectures and hyper-parameter settings for our model as well
as each competitor in our experiments. The hyper-parameters are searched with grid search.

The energy function is often parametrized as a sum of multiple experts ([18]) and each expert can
have various function forms depending on the distributions. If using sigmoid distribution, the energy
function becomes (see section 2.1 in [22] for details)

E�(x) =
X

i

log(1 + e
�(Win(x)+bi)), (23)

where n(x) maps input x to a feature vector and could be specified as a deep neural network, which
corresponds to deep energy model ([32])

When not using KSD, the implementation for Stein critic f and operation function � in (1) has still
remained an open problem. Some existing studies like [20] set d0 = 1 in which situation f reduces
to a scalar-function from d-dimension input to one-dimension scalar value. Such setting can reduce
computational cost since large d

0 could lead to heavy computation for training. Empirically, in our
experiments on image dataset, we find that setting d

0 = 1 can provide similar performance to d
0 = 10

or d0 = 100. Hence, we set d0 = 1 in our experiment in order for efficiency. Besides, to further reduce
computational cost, we let the two Stein critics share the parameters, which empirically provide better
performance than two different Stein critics.

Another tricky point is how to design a proper � given d
0 6= d where the trace operation is not

applicable. One simple way is to set � as some matrix norms. However, the issue is that using
matrix norm would make it hard for SGD learning. The reason is that the � and the expectation in
(1) cannot exchange the order, in which case there is no unbiased estimation by mini-batch samples
for the gradient. Here, we specify � as max-pooling over different dimensions of Ap� [f⇡(x)], i.e.
the gradient would back-propagate through the dimension with largest absolute value at one time.
Theoretically, such setting can guarantee the value in each dimension reduces to zero through training
and we find it works well in practice.

For synthetic datasets, we set the noise dimension as 4. All the generators are specified as a three-layer
fully-connected (FC) neural network with neuron size 4� 128� 128� 2, and all the Wasserstein

22

Algorithm 1: Training Algorithm for Stein Bridging
1 REQUIRE: observed training samples {x} ⇠ Preal.
2 REQUIRE: ✓0, �0, 0, ⇡0, initial parameters for generator, estimator, Wasserstein critic and

Stein critic models respectively. ↵E = 0.0002, �E

1 = 0.9, �E

2 = 0.999, Adam
hyper-parameters for explicit models. ↵I = 0.0002, �I

1 = 0.5, �I

2 = 0.999, Adam
hyper-parameters for implicit models. �1 = 1,�2, weights for D2 and D3 (we suggest
increasing �2 from 0 to 1 through training). nd = 5, nc = 5 number of iterations for
Wasserstein critic and Stein critic, respectively, before one iteration for generator and estimator.
B = 100, batch size.

3 while not converged do
4 for n = 1, · · · , nd do
5 Sample B true samples {xi}Bi=1 from {x};
6 Sample B random noise {zi}Bi=1 ⇠ P0 and obtain generated samples exi = G✓(zi) ;
7 Ldis =

1
B

P
B

i=1 d (xi)� d (exi)� �(krx̂id (x̂i)k � 1)2 // the last term is for
gradient penalty in WGAN-GP where x̂i = ✏ixi + (1� ✏i)exi, ✏i ⇠ U(0, 1);

8 k+1 Adam(�Ldis, k,↵
I
,�

I

1 ,�
I

2)// update the Wasserstein critic;
9 for n = 1, · · · , nc do

10 Sample B true samples {xi}Bi=1 from {x};
11 Sample B random noise {zi}Bi=1 ⇠ P0 and obtain generated samples exi = G✓(zi) ;
12 Lcritic =

1
B

P
B

i=1 �1Ap� [f⇡(x)] + �2Ap� [f⇡(exi)];
13 ⇡k+1 Adam(�Lcritic,⇡k,↵

E
,�

E

1 ,�
E

2)// update the Stein critic;
14 Sample B random noise {zi}Bi=1 ⇠ P0 and obtain generated samples exi = G✓(zi) ;
15 Lest =

1
B

P
B

i=1 �1Ap� [f⇡(x)] + �2Ap� [f⇡(exi)];
16 �k+1 Adam(Lest,�k,↵

E
,�

E

1 ,�
E

2)// update the density estimator;
17 Lgen = 1

B

P
B

i=1�d (exi) + �2Ap� [f⇡(exi)];
18 ✓k+1 Adam(Lgen, ✓k,↵

I
,�

I

1 ,�
I

2)// update the sample generator;
19 OUTPUT: trained sample generator G✓(z) and density estimator p�(x).

critics (or the discriminators in JS-divergence-based GAN) are also a three-layer FC network with
neuron size 2 � 128 � 128 � 1. For the estimators, we set the expert number as 4 and the feature
function n(x) is a FC network with neuron size 2� 128� 128� 4. Then in the last layer we sum
the outputs from each expert as the energy value E(x). The activation units are searched within
[LeakyReLU, tanh, sigmoid, softplus]. The learning rate [1e� 6, 1e� 5, 1e� 4, 1e� 3, 1e� 2]
and the batch size [50, 100, 150, 200]. The gradient penalty weight for WGAN is searched in
[0, 0.1, 1, 10, 100].

For MNIST dataset, we set the noise dimension as 100. All the critics/discriminators are implemented
as a four-layer network where the first two layers adopt convolution operations with filter size 5 and
stride [2, 2] and the last two layers are FC layers. The size for each layer is 1� 64� 128� 256� 1.
All the generators are implemented as a four-layer networks where the first two layers are FC and the
last two adopt deconvolution operations with filter size 5 and stride [2, 2]. The size for each layer
is 100 � 256 � 128 � 64 � 1. For the estimators, we consider the expert number as 128 and the
feature function is the same as the Wasserstein critic except that the size of last layer is 128. Then
we sum the outputs from each expert as the energy value. The activation units are searched within
[ReLU,LeakyReLU, tanh]. The learning rate [2e � 5, 2e � 4, 2e � 3, 2e � 2] and the batch size
[32, 64, 100, 128]. The gradient penalty weight for WGAN is searched in [1, 10, 100, 1000].

For CIFAR dataset, we adopt the same architecture as DCGAN for critics and generators. As for the
estimator, the architecture of feature function is the same as the critics except the last year where we
set the expert number as 128 and sum each output as the output energy value. The architectures for
Stein critic are the same as Wasserstein critic for both MNIST and CIFAR datasets. In other words,
we consider d0 = 1 in (1) and further simply � as an average of each dimension of Ex⇠P[AQf(x)].
Empirically we found this setting can provide efficient computation and decent performance.

23

E.4 Evaluation Metrics

We adopt some quantitative metrics to evaluate the performance of each method on different tasks.
In section 4.1, we use two metrics to test the sample quality: Maximum Mean Discrepancy (MMD)
and High-quality Sample Rate (HSR). MMD measures the discrepancy between two distributions X
and Y , MMD(X,Y) = k 1

n

P
n

i=1 �(xi)� 1
m

P
m

j=1 �(yi)k where xi and yj denote samples from
X and Y respectively and � maps each sample to a RKHS. Here we use RBF kernel and calculate
MMD between generated samples and true samples. HSR statistics the rate of high-quality samples
over all generated samples. For Two-Cirlce dataset, we define the generated points whose distance
from the nearest Gaussian component is less than �1 as high-quality samples. We generate 2000
points in total and statistic HSR. For Two-Spiral dataset, we set the distance threshold as 5�2 and
generate 5000 points to calculate HSR. For CIFAR, we use the Inception V3 Network in Tensorflow
as pre-trained classifier to calculate inception score.

In section 4.2, we use three metrics to characterize the performance for density estimation: KL
divergence, JS divergence and AUC. We divide the map into a 300 meshgrid, calculate the unnormal-
ized density values of each point given by the estimators and compute the KL and JS divergences
between estimated density and ground-truth density. Besides, we select the centers of each Gaussian
components as positive examples (expected to have high densities) and randomly sample 10 points
within a circle around each center as negative examples (expected to have relatively low densities)
and rank them according to the densities given by the model. Then we obtain the area under the curve
(AUC) for false-positive rate v.s. true-positive rate.

24

Table 5: Distances between means of generated digits (resp. images) and true digits (resp. images)
on MNIST (resp. CIFAR-10).

MNIST CIFAR
Method l1 Dis l2 Dis l1 Dis l2 Dis

WGAN-GP 13.80 0.93 80.98 1.72
WGAN+LR 12.91 0.86 82.96 1.81
WGAN+ER 12.26 0.77 72.28 1.59
WGAN+VA 12.38 0.78 69.01 1.53

DGM 12.12 0.79 179.30 3.95
Joint-W 11.82 0.73 64.23 1.41

Table 6: Quantitative results including MMD (lower is better), HSR (higher is better) as the metrics
for quality of generated samples and KLD (lower is better), JSD (lower is better), AUC (higher is
better) as the metrics for accuracy of estimated densities on Two-Circle and Two-Spiral datasets.

Two-Cirlce Two-Spiral
Method MMD HSR KLD JSD AUC MMD HSR KLD JSD AUC

GAN 0.0033 0.772 - - - 0.0082 0.583 - - -
GAN+VA 0.0118 0.295 - - - 0.0085 0.761 - - -

WGAN-GP 0.0010 0.841 - - - 0.0090 0.697 - - -
WGAN+VA 0.0016 0.835 - - - 0.0159 0.618 - - -

DEM - - 2.036 0.431 0.683 - - 1.206 0.315 0.640
EGAN - - 3.350 0.474 0.616 - - 1.916 0.445 0.499
DGM 0.0040 0.774 2.272 0.445 0.600 0.0019 0.833 1.725 0.414 0.589

Joint-JS 0.0037 0.883 1.104 0.297 0.962 0.0031 0.717 0.655 0.193 0.808
Joint-W 0.0007 0.844 1.030 0.281 0.961 0.0003 0.909 0.364 0.110 0.810

25

Figure 9: Learning curves in Two-Spiral dataset.

Figure 10: Learning curves in Two-Circle dataset.

26

(a) Randomly sampled over all digits (b) Randomly sampled over digits with top 50% densities

Figure 11: Generated digits given by Joint-W on MNIST.

27

(a) Randomly sampled over all images (b) Randomly sampled over images with top 50% densi-
ties

Figure 12: Generated images given by Joint-W on CIFAR.

28

(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 13: The generated digits (and real digits) with the highest densities and the lowest densities
given by Joint-W.

(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 14: The generated digits (and real digits) with the highest densities and the lowest densities
given by DGM.

(a) Generated digits with highest densities (b) Generated digits with lowest densities

(c) Real digits with highest densities (d) Real digits with lowest densities

Figure 15: The generated digits (and real digits) with the highest densities and the lowest densities
given by EGAN.

29

	Introduction
	Background
	Proposed Model: Stein Bridging
	Theoretical Analysis
	Mutual Regularization Effects.
	Stability of training dynamics.

	Experiments
	Setup
	Density Estimation of Explicit Model
	Sample Quality of Implicit Model
	Further Discussions

	Conclusions and Discussions
	Literature Reviews
	Explicit Generative Models
	Implicit Generative Models
	Attempts to Combine Both of the Worlds

	Background for Stein Discrepancy
	Proofs of Results in Section 4.1
	Proof of Theorem 1
	Proof for Theorem 2

	Details and Proofs in Section 4.2
	One-Dimensional Case
	Generalization to Bilinear Systems

	Details for Implementations
	Synthetic Datasets
	Model Specifications and Training Algorithm
	Implementation Details
	Evaluation Metrics

