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1. Introduction
Here we demonstrate the concepts required for a

self-driving lab to optimise genome-scale metabolic
networks in biological systems. A key application
of Synthetic Biology is to genetically engineer re-
liable microbial systems to maximise the produc-
tion of valuable compounds. This endeavour is en-
hanced by genome-scale metabolic network models
(GEMs), which describe genome-wide mappings be-
tween genes and metabolic reactions.
To harness the knowledge inGEMs for cellular en-

gineering, the conventional method uses flux bal-
ance analysis (FBA) [1]. FBA predicts the growth
rate of an organism or the production rate of a com-
pound by computing themetabolic fluxes in the net-
work. However, the accuracy of FBA predictions on
gene perturbations is dependent on the complexity
and correctness of gene reaction associations [2]. A
comprehensive and accurate understanding of gene-
reaction relationships would ensure more reliable
genotype-phenotype predictions for subsequent en-
gineering.
Our work integrates abductive reasoning, ac-

tive learning and high-throughput gene repression
experiments to accelerate the discovery of gene-
reaction relationships. We present a Design, Build,
Test and Learn (DBTL) workflow called AutoGEM,
which is built on our active abductive learning sys-
temBMLPactive [3] and pooled screening data from
CRISPR-mediated high throughput gene repression
biotechnology [4]. Based on synthetic data of Es-
cherichia coli (E. coli), we showed a 90% reduction
in both experiment number and experimental re-
source required to learn gene-reactionmappings [3].
Ourworkflowpresents a realistic approach for creat-
ing a self-driving lab to reliably engineer biological
systems.

2. AutoGEM: DBTL withBMLPactive

2.1 Abduction
Abduction is the process of learning the most

suitable hypothesis to explain disagreements be-
tween data and background knowledge. Inductive
Logic Programming (ILP) [5] offers an automated
approach to abduction, representing data, hypothe-
ses and background knowledge through verifiable
rule-like logic programs. Candidate hypotheses that
might explain the contradictions between data and
background knowledge are assumed to hold and
then verified against additional data.

BMLPactive uses this ILP approach and performs
abduction by generating pseudo labels, which are

predictions for unlabelled data by a model that we want
to train. We predict binary pseudo labels of the pro-
ducibility of essential metabolites to logically infer
errors in gene-reaction associations. Based on the
GEMmodel for E. coli strainMG1655, iML1515 [6], we
showed BMLPactive can produce accurate pseudo
labels [3] of single gene perturbations.

2.2 Active learning
Owing to the complexity of GEMs, comprehen-

sively perturbing all gene-reaction mappings re-
quires enormous experimental data. We use active
learning to identify themost critical gene repression
experiments to perform rather than passively per-
forming all experiments or randomly selecting ex-
periments, thereby reducing the number of experi-
ments and resources needed.
Our approach exploits the GEM model iML1515

[6], by using it as background knowledge. For ev-
ery gene-reaction mapping hypothesis, we use the
GEM model to predict a pseudo label per experi-
ment, which includes a set of growth medium nutri-
ents and perturbed genes. A label informs us about
the effect of introducing or deleting a gene-reaction
association. BMLPactive selects experiments by ap-
proximating the minimal expected value of a user-
defined cost function based on the pseudo labels,
and it iteratively updates the posterior probability
over the hypothesis space. BMLPactive can actively
learn single-gene and digenic functions with only 20
synthetic gene perturbation data [3].

Fig. 1: DBTL with actively abductive learning, tar-
getedmulti-gene repressions and pair-wise library
screening experiments.
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2.3 AutoGEM
Our novel workflow AutoGEM is shown in Figure

1. It uses the abductive learning systemBMLPactive

[3] with the input GEM model iML1515. First, we
identify error sources and genes of interest by con-
trasting in-silico predictions and multi-condition in
vivo library pooled screening data. Our screen-
ing data supplies a diverse pool of genotypes for
BMLPactive to hypothesise new gene-reaction map-
pings for genes of interest and predict the effect of
updating the GEM.

BMLPactive can efficiently navigate exponen-
tially growing spaces of experimental designs and
gene-reaction mapping hypotheses by actively
proposing multi-gene repression trials. These
targeted (as opposed to genome-wide) trials are
performed experimentally, leveraging laboratory
automation, thus closing the loop in the DBTL
design cycle. After iterations, the hypothesis that
agrees with data from all proposed experiments is
added to the GEM.

BMLPactive is the first ILP system applied to
GEMs due to the improved computational efficiency
from leveraging boolean matrices [7]. AutoGEM ap-
plies this advance to create a self-driving lab for bio-
logical discovery in the engineering of biological sys-
tems.

3. Related work
FBA [1] uses linear programming to compute

fluxes in a biochemical reaction network with a ma-
trix that contains the stoichiometric coefficients of
metabolites in reactions. Ensemble machin learn-
ing approaches [8, 9, 10] can learn support vector
machines, decision trees and artificial neural net-
works to represent constraints between genetic fac-
tors and metabolic fluxes. Recent research [11] also
explores autoencoders to learn the relationship be-
tween gene expression data and metabolic fluxes
from synthetic data. However, the availability of ex-
perimental data [12] is a significant limitation for
learning GEMs. These systems do not identify in-
consistencies between simulations and experimen-
tal data to initialise learning or guide experimenta-
tion [13].
On the other hand, mechanistic information that

reflects whole-cell dynamics has been incorporated,
for instance in artificial neural networks to tune
their parameters [14]. The hybrid approach in [15]
embeds FBA within artificial neural networks based
on custom loss functions surrogating the FBA con-
straints. In contrast to the above, which all rely on
the GEMmodel as the fixed metabolic ground truth,
BMLPactive uses GEM as mechanistic background
knowledge and can actively guide experimentation
to efficiently improve the GEMmodel.
In addition, our approachdiffers fromotherDBTL

platforms [16, 17] since we can produce verifiable
and human-interpretable hypotheses, avoiding the
need for biologists to make sense of black-box AI

models. Notably, the GEM iML1515 has 1515 genes
and 2719 reactions, which is remarkably larger than
the metabolite network model used in the related
Robot Scientist project [18] . The incorporation of
genome-wideCRISPR screens significantly advances
our ability to test whole genome and multi-gene as-
sociations.
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