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ABSTRACT

Generalized Linear Models (GLMs) encompass a wide array of regression and
classification models, where prediction is a function of a linear combination of the
input variables. Often in real-world scenarios, a number of observations would be
added into or removed from the existing training dataset, necessitating the devel-
opment of learning systems that can efficiently train optimal models with varying
observations in an online (sequential) manner instead of retraining from scratch.
Despite the significance of data-varying scenarios, most existing approaches to
sparse GLMs concentrate on offline batch updates, leaving online solutions largely
underexplored. In this work, we present the first algorithm without compromising
accuracy for GLMs regularized by sparsity-enforcing penalties trained on varying
observations. Our methodology is capable of handling the addition and deletion of
observations simultaneously, while adaptively updating data-dependent regulariza-
tion parameters to ensure the best statistical performance. Specifically, we recast
sparse GLMs as a bilevel optimization objective upon varying observations and
characterize it as an explicit gradient flow in the underlying space for the inner and
outer subproblems we are optimizing over, respectively. We further derive a set of
rules to ensure a proper transition at regions of non-smoothness, and establish the
guarantees of theoretical consistency and finite convergence. Encouraging results
are exhibited on real-world benchmarks.

1 INTRODUCTION

Sparse GLMs Generalized Linear Models (GLMs) (Nelder & Wedderburn, 1972; McCullagh &
Nelder, 2019; Massias et al., 2020) constitute a comprehensive extension of ordinary least squares,
profoundly impacting the communities of machine learning (Kumar et al., 2015; Emami et al., 2020;
Kulkarni et al., 2021), data mining (Zhang et al., 2016) and computer vision (Kim et al., 2014). These
models have been extensively utilized as statistical estimators for diverse regression and classification
tasks, wherein the output is postulated to adhere to an exponential family distribution whose mean
is a linear combination of the input variables. Renowned instances of GLMs consist of logistic
regression (Wright, 1995), Poisson regression (Frome, 1983), Gamma regression (Prentice, 1974),
and proportional odds model (Bennett, 1983). In the realm of high-dimensional learning, sparsity-
inducing regularizations have emerged as powerful tools with substantial theoretical underpinnings
(Tibshirani, 1996; Bach et al., 2011; 2012), facilitating the concurrent execution of feature selection
and model prediction. By substantially diminishing the quantity of active predictors (variables)
involved, sparsity-inducing penalization yields interpretable models and expedite computational
efficiency during the prediction phase.

GLMs with Varying Observations Nowadays, a vast majority of existing algorithms designed
for sparse GLMs have predominantly been trained offline in batch-mode (Fercoq & Richtárik, 2015;
Karimireddy et al., 2019), which necessitates the availability of all training observations at the onset
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of the learning process. However, such a prerequisite may not always be realistic or applicable,
particularly in real-time scenarios or large-scale problems. Indeed, in numerous real-world machine
learning applications, e.g., edge or cloud computing (Pathak et al., 2018), dynamic pricing (Levina
et al., 2009), and fraud detection (Dhieb et al., 2020), the observations (samples) of input can
dynamically change, thereby rendering it computationally impractical to train over the entire dataset
multiple times. Contrastingly, the paradigm of data-varying (also referred to as incremental and
decremental) algorithms has proven its efficiency and computational feasibility across various contexts
(Burkov, 2020). These methods enable models to incrementally update their knowledge without
necessitating complete re-training with each data alteration (also referred to as one online round),
such as the addition or removal of observation(s) from the training set. Consequently, algorithms
for varying data have garnered increasing attention from both academic and industrial research
communities in recent years (Hoi et al., 2021; Zhou, 2022).

State-of-the-art The literature on data-varying algorithms has grown significantly, aiming to
achieve comparable accuracy to batch re-training without incurring regret (i.e., the regret is zero,
or no-regret). However, these works are specifically tailored to certain learning models and are not
readily extensible to other loss functions and regularizers in sparse GLMs1. The contributions to
this domain encompass online k-NN (Rodríguez et al., 2002), logistic regression (Tsai et al., 2014),
(group) Lasso (Garrigues & Ghaoui, 2008; Chen & Hero, 2012; Li & Gu, 2022; Hofleitner et al.,
2013), and a plethora of Support Vector Machines (SVMs) (Laskov et al., 2006; Gu et al., 2014; 2015;
2018; Kashef, 2021). It is pertinent to highlight that nearly all of the aforementioned algorithms are
exclusively capable of adjusting the model weights (i.e., learnable parameters) and lack the ability to
dynamically update predefined hyperparameters like regularization, during successive online rounds.

Technical Challenges In this paper, we aim to present a sophisticated no-regret learning framework
for varying observations accompanied by a pertinent algorithm, which not only yields identical
solutions to batch retraining algorithms but also facilitate model selection by dynamically selecting
data-dependent regularization parameter(s) at each round, ensuring the optimal statistical performance
of the estimator. From data perspective, the proposed methodology accommodates simultaneous
addition and deletion of observations while efficiently processing multiple data points in a single
execution (i.e., chunk updating), as opposed to many single-point algorithms (e.g., Garrigues &
Ghaoui (2008); Gu et al. (2018); Yang et al. (2010)). However, the devising of innovative and
high-quality data-varying algorithms remains an arduous task. Firstly, these algorithms often stem
from a standard learning approach (Tsai et al., 2014), which may result in exceedingly intricate
procedures that are challenging to manage. Secondly, the design of data-varying learning algorithms
may diverge considerably depending on the concrete loss functions or regularizers (Hoi et al., 2021),
rendering the establishment of a universally applicable framework technically demanding. As a result,
the creation of an efficient algorithm for sparse GLMs with varying observations continues to be a
highly sought-after yet formidable task for researchers (Burkov, 2020; Luo & Song, 2020).

Proposed Method To work around these bottlenecks, we commence by reparameterizing the data-
varying learning task, which entails transforming one single online round into a bilevel optimization
framework. Within this refined construct, we characterize its dynamics as an explicit gradient flow
in the underlying space we are optimizing over. Consequently, the inner problem is proficiently
modeled and tackled through the utilization of a system of Partial Differential Equations (PDE),
whereas the outer problem capitalizes on an Ordinary Differential Equations (ODE) system for its
effective numerical resolution. Recognizing the inherent sparsity property, we leverage set control
methodologies that circumvent non-differentiable regions and establish threshold conditions for the
active set inclusion. Such an approach facilitates the training of a data-varying SpArse GLMs in an
Online manner, namely SAGO algorithm. Our comprehensive empirical evaluations substantiate the
superior efficiency and accuracy of SAGO in comparison to prevalent batch re-training techniques.

Our Contributions The main contributions brought by this paper are delineated as follows.

• We present a sophisticated framework and propose a cutting-edge algorithm for a more
general form of sparse GLMs, which offers valuable insights into the dynamics of data-
varying paradigm. Under mild assumptions, our analysis demonstrates that SAGO converges
to the stationarity point on new set and attains convergence within a finite number of steps.

1In Appendix C.1, we discuss why existing methods cannot be readily extended to GLMs and delineate the
connections between our study and conventional online learning with bounded regret.
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Figure 1: Depiction of the alterations in the training set during
online rounds. A single black arrow signifies one learning round,
while red and blue arrows indicate the (incoming) operations con-
ducted on data. The status (i), (ii) represent various model
conditions (i.e., trained on different dataset).
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Figure 2: Distinct blue di-
rectional lines represent varied
paths from (i) to (ii). The
solutions of (2) at [s, t] (resp.
[s̄, t̄]) is associated with the sta-
tus (i) (resp. (ii)) in Fig. 1.

• Contrasting with existing frameworks for data-varying sparse GLMs, SAGO enables the
incorporation and removal of multiple observations in a single execution without sacrificing
accuracy, while concurrently updating the regularization parameter(s) in each round.

• We elucidate how SAGO paves the way to no-regret online training for multiple well-known
GLMs, including Poisson (Frome, 1983) and gamma regression (Prentice, 1974). To the best
of our knowledge, this constitutes the first exact data-varying algorithm for these models.

2 PRELIMINARIES

Basic Notation For any integer d ∈ N, we denote by [d] the set {1, . . . , d}. The vector of size n
with all entries equal to 0 (resp. 1) is denoted by 0n (resp. 1n). The design matrix X ∈ Rn×m is
composed of observations x>i ∈ Rm stored row-wise; the vector y ∈ Rn (resp. {−1, 1}n) signifies
the response vector for regression (resp. binary classification). For a model weights vector β and
a subset A ⊂ [m], βA and XA are β and X restricted to features in A. Subscripts (e.g., βj) denote
vector entries or matrix columns. The standard Euclidean norm for vectors reads ‖ · ‖; the `1-norm is
symbolized by‖ · ‖1. We provide a comprehensive compilation of all notations in Appendix A.

2.1 FORMALIZED SETTING

Considering each online round, the data is structured (partitioned) as

X� = {{x1, y1} , . . . , {xn0 , yn0}} , X– = {{xn0+1, yn0+1} , . . . , {xn0+n– , yn0+n–}} ,
X+ = {{xi, yi} | ∀i ∈ [n0 + n– + 1, n0 + n– + n+]} ,

where X� indicates the set of observations to be retained (i.e., unchanged in a single online round),
X– (resp. X+) represents the set of observations to be eliminated (resp. incorporated). Figure 1
illustrates the schematic diagram of the data-varying setup. Let us assume that we presently possess
n0 + n– labelled instances X (i) = {X� ∪X–} and an optimal machine learning model trained using
X (i), in which the parameter is denoted by β̂(i) ∈ Rm (already known). In certain practical contexts,
it may be desirable to incorporate new samples X+ into X (i), while concurrently discarding selected
samples X– from X (i). This implies the requirement for an optimal learning model that trained on
X (ii) = {X� ∪X+}, and the learnable parameter of this optimal model on the new (changed) dataset
is signified as β̂(ii) ∈ Rm, which is currently unknown. In essence, the resultant sample size should
be n0 + (n+ − n–) following this online update. Methodologies in conventional paradigm would
only involve re-training a new model on {X� ∪X+}. However, our proposed approach SAGO seeks
to compute β̂(ii) directly, meaning it bypasses the need for re-training from the ground up, and instead
leverages the information encapsulated within initial β̂(i).
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2.2 OFFLINE SPARSE GLMS

To commence, we introduce the class of optimization problems under consideration.
Definition 1 (Sparse GLMs). We call sparse generalized linear models the following problem

min
β∈Rm

∑
i

`i

(
yi, f

(
β>xi

))
+

d∑
k=1

∑
j∈Sk

Pη (|βj | , λk) , (1)

where each `i(·) represents a piecewise (or elementwise) twice-differentiable convex loss 2 and d is
the number of regularizers. We have S = {S1,S2, ...,Sk,Sk+1, ...,Sd}, where Sk ⊂ [m] denotes
the subset of coefficients being penalized (S for Shrink). Pη (|βj | , λk) is a scalar penalty function
(regularizer), with η representing potential parameter(s) for a penalty family and λk ∈ R≥0 being a
non-negative hyperparameter.

We define λ = [λ1, ..., λd]
>, controlling the trade-off between data fidelity and regularization in (1).

To achieve model selection, we typically employ K-fold cross-validation. In its simplest form, cross-
validation involves the use of a second, independent set of data {x̃i, ỹi}Ni=1 (commonly referred to as
a validation set (Shao, 1993)), which serves to evaluate model performance and select appropriate
regularization parameters. Additionally, we impose several mild conditions on Pη (|βj | , λk).
Assumption 1. Let Pη(ρ, ξ) be a shorthand notation for Pη (|βj | , λk). We assume Pη(ρ, ξ) satisfies
the following regularity conditions: (i) symmetric about 0 in ρ, (ii) Pη(0, ξ) > −∞, for ∀ξ ≥ 0, and
ξ is separable as a multiplier from Pη(ρ, ξ), (iii) monotone increasing in ξ ≥ 0 for any fixed ρ, (iv)
non-decreasing in ρ ≥ 0 for any fixed ξ, (v) the first two derivatives w.r.t. ρ exist and are finite.
Most commonly used penalties satisfy the aforementioned Assumption 1, including but not limited
to the power family Pη(|β|, λk) = λk|β|η, η ∈ (0, 2] (Frank & Friedman, 1993), log penalty
Pη(|β|, λk) = λk ln(η + |β|), η > 0 (Armagan et al., 2013), along with the non-convex SCAD
regularizer (Fan & Li, 2001) and MC+ penalty (Zhang, 2010), etc.

2.3 FROM OFFLINE TO ONLINE

Given a GLM as described in (1), we present a framework for learning it with varying observations.
Definition 2 (Parameterizer). The parameterizers µ(t), ν (s) ∈ R\{∞} must satisfy the following
conditions: (i) The inverse of parameterizers, denoted as µ−1 or ν−1, exists and should be continuous.
(ii) The first-order derivative of µ (t) (resp. ν (s)) w.r.t. t (resp. s) is smooth in the closed interval
[t, t̄ ] (resp. [s, s̄ ]), where t = µ−1(0), t̄ = µ−1(1), s = ν−1(0) and s̄ = ν−1(1). (iii) The
reparameterized objective retains its original (dis)continuity.
The parameterizer in Definition 2 can be employed to recast the original data-varying learning,
which could be implemented in two manners, i.e., function-wise or observation-wise. Mathe-
matically, let � denote either µ (t) or ν (s), the corresponding reparameterization could take the
form of � · `i

(
yi, f

(
β>xi

))
or `i

(
� · yi, f

(
� · β>xi

))
. For simplicity, we denote `�(β) :=∑

{i|{xi,yi}∈X�}`i
(
yi, f

(
β>xi

))
, `+(β) :=

∑
{i|{xi,yi}∈X+}`i

(
yi, f

(
β>xi

))
and similarly,

`–(β). Then we introduce the following class of function-wise reparameterized optimization problem

min
λ∈Λ

Lval :=

N∑
i=1

`i

(
ỹi, f

(
β̂>x̃i

))
s.t. β̂ ∈ arg min

β∈Rm
`�
(
β
)

+ µ (t) `+(β)+ ν (s) `–(β)+

d∑
k=1

∑
j∈Sk

Pη (|βj | , λk)

t 6 t 6 t̄, s 6 s 6 s̄.

(2)

The (2) characterizes a bilevel optimization problem, in which the inner-level problem addresses
the changes of varying data, while the outer-level problem exploits validation set to determine
the regularization parameter(s) in each online round. Here, s and t serve as variables within the
reparameterization (i.e., parameterizer incorporating). At the onset of each round, we initialize s

2Our choice of terminology may be considered an abuse of language since for some choice of `i’s, e.g., an
Huber loss, there is no underlying statistical GLMs.
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and t as s and t, respectively. To deduce an optimal solution subsequent to one round of online
data changes, we could progressively increase s and t, while concurrently computing (tracking) the
dynamics on β̂ in association with (s, t), until they attain the upper bound of s = s̄ and t = t̄.
Remark 1. A naive example is µ (t)

def
= t, ν (s)

def
= 1− s. Then (s, t) transitions from (0, 0) to (1, 1).

Intuitively, µ parameterizes an increment and ν parameterizes a decrement.
Theorem 1 (Equivalence Guarantee (informal)). Let A be a batch algorithm that trains on X and
outputs a model f ∈ H, i.e., A (X) : X → H. The symbol←− signifies online updating as per (2).
Suppose we desire to incorporate X+ and remove X–, from the existing model. Then ∀T ⊆ H,

P

{(
A(X� ∪X–)

Adding←−−−−−
Online

X+ Deleting←−−−−−−
Online

X–
)
∈ T

}
= P

{
A (X� ∪X+) ∈ T

}
.

Formal statements and proofs are in Appendix B.1. The underlying intuition of Theorem 1 is that the
output of SAGO for (2) is indeed equivalent to the solution that would be obtained if trained from
scratch using {X� ∪X+}, and the regret of solution produced by our SAGO algorithm at [s̄, t̄], is
provably zero after each online round (a.k.a., no-regret). This equivalence establishes a bridge that
links two disparate model statuses (c.f. Figure 2). By applying the aforementioned procedure, we are
empowered to train in an online manner when the set of observations is not fixed, further affirming
that the first-order optimal solution can be achieved, akin to the capabilities of batch algorithms.

3 ELABORATED SAGO

In this section, we introduce an innovative approach, employing the PDE and ODE systems, referred
to as the PDE-ODE procedure, to trace the trajectory of

(
β̂ (s, t) ,Lval(λ)

)
, or (β̂,Lval) for short,

until we reach the terminal points [s̄, t̄ ] and λmax. Set S∗ =
⋃d
k=1 Sk. For a parameter vector

β ∈ Rm, we use SZ(β) = {j ∈ S∗ | βj = 0} to represent the set of penalized parameters that are
zero and correspondingly, SZ̄(β) = {j ∈ S∗ | βj 6= 0} demarcates the set of penalized parameters
with non-zero values. In light of the fact that typically only a fraction of the coefficients are non-zero
in the optimal solution, a prevalent strategy to speed up solver efficiency is to narrow down the
optimization problem’s magnitude by excluding features that do not contribute to the solution β. We
define the active set A = SZ ∪ S∗ indexes the current active predictors having either unpenalized or
non-zero penalized coefficients, with cardinality ‖β‖0.
Assumption 2. We presuppose that the first-order optimal solutions of (1) and (2) can be accom-
plished (via batch algorithms), and the active set A is non-empty for ∀t ∈ [t, t̄], ∀s ∈ [s, s̄], ∀λ ∈ Λ.
Theorem 2 (Continuity Guarantee). Assume that there exists a positive constant M such that the
inequalities∇2

λβ̂ �MI , ∂2
s β̂ �M1m, ∂2

t β̂ �M1m, L̃−1 �MI holds universally for all β̂, where
L̃ will be defined in (3). Then provided a fixed active set A, the solution β̂ demonstrates continuity
w.r.t. the variables of the inner problem and the variable(s) of the outer problem, respectively.

3.1 INNER PROBLEM SOLVING

We define `i,A= `i
(
yi, f

(
β>Axi,A

))
. Theorem 3 aids in tracking the flow to inner-level soluions.

Theorem 3 (Inner-level Dynamics). Suppose β̂ is the solution to the inner problem of (2) for given s
and t, and the collection A is fixed, the dynamics of gradient flow on β̂A(s, t) comply with

dµ(t)

dt
· ∇βA`

+
A(β̂) + L̃

(
β̂, λ

)
· ∂β̂A(s, t)

∂t
= 0

dν(s)

ds
· ∇βA`

–
A(β̂) + L̃

(
β̂, λ

)
· ∂β̂A(s, t)

∂s
= 0

L̃
(
β̂, λ

)
=

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη
(∣∣∣β̂j∣∣∣, λk)

+∇2
βA

[
`�A(β̂) + µ (t) `+

A(β̂) + ν (s) `–
A(β̂)

]
β̂(s, t)

∣∣∣
s=s,t=t

= β̂(i).

(3)

The (3) represents a first-order homogeneous PDE system. By employing our proposed procedure, the
resolution of the inner problem transforms into a standard form initial-value problem (IVP) (Fatunla,
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2014) in the context of numerical PDE. The solving to (3) enables tracking of the entire spectrum of
solutions for

{
β̂ (s, t) |(s, t) ∈ [s, s̄]× [t, t̄]

}
. As our primary interest lies in the specific solutions

when s = s̄ and t = t̄, we can select an integral path Ω(s, t) = 0 connecting [s, t] and [s̄, t̄], and
then perform a line integral along Ω (c.f. Figure 2) to attain β̂(s̄, t̄). During the integration, careful
management of the set of non-zero coefficients according to the thresholding conditions enables
the application of our algorithm within the lower-dimensional subspace spanned solely by active
coefficients. We emphasize that β̂ is piecewise smooth as a function of s and t, i.e., there exists
t = t0 < t1 < t2 < · · · < tkmax

= t̄ and s = s0 < s1 < s2 < · · · < skmax
= s̄, such that the

solution β̂ (s, t) can be precisely represented via

β̂ (sk−1, tk−1)−
∫

Ω

L̃(β̂, λ)−1 ·
〈[

dν(s)

ds
∇βA`

–
A(β̂),

dµ(t)

dt
∇βA`

+
A(β̂)

]
,

[
ds, dt

]〉
, (4)

where ∀s ∈ [sk−1, sk] ,∀t ∈ [tk−1, tk]. The sk and tk essentially represent event points and will be
formally introduced in Section 3.3.

3.2 OUTER PROBLEM SOLVING

In each round of online phase, Theorem 4 facilitates the approximation to λ∗ for the outer problem.

Theorem 4 (Outer-level Dynamics). Assume that the set A is fixed. Under varying λ values in the
outer problem, the dynamics of gradient flow on β̂A(λ) in the outer Lval can be expressed as

dβ̂A
dλ

= −
d∑
k=1

∇2
βA

(
`�A(β̂) + `+

A(β̂)

)
+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη
(∣∣∣β̂j∣∣∣, λk)

−1

· ∇βA
∑

j∈Sk,A

Pη
(∣∣∣β̂j∣∣∣, λk) .

(5)

In analogy with the inner problem, β̂ exhibits piecewise smoothness as a function of λ. Consequently,
it is possible to numerically solve the IVP for the first-order ODE system (5). The Picard–Lindelöf
theorem (Siegmund et al., 2016) unequivocally establishes the uniqueness of solutions,3 facilitating
the calculation of {∇λLval (λ) |λ ∈ Λ}, given that ∇Lval is a direct function of β̂ (λ), represented
as

∇λLval =

N∑
i=1

∇β `i
(
ỹi, f

(
β̂>x̃i

))
· dβ̂
dλ
, (6)

where dβ̂/dλ could be computed via (5). To identify the optimal regularization parameter(s), one can
evaluate the condition ∇λLval ?

= 0. In practical scenarios, an alternate approach is to examine the
hyper-gradient, accepting ‖∇λLval‖ 6 ε as a loose condition (relaxation) to approximately select
the regularization parameter(s), where ε ∈ R≥0 is an user-defined parameter.

Theorem 5 (Approximation Error). Assume that the outer-level loss function exhibits κ-strong
quasi-convexity over the optimal solutions set of the inner-level problem, the difference between the
optimal parameter λ∗ and its estimated counterpart λ̂ is upper-bounded by ‖λ̂− λ∗‖ 6 2εκ−1.

3.3 EVENT POINTS

For illustrative purposes, we consider the case of `1 penalty and let S = [m]. While we focus on a
specific case for clarity, the analysis presented in Section 3.3 is generalizable to any regularization
term satisfying Assumption 1 (c.f. Appendix C.2). The thresholding conditions for an `1 regularized
problem, as put forth by Rosset & Zhu (2007), are reproduced as follows.

Lemma 1. (c.f. (Rosset & Zhu, 2007)) For any loss function L(y, f(X,β)) that is differentiable w.r.t.
β, any stationary point β̂ of the optimization problem

min
β

L(y, f(X,β)), s.t. ‖β‖1 ≤ D

ensures the following properties: (a) β̂i 6= 0⇒
∣∣∣ ∂L∂βi

∣∣∣ = maxj

∣∣∣ ∂L∂βj

∣∣∣, (b) sign
(
β̂i

)
= − sign

(
∂L
∂βi

)
.

3We refer here to the uniqueness of the solution to an IVP (5), whereas non-uniqueness for (1) is permissible.
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Integration Path

Trajectory

s

t

β̂ki

E1

E2
0

Figure 3: Demonstration of different cate-
gories of events. E1: βki enters the trajec-
tory, with its new sign being determined
as per Lemma 1 (b); E2: βki leaves the
path, leading to the removal of ki from A
and the invalidation of Lemma 1 (a).

Denote α = maxi

∣∣∣ ∂L∂βi

∣∣∣, and suppose the current active

set is {k1, k2}. Lemma 1 suggests that α =
∣∣∣ ∂L∂βk1

∣∣∣ =∣∣∣ ∂L∂βk2

∣∣∣ ≥ ∣∣∣ ∂L∂βi

∣∣∣. In the inner-level (resp. outer-level),
we start at s = s, t = t (resp. initial λ) to compute the
trajectory via the PDE-ODE procedure. It can be inferred
that the trajectory remains smooth until the occurrence
of one of the two possible events: E1: Another variable
index ki (i 6= 1, 2) joins the active set as

∣∣∣ ∂L∂βki

∣∣∣ = α; E2:

Any of the βki becomes 0 (c.f. Figure 3). The solution β̂
related to s, t and λ can be computed swiftly before any
alterations occur inA. We term the points where an event
occurs as event points, and the smooth trajectory (path)
between two event points as a segment. Theorem 6 offers
insights into the behaviour of path segmentation. At an
event point, we reset A according to the index violator(s) and proceed to the subsequent segment.

Theorem 6 (Segmentation End). For (β̂, λ) that satisfies the KKT system of (2), suppose the active

set is P∪{g}, but g is just eliminated from the active set. Let α = maxi

∣∣∣ ∂`∂βi

∣∣∣ , i ∈ P . If the Jacobian

J =

 ∂2
β

(
`�+ `+) {P, g}+

d∑
k=1

∂2
β

∑
j∈Sk

Pη
(∣∣∣β̂j∣∣∣ , λk) {P, g} d∑

k=1

∂λ
∑
j∈Sk

Pη
(∣∣∣β̂j∣∣∣ , λk)

d∑
k=1

∂β
∑
j∈Sk

Pη
(∣∣∣β̂j∣∣∣ , λk) {P, g} 0

 (7)

is full rank, then β̂ or λ cannot be the end point of a path segment. Here ∂β [·] {P, g} extracts only
the entries ∂[·]

∂βi
with index i ∈ P ∪ {g}, ∂2

β [·] {P, g} extracts ∂[·]
∂βi∂βj

, with index i, j ∈ P ∪ {g}.
Remark 2 (Discontinuities). Our extensive empirical studies suggest that when utilizing non-convex
penalties, outer-level path discontinuities may arise when predictors enter the model at a non-zero
magnitude or vice versa. This phenomenon is attributable to the jumping between local minima,
wherein we can employ a warm-start strategy to compute the initial value of the ensuing segment.

4 DISCUSSIONS

4.1 SAGO IMPLEMENTATION

The comprehensive SAGO algorithm computes the PDE-ODE procedure on a segment-by-segment
basis, which is delineated in Algorithm 1, serves as a promising fitting strategy for online scenarios.
At junctures where the events E1 and E2 occur, we halt and update the system, subsequently
resuming the trajectory until the traversal of Ω and Λ is complete.
Remark 3 (Extension on Non-linear Pattern). While we presuppose a linear model in (1), this
assumption is far less restrictive than it appears. Indeed, the model can be linear in basis expansions
of the original predictors, thereby enabling Algorithm 1 to encompass kernel methods (Shawe-Taylor
et al., 2004), wavelets (Antoniadis et al., 1997), boosting techniques (Schapire, 2003) and more.

4.2 COMPLEXITY & CONVERGENCE

Any PDE/ODE solver recurrently evaluates the (partial) derivative in (3) and (5), requiring approxi-
mately O ((n0 + n– + n+) |A|) flops to compute the requisite linear systems. When updating∇β2

A
or its inverse, one can use the low-rank updating or Woodbury formulae (Ben-Israel & Greville,
2003), with the computational cost capped at O

(
|A|2

)
. The identification of active and inactive

penalized predictor by thresholding demands O (|A|) flops. The detailed computational complexity
of the entire SAGO Algorithm is contingent upon the explicit form of the loss, the number of smooth
segments (events), and the chosen method (solver) for executing the PDE-ODE procedure. This
procedure chiefly leverages a numerical library for first-order PDE and ODE, which has undergone
extensive investigation within the applied mathematics community (Rhee et al., 2014).
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Table 1: Datasets description.
The BC denotes Binary Classi-
fication and R for Regression.

Dataset Samples Dim. Task

creditcard 284807 31

BC
MiniBooNE 130064 51
higgs 98050 29
numerai28.6 96320 22
2dplanes 40768 11

ACSIncome 1664500 12

R
Buzzinsocialmedia 583250 78
fried 40768 11
OnlineNewsPopularity 39644 60
house_16H 22784 17

ColdGrid
WarmGrid
ColdHyBi
WarmHyBi
ColdByO
WarmByO
SAGO

Figure 4: Comparative analysis of algorithmic efficiency. The subfig-
ures on the left and right are GLMs (i) and (ii), respectively.

Algorithm 1 SAGO Algorithm

Require: Initial solution β̂(0), online rounds T , training sets X�,
X+, X– in each round, tolerance ε for λ, max_iter.

1: for τ = 1, · · · , T do
2: Initialize A ← S ∪ SZ according to β̂(τ−1).
3: s← s, t← t
4: while s ≤ s̄, t ≤ t̄ do
5: Solve the PDE system (3). B Inner-level problem
6: if any k ∈ A has β̂k = 0 then
7: Exclude k from A. B E2 occurred
8: else if β̂k(k ∈ SZ) meets thresholding conditions then
9: Add k into A. B E1 occurred

10: end if
11: Update β̂(τ)

A and `i,A by the modified A.
12: end while
13: iters← 0
14: while ‖∇λLval‖ > ε and iters ≤ max_iter do
15: Solve the ODE system (5). B Outer-level problem
16: if any k ∈ A has β̂k = 0 then
17: Exclude k from A. B E2 occurred.
18: else if β̂k(k ∈ SZ) meets thresholding conditions then
19: Add k into A. B E1 occurred.
20: end if
21: Compute∇λLval via (6).
22: Update β̂(τ)

A and `i,A by the modified A, and warm-
start if necessary.

23: iters← iters+ 1
24: end while
25: λ(τ) ← arg min∇λLval
26: end for
Ensure: {β̂(τ)}, {λ(τ)}

The efficiency of Algorithm 1 lies in
the fact that SAGO can trace the opti-
mal solutions w.r.t. the variables and
parameter(s). Throughout this proce-
dure, the solver adaptively selects step
sizes to capture all events, thereby elim-
inating the need for repeated iterations
within each round. This stands in con-
trast to conventional methods that ne-
cessitate numerous loops over all sam-
ples or coordinates until ultimate con-
vergence. The convergence of SAGO
is ensured by forthcoming Theorem 7
and Theorem 8, and more related dis-
cussions are given in Appendix C.2.
Theorem 7 (Successive Adjustments).
On the solving interval, if an index j′ is
incorporated into the set A , j′ will not
be removed from A in the immediate
next adjustment cycle; if an index j′′ is
expelled from the set A, j′′ will not be
reintroduced into A in the immediate
next round of adjustment.
Theorem 8 (Finite Convergence).
Given the pre-established s, s̄, t, t̄ and
Λ, the SAGO can fit the problem delin-
eated in (2) within a finite number of
steps upon Assumption 2.

5 EMPIRICAL STUDY

Sparse GLMs For evaluation, here we employ two specific GLMs: (i) Sparse Poisson Re-
gression (Frome, 1983) given by minβ

1
n

∑
i[yi log yi

exp(β>xi)
− (yi− exp(β>xi))] + λ1 ‖β‖1 +

λ2 ‖β‖2, and (ii) Logistic Group Lasso (Meier et al., 2008) (for classification) expressed
as minβ

1
n

∑
i−yi log (hβ(xi)) − (1 − yi) log (1− hβ(xi)) + λ

∑
g∈G

√
dg ‖βg‖2, wherein

hβ(xi) = (1 + exp(−β>xi))−1 is hypothesis function. There has a total of G groups, dg is the
number of features in g-th group.
Dataset We employ real-world datasets from OpenML (Vanschoren et al., 2014) and UCI repository
(Asuncion & Newman, 2007) for our simulations. Table 1 summarizes the dataset information. We
randomly partition the datasets into training, validation, and testing sets, with 70%, 15%, and 15% of
the total samples, respectively.
Baselines Given the lack of exact no-regret algorithms for these models prior to SAGO, we compare
against the following baselines: (i) ColdGrid (resp. WarmGrid) employs cold-start (resp. warm-
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Table 2: Numerical results for validation loss with standard deviation. The best results are shown in
bold. We employ GLM (i) and GLM (ii) for Regression and Binary Classification tasks, respectively.

Method creditcard MiniBooNE higgs numerai28.6 ACSIncome Buzzinsocialmedia fried house_16H

Round #1
ColdGrid 0.714± 0.017 0.439± 0.066 0.644± 0.071 0.708± 0.012 256.2± 0.12 12.98± 0.81 3.817± 0.53 27.91± 0.29
ColdHyBi 0.693± 0.069 0.393± 0.017 0.669± 0.027 0.711± 0.014 256.0± 0.71 12.88± 0.62 3.994± 0.76 27.43± 0.64
ColdByO 0.699± 0.016 0.422± 0.025 0.659± 0.006 0.712± 0.022 256.9± 0.59 13.05± 0.93 3.808± 0.94 26.48± 0.48
SAGO 0.692± 0.004 0.389± 0.009 0.638± 0.001 0.691± 0.002 255.9± 0.09 12.56± 0.03 3.751± 0.14 26.25± 0.07

Round #2
ColdGrid 0.701± 0.057 0.289± 0.041 0.652± 0.043 0.744± 0.043 258.6± 0.08 13.11± 0.94 3.680± 0.41 27.14± 0.77
ColdHyBi 0.698± 0.006 0.299± 0.002 0.666± 0.093 0.756± 0.096 256.1± 0.35 12.68± 0.92 3.844± 0.15 27.62± 0.69
ColdByO 0.708± 0.014 0.321± 0.075 0.651± 0.081 0.759± 0.008 257.8± 0.18 12.70± 0.85 3.727± 0.74 27.77± 0.75
SAGO 0.694± 0.008 0.287± 0.021 0.638± 0.006 0.737± 0.006 255.7± 0.48 12.53± 0.04 3.680± 0.24 26.59± 0.14

Round #3
WarmGrid 0.715± 0.043 0.300± 0.014 0.652± 0.093 0.712± 0.087 256.5± 0.88 12.96± 0.49 4.021± 0.85 27.05± 0.11
WarmHyBi 0.706± 0.036 0.280± 0.096 0.645± 0.026 0.673± 0.011 255.5± 0.37 13.06± 0.66 3.698± 0.45 26.97± 0.34
WarmByO 0.708± 0.053 0.307± 0.007 0.657± 0.036 0.688± 0.095 255.9± 0.98 12.94± 0.43 3.925± 0.76 27.25± 0.28
SAGO 0.693± 0.006 0.280± 0.005 0.640± 0.014 0.668± 0.003 255.5± 0.12 12.52± 0.05 3.679± 0.39 26.63± 0.04
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Figure 5: Normalized updating
time per data sample (total up-
dating time divided by batch
size) for the inner-level problem.
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Figure 7: Running time as a
function of event point numbers.

start) batch retraining for online updating and utilizes grid search to determine the optimal λ. (ii)
ColdHyBi (resp. WarmHyBi) applies cold-start (resp. warm-start) batch retraining for online
updating and leverages hypergradient-based bilevel framework (Feng & Simon, 2018) to find λ∗.
(iii) ColdByO (resp. WarmByO) adopts cold-start (resp. warm-start) batch retraining for online
updating and employs Bayesian optimization (Snoek et al., 2012) to identify the optimal λ. For
the grid search, we rely on Scikit-learn (Pedregosa et al., 2011), and for Bayesian optimization, we
use the Hyperopt library (Bergstra et al., 2015). For batch re-training, we leverage the popular
FISTA optimiser (Beck & Teboulle, 2009) integrated with a gradient-based adaptive restarting scheme
(O’donoghue & Candes, 2015).

0 10 20 30 40 50 60 70
Online Rounds

0.4210

0.4215

0.4220

0.4225

0.4230

0.4235

0.4240
SAGO( = 1e-3)
SAGO( = 1e-5)
Oracle Optimal

Figure 8: Dynamics of λ.

Setup To rigorously assess the validity of our conclusions and the
practical efficacy of our SAGO algorithm, we simulate an online
environment with varying observations as detailed in Section 2.1. We
use 70% of the training set to train an initial model, in which we assign
half of the observations with randomly assigned erroneous labels.
In each round, the model is updated by progressively eliminating
these incorrectly-labeled training data and simultaneously introducing
the remaining 30% of unutilized clean data. All experiments are
conducted over 50 trials and more details are listed in Appendix E.

Results & Analysis At first we perform a single round update (maintaining a constant n+ + n–) on
datasets of varying scales to contrast the runtime of diverse algorithms. The results depicted in Figure
4 underscore the computational advantage of proposed SAGO. We present our numerical results
in Table 2, suggesting that the accuracy of our algorithm parallels that of existing methodologies.
Moreover, we fix the dataset size n0 and vary the number of dynamically updated samples per round,
as illustrated in Figure 5. The running time is observed to scale linearly with the growth of n+ + n–,
which means our method is scalable with the increasing number of varying observations. Figure 6
displays the histograms of event points, revealing a near-absence of event points in the inner-level
problem, while most of them are present in the outer-layer problem. Subsequently, we forcibly alter
the optimality conditions during a certain round, causing a change in the number of event points.
Figure 7 illustrates that the influence of event point count on overall runtime is almost negligible.
Lastly, Figure 8 validates SAGO’s capability to approximate optimal regularization parameter when
the samples are varying in each online round.
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A GLOSSARY

Term/Symbol Explanation

SAGO Algorithm for training a data-varying SpArse GLMs in an Online manner.

A A corresponding batch algorithm.

d The total number of regularizer(s) in (1).

Λ Predefined searching space of λ.

λk The regularization parameter of the k-th regularizer, or the k-th component of λ.

β The learnable parameters / model weights vector.

βj The j-th component of vector β.

β̂ The optimal solution of β.

βg The parameter(s) of g-th group in group Lasso.

Sk The subset of coefficients being penalized of the k-th regularizer.

X�, X–, X+ The (sub)dataset include observation(s) to be kept, removed and incorporated in
each round, respectively.

n0, n–, n+ The number of observation(s) in X�, X–, X+, respectively.

m The size of feature space / number of features in observation.

{xi, yi} A pair of i-th observation and its label.

β̂(i) The optimal solution before each online round (i.e., initial value of (3)).

β̂(ii) The optimal solution after each online round.

`i Loss function.

Lval Validation loss.

{x̃i, ỹi}Ni=1 Validation set with N observations.

t, s Calculated lower bound for t and s.

t̄, s̄ Calculated upper bound for t and s.

µ(t), ν (s) The defined parameterizers.

η The potential parameter(s) for a penalty family.

T Number of rounds.

τ Index for iterating over T rounds.

iters Number of current iterations when running SAGO.

max_iter Maximum allowed number of iterations.

A Active set.

M A positive constant in Theorem 2.

elementwise
twice-
differentiable

Twice-differentiable, if limited to certain elements / coordinates (in A).

reparameterization The process of reparameterize using parameterizers.

knot The point in regularizer that is not well-defined.
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(Continued)

Term/Symbol Explanation

∂f(x) The subdifferential of f . For a proper function f : Rn → R∪ {∞}, its subdiffer-
ential at x ∈ Rn is ∂f(x) =

{
u ∈ Rn : ∀y ∈ Rn, f(y) ≥ f(x) + u>(y − x)

}
.

sign(·) The sign function, defined as x 7→ x/|x| with the convention 0/0 = 0.

exp(·) The exponential function with e as base. Applied to vectors, sign, exp(·) act
element-wise.

1{j∈Sk} The indicator function, defined as 1{j∈Sk} :=

{
1 if j ∈ Sk
0 if j /∈ Sk

.

κ To describe κ-strong quasi-convexity.

(sk, tk) The k-th event point.

〈·, ·〉 Inner product.

∇2
λβ̂ Calculate second-order derivative.

∂2
s β̂ Calculate second-order partial derivative.

Ω An integral path Ω(s, t) = 0.∫
Ω

Curvilinear integral over Ω.

Sk,A Intersection of the set Sk and A.

P {·} Probability of events.

ε Tolerance for hyperparameter λ.

λ∗ Optimal hyperparameter λ in the space.

D Some predefined constant in Lemma 1.

α Maximum absolute value of directional derivative in Lemma 1.

O(·) The Big-O notation of complexity.

hβ(·) Hypothesis function.

B OMITTED PROOFS

B.1 PROOF OF THEOREM 1

We present the formal statement of Theorem 1 as Theorem 9 and subsequently provide its proof.

Theorem 9 (Equivalence Guarantee). Let A be a batch algorithm that trains on the dataset X ∈ X
and outputs a model f ∈ H, i.e., A (X) : X → H. Now, assume that there is a requirement to
incorporate new observations in X+ and to simultaneously exclude certain existing observations X–,
from the trained model using algorithm A. Then ∀T ⊆ H, we have

P

{
SAGO

[
A(X� ∪X–), X+, X–

]
∈ T

}
= P

{
A (X� ∪X+) ∈ T

}
, (8)

where ∪ represents standard set operations. The operator SAGO [·] executes an online update based
on the reformulation given by (2). Within the arguments of SAGO [·], the first term is the output of
A (·), the second term corresponds to the observations to be added, and the third term signifies the
observations to be removed.
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Proof. We begin by considering the case where t = t and s = s. According to Definition 2, we
observe that µ(t) = 0 and ν(s) = 1. This leads to the following representation of (2):

min
λ∈Λ

Lval :=

N∑
i=1

`i

(
ỹi, f

(
β̂>x̃i

))
s.t. β̂ ∈ arg min

β∈Rm
`�
(
β
)

+ 0 + `–(β)+

d∑
k=1

∑
j∈Sk

Pη (|βj | , λk) .

(9)

Equation (9) is associated with the model state (i) depicted in Figure 1, wherein β̂ (s, t) in (9) is
obtained by minimizing the loss of observations in X and X–. Assuming that (9) is properly solved
by a batch algorithm A, the solution is indeed A(X� ∪X–) in (8). We now consider varying s and t
to s̄ and t̄, implying that µ(t) = 1 and ν(s) = 0. This results in

min
λ∈Λ

Lval :=

N∑
i=1

`i

(
ỹi, f

(
β̂>x̃i

))
s.t. β̂ ∈ arg min

β∈Rm
`�
(
β
)

+ `+(β)+ 0 +
d∑
k=1

∑
j∈Sk

Pη (|βj | , λk) .

(10)

Equation (10) corresponds to the model status (ii), as illustrated in Figure 1, which is equivalent
to the model trained by minimizing the loss of observations in X and X+. Assuming that (10) is
correctly solved by a batch algorithm A, the solution is denoted as A (X� ∪X+) in (8). Since we
employ our SAGO [·] to transition from (9) to (10), the equivalence of our SAGO and batch retraining
methodology is thereby established.

B.2 PROOF OF THEOREM 2

Before presenting our proof of Theorem 2, it is essential to establish the existence of the path of
solutions

{
β̂ (s, t) |(s, t) ∈ [s, s̄]× [t, t̄]

}
for the inner problem, and

{
β̂ (λ) |λ ∈ Λ

}
for the outer

problem as a critical prerequisite.

Lemma 2. The solution paths β̂ w.r.t. (2) exist for ∀(s, t) ∈ [s, s̄]× [t, t̄] for the inner problem, and
for ∀λ ∈ Λ for the outer problem.

Proof. Our proof is inspired by ideas in probability-one homotopy methods (Chow et al., 1978). We
make use of the 1-D manifold classification theorem in differential topology (Milnor & Weaver,
1997), which states that a 1-dimensional smooth manifold must be homeomorphic either to a line
segment or to a circle. Therefore, we need to show two things: (i) first, the path is (close to) a 1-D
manifold (it does not self-intersect); (ii) second, this manifold cannot be a circle.

The first is a local property, and the implicit function theorem (Krantz & Parks, 2002) is used to prove
it. To prove that the manifold of solutions cannot be a circle, we make sure that the path starts at (s, t)
in a single direction. When this holds, it cannot be a circle, since a circle will imply two directions to
choose from at each point. To see this, suppose that the manifold of solutions is a circle, and let C be
the circle. Let v be a unit tangent vector at a point p on C, which gives us a well-defined direction at
p. Since the manifold of solutions is a path, it intersects the circle at two points p1 and p2. Let p1 be
the starting point of the path, i.e., p1 = (s, t). Without loss of generality, we can assume that p2 is in
the counterclockwise direction from p1. Then, let v1 be the unit tangent vector to C at p1, and let v2

be the unit tangent vector to C at p2. Since C is a circle, v1 and v2 are opposite directions. However,
since the manifold of solutions is a path, it cannot change direction suddenly, so it must continue
in the same direction as v1 as it leaves p1. But this is a contradiction since v1 and v2 are opposite
directions, so the manifold of solutions cannot be a circle.

The proof for the existence of solution paths in the outer problem is analogous to that of the inner
problem; therefore, we omit it here.

We proceed to prove Theorem 2, first demonstrating the solution continuity of the outer problem,
followed by a proof of the continuous path w.r.t. the inner problem. For the sake of simplicity and
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uniformity, we designate the Hessian matrix ∇2
λβ̂ (λ) as Hλ(β̂). Similarly, we use the notation

HL̃(β̂) to represent L̃−1 (·). We also introduce the shorthand Hs and Ht to denote the second partial
derivatives w.r.t. s and t, respectively, of β̂, that is ∂2

s β̂ (s, t) and ∂2
t β̂ (s, t).

Proof. Let β̂(λ) denote the solution corresponding to the hyperparameter value λ of the outer problem,
and let β̂(λ + ∆λ) represent the solution associated with the hyperparameter value λ + ∆λ. Our
aim is to demonstrate that

∥∥∥β̂(λ)− β̂(λ+ ∆λ)
∥∥∥→ 0 as ∆λ→ 0. By employing the fundamental

theorem of calculus, we can write4

β̂ (λ+ ∆λ)− β̂ (λ) =

∫ λ+∆λ

λ

dβ̂(λ′)

dλ′
dλ′

=
1

∆λ

∫ λ+∆λ

λ

dβ̂(λ′)

dλ′
∆λdλ′.

(11)

Taking the norm of both sides yields∥∥∥β̂ (λ+ ∆λ)− β̂(λ)
∥∥∥ ≤ 1

|∆λ|

∫ λ+∆λ

λ

∥∥∥∥∥dβ̂(λ′)

dλ′

∥∥∥∥∥ dλ′. (12)

Utilizing Taylor’s theorem, we arrive at

β̂ (λ+ ∆λ)− β̂ (λ) = v>∆λ+
1

2
(∆λ)>Hλ(β̂′)∆λ, (13)

where β̂′ is a point on the line segment between β̂(λ) and β̂(λ+ ∆λ). Rearranging terms, we get∥∥∥β̂ (λ+ ∆λ)− β̂ (λ)− v>∆λ
∥∥∥ ≤ 1

2
M ‖∆λ‖2 . (14)

We need to demonstrate that the right-hand side of (12) goes to zero as ∆λ → 0. To achieve this,
we shall use the assumption that HL̃(β̂) �MI for some positive constant M and for every β̂. Let

v = dβ̂(λ′)
dλ′ be a vector. Firstly, we can bound v as∥∥∥∥∥dβ̂(λ′)

dλ′

∥∥∥∥∥ =

∥∥∥∥∥∥
d∑
k=1

[
L̃
(
β̂ (s̄, t̄) , λ

)]−1

· ∇β
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣, λk)
∥∥∥∥∥∥

≤
∥∥∥∥[L̃(β̂ (s̄, t̄) , λ

)]−1
∥∥∥∥ ·
∥∥∥∥∥∥

d∑
k=1

∇β
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣, λk)
∥∥∥∥∥∥

≤ 1

m
·

√
d

λ̃max(HL̃(β̂))
·

∥∥∥∥∥∥∇β
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣, λk)
∥∥∥∥∥∥

≤ 1

m
·
√
d√
M
·

∥∥∥∥∥∥∇β
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣, λk)
∥∥∥∥∥∥ ,

(15)

where λ̃max(HL̃(β̂)) is the maximum eigenvalue of the Hessian matrix HL̃(β̂) at β̂. By employing
the Cauchy-Schwarz inequality, we can also derive the following inequality∥∥∥∥∥dβ̂(λ′)

dλ′

∥∥∥∥∥ =
1

‖v‖ ‖v‖
2

≤ 1√
λ′ − λ

(∫ λ′

λ

‖v‖2 dλ′
) 1

2

≤ 1√
|∆λ|

(∫ λ+∆λ

λ

‖v‖2 dλ′
) 1

2

.

(16)

4We employ the shorthand notation β̂ (or `i) in place of β̂A (or `i,A) whenever the context allows for such
simplification.
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Substituting this inequality into (12) and then using (14) and (15), we get∥∥∥β̂ (λ+ ∆λ)− β̂(λ)
∥∥∥ ≤ 1

|∆λ|

∫ λ+∆λ

λ

∥∥∥∥∥dβ̂(λ′)

dλ′

∥∥∥∥∥ dλ′
≤ 1

|∆λ| 32

∫ λ+∆λ

λ

(∫ λ+∆λ

λ

|v|2dλ′
) 1

2

dλ′

≤ 1

|∆λ| 32

∫ λ+∆λ

λ

(∫ λ+∆λ

λ

M2(∆λ)2dλ′

) 1
2

dλ′

≤ M |∆λ|2
|∆λ| 32

|∆λ|

= M |∆λ| 32 .

(17)

Since M is a positive constant, it is evident that the right-hand side of this inequality goes to zero
as ∆λ→ 0. Consequently, we have established that

∥∥∥β̂ (λ+ ∆λ)− β̂(λ)
∥∥∥→ 0 as ∆λ→ 0, which

implies that β̂ is continuous w.r.t. the variables of the outer problem.

For the inner problem, we revisit the system of PDE (3) as follows.

dµ(t)

dt
· ∇β`+(β̂) + L̃

(
β̂, λ

)
· ∂β̂(s, t)

∂t
= 0

dν(s)

ds
· ∇β`–(β̂) + L̃

(
β̂, λ

)
· ∂β̂(s, t)

∂s
= 0

L̃
(
β̂, λ

)
=

d∑
k=1

∇β2

∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣, λk)
+∇β2

[
`�(β̂) + µ (t) `+(β̂) + ν (s) `–(β̂)

] (18)

Our objective is to demonstrate that the solution β̂(s, t) is continuous w.r.t. both s and t. To this
end, let β1(s, t) and β2(s, t) represent two solutions to the system in (18). Define the difference
∆β(s, t) = β1(s, t) − β2(s, t). Our goal is to show that ∆β(s, t) can be made arbitrarily small
by selecting s and t sufficiently close, which implies the continuity of β̂(s, t). To accomplish this,
consider the equation for ∆β(s, t), derived by subtracting the two equations in (18):

dµ(t1)

dt
· ∇β`+(β̂1)− dµ(t2)

dt
· ∇β`+(β̂2) + L̃

(
β̂1, λ

)
· ∂β̂1(s1, t1)

∂t
− L̃

(
β̂2, λ

)
· ∂β̂2(s2, t2)

∂t

+
dν(s1)

ds
· ∇β`–(β̂1)− dν(s2)

ds
· ∇β`–(β̂2) + L̃

(
β̂1, λ

)
· ∂β̂1(s1, t1)

∂s
− L̃

(
β̂2, λ

)
· ∂β̂2(s2, t2)

∂s
= 0.

(19)
By rearranging terms and employing the Taylor’s Theorem with remainder estimates (Folland, 1990),
we obtain

∆β̂(s2, t2)

= ∆β̂(s1, t1)+∇s,t∆β̂(s1, t1) ·
(
s2 − s1

t2 − t1

)
+

1

2!

(
s2 − s1

t2 − t1

)>
· ∇2

s,t∆β̂(s1, t1) ·
(
s2 − s1

t2 − t1

)
+O

(
‖(s2 − s1, t2 − t1)‖3

)
≤ ∆β̂(s1, t1) +∇s,t∆β̂(s1, t1) ·

(
s2 − s1

t2 − t1

)
+

1

2

∫ 1

0

(1− γ) ·
(
s2 − s1

t2 − t1

)>
·
[
∂∇s,t∆β̂(·, t)

∂s

∣∣∣∣
s=γs2+(1−γ)s1

(s2 − s1) +
∂∇s,t∆β̂(s, ·)

∂t

∣∣∣∣
t=γt2+(1−γ)t1

(t2 − t1)

]
dγ,

(20)
where we utilize the fact that, according to (18), the functions ∂β̂(s,t)

∂s and ∂β̂(s,t)
∂t are continuous w.r.t.

s and t, respectively. Observe that the integrand in the final term of (20) can be bounded using the

20



Published as a conference paper at ICLR 2024

Cauchy-Schwarz inequality and triangle inequality, as follows∥∥∥∥∥
(
s2 − s1

t2 − t1

)> [
∂∇s,t∆β̂(·, t)

∂s

∣∣∣∣
s=γs2+(1−γ)s1

(s2 − s1) +
∂∇s,t∆β̂(s, ·)

∂t

∣∣∣∣
t=γt2+(1−γ)t1

(t2 − t1)

]∥∥∥∥∥
≤
∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥ ·
∥∥∥∥∥∂∇s,t∆β̂(·, t)

∂s

∣∣∣∣
s=γs2+(1−γ)s1

(s2 − s1) +
∂∇s,t∆β̂(s, ·)

∂t

∣∣∣∣
t=γt2+(1−γ)t1

(t2 − t1)

∥∥∥∥∥
≤
∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥ ·
(∥∥∥∥∥∂∇s,t∆β̂(·, t)

∂s

∣∣∣∣
s=γs2+(1−γ)s1

∥∥∥∥∥ · |s2 − s1|+
∥∥∥∥∥∂∇s,t∆β̂(s, ·)

∂t

∣∣∣∣
t=γt2+(1−γ)t1

∥∥∥∥∥ · |t2 − t1|
)
,

(21)
Substituting this bound into (20) leads to∥∥∥∆β̂(s2, t2)

∥∥∥
≤
∥∥∥∆β̂(s1, t1)

∥∥∥+

∥∥∥∥∇s,t∆β̂ (s1, t1) ·
(
s2 − s1

t2 − t1

)∥∥∥∥
+

1

2

∥∥∥∥∥
∫ 1

0

(1− γ)

(
s2 − s1

t2 − t1

)>
·
[
∂∇s,t∆β̂(·, t)

∂s

∣∣∣∣
s=γs2+(1−γ)s1

(s2 − s1) +
∂∇s,t∆β̂(s, ·)

∂t

∣∣∣∣
t=γt2+(1−γ)t1

(t2 − t1)

]
dγ

∥∥∥∥∥
≤
∥∥∥∆β̂(s1, t1)

∥∥∥+

∥∥∥∥∇s,t∆β̂ (s1, t1) ·
(
s2 − s1

t2 − t1

)∥∥∥∥
+

1

2

∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥ · (‖∇s,t∆β(s1, t1)‖+
√

2M ·
√

(s2 − s1)
2

+ (t2 − t1)
2

)
≤
∥∥∥∆β̂(s1, t1)

∥∥∥+
3

2

∥∥∥∇s,t∆β̂ (s1, t1)
∥∥∥ · ∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥+M ·
(

(s2 − s1)
2

+ (t2 − t1)
2
)
,

(22)
where we employ the assumption that Hs � M1m and Ht � M1m for every β̂. Without loss of
generality, we assume that ∆β̂(s1, t1) = 0, i.e., β̂1(s1, t1) = β̂2(s1, t1). Then, we find∥∥∥∆β̂(s2, t2)

∥∥∥ ≤ 3

2

∥∥∥∇s,t∆β̂(s1, t1)
∥∥∥ · ∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥+M ·
(

(s2 − s1)
2

+ (t2 − t1)
2
)
. (23)

Let ε > 0 be given. Since ∂β̂(s,t)
∂s and ∂β̂(s,t)

∂t are continuous w.r.t. s and t, there exists δ > 0 such

that for all s, t with distance
√

(s2 − s1)
2

+ (t2 − t1)
2
< δ, we have

∥∥∥∇s,t∆β̂(s1, t1)
∥∥∥ < ε

3 . Now,

let ∆ = min
{
δ
2 ,

ε
3M

}
. Then, for any s2, t2 with

√
(s2 − s1)

2
+ (t2 − t1)

2
< ∆, it can be inferred

that the following inequalities∥∥∥∆β̂ (s2, t2)
∥∥∥

≤ 3

2

∥∥∥∇s,t∆β̂(s1, t1)
∥∥∥ · ∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥+M ·
(

(s2 − s1)
2

+ (t2 − t1)
2
)

<
ε

2
·
∥∥∥∥(s2 − s1

t2 − t1

)∥∥∥∥+M ·∆2

≤ ε.

(24)

holds. This result demonstrates that ∆β̂(s, t) is a continuous function of s and t. Therefore, β̂(s, t)

is also a continuous function of s and t, as it can be obtained by adding ∆β̂(s, t) to β̂1(s, t), which
concludes the proof.

B.3 PROOF OF THEOREM 3

We commence by establishing Lemma 3, and thereafter, we present a complete proof of Theorem 3.
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Lemma 3 (Necessary Optimality Condition). Given (s, t), if β̂ is a local minimum of the inner
problem of (2), then β̂ fulfills the stationarity condition of the inner problem, expressed as

µ(t) ·∇βj
`+(β̂) + ν(s) ·∇βj

`–(β̂) +∇βj
`�(β̂) +

d∑
k=1

∂Pη

(∣∣∣β̂j∣∣∣ , λk)
∂ |βj |

ωj1{j∈Sk} = 0, ∀j ∈ [m],

(25)
where the coefficient ωj meets

ωj ∈


{−1} if β̂j < 0

[−1, 1] if β̂j = 0

{1} if β̂j > 0

. (26)

Proof. Two potential cases are contemplated. (i) When the penalty function Pη (|βj | , λk) is convex,
this naturally corresponds to the first-order optimality condition for unconstrained convex minimiza-
tion (Boyd et al., 2004). (ii) Alternatively, when Pη (|βj | , λk) is non-convex, the optimality condition
is examined on a coordinate-wise basis. For j ∈ {j : β̂j 6= 0}, this is self-evident. When β̂j = 0,
the implication of β̂j being a local minimum is that the two directional derivatives5 are non-negative
(Danilova et al., 2022). We denote the inner-level objective of the parameterized problem (2) by
Θ(β). Let ej represent a steering vector. Then, we obtain

dejΘ(β) = lim
ε↓0

Θ (β + εej)−Θ(β)

ε
= ∇j

[
`�
(
β
)

+ µ (t) `+(β)+ ν (s) `–(β)]+

d∑
k=1

∂Pη (|βj | , λk)

∂ |βj |
≥ 0

d−ej
Θ(β) = lim

ε↑0

Θ (β + εej)−Θ(β)

ε
= −∇j

[
`�
(
β
)

+ µ (t) `+(β)+ ν (s) `–(β)]+

d∑
k=1

∂Pη (|βj | , λk)

∂ |βj |
≥ 0,

(27)
which is equivalent to (25) with ωj ∈ [−1, 1].

In light of Lemma 3, we now proceed to delineate the proof of Theorem 3.

Proof. To infer the inner-level dynamics, we treat β̂ as a bivariate function of s and t. Initially, we
compute the partial derivative w.r.t. t, which adheres to the subsequent equation

dµ(t)

dt
∇βA`+

A

(
β̂(s, t)

)
+ µ(t)∇2

βA`
+
A

(
β̂(s, t)

) ∂β̂A(s, t)

∂t
+ ν(s)∇2

βA`
–
A

(
β̂(s, t)

) ∂β̂A(s, t)

∂t
+

∇2
βA`
�
A

(
β̂(s, t)

) ∂β̂A(s, t)

∂t
+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk)
 ∂β̂A(s, t)

∂t
= 0.

(28)
Likewise, the partial derivative w.r.t. s is established as follows

µ(t)∇2
βA`

+
A

(
β̂(s, t)

)∂β̂A(s, t)

∂s
+
dν(s)

ds
∇βA`–

A

(
β̂(s, t)

)
+ ν(s)∇2

βA`
–
A

(
β̂(s, t)

) ∂β̂A(s, t)

∂s
+

∇2
βA`
�
A

(
β̂(s, t)

) ∂β̂A(s, t)

∂s
+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk)
 ∂β̂A(s, t)

∂s
= 0.

(29)

5Considering the path illustrated in Figure 2, we can observe that at any given point on Ω, a maximum of
two distinct directions can be identified.
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In situations where the expression does not engender ambiguity, we employ β̂ as a shorthand for
β̂(s, t). By reordering the terms in (28) and (29), we acquire

0 =



dµ(t)

dt
∇βA`+

A(β̂) +

∇2
βA

(
`�A(β̂) + µ (t) `+

A(β̂) + ν (s) `–
A(β̂)

)
+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk)


︸ ︷︷ ︸
a common term, denotes as L̃(β̂,λ)

∂β̂A(s, t)

∂t

dv(s)

ds
∇βA`–

A(β̂) +

∇2
βA

(
`�A(β̂) + µ (t) `+

A(β̂) + ν (s) `–
A(β̂)

)
+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk)
 ∂β̂A(s, t)

∂s
.

(30)
Incorporating the initial conditions of the system, we arrive at

dµ(t)

dt
· ∇βA`+

A(β̂) + L̃
(
β̂, λ

)
· ∂β̂A(s, t)

∂t
= 0

dν(s)

ds
· ∇βA`–

A(β̂) + L̃
(
β̂, λ

)
· ∂β̂A(s, t)

∂s
= 0

β̂(s, t)
∣∣∣
s=s,t=t

= β̂0,

(31)

wherein the L̃
(
β̂, λ

)
has been pre-defined in (30).

Remark 4. Furthermore, the L̃
(
β̂, λ

)
is verified to be positive semi-definite. The verification of

the positive semidefiniteness w.r.t. L̃
(
β̂, λ

)
is drawn from the second-order necessary optimality

condition when constrained to coordinates within the set A.

B.4 PROOF OF THEOREM 4

Lemma 4 (c.f. Lemma 2.1 in Ghadimi & Wang (2018)). Assuming for any λ ∈ Λ, the ∂ω2G (λ, ωλ)
is invertible. We consider

min
λ∈Λ

f(λ) := F (λ, ωλ) s.t. ωλ = arg min
ω

G(λ, ω) (32)

and the hyper-gradient w.r.t λ takes the form

∇λf = ∂λF (λ, ωλ)− ∂ωλG (λ, ωλ) ∂2
ωG (λ, ωλ)

)−1
∂ωF (λ, ωλ) . (33)

Herein, F andG represent the outer and inner problems, respectively, and λ, ω are the corresponding
outer and inner variables.

Employing Lemma 4, we will demonstrate the proof for Theorem 4.

Proof. Grounded in the PDE associated with the inner problem solving, we obtain the following
condition

0 ∈ ∇βA`�(β̂) +∇βA`+
A(β̂) + ∂

d∑
k=1

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣ , λk) , (34)

where ∂ signifies the subdifferential (i.e., set of subgradients). Subsequently, by differentiating both
sides, apply the chain rule, and invoke the implicit function theorem we derive

0 ∈ ∇2
βA`
�(β̂)

dβ̂A
dλ

+∇2
βA`

+
A(β̂)

dβ̂A
dλ

+

d∑
k=1

∇β ∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣ , λk)
+∇2

βA

d∑
k=1

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣ , λk) dβ̂A
dλ

.

(35)
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Upon extracting the factor w.r.t. dβ̂Adλ , we deduce∇2
βA

(
`�A(β̂) + `+

A(β̂)
)

+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣ , λk)
 dβ̂A

dλ
= −

d∑
k=1

∇β ∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣ , λk)
 .

(36)
By reorganizing the above expression, we arrive at

dβ̂A
dλ

= −
d∑
k=1

∇2
βA

(
`�A(β̂) + `+

A(β̂)
)

+

d∑
k=1

∇2
βA

∑
j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk)
−1

·∇βA
∑

j∈Sk,A

Pη

(∣∣∣β̂j∣∣∣, λk) .
(37)

Moreover, Lemma 4 supplies the derivative as given in (38).

∇λLval =∂λ

N∑
i=1

`i

(
ỹi, f

(
β̂>x̃i

))
+∇β

N∑
i=1

`i

(
ỹi, f

(
β̂>x̃i

))
· dβ̂
dλ

=

N∑
i=1

∇β `i
(
ỹi, f

(
β̂>x̃i

))
· dβ̂
dλ

(38)

B.5 PROOF OF THEOREM 5

Lemma 5 (Implication of κ-strong Quasi-Convexity). (c.f. (Vial, 1982)) By definition, a differentiable
function Lval is strongly quasi-convex if the following inequality holds

Lval (λ∗) > Lval (λx) +∇Lval (λx)
T

(λ∗ − λx) +
κ

2
‖λ∗ − λx‖2 (39)

for some κ > 0 and all λx ∈ Λ.

Subsequently, we provide our proof of Theorem 5.

Proof. Utilizing the property articulated in Lemma 5 and invoking the triangle inequality, we ascertain
that

Lval >
N∑
i=1

`i

(
ỹi, f

(
β̂>(λ∗) x̃i

))
>

N∑
i=1

`i

(
ỹi, f

(
β̂>(λ) x̃i

))
+

〈
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ) , λ∗ − λ

〉
+
κ

2
‖λ∗ − λ‖2

=

N∑
i=1

`i

(
ỹi, f

(
β̂>(λ) x̃i

))
+
κ

2
‖λ− λ∗‖2 +

∥∥∥∥∥
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ)

∥∥∥∥∥ · ‖λ∗ − λ‖ · cosψ

>
N∑
i=1

`i

(
ỹi, f

(
β̂>(λ) x̃i

))
−
∥∥∥∥∥
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ)

∥∥∥∥∥ · ‖λ∗ − λ‖+
κ

2
‖λ∗ − λ‖2 ,

(40)
where

ψ = arg cos

〈∑N
i=1∇β`i

(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ) , λ∗ − λ

〉
∥∥∥∑N

i=1∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ)

∥∥∥ · ‖λ∗ − λ‖ . (41)

Following the reorganization, we deduce

κ

2
‖λ− λ∗‖2 6 · ‖λ∗ − λ‖ ·

∥∥∥∥∥
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
·∇λβ̂(λ)

∥∥∥∥∥ . (42)
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For the case where λ = λ∗, the proof is self-evident. We now consider the scenario wherein λ 6= λ∗,
thereby arriving at

κ

2
‖λ− λ∗‖ 6

∥∥∥∥∥
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
∇λβ̂(λ)

∥∥∥∥∥ . (43)

This in turn leads us to our ultimate conclusion, expressed as

‖λ− λ∗‖ 6 2κ−1

∥∥∥∥∥
N∑
i=1

∇β`i
(
ỹi, f

(
β̂>(λ) x̃i

))
∇λβ̂(λ)

∥∥∥∥∥ 6 2εκ−1. (44)

B.6 PROOF OF THEOREM 6

Proof. We can complete this proof by contradiction. Suppose that λ lies at the end point of one
segment of a solution path, and the corresponding Jacobian J is full rank. Let ∆β = β̂′ − β̂ and
∆λ = λ′−λ, where the elements in β we considered are indexed by the activity set. Since β̂ satisfies
the KKT system of (2), we have

∇β`�(β̂) + µ(t)∇β`+(β̂) + ν(s)∇β`–(β̂) +

d∑
k=1

∑
j∈Sk

∂βPη

(∣∣∣β̂j∣∣∣ , λk) = 0

∂λ

N∑
i=1

`i

(
ỹi, f

(
β̂>(λ) x̃i

))
= 0.

(45)

From the above assumption, we know that λ′ is not on the solution path. This implies that there exists
some β̂′ such that (β̂′, λ′) satisfies the KKT system, where β̂′ is different from β̂. Then we have

∇β`�(β̂′) + µ(t)∇β`+(β̂′) + ν(s)∇β`–(β̂′) +

d∑
k=1

∑
j∈Sk

∂βPη

(∣∣∣β̂′j∣∣∣ , λ′k) = 0

∂λ

N∑
i=1

`i

(
ỹi, f

(
β̂′>(λ′) x̃i

))
= 0.

(46)

Subtracting the two sets of KKT conditions, we obtain

∇β
(
`�(β̂′)− `�(β̂)

)
+ µ(t)∇β

(
`+(β̂′)− `+(β̂)

)
+ ν(s)∇β

(
`–(β̂′)− `–(β̂)

)
+

d∑
k=1

∑
j∈Sk

[
∂βPη

(∣∣∣β̂′j∣∣∣ , λ′k)− ∂βPη (∣∣∣β̂j∣∣∣ , λk)] = 0.
(47)

Note that β̂ and β̂′ have different active sets, which means that some of the gradient(s) above may not
exist. Let αi =

∣∣∣ ∂`∂βi

∣∣∣ for i ∈ P . Then we have

0 ∈ ∇β
(
`�(β̂′)− `�(β̂)

)
+ µ(t)∇β

(
`+(β̂′)− `+(β̂)

)
+ ν(s)∇β

(
`–(β̂′)− `–(β̂)

)
+
∑
i∈P

αi

(
sign(β̂′i)− sign(β̂i)

)
+

d∑
k=1

∑
j∈Sk

[
∂βPη

(∣∣∣β̂′j∣∣∣ , λ′k)− ∂βPη (∣∣∣β̂j∣∣∣ , λk)]

+ ∂λ

N∑
i=1

[
`i

(
ỹi, f

(
β̂′>(λ′) x̃i

))
− `i

(
ỹi, f

(
β̂>(λ) x̃i

))]
.

(48)

Without loss of generality, we set t = t̄, s = s̄ to simplify notations. Now we can convert the above
system as

J ·
[

∆β̂P
∆λ

]
= 0, (49)
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where J is the Jacobian matrix defined in the theorem statement. Since J is full rank by assumption,
we have ∆β̂ = 0 and ∆λ = 0. This contradicts the assumption that β̂′ and λ′ are different from
β̂ and λ, respectively. Therefore, the end point cannot have a full rank Jacobian matrix. Hence the
theorem is proved.

Geometric Intuition. There also exists a geometric understanding towards Theorem 6. Consider a
perturbation (∆β̂,∆λ) w.r.t. the variables β̂ and λ. The perturbed optimality condition, linearized
around (β̂, λ), can be written as∂2

β (`�+ `+) ·∆β̂ +

d∑
k=1

∂2
β

∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣ , λk) ·∆β̂
 {P, g}+

d∑
k=1

∂λ
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣ , λk) ·∆λ = 0,

d∑
k=1

∂β
∑
j∈Sk

Pη

(∣∣∣β̂j∣∣∣ , λk)∆β̂{P, g} = 0, α = max
i

∣∣∣∣ ∂`∂βi
∣∣∣∣ , i ∈ P.

(50)
If matrix J is full rank, then the only solution to the linearized optimality condition is the trivial

solution
[

∆β̂P
∆λ

]
= 0, which implies that no nontrivial perturbations in the variables β and λ can

satisfy the optimality conditions near (β̂, λ). Suppose (∆β̂,∆λ) span the null space of J . Since the
Jacobian J is non-degenerate, there must be a unique direction (∆β̂,∆λ) in the null space of J .
Taking a small step along this direction will not violate the KKT conditions given the active set, and
thus, the path continues in that direction. Therefore, (β̂, λ) cannot be the end point of one segment of
the KKT path in this case.

B.7 PROOF OF THEOREM 7

Proof. We commence by examining the case where an index j′ is appended to the set A at the point
(t, s) within the interval [t, t̄]× [s, s̄]. Let β̂(t, s) represent the vector of solutions at (t, s), and β̂A(t,s)

denote the subvector pertinent to the active set A(t, s). By derivation, the PDE system illustrating the
trajectory of β̂ is given by

L̃
(
β̂A(t,s), λ

)
·


∂β̂A(t, s)

∂t

∂β̂A(t, s)

∂s

 = −


dµ(t)

dt
· ∇βA`+

A(t,s)(β̂)

dν(s)

ds
· ∇βA`–

A(t,s)(β̂)

 , (51)

where L̃
(
β̂A(t,s), λ

)
is defined as per (3). Hence, for any small δt > 0 and δs > 0, there exists a δβ̂

such that
β̂A(t,s) + δβ̂ = β̂A(t+δt,s+δs). (52)

On integrating (52) over the interval [t, t+ δt] and [s, s+ δs], we derive

δβ̂ = −
∫ t+δt

t

∫ s+δs

s

L̃−1
(
β̂A(t′,s′), λ

)
·

 dµ(t′)

dt
· ∇βA`+

A(t′,s′)(β̂)

dν(s′)

ds
· ∇βA`–

A(t′,s′)(β̂)

 ds′dt′. (53)

Upon synthesizing (51) and (53), it becomes evident that the change in β̂j′ is nonzero. Thus, we
obtain

β̂j′(t, s) 6= 0 and β̂j′(t+ δt, s+ δs) 6= 0, (54)
which signifies that j′ is included in A at (t, s) and would remain active for a small δt > 0 and
δs > 0. This further implies that j′ will not be excluded from A in the immediate next time of
segmentation.

Utilizing a comparable line of reasoning, we assume the existence of a point (t′, s′) in the interval
[t, t̄]× [s, s̄] such that j′′ is expelled from A at (t′, s′). Given that j′′ is inactive, the corresponding
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entry of β̂A(t′,s′) becomes zero. Additionally, the coefficient ωj associated with β̂j′′ at (t′, s′) must
be less than 1. Otherwise, j′′ would be active in the segment. Analogously to the prior case, we
integrate (52) over the interval [t′, t′ + δt′] and [s′, s′ + δs′] as

δβ̂′′ = −
∫ t′+δt′

t′

∫ s′+δs′

s′
L̃−1

(
β̂A(t′′,s′′), λ

)
·

 dµ(t′′)

dt
· ∇βA`+

A(t′′,s′′)(β̂)

dν(s′′)

ds
· ∇βA`–

A(t′′,s′′)(β̂)

 ds′′dt′′. (55)

By combining (51) and (53), it can be observed that the change in βj′′ is zero. Thus, we derive

β̂j′′(t
′, s′) = 0 and β̂j′′(t

′ + δt′, s′ + δs′) = 0. (56)

As j′′ is excluded from A at (t′, s′) and remains inactive for a small δt′ > 0 and δs′ > 0, it can be
deduced that j′′ will not be incorporated into A during the immediate next time of segmentation.

B.8 PROOF OF THEOREM 8

Proof. Analogous to the analysis conducted in Le Thi et al. (2008), it can be deduced that β̂i 6= ±∞
and λk 6= ±∞. We define a compact set T × S , where T = [t, t̄] and S = [s, s̄]. As t and s increase
within (t, s) ∈ T × S, the active set A may alter. Employing Theorem 2 and Definition 2, it can be
readily verified that there exist tmax, smax such that tmax − t > 0 and smax − s > 0, where tmax and
smax denote the maximal t and s fulfilling Lemma 3 given the initial partition A. Consequently, the
first segment constitutes a nontrivial interval (i.e., not merely a single point). In a similar vein, one
can deduce the existence of a sequence of nontrivial interval(s) within T × S. Based on the active
set definition, each subinterval must correspond to a unique pair of partitions A and A. Invoking
Theorem 7, we ascertain that the sequence of segments is finite, as the combinatorial numbers of A
and A are finite.

We now examine the outer problem. Analogously, as λ varies, the path of β̂ is also piecewise
smooth, with each segment associated with a specific active set A. Given that the number of potential
combinations of the active set A is finite, a finite number of piecewise segments exist for the path
w.r.t. λ. Hence, we have demonstrated that both the inner and outer problems can be solved in a finite
number of steps, thus completing the proof.

B.9 DERIVATION OF (4)

To integrate along the Ω, we need to combine the first two equations in the PDE system as follows

dµ(t)

dt
· ∇βA`+

A(β̂) + L̃
(
β̂, λ

)
· ∂β̂A(s, t)

∂t
+
dν(s)

ds
· ∇βA`–

A(β̂) + L̃
(
β̂, λ

)
· ∂β̂A(s, t)

∂s

=L̃
(
β̂, λ

)
·
(
∂β̂A(s, t)

∂s
+
∂β̂A(s, t)

∂t

)
+
dµ(t)

dt
· ∇βA`+

A(β̂) +
dν(s)

ds
· ∇βA`–

A(β̂)

=0.

(57)

Given the integration path Ω(s, t) = 0, we calculate a vector line integral to obtain

β̂ (sk−1, tk−1) +

∫
Ω

∂β̂A(s, t)

∂s
ds+

∫
Ω

∂β̂A(s, t)

∂t
dt

=β̂ (sk−1, tk−1)−
∫

Ω

L̃(β̂, λ)−1 · dµ(t)

dt
∇βA`+

A(β̂)dt−
∫

Ω

L̃(β̂, λ)−1 · dν(s)

ds
∇βA`–

A(β̂)ds

=β̂ (sk−1, tk−1)−
∫

(s,t)∈Ω

L̃(β̂, λ)−1

(
dµ(t)

dt
∇βA`+

A(β̂)dt+
dν(s)

ds
∇βA`–

A(β̂)ds

)
=β̂ (sk−1, tk−1)−

∫
(s,t)∈Ω

L̃(β̂, λ)−1

〈[
dν(s)

ds
∇βA`–

A(β̂),
dµ(t)

dt
∇βA`+

A(β̂)

]
,
[
ds, dt

]〉
,

(58)
which yields the final result (4) for each respective segment.
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C FURTHER DISCUSSIONS

C.1 MORE ON PRIOR WORK

C.1.1 LIMITATIONS OF STATE-OF-THE-ART

In this subsection, we present an analysis highlighting why prior art cannot be trivially extended to
sparse GLMs as defined in objective (1). This discussion not only illuminates the connection between
our theorem and pre-existing work, but also delves into the limitations of specific data-varying
algorithms.

Incremental learning with k-Nearest Neighbors (k-NN) is derived from the inherent nature of the
algorithm (Rodríguez et al., 2002). As an instance-based learning algorithm, k-NN retains the entire
training dataset instead of parametric modeling. It can incorporate new observation(s) into the existing
training set without necessitating a retraining process. This characteristic is due to the absence of
internal parameters or states, i.e., only the data itself matters. Analogously, removing observations
involves merely deleting the corresponding data. The process for online logistic regression presented
by Tsai et al. (2014) transforms the original objective into its dual problem, and outlines the boundaries
to estimate solutions after one online round. Using this solution, they apply warm-start training
to compute the definitive new solution. However, their primal and dual initial values in (12) are
not adaptable to models exceeding simple `1 and `2 loss, as their dual form would invite added
complexity. Therefore, we cannot derive a similar bound as presented in their Equations (17) to (19).

Adopting the procedure of online Lasso (Garrigues & Ghaoui, 2008), employing different losses
would not yield a closed-form solution for θ1 andw2 like their Equations (4) and (5), which are crucial
for deriving the analytical updating rules using homotopy reformulation. Analogous constraints
are also apparent in the methodologies of the generalized Lasso (Chen & Hero, 2012) (i.e., their
Equations (35)-(40)) (Hofleitner et al., 2013) (i.e., their Lemma 1 and Lemma 2). The research
concerning online group Lasso (Li & Gu, 2022) utilizes the finite difference and Taylor expansion.
Nevertheless, in their Equations (5) and (6), other loss functions (e.g., inverse Gaussian deviance)
cannot independently separate ∆w∗ and ∆θ as per their derivation. Furthermore, the high-order
residual of their regularization term converges to a constant and therefore, cannot be extended to
broader situations as explored in our study.

Moreover, numerous studies on online (or incremental and decremental) SVMs (Laskov et al., 2006;
Gu et al., 2014; 2015; 2018; Kashef, 2021) are conducted in the dual space as opposed to the original
loss. During online adjustments, they typically maintain the KKT conditions of the various classes of
support vectors, encompassing both relaxed adiabatic incremental adjustments and strict restoration
adjustments. It is evident that the style of these works differs significantly from general sparse GLMs
and thus cannot offer technical insight for the development of more generic online GLMs.

Within the context of adjusting the hyperparameter(s) in online scenarios, (Garrigues & Ghaoui,
2008; Yang et al., 2023) attempt to derive many rules for updating the regularization strength in each
round. Nevertheless, these methods remain largely heuristic in nature, demonstrating a deficiency in
identifying the locally or globally optimal λ throughout the full breadth of the parameter space.

C.1.2 RELATIONSHIP WITH (CONVENTIONAL) ONLINE LEARNING

The term "no-regret" is used to describe online algorithms that have a property where, as the number
of rounds or decisions grows, the average regret per round converges to zero (Zinkevich, 2003).
Concerning the regret bound of SAGO framework, based on its definition Regret =

∑T
τ=1 Fτ (β̂τ )−

minβ∈Rm

∑T
τ=1 Fτ (β) (τ is the round index andF denotes the whole objective (1)) and our Theorem

1 (i.e., Equivalence Guarantee), we could simply find that the theoretical regret value is fixed at∑T
τ=1 0 = 0.

Pursuing an alternate vein, drawing upon the framework established by (Zinkevich, 2003; Xiao,
2009; Duchi et al., 2011; Wang et al., 2018) in conventional online learning, numerous contemporary
studies (Fan et al., 2018; Luo & Song, 2020; Yang et al., 2023) have ventured into facilitating online
learning for sparse GLMs with regret bound. In other words, their algorithm fails to establish an
equivalence guarantee similar to that of our Theorem 1.
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A salient distinction between these works and ours is the access constraint placed on training data
in their algorithms. Specifically, these algorithms are limited to accessing only the "current new"
training data. Once a subset of the data has been utilized in a particular round, it becomes inaccessible
in subsequent training rounds, due to the stipulated setting which forbids the retention of historical
training data. In essence, they cannot store data in an offline manner. While several algorithms
are permitted to retain summaries of past observations such as historical average gradients (Shalev-
Shwartz et al., 2012; Hoi et al., 2021), theoretically, they still fall short of emulating the effectiveness
of batch retraining. Nevertheless, these methods intrinsically offer approximate solutions. Their
convergence to the stationarity point of a new or modified dataset remains non-deterministic. This
underscores that the models derived from these methodologies are not congruent to those trained ab
initio as in our SAGO approach. Additionally, they frequently exhibit an insufficiency in adaptively
adjusting regularization hyperparameters.

C.1.3 RELATIONSHIP WITH MACHINE UNLEARNING

Recently, concerns related to privacy in machine learning have gained pronounced emphasis. In this
realm, machine unlearning (or data deletion) algorithms (Bourtoule et al., 2021; Gupta et al., 2021)
exhibit certain parallels with our configuration as detailed in Section 2.1. Such algorithms endeavor to
expunge the influence of specific data points from trained models, aiming for a more computationally
efficient alternative than a complete model retraining. Fundamentally, these algorithms prioritize an
approximative online removal strategy, utilizing the theoretical framework of differential privacy. This
stands in contrast to our approach, which concurrently addresses both the addition and removal of
samples. Nevertheless, our methodology holds potential to inspire future endeavors in that research.

C.2 MORE ON ALGORITHM 1

Solving Interval The length of the solving interval (path) for the inner problem has a bearing on
different varieties of µ(t), ν(s). Remarkably, a significantly shorter interval results in a substantial
reduction in the total query times (computing time) of a PDE solver. We will verify this property
empirically in Appendix F.2. However, we underscore that an exceedingly short solving interval could
potentially instigate numerical instability. Moreover, an overly complex form of parameterization
would considerably augment the challenges in theoretical analysis.

Line Search for Event Points To more efficiently identify the location (existence) of the subsequent
event, a line search strategy that integrates binary splits with interpolation could also be employed.
Starting at an event point, we utilize interpolation to estimate the solution β̂ (sk+1, tk+1) for the end
of next segment, assuming there are no nearby event points. If the interpolation proves unsuccessful,
we either resort on bisection (Moré & Thuente, 1994) between the known maximal point (after an
event occurrence) and minimal point (where no event has occurred), or use a step size three times the
last one if we do not know any maximal point. Within the line search, if any probed point has already
been computed, we directly use the cached solution.

Generalized Thresholding Conditions In Section 3.3, we have discussed the application of the
`1 regularization term’s thresholding condition. Indeed, this is a classic conclusion, but it might
struggle with expressions of other more complex regularizers. Here, we point out how to establish a
thresholding condition for all regularizers that meet our Assumption 1. For more general cases, you
may find our previous Lemma 3 useful, as it is not based on any specific regularizer and provides a
set of subgradient conditions for βj . In practice, we only need to calculate (or just estimate) the value
of ωj according to Equation (25), and based on

ωj ∈


{−1} if β̂j < 0

[−1, 1] if β̂j = 0

{1} if β̂j > 0

, (59)

we can determine the occurrence of event E1 and E2. It is worth noting that if the computing
architecture allows, each ωj can be calculated in a parallel and vectorized manner.
Remark 5. When computing the ωj via (25), we should use the loss on the training set when
computing the gradient flow for the inner problem, and use the loss on the validation set for the outer
problem.
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Regarding Computational Burdens In Section 4.2, we analyzed the algorithmic complexity of
the SAGO. In the context of computational overhead, it is imperative to elucidate the following points

• Our Equ. (3), (5) and (6) give the explicit expression of gradient when solving PDEs &
ODEs, which substantiates the symmetry of some (sub)matrices and leads the fundamental
acceleration induced by Numpy & SciPy libraries. While the principal burden of solving
lies in matrix inversion, how to utilize the symmetrical characteristic to accelerate inversion
has been extensively well-investigated in community (Lim et al., 2014). Additionally, more
libraries oriented towards parallel computation are emerging, such as the pbdR package in
R.

• Assuming that the partition A is known, even the fastest (rate) second-order Newton’s
method needs to solve the similar linear system multiple times until final convergence.
The efficiency of SAGO lies in the fact that no iterations are needed at the overwhelming
majority values of and it adaptively chooses step sizes to capture all pertinent events across
the intervals.

• The current state-of-the-art in numerical libraries for ODEs and PDEs offers commendable
computational efficiency. Furthermore, there exists a relentless endeavor within the research
community to unearth even more expeditious solution techniques, as exemplified by works
such as Nagy et al. (2022).

GLMs without the Sparsity Given A to represent the complete set of features within the dataset,
our proposed SAGO approach can be seamlessly adapted for dense parameter estimation within
generalized linear models. Interestingly, the imposition of sparsity often eases the process of theorem
derivations, influencing steps within Algorithm 1. We elaborate SAGO in the context of GLMs
without imposed sparsity in Algorithm 2.

Algorithm 2 SAGO Algorithm (Dense Estimating)

Require: Initial solution β̂(0), online rounds T , training sets X�, X+, X– in each round, tolerance ε
for λ, max_iter.

1: Initialize A ← [m].
2: for τ = 1, · · · , T do
3: s← s, t← t
4: while s ≤ s̄, t ≤ t̄ do
5: Solve the PDE system (3). B Inner-level problem
6: Update β̂(τ)

A and `i,A.
7: end while
8: iters← 0
9: while ‖∇λLval‖ > ε and iters ≤ max_iter do

10: Solve the ODE system (5). B Outer-level problem
11: Compute∇λLval via (6).
12: Update β̂(τ)

A and `i,A, and warm-start if necessary.
13: iters← iters+ 1
14: end while
15: λ(τ) ← arg min∇λLval
16: end for
Ensure: {β̂(τ)}, {λ(τ)}

C.3 ALGORITHMIC DRAWBACKS

In this subsection, we articulate the inherent limitations associated with the proposed SAGO algorithm.
Currently, these primary drawbacks manifest in two specific areas.

Memory Challenge. The foremost consideration is the storage challenge in the context of online
applications. Our framework necessitates the storage of every observation present in both X� and X+.
With the substantial accumulation of historical data or the influx of new data, the required memory
space escalates significantly. That is to say, if the quantity of samples consistently increases in each
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round without any corresponding reduction (i.e., data deletion), the storage requirements of our
algorithm will progressively grow until it surpasses the maximum available capacity. Contrastingly,
certain existing online frameworks (Duchi et al., 2011; Yang et al., 2023) offer adaptability to online
environments involving infinite rounds since they solely store the information extracted from the
historical data.

However, within the perspective of information theory, the necessity to guarantee the first-order
optimality condition remains a theoretical inevitability for nearly all exact online algorithms, with
some SVMs being the exception.

Dimensionality Challenge. Another important aspect to note is the challenge posed by high-
dimensional data. In scenarios where |A|≫ n, the running complexity becomes predominantly
governed by |A| rather than the size n. Consequently, in cases of exceptionally high-dimensional
data, where the order of magnitude of |A| exceeds that of n (or n0 + (n+ − n–)), the algorithm’s
performance advantage is likely to decline, or possibly underperform when compared to established
batch algorithms.

To further improve the scalability of SAGO, we primarily need to reduce the computational burden
associated with Hessian inversion. An intuitive approach might involve leveraging low-rank approxi-
mations or related methodologies. Another conceivable strategy could entail keeping the Hessian
component of (3) and (5) fixed for many queries, modifying only the gradient part, and updating the
Hessian intermittently. However, the clear disadvantage would be that the equivalence guarantee
would no longer hold. We have not yet explored this avenue but believe it is worth pursuing.

C.4 OPEN PROBLEMS

Despite the progress accomplished through this study, there remain a multitude of open-ended
questions that can act as promising trajectories for future research. We give two examples here.

• In relation to Remark 2, we noted the possibility of path discontinuities arising in the context
of non-convex penalties. Formally, let ej denote a steering vector. Then there exists a λdis
such that

lim
ε↓0

β̂
(
λdis + εej

)
6= lim

ε↑0
β̂
(
λdis + εej

)
.

This phenomenon leads to an interesting question: how can we calculate the value of β̂
during discontinuities without the reliance on warm-start training? If we can establish
equivalent updating rules, we can further improve efficiency for non-convex Pη(ρ, ξ).

• Computing the gradient in deep learning architectures can prove to be highly computationally
intensive. This leads us to the question of how we could effectively extend the proposed
methodology SAGO to accommodate more intricate structures such as neural networks or
other machine learning tasks like clustering algorithms? Additionally, exploring how SAGO
could be adapted to the context of black-box models presents a significant challenge.

D SENSITIVITY ANALYSIS

In this section, we turn our focus towards the stability analysis of the inner-level problem, acknowl-
edging that the outer layer problem follows a comparable tract. To carry out a sensitivity analysis
on the solution β̂(s, t) of the PDE system, we first introduce small perturbations to the independent
variables s and t. Let δs and δt represent these perturbations, and δβ̂(s, t) is the corresponding
perturbation in the dependent variable β̂(s, t). Nonetheless, without specific functional forms, a
general sensitivity analysis may be quite abstract. We can now consider the Taylor expansion of the
perturbed system around the point (s, t), and we have

β̂(s+ δs, t+ δt) = β̂(s, t) +
∂β̂(s, t)

∂s
δs+

∂β̂(s, t)

∂t
δt+O(δs2, δt2)

= β̂(s, t) + δβ̂(s, t) +O(δs2, δt2).

(60)
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By substituting this expansion into the original PDE system as per (3), we effectuate the linearization
of the system concerning the introduced perturbations. This results in

dµ(t)

dt
·
[
∇βA`+

A(β̂) +∇2
βA`

+
A(β̂)δβ̂

]
+
[
L̃(β̂, λ) +∇L̃(β̂, λ)δβ̂

]
· ∂β̂A(s, t)

∂t
= 0. (61)

Using the base solution

dµ(t)

dt
· ∇βA`+

A(β̂) + L̃
(
β̂, λ

)
· ∂β̂A(s, t)

∂t
= 0, (62)

the first term inside the square brackets in (61) vanishes , leaving us with

dµ(t)

dt
· ∇2

βA`
+
A(β̂)δβ̂ +∇L̃(β̂, λ)δβ̂ · ∂β̂A(s, t)

∂t
= 0. (63)

We can follow a similar process for the second equation. Upon linearizing, we obtain two linearized
PDEs for the perturbation δβ̂(s, t) as follows

dµ(t)

dt
· ∇2

βA`
+
A(β̂)δβ̂ +∇L̃(β̂, λ)δβ̂ · ∂β̂A(s, t)

∂t
= 0

dν(s)

ds
· ∇2

βA`
–
A(β̂)δβ̂ +∇L̃(β̂, λ)δβ̂ · ∂β̂A(s, t)

∂s
= 0.

(64)

Investigating the eigenvalues of the Hessian matrices ∇2
βA
`�A(β̂), ∇2

βA
`+
A(β̂) and ∇2

βA
`–
A(β̂) helps

us inspect the stability of the solution β̂(s, t). In practical settings, it becomes imperative to utilize
numerical methods for finding the eigenvalues and affirming the system’s stability given the intricacies
in analytically solving this eigenvalue problem for particular functional forms and parameter values.
A solution exhibiting all positive eigenvalues can be deemed stable concerning the perturbations δs
and δt, while the presence of any negative eigenvalue can imply potential instability in the solution.

Table 3: The smallest matrix eigenvalue across 50 trials, with the loss function imposed on each
dataset identical to that mentioned in Section 5.

Dataset creditcard MiniBooNE higgs numerai28.6 2dplanes

∇2
βA
`�A 452.7 2.3 466.1 2925.7 1484.1

∇2
βA
`–
A 57.9 8.0 945.6 2821.5 1534.9

∇2
βA
`+
A 38.8 1.7 307.5 1708.5 1526.6

∇2
βA
Pη 383.4 5.0 1828.4 1071.5 1517.9

Dataset ACSIncome Buzzinsocialmedia fried OnlineNewsPopularity house_16H

∇2
βA
`�A 1313.9 0.0422 2785.6 0.360 5891.0

∇2
βA
`–
A 854.8 0.0230 3160.8 0.323 5032.7

∇2
βA
`+
A 827.3 0.677 2982.7 0.369 5343.1

∇2
βA
Pη 662.0 0.0826 3025.4 0.397 5240.7

Referring to the large amount of positive outcomes in Table 3, we can ascertain that the PDE system
exhibits stability in simulations. This implies that small perturbations in the solution will decay over
time and will not give rise to unbounded behavior. This inference is instrumental in understanding
the robustness and reliability of the inner-level PDE system, along with its solutions in various online
data-varying applications.

E EXPERIMENT DETAILS

In this section, we provide missing details of the experimental settings used in Section 5.
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Data Preprocessing For datasets regarding both Poisson and Gamma regressions, we take each
component in label yi as its absolute value to ensure it’s greater than 0. For X– (i.e., deleted
observations), we generate noises by turning normal samples into poisoning ones by flipping their
labels (Frénay & Verleysen, 2014; Ghosh et al., 2017) for classification tasks. For regression tasks,
noises are generated following a distribution analogous to the original training data, consistent with
the methodology delineated in Jagielski et al. (2018).

Infrastructure All experiments presented in this study were conducted on a workstation running
the Ubuntu 18.04 operating system, equipped with Intel 2.30GHz CPU×200 and 400.0GB of RAM.
It should be noted that we abstained from employing data-parallel training methodologies during
performance speed comparisons.

Baseline Details We implement our SAGO algorithm in Python 3.7, wherein the numeri-
cal solvers exploit the Runge-Kutta method of order 4 or 5. We implement the batch train-
ing methods in Python, using the NumPy and SciPy libraries. The parameterizers are set to
µ (t) =4t2, ν (s) =

√
1− s2, respectively. We approximately control each group to have the number

of round(0.1× d) features. The convergence tolerance ε for batch training is 1e-7 and the tolerance
ε for hyperparameter in the outer-level problem is 1e-4. For logistic loss, we adopted the line search
algorithm presented in Beck & Teboulle (2009) to estimate the Lipschitz bound, with an initial guess
given by the Frobenius norm of the data matrix. We didn’t compare with the baselines for simple
`2-regularized cases, since their problem structure is less complex than ours. Meanwhile, they cannot
be extended to other GLMs like SAGO did here.

Results Details The Figure 5, Figure 6, Figure 7, Figure 8 are plotted using Logistic group Lasso
on the higgs dataset, while the Figure 4 (left) is plotted using sparse Poisson regression on the
ACSIncome dataset and the Figure 4 (right) is plotted using group Lasso on the creditcard
dataset. In Figure 7, we manually alter the optimality conditions as shown in our Lemma 3 to trigger
the events E1 or E2, so as to test with the varying number of event points.

E.1 CODE

To ensure the replicability, Python codes corresponding to the pivotal components of the proposed
algorithms are incorporated within the supplementary materials.

F ADDITIONAL RESULTS

F.1 ADDITIONAL HISTOGRAMS

The histogram of the number of event points when solving the GLM on more datasets are provided in
Figure 9 and Figure 10. It should be emphasized that the total number of event points is intricately
linked to the length of the solution interval. Consequently, our primary focus is on their distributional
characteristics rather than their absolute count.

F.2 ON THE INNER-LEVEL SOLVING INTERVAL

In order to investigate the total query times when solving the inner-level of SAGO, we adopt the
different Ω (·) and mark their running times as shown in Figure 11. When the interval length gets
shorter, the total number of queries also gets smaller, resulting in a decreased total training time. The
results of this experiment align with those delineated in Appendix C.2.

F.3 PERFORMANCE UNDER VARYING LEVELS OF SPARSITY

To investigate the performance of SAGO with different scenarios of A, we simulate the settings in
Section 5 while varying the size of feature spaces. The results of accuracy performance as well as the
running time are reported in Table 4 and Figure 12, respectively.

As the dimensionality (i.e., the number of features) of observations increases, the efficiency benefit of
our SAGO algorithm, as quantified by the performance gain (or time gap) among various methods,
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Figure 9: Histograms of the number of event points in inner-level problem when training the GLM (i)
(i.e., Sparse Poisson Regression). The name of the each dataset is enclosed in parentheses.
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Figure 10: Histograms of the number of event points in outer-level problem when training the GLM
(i) (i.e., Sparse Poisson Regression). The name of the each dataset is enclosed in parentheses.

Table 4: Numerical results for validation loss w.r.t different levels of feature space. The best results
are shown in bold. In simulations we use sparse Poisson regression (i) on Buzzinsocialmedia
dataset and the number of observations in X+ and X– is fixed within the trials in each column. In
order to increase the quantity of features, we have employed polynomial feature transformation with
a degree of 2, and randomly select a subset of m features.

Method m = 21 m = 41 m = 61 m = 81 m = 101

ColdGrid 42.42± 0.62 24.92± 0.25 16.44± 0.82 12.80± 0.38 11.78± 0.89
WarmGrid 42.67± 0.39 24.76± 0.58 16.27± 0.78 12.68± 0.78 11.76± 0.45
ColdHyBi 41.83± 0.27 25.23± 0.11 16.04± 0.49 12.81± 0.48 12.26± 0.52
WarmHyBi 41.68± 0.15 25.69± 0.15 16.28± 0.39 12.82± 0.33 12.09± 0.34
ColdByO 41.77± 0.28 24.58± 0.27 16.57± 0.56 12.69± 0.45 11.95± 0.24
WarmByO 41.44± 0.16 24.40± 0.37 16.56± 0.43 12.52± 0.55 11.83± 0.26
SAGO 40.85± 0.05 24.36± 0.13 16.04± 0.07 12.52± 0.19 11.63± 0.27

tends to decrease. On the other hand, the increase in the number of observations does not significantly
influence this efficiency and complexity. Consequently, we can conclude that the SAGO algorithm
exhibits superior performance in scenarios characterized by extensive sample sizes as opposed to
those with high dimensional spaces.

F.4 ON OTHER FORMS OF GLMS
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Figure 11: Evaluations for running time w.r.t. different S, where S =
∫ s̄
s

√
1 + t2(s) ds (or

equivalently,
∫ t̄
t

√
1 + s2(t) dt) is the arc length of Ω (·). We use Gamma regression on higgs dataset

and the λ is fixed (shown in sugfigure’s title) in the inner-level problem solving.
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Figure 12: Comparisons of algorithmic efficiency. In experiments we keep the number of observations
in X�, X+ and X– as well as the random seed, while alternating the size of m. Other settings are the
same in the Table 4.

F.4.1 SPARSE GAMMA REGRESSION

The Gamma distribution is frequently used to model waiting times. For instance, in life testing, the
waiting time until death is a random variable that is frequently modeled with a gamma distribution
(Mittlböck & Heinzl, 2002). Similar to Poisson regression, we minimize the gamma deviance
(Prentice, 1974) in regression as

min
β∈Rm

∑
i

[
log

exp
(
β>xi

)
yi

+
yi

exp (β>xi)
− 1

]
+ λ ‖β‖1 . (65)

The numerical results obtained from applying SAGO to (65) are elucidated in Table 5. A comparative
analysis of execution times against various baseline methods can be found in Figure 13.

60000 120000 180000 240000 300000
Size of Dataset

40

80

120

160

Av
er

ag
e 

Ru
nn

in
g 

Ti
m

e(
s)

ColdGrid
WarmGrid
ColdHyBi
WarmHyBi
ColdByO
WarmByO
SAGO

60000 120000 180000 240000 300000
Size of Dataset

40

80

120

160

Av
er

ag
e 

Ru
nn

in
g 

Ti
m

e(
s)

ColdGrid
WarmGrid
ColdHyBi
WarmHyBi
ColdByO
WarmByO
SAGO

Figure 13: Comparative analysis of algorithmic efficiency. The subfigures on the left and right are
sparse GLMs mentioned in Appendix F.4.1 and Appendix F.4.2, respectively. This figure is plotted
using ACSIncome dataset.
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Table 5: Numerical results for validation loss with standard deviation. The best results are shown in
bold. We conduct comparative experiments in the same environment and setting as in the main paper.

Method ACSIncome Buzzinsocialmedia fried house_16H

Round #1
ColdGrid 296.0± 0.45 17.59± 0.59 9.260± 0.52 34.22± 0.81
ColdHyBi 295.0± 0.31 17.40± 0.61 9.489± 0.27 34.23± 0.54
ColdByO 295.3± 0.34 17.18± 0.45 9.224± 0.34 33.05± 0.47
SAGO 294.4± 0.19 16.04± 0.09 9.007± 0.11 32.96± 0.21

Round #2
ColdGrid 295.6± 0.15 18.55± 0.68 8.511± 0.45 34.23± 0.85
ColdHyBi 294.9± 0.30 16.98± 0.86 8.774± 0.27 33.66± 0.23
ColdByO 295.7± 0.18 16.84± 0.14 8.974± 0.79 33.74± 0.65
SAGO 293.1± 0.21 16.79± 0.14 8.460± 0.12 33.66± 0.07

Round #3
WarmGrid 295.7± 0.73 17.55± 0.57 9.571± 0.37 34.92± 0.61
WarmHyBi 295.8± 0.69 18.86± 0.56 9.126± 0.40 35.96± 0.94
WarmByO 294.5± 0.52 17.51± 0.49 8.874± 0.38 34.98± 0.44
SAGO 293.7± 0.12 16.26± 0.17 8.843± 0.14 34.86± 0.09

F.4.2 SPARSE INVERSE GAUSSIAN GLM

Inverse Gaussian GLM (Giner & Smyth, 2016) considers models for positive continuous data.
Variables that take positive and continuous values often measure the amount of some physical
quantity that is always present (Amin et al., 2016). We minimize the inverse Gaussian deviance as

min
β∈Rm

∑
i

(
yi − exp

(
β>xi

))2
yi exp (β>xi)

+ λ ‖β‖1 . (66)

The numerical results of SAGO on (66) is displayed in Table 6. A comparison of running times against
various baselines can be found in Figure 13.

Table 6: Numerical results for validation loss with standard deviation. The best results are shown in
bold. We conduct comparative experiments in the same environment and setting as in the main paper.

Method ACSIncome Buzzinsocialmedia fried house_16H

Round #1
ColdGrid 246.2± 0.63 37.79± 0.33 6.608± 0.32 21.22± 0.88
ColdHyBi 244.5± 0.45 36.70± 0.29 6.385± 0.44 19.87± 0.76
ColdByO 244.9± 0.67 37.03± 0.88 6.208± 0.14 19.74± 0.12
SAGO 243.1± 0.59 36.07± 0.17 6.176± 0.12 19.73± 0.05

Round #2
ColdGrid 246.8± 0.76 35.98± 0.69 6.994± 0.92 19.81± 0.68
ColdHyBi 247.5± 0.38 35.59± 0.61 6.779± 0.72 19.88± 0.18
ColdByO 246.7± 0.47 35.52± 0.53 6.860± 0.74 19.92± 0.67
SAGO 245.8± 0.35 35.40± 0.13 6.773± 0.14 19.72± 0.24

Round #3
WarmGrid 246.8± 0.32 36.13± 0.31 6.895± 0.18 20.74± 0.57
WarmHyBi 247.5± 0.96 36.51± 0.57 6.795± 0.13 22.68± 0.35
WarmByO 246.7± 0.85 35.60± 0.79 6.878± 0.53 20.54± 0.42
SAGO 245.8± 0.41 35.60± 0.11 6.693± 0.18 20.26± 0.39

F.5 ON THE NON-LINEAR PATTERN

As delineated in Remark 3, our approach is adept at handling (some) non-linear patterns. To illustrate
it empirically, consider the utilization of random Fourier features.

Given any shift-invariant kernel like the Gaussian kernel, characterized by k(x, y) = k(x − y),
Rahimi & Recht (2007) introduced a comprehensive decomposition approach employing Fourier basis
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functions
{
φω (xi) =

√
2 cos

(
ωTxi + b

)}
ω∈Rd . This allows for the identification of its associated

feature mapping. In practical terms, ω is sampled from p(ω) and b is uniformly drawn from the
interval [0, 2π]. Notably, the probability distribution p(ω), when affiliated with the Gaussian kernel,
corresponds to a normal distribution, a connection further elaborated in Rahimi & Recht (2007).

In our experiment configuration, the parameter γ of the RBF kernel is designated as 2, and the random
seed is initialized to 100. We map the native input features into a feature space comprising 200
dimensions. The numerical results of SAGO is displayed in Table 7.

Table 7: Non-linear accuracy results for validation loss with standard deviation. The best results are
shown in bold. We conduct comparative experiments in the same environment setting as in the main
paper, as well as the GLMs for each specific dataset.

Method ACSIncome Buzzinsocialmedia fried house_16H

Round #1
ColdGrid 234.9± 0.51 46.55± 0.68 2.995± 0.40 24.71± 0.76
ColdHyBi 236.7± 0.52 48.04± 0.86 3.438± 0.84 24.93± 0.62
ColdByO 236.2± 0.41 45.79± 0.96 3.017± 0.24 24.77± 0.19
SAGO 234.8± 0.27 44.28± 0.14 2.728± 0.13 24.59± 0.17

Round #2
ColdGrid 237.0± 0.53 46.07± 0.57 3.046± 0.72 26.21± 0.65
ColdHyBi 236.9± 0.63 41.98± 0.38 3.175± 0.58 25.94± 0.64
ColdByO 235.7± 0.69 41.16± 0.59 2.892± 0.02 26.09± 0.89
SAGO 235.3± 0.18 40.35± 0.21 2.892± 0.12 25.53± 0.27

Round #3
WarmGrid 233.3± 0.70 40.68± 0.42 3.419± 0.69 25.32± 0.58
WarmHyBi 237.7± 0.96 40.18± 0.25 3.227± 0.40 25.21± 0.63
WarmByO 235.3± 0.82 38.96± 0.70 2.567± 0.62 26.33± 0.39
SAGO 233.1± 0.38 38.87± 0.18 2.259± 0.53 24.11± 0.22
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