
A Appendix

(a) (b)

Figure 1: (a) Computational time of an environment step. (b) Total time for a learning iteration with
a batch size of B = 98304 samples.

A.1 Simulation Throughput Analysis

In Fig. 1, we show the computational time of each part of an environment step, as well as the total
times required for a learning iteration for different numbers of robots. In Fig. 1 (a) we observe that
the simulation is the most time consuming step and its time slowly increases with the number of
robots. The time spent on the computation of observations and rewards is the second slowest step
and also slowly increases with the number of robots, while inference of the policy and the actuator
network are computed in nearly constant time. Fig. 1 (b) shows the total time required to collect
a fixed number of samples and perform the policy update. Increasing the number of parallel robots
decreases the total time of all sub parts except the learning step which is independent on the number
of robots. In Fig. 2 we examine the GPU VRAM required to train different number of robots
both with and without graphical rendering. We see that 9Gb are required to run 4096 robots with
rendering enabled. Without a graphical output, 6Gb are sufficient. On flat terrain these numbers are
reduced to 7Gb and 5Gb respectively.

In Sec. A.1.1 and Sec. A.1.2 we describe additional techniques that we use to optimize the simula-
tion throughput.

A.1.1 Time Step

The simulation time step needs to be maximized to get the maximum throughput. For each policy
step, which we run at 50Hz, we need to perform multiple actuator and simulator steps to obtain
a stable simulation. Since these added steps directly scale the amount of computation, we aim to
reduce them as much as possible. We find that we can not use a time step smaller than 0.005 s which
corresponds to four simulation steps per policy step. This limit is imposed by the actuator network
(approximating a discrete-time PD-controller) becoming unstable and not by the simulation itself.

(a) Flat Terrain (b) Rough Terrain

Figure 2: GPU VRAM usage for different number of robots during training with a batch size of
B = 98304 samples on flat and rough terrains.

1

A.1.2 Contact Handling

A large part of the simulator’s computational time is spent on contact detection and handling. Reduc-
ing the number of potential contact pairs increases simulation throughput. We optimize the model
of the robot to keep only the necessary collision bodies: feet, shanks, knees, and the base.

The resolution of the terrain plays an important role in contact optimization. A height field is a very
common type of terrain representation, in which heights are defined on a uniform grid. However
one of its unfortunate properties is that it is impossible to get vertical surfaces. In order to get a
steep slope approximating a vertical step, we need high resolution, which degrades the simulation
performance. Instead, we convert a low-resolution height field to a triangle mesh and correct the
vertical surfaces.

Finally, in PhysX (Isaac Gym’s physics engine), even though contacts between the different robots
are ignored, they are still detected. As such, the placement of robots in the terrain influences the
computational load. Spreading the robots further apart from each other is highly beneficial. In the
curriculum presented here, we need to place many robots close together at the beginning of training,
but they quickly disperse as the training progresses. Additionally, once the robots learn to avoid
crashes, there are fewer contacts with the base and knees and fewer costly resets. We see a factor of
two difference in simulation time between the first minutes and the end of the training.

A.2 Effect of Time-out Bootstrapping

We analyze the effects of bootstrapping the reward at timeouts as described in Sec. 2.2.2 by com-
paring the total reward and the critic loss with and without the particular handling of timeouts.
Fig. 3 shows the results for both flat and rough terrain tasks. We see that the critic loss is higher
without bootstrapping, and correspondingly, the total reward is lower. Even though learning can be
successful without this addition, it greatly reduces the critic loss and improves the total reward by
approximately 10% to 20% for both tasks.

(a) Flat Terrain

(b) Rough Terrain

Figure 3: Comparison of total reward and critic loss, when training with and without reward boot-
strapping on time-outs.

2

A.3 Reward Terms

Joint positions qj

Joint velocities q̇j

Joint accelerations q̈j

Target joint positions q̈∗j
Joint torques τj

Base linear velocity vb

Base angular velocity ωb

Commanded base linear velocity v∗b
Commanded base angular velocity ω∗b

Number of collisions nc
Feet air time tair

Environment time step dt

Table 1: Definition of symbols.

definition weight
Linear velocity tracking φ(v∗b,xy − vb,xy) 1dt

Angular velocity tracking φ(ω∗b,z − ωb,z) 0.5dt
Linear velocity penalty −v2

b,z 4dt
Angular velocity penalty −||ωb,xy||2 0.05dt

Joint motion −||q̈j ||2 − ||q̇j ||2 0.001dt
Joint torques −||τj ||2 0.00002dt

Action rate −||q̇∗j ||2 0.25dt
Collisions −ncollision 0.001dt

Feet air time
∑4

f=0(tair,f − 0.5) 2dt

Table 2: Definition of reward terms, with φ(x) := exp(− ||x||
2

0.25). The z axis is aligned with gravity.

A.4 PPO Hyper-Parameters

Batch size 98304 (4096x24)
Mini-bach size 24576 (4096x6)

Number of epochs 5
Clip range 0.2

Entropy coefficient 0.01
Discount factor 0.99

GAE discount factor 0.95
Desired KL-divergence kl∗ 0.01

Learning rate α adaptive∗

Table 3: PPO hyper-parameters used for the training of the tested policy. (*) Similarly to [1], we
use an adaptive learning rate based on the KL-divergence, the corresponding algorithm is described
in Alg. 1

3

Algorithm 1 Adaptive learning rate computation.

kl← KL(πnew, πold)
if kl > 2kl∗ then
α← max(10−5, α/1.5)

else
if kl < 0.5kl∗ then
α← min(10−2, 1.5α)

end if
end if

A.5 Noise Level in Observations

Joint positions ±0.01 rad
Joint velocities ±1.5 rad/s

Base linear velocity ±0.01m/s
Base angular velocity ±0.2 rad/s

Projected gravity ±0.05 rad/s2
Commanded base linear velocity 0m/s

Commanded base angular velocity 0 rad/s
Measured terrain heights ±0.1m

Table 4: Noise scale for the different components of the observations. For each element, the noise
value is sampled from a uniform distribution with the given scale and added to the observations.

References
[1] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang,

S. M. A. Eslami, M. A. Riedmiller, and D. Silver. Emergence of locomotion behaviours in rich
environments. CoRR, abs/1707.02286, 2017.

4

	Appendix
	Simulation Throughput Analysis
	Time Step
	Contact Handling

	Effect of Time-out Bootstrapping
	Reward Terms
	PPO Hyper-Parameters
	Noise Level in Observations

