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Abstract

This paper contains proof details omitted from the main paper as well as a more1

detailed discussion of the ambiguity of STDmin-teaching.2

A Proof of Theorem 93

Theorem 9 Let Tn be an antichain teacher for Pn and suppose ord(Tn) ≤ ord(T ) for all antichain4

teachers T for Pn. Then, for all but finitely many n, we have 0.22 · n < ord(Tn) < 0.23 · n.5

To establish this result, we first introduce some notation and some background on bipartite matching.6

Definition 21 Let C be any concept class. The antichain number of C, denoted by ACN(C), is the7

smallest possible order of a teacher for C with the antichain property.8

Theorem 9 can then be restated as follows:9

For all but finitely many n, we have 0.22 · n < ACN(Pn) < 0.23 · n.10

It is well known that a bipartite graph all of whose vertices have the same degree contains a perfect11

matching. The simple proof is based on a double counting argument. The same kind of argument can12

be used to show the following (most likely also well known) result:13

Lemma 22 Let G = (V1, V2, E) be a bipartite graph with vertex sets V1 and V2. Suppose that every14

vertex in V1 has degree d1 while every vertex in V2 has degree d2 ≤ d1. Then G contains a matching15

of size |V1|.16

Proof. For U ⊆ V1, Γ(U) denotes the neighborhood of U , i.e., Γ(U) = {v ∈ V1 | v is adjacent to17

some vertex in U}. It suffices to show that Hall’s condition,18

∀U ⊆ V1 : |Γ(U)| ≥ |U | ,

is satisfied. Fix a set U ⊆ V1. The number of edges having one endpoint in U equals d1 · |U |. The19

number of edges having one endpoint in Γ(U) is at most d2 · |Γ(U)|. An edge with an endpoint in U20

must have its other endpoint in Γ(U). Hence d1 · |U | ≤ d2 · |Γ(U)|. Since d2 ≤ d1, we may conclude21

that |U | ≤ |Γ(U)|. �22

Corollary 23 Let d, n be integers such that 1 ≤ d ≤ (n + 1)/2. Let X be a set of size n. Let23

G = (V1, V2, E) be the bipartite graph such that24

• V1 (resp. V2) consists of all subsets of X with d− 1 (resp. d) elements,25
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• a set U ∈ V1 is adjacent to a set U ′ ∈ V2 iff U ⊆ U ′.26

Then G contains a a matching of size |V1|.27

Proof. Each vertex in V1 has degree n − d + 1 whereas each vertex in V2 has degree d. Since28

d ≤ (n+ 1)/2, by assumption, it follows that d ≤ n− d+ 1. Now apply Lemma 22. �29

Let X be a set of size n. A sample set over X is said to be conflict-free if it does not contain both30

(x, 0) and (x, 1) for some x ∈ X . Let F≤d,n be the family of all conflict-free sample sets over X31

with d or fewer elements. The conflict-free sample sets with exactly d elements form an antichain –32

denoted by F=d,n in the sequel – in F≤d. Obviously33

F=d,n = {(x1, b1), . . . , (xd, bd) : x1, . . . , xd are d distinct elements of X and b1, . . . , bd ∈ {0, 1}}

and therefore the antichain F=d,n is of size
(
n
d

)
· 2d.34

The following result is a relative of Sperner’s Theorem:35

Lemma 24 F=d,n is a maximum antichain in F≤d,n.36

Proof. An antichain A′ with conflict-free sets A′1, . . . , A
′
s′ (without repetition) is called an extension37

of another antichain A with conflict-free sets A1, . . . , As (again without repetition) if s′ = s and38

Ai ⊆ A′i for i = 1, . . . , s (after renumbering the sets in A′ if necessary). We show, by induction on39

d, that every antichain A with sets taken from F≤d,n has an extension A′ with sets taken from F=d,n.40

For d = 1, this is obviously true. Let d ≥ 2 and assume inductively that it holds for d− 1. Fix an41

antichain A with sets taken from F≤d, n. Let A1 be the antichain consisting of the sets of size at42

most d− 1 in A and let A2 = A \ A′. By our inductive assumption, there is an extension A′1 of A143

whose sets are taken from F≤d−1,n. The inductive proof can now be accomplished by proving the44

following assertions:45

Claim 1: A′1 ∪ A2 is an antichain in F≤d,n whose sets are of size d− 1 or d.46

Claim 2: Any antichain B with sets of size d − 1 or d has an extension B′ with sets taken from47

F≤d,n.48

Claim 1 becomes obvious from the following observations:49

• No set in A2 (with d elements) can be a subset of some set in A′1 (with d− 1 elements).50

• Since no set in A1 is a subset of some set in A2 (by the antichain property of A), no set in51

the extension A′1 is a subset of some set in A2.52

As for proving Claim 2, fix some antichain B. Let B = B1∪B2 be the decomposition of B into sets of53

size d−1 and sets of size d, respectively. A set of B1 is of the formB = {(x1, b1), . . . , (xd−1, bd−1)}.54

Let M be the matching of size |V1|, whose existence is guaranteed by Corollary 23. Pick xd such55

that {x1, . . . , xd−1, xd} is the M -partner of {x1, . . . , xd−1}. Then the set56

B′ = {(x1, b1), . . . , (xd−1, bd−1), (xd, 0)}

is called the M -partner of B. Note here that different sets from B1 have different M -partners.57

Let B′1 be the antichain obtained from B1 by replacing each set B in B1 by its M -partner and let58

B′ = B′1 ∪ B2. By construction, all sets in B′ are of size d. In order to show that B′ is an antichain59

that extends B, it suffices to show that no M -partner of a set B ∈ B1 can be equal to one of the sets60

in B2. But this is obvious because B is a subset of its M -partner, but not a subset of any set in B2 (by61

the antichain property of B). Claim 2 follows from this discussion, which also completes the proof of62

the lemma. �63

Corollary 25 Let d0 = d0(n) be the smallest d such that 2d ·
(
n
d

)
≥ 2n. Let G = (V1, V2, E) be the64

bipartite graph given by (i) V1 = F=n,n and V2 = F=d0,n, and (ii) a set U ′ ∈ V1 is adjacent to a set65

U ∈ V2 iff U ⊆ U ′. Then G contains a matching of size |V1|.66

Proof. Each vertex in V1 has degree
(
n
d0

)
whereas each vertex in V2 has degree 2n−d0 . The definition67

of d0 implies that 2n−d0 ≤
(
n
d0

)
. Now apply Lemma 22. �68
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Note that ACN(C) is upper-bounded by the smallest number d such that the following graph G =69

(V1, V2, E) contains a matching M that matches every vertex in V1: (i) V1 = C and V2 = F=d,n, (ii)70

a concept C ∈ C is adjacent to a sample S ∈ F=d,n iff it is consistent with S.71

We now obtain a non-trivial reformulation of ACN:72

Theorem 26 Let |X| = n and let d0 = d0(n) be the smallest d such that 2d ·
(
n
d

)
≥ 2n. Then73

ACN(Pn) = d0(n).74

Proof. Note that Pn can be identified with F=n,n: each map C : X → {0, 1} is identified with the75

full sample {(x,C(x)) | x ∈ X}. An application of Corollary 25 yields ACN(Pn) ≤ d0(n).76

Set d = ACN(Pn). Then the maximum antichain in F≤d,n is of size at least |Pn| = 2n. Using77

Lemma 24 and the fact that |F=d,n| =
(
n
d

)
· 2d, this translates into 2d ·

(
n
d

)
≥ 2n. The definition of78

d0(n) now implies that d ≥ d0(n). �79

We now show that d0(n) is a function linear in n.80

Lemma 27 Let d0 = d0(n) be the smallest d such that 2d·
(
n
d

)
≥ 2n. Then 0.22·n < d0(n) < 0.23·n81

for all but finitely many n.82

Proof. For d = n/2, we have
(
n
n/2

)
�
√

2
πn2n, which is asymptotically larger than 2n/2. We83

may therefore assume that d ≤ n/2. For such d, the term
(
n
d

)
decreases when d decreases, while84

2n−d increases. Hence it suffices to show that 2d ·
(
n
d

)
≥ 2n is fulfilled for large enough n when85

d = 0.23 · n, while it is not fulfilled for large enough n when d = 0.22 · n.86

To this end, let d = pn with 0 < p ≤ 1/2, and rewrite 2d ·
(
n
d

)
≥ 2n as87

1

n
log

(
n

pn

)
≥ 1− p .

It is well known that the left-hand side converges to H(p), where H(·) denotes the binary entropy.88

The lemma now follows from H(0.22) < 0.78 = 1− 0.22 and H(0.23) > 0.77 = 1− 0.23. �89

This allows us to conclude that, asymptotically, the value of ACN(Pn) lies between 0.22 · n and90

0.23 · n, as claimed by Theorem 9.91

B Other Proof Details for Section 392

Proposition 8 Let C be any concept class, Z ∈ {RTD,NCTD}, and T any Z-teacher for C. Then93

there is a Z-teacher T ′ for C with ord(T ′) = ord(T ) such that T ′ has the antichain property.94

Proof. First, let T be any NCTD-teacher for C. For C ∈ C, obtain T ′(C) from T (C) as follows. If95

each sample set in T (C) has size ord(T ), then T ′(C) = T (C). Otherwise, T ′(C) results from T (C)96

by adding examples that are consistent with C to every sample set TC ∈ T (C), until the size of TC97

equals ord(T ). Then T ′ inherits the non-clashing property on C from T . Clearly, a non-clashing98

teacher mapping that produces only sample sets of a constant size must also fulfill the antichain99

property. So T ′ is an NCTD-teacher for C with the antichain property, and ord(T ′) = ord(T ).100

Second, suppose T is an RTD-teacher. The construction of T ′ is identical to that in the first case.101

It remains to verify that the resulting antichain teacher T ′ with ord(T ′) = ord(T ) is also an RTD-102

teacher for C. Using the notation from Definition 2, we know that, for C ∈ Cmin
i , the set T (C) is103

a teaching set for C wrt Ci. Since adding examples (consistently with C) to T (C) does not change104

this fact, we obtain that, for C ∈ Cmin
i , the set T ′(C) is a teaching set for C wrt Ci. Hence T ′ is an105

RTD-teacher for C. �106

Proposition 11 STD is not domain-monotonic. In particular, for every n > 3, there is a concept107

class C over a domain X = X ′ ∪X ′′ such that STD(C) = n− 1, while STD(C↓X′) = 2.108

Proof. Let n > 3, and let X ′ = {x′1, . . . , x′n} and X ′′ = {x′′1 , . . . , x′′n}. For every J ⊆ [n] of size 1109

or 2, let CJ be the concept that assigns label 1 (resp. label 0) to x′j and x′′j if j ∈ J (resp. if j /∈ J).110

Let C∅ be the concept that assigns label 0 to x′1, . . . , x
′
n and label 1 to x′′1 , . . . , x

′′
n. Consider now the111
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following concept class C over the domain X = X ′ ∪X ′′: C = {CJ | J ⊆ [n], 0 ≤ |J | ≤ 2}. See112

Table 3 for an illustration of the case n = 5.113

Note that C↓X′ is the class of all subsets of X whose size is at most 2. It is well known [Zilles et al.,114

2011] that STD(C↓X′) = 2.115

It remains to prove that STD(C) = n− 1. To this end, we first determine the minimum teaching sets116

for every concept in C:117

(i) The minimum teaching sets for C∅ are the sets of the form {(x′j , 0), (x′′j , 1)} for j = 1, . . . , n.118

(ii) For 1 ≤ i < j ≤ n, the minimum teaching sets forC{i,j} are the sets of the form {(ui, 1), (uj , 1)}119

where ui ∈ {x′i, x′′i }, uj ∈ {x′j , x′′j } and {ui, uj} ∩ {x′i, x′j} 6= ∅.120

(iii) For 1 ≤ i ≤ n, the minimum teaching sets for C{i} are the sets of the form {(uj , 0) | j ∈121

[n] \ {i}} where uj ∈ {x′j , x′′j } and, for at least one index j′ ∈ [n] \ {i}, we have uj′ = x′′j′ .122

For each C ∈ C, let TS(C) be the collection of minimum teaching sets for C. The largest of these123

minimum teaching sets, namely the ones for concepts of the form C{i}, are of size n − 1. Hence124

TD(C) = n− 1. Next, we will verify the following property for every concept C ∈ C:125

(*) If S is a minimum teaching set for C wrt C, then every proper subset of S is126

contained in a minimum teaching set for some concept C ′ wrt C, where C ′ ∈ C,127

C ′ 6= C.128

(i) Consider an index j ∈ [n] and a teaching set {(x′j , 0), (x′′j , 1)} ∈ TS(C∅). Removing (x′j , 0)129

from this set yields a subset of one of the teaching sets for CJ 6= C∅ whenever j ∈ J and |J | = 2. A130

similar reasoning applies when removing (x′′j , 1) instead of (x′j , 0).131

(ii) Consider indices i 6= j ∈ [n] and a teaching set {(ui, 1), (uj , 1)} ∈ TS(C{i,j}). Removing132

one example, say (ui, 1), from this set yields a subset of one of the teaching sets for CJ 6= C{i,j}133

whenever j ∈ J , i /∈ J and |J | = 2.134

(iii) Consider an index i ∈ [n] and a teaching set {(uj , 0) | j ∈ [n] \ {i}} ∈ TS(C{i}). Removing135

(uj0 , 0) from this set yields a subset of one of the teaching sets for C{j0}.136

This establishes Property (*), which immediately implies STD(C) = TD(C) = n− 1. �137

concept x1 x2 x3 x4 x5 x′
1 x′

2 x′
3 x′

4 x′
5

C∅ 0 0 0 0 0 1 1 1 1 1
C{1} 1 0 0 0 0 1 0 0 0 0
C{2} 0 1 0 0 0 0 1 0 0 0
C{3} 0 0 1 0 0 0 0 1 0 0
C{4} 0 0 0 1 0 0 0 0 1 0
C{5} 0 0 0 0 1 0 0 0 0 1

C{1,2} 1 1 0 0 0 1 1 0 0 0
C{1,3} 1 0 1 0 0 1 0 1 0 0
C{1,4} 1 0 0 1 0 1 0 0 1 0
C{1,5} 1 0 0 0 1 1 0 0 0 1
C{2,3} 0 1 1 0 0 0 1 1 0 0
C{2,4} 0 1 0 1 0 0 1 0 1 0
C{2,5} 0 1 0 0 1 0 1 0 0 1
C{3,4} 0 0 1 1 0 0 0 1 1 0
C{3,5} 0 0 1 0 1 0 0 1 0 1
C{4,5} 0 0 0 1 1 0 0 0 1 1

Table 3: The concept class C from the proof of Proposition 11 for n = 5. The entries in bold indicate
one (arbitrarily chosen) minimum teaching set for each concept.
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C Proof Details for Section 4138

Observation 1 Every subset teaching sequence of order d can be transformed into a normalized139

sequence (Tk)k∈N of the same order, where a normalized subset teaching sequence has the property140

that, for every k and every C ∈ C, we have (i) Tk+1 differs from Tk on exactly one concept, (ii)141

|Tk+1(C)| ∈ {|Tk(C)| − 1, |Tk(C)|}, (iii) |Tk(C)| ≥ d, which implies that |Tk∗(C)| = d.142

Proof. Properties (i) and (ii) are easy to achieve by breaking a step from Tk to Tk+1 into several143

smaller intermediate steps. Assume that (ii) holds. Then property (iii) can be achieved by omitting144

all steps that make |Tk(C)| smaller than d. It is easy to see that the resulting sequence is again an145

admissible subset teaching sequence. �146

Proposition 13 STDmin(C) ≤ STD(C), and for all n ∈ N there is some succinct Cn such that147

STDmin(Cn) = 2 and STD(C) = n.148

Proof. To see that STDmin is bounded from above by STD, let k∗ be as defined in Definition 4. For149

each k ≤ k∗, let Tk(C) be any one set in STSk(C) such that Tk∗(C) ⊆ Tk∗−1(C) ⊆ . . . ⊆ T1(C).150

Such sets Tk(C) exist by the definition of STD. Finally, set T0(C) = {(x,C(x)) | x ∈ X}. Then151

T = (Tk)k∈N is a subset teaching sequence of order STD(C) for C. So, STDmin(C) ≤ STD(C).152

An example of a succinct concept class Cn as claimed is the class over a domain of size n + 1,153

consisting of all concepts of size either 1 or 2. It was shown by Zilles et al. [2011], that154

STD(C) = n. By contrast, one can easily obtain STDmin(Cn) = 2, as illustrated in Table 4:155

for any concept C of size 2, the set T1(C) contains only the two positively labeled instances for156

C, while T1(C) = T0(C) = {(x,C(x)) | x ∈ X} if C is a singleton. In the next iteration, set157

T2({xn}) = {(xn, 1), (x1, 0)} and T2({xi}) = {(xi, 1), (xi+1, 0)} for each singleton concept {xi}158

with i 6= n. Clearly, for all i, T2({xi}) ⊆ T1({xi}) and T2({xi}) 6⊆ T1(C) for any C 6= {xi}. Thus,159

we obtain a subset teaching sequence of order 2 for C, i.e., STDmin(C) = 2. �160

concept in C4 x1 x2 x3 x4 x5 T1

C1 1 0 0 0 0 {(x1, 1), (x2, 0), (x3, 0), (x4, 0), (x5, 0)}
C2 0 1 0 0 0 {(x1, 0), (x2, 1), (x3, 0), (x4, 0), (x5, 0)}
C3 0 0 1 0 0 {(x1, 0), (x2, 0), (x3, 1), (x4, 0), (x5, 0)}
C4 0 0 0 1 0 {(x1, 0), (x2, 0), (x3, 0), (x4, 1), (x5, 0)}
C5 0 0 0 0 1 {(x1, 0), (x2, 0), (x3, 0), (x4, 0), (x5, 1)}
C6 1 1 0 0 0 {(x1, 1), (x2, 1)}
C7 1 0 1 0 0 {(x1, 1), (x3, 1)}
C8 1 0 0 1 0 {(x1, 1), (x4, 1)}
C9 1 0 0 0 1 {(x1, 1), (x5, 1)}
C10 0 1 1 0 0 {(x2, 1), (x3, 1)}
C11 0 1 0 1 0 {(x2, 1), (x4, 1)}
C12 0 1 0 0 1 {(x2, 1), (x5, 1)}
C13 0 0 1 1 0 {(x3, 1), (x4, 1)}
C14 0 0 1 0 1 {(x3, 1), (x5, 1)}
C15 0 0 0 1 1 {(x4, 1), (x5, 1)}

Table 4: The concept class Cn [Zilles et al., 2011], from the proof of Proposition 13 for the case
n = 4. The final subset teaching sets (corresponding to T2) that witness STDmin(Cn) = 2 are
highlighted in blue. The rightmost column shows the mapping T1; the subsets marked in blue are
not contained in any other set in that column, hence they can be used by the teacher T2 in the next
iteration. When calculating STD instead of STDmin, the teacher T1 assigns every singleton its
unique minimum teaching set, which is a set of four negative examples. These sets cannot be reduced
in subsequent iterations, since their proper subsets occur in minimum teaching sets for other concepts;
hence STD(C4) = 4.

Proposition 15 STDmin is class-monotonic, domain-monotonic, and satisfies the antichain property.161

Proof. Class-monotonicity is obvious: If C, C′ are concept classes over a fixed domain X , C ⊆ C′,162

and T ′ = (T ′k)k∈N is a subset teaching sequence for C′ of order STDmin(C′), then define Tk to be163

the restriction of T ′k to C. Clearly, T = (Tk)k∈N is a subset teaching sequence for C of order at most164

STDmin(C′). Hence STDmin(C) ≤ STDmin(C′).165
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To establish domain-monotonicity, let C be any concept class over a domain X , and let X ′ ⊆ X166

preserve C. Then any subset teaching sequence T ′ for C↓X′ can be turned into a subset teaching167

sequence T for C, by setting T0(C) = {(x,C(x)) | x ∈ X} and Tk(C) = T ′k(C) for all C ∈ C and168

all k ≥ 1. Note that ordC(T ) = ordC↓X′ (T
′). Therefore STDmin(C↓X′) ≥ STDmin(C).169

By the definition of subset teaching sequence, it is obvious that STDmin satisfies the antichain170

property. �171

D Proof Details for Section 5172

Proposition 16 For every n ∈ N there is (i) a concept class C with STD(C) = STDmin(C) = 1 and173

NCTD(C) = n; (ii) a concept class C with STD(C) = STDmin(C) = n and NCTD(C) = n
2 .174

Proof. (i) Consider the class Cpairu , as defined by Zilles et al. [2011], for any number u ≥ 3. This175

concept class is shown in Table 5 for u = 3. It is defined over 2u + u instances x1, . . . , x2u+u. The176

set {x2u+1, . . . , x2u+u} of the last u instances is shattered. Let α1, . . . , α2u be the list of all possible177

assignments of labels to the last u instances. For each such assignment αi, the concept class contains178

two concepts C2i−1 and C2i realizing αi. The concept C2i−1 does not contain any of the first 2u179

instances x1, . . . , x2u . The concept C2i contains xi, but none of the other instances in {x1, . . . , x2u}.180

See Table 5 for an illustration when u = 3. Note that this concept class can be equivalently written in181

block matrix form as follows:182 [
I2u Pu
0 Pu

]
where Pu represents the powerset over a set of u instances and I2u is the 2u × 2u identity matrix.183

It was proven by Zilles et al. [2011] that STD(Cpairu ) = 1. We claim that NCTD(Cpairu ) = du2 e.184

To see this, note that the subclass of concepts C2i−1, 1 ≤ i ≤ 2u is the powerset over the last185

u instances, where all these concepts agree on the first 2u instances. Thus, the NCTD of this186

subclass equals the NCTD of the powerset over u instances, which is du2 e [Kirkpatrick et al., 2019].187

Since NCTD is class-monotonic, we have NCTD(Cpairu ) ≥ du2 e. A teacher mapping T witnessing188

NCTD(Cpairu ) ≤ du2 e can be defined by (i) setting T (C2i) = {(xi, 1)} for 1 ≤ i ≤ 2u, and (ii)189

teaching the concepts C2i−1, 1 ≤ i ≤ 2u, with a non-clashing teacher for the powerset over the last190

u instances, as used by Kirkpatrick et al. [2019]. Clearly, T is clash-free.191

For n ∈ N and u = 2n, thus STD(Cpairu ) = STDmin(Cpairu ) = 1 and NCTD(Cpairu ) = n.192

(ii) Consider the powerset Pn on n instances. The fact that NCTD(C) = n
2 was shown by Kirkpatrick193

et al. [2019]. It is obvious that STDmin(Pn) = n: Every sample set for a concept C ∈ Pn that omits194

one instance from X is also a sample set for some concept C ′ 6= C, C ′ ∈ Pn. Thus any subset195

teaching sequence for Pn satisfies Tk = T0 for all k ∈ N. �196

E Details for Section 6197

E.1 Proof Details for Theorem 20198

To complete the proof of Theorem 20, we show that STDmin is not unambiguous on Warmuth’s199

class CW which was defined by Doliwa et al. [2014] after communication with M. Warmuth. CW200

is a concept class of 10 concepts over 5 instances, see Table 6. We know that VCD(CW ) =201

VCDmin(CW ) = 2, while RTD(CW ) = STD(CW ) = 3. It turns out that STDmin(CW ) ≤ 2, as202

witnessed by the subset teaching sequence that is highlighted in Table 6. However, there is a second203

STDmin-teacher for CW that has exactly the same range as the one resulting from the subset teaching204

sequence in Table 6 – see Table 7. A comparison of Tables 6 and 7 shows that T2 and T ′2 swap the205

teaching sets for C2i−1 and C2i, for all i ∈ {1, . . . , 5}.206

E.2 Redundant Instances Can Cause Extreme Forms of Ambiguity207

The ambiguity of STDmin can take extreme forms for artificially created concept classes that have208

many redundant instances. An instance x ∈ X is redundant for C if X \ {x} preserves C.209
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concept in Cpair
3 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

C1 0 0 0 0 0 0 0 0 0 0 0
C2 1 0 0 0 0 0 0 0 0 0 0
C3 0 0 0 0 0 0 0 0 0 0 1
C4 0 1 0 0 0 0 0 0 0 0 1
C5 0 0 0 0 0 0 0 0 0 1 0
C6 0 0 1 0 0 0 0 0 0 1 0
C7 0 0 0 0 0 0 0 0 0 1 1
C8 0 0 0 1 0 0 0 0 0 1 1
C9 0 0 0 0 0 0 0 0 1 0 0
C10 0 0 0 0 1 0 0 0 1 0 0
C11 0 0 0 0 0 0 0 0 1 0 1
C12 0 0 0 0 0 1 0 0 1 0 1
C13 0 0 0 0 0 0 0 0 1 1 0
C14 0 0 0 0 0 0 1 0 1 1 0
C15 0 0 0 0 0 0 0 0 1 1 1
C16 0 0 0 0 0 0 0 1 1 1 1

Table 5: The concept class Cpairu [Zilles et al., 2011], for the case u = 3. The subset teaching sets
witnessing STD(Cpair3 ) = 1 are highlighted in blue. Non-clashing sets that witness NCTD(Cpair3 ) ≤
2 are in bold font. The proof of Proposition 16 shows that NCTD(Cpair3 ) = 2.

T0 T1 T2

concept x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

C1 1 1 0 0 0 * * 0 0 0 * * 0 * 0
C2 1 1 0 1 0 1 1 * 1 * 1 1 * * *
C3 0 1 1 0 0 0 * * 0 0 0 * * 0 *
C4 0 1 1 0 1 * 1 1 * 1 * 1 1 * *
C5 0 0 1 1 0 0 0 * * 0 * 0 * * 0
C6 1 0 1 1 0 1 * 1 1 * * * 1 1 *
C7 0 0 0 1 1 0 0 0 * * 0 * 0 * *
C8 0 1 0 1 1 * 1 * 1 1 * * * 1 1
C9 1 0 0 0 1 * 0 0 0 * * 0 * 0 *
C10 1 0 1 0 1 1 * 1 * 1 1 * * * 1

Table 6: The concept class CW . A subset teaching sequence can be chosen by defining T1(C2i)
to consist of the only three positive examples for C2i, and T1(C2i−1) to consist of the only three
negative examples for C2i−1, where 1 ≤ i ≤ 5. In T2, these sets can easily be reduced to sets of size
2. Asterisks denote instances not occurring in the chosen teaching sets.

Example 1 For arbitrary n ∈ N, consider a concept class for which VCD is n, while STDmin210

equals 1, with a large number of redundant instances. Such a class can be constructed over a domain211

X that has n2n instances and is partitioned into 2n sets X1, . . . , X2n , each of size n. The concept212

class consists of 2n concepts, chosen so that they shatter each set Xi, 1 ≤ i ≤ 2n. See Table 8 for an213

illustration when n = 2.214

To see that STDmin equals 1, let C1, . . . , C2n be an enumeration of all concepts in this concept class.215

It suffices to pick a teaching sequence as follows. We define T1(Ci) = {(x,Ci(x)) | x ∈ Xi}, that216

means, we pick the instances in the ith set Xi to represent the ith concept. Now T2(Ci) can consist217

of any single example from T1(Ci), since T1(Ci) ∩ T1(Cj) = ∅ for all j 6= i.218

Obviously, by reordering concepts, we obtain different STDmin-teachers that have the same range;219

in particular, they witness a very high degree of ambiguity, as will be formalized in Observation 1.220

Example 1 can be generalized to the following observation.221

Observation 1 Let C be any concept class over a domain X . Suppose X can be partitioned into a222

family (XC)C∈C of subsets such that XC preserves C, for every C ∈ C. Then STDmin(C) = 1 and223

there are at least |C|! pairwise distinct STDmin-teachers for C with the same range on C. In particular,224

every permutation σ of C yields an STDmin-teacher that maps a concept C to the singleton sample225

set {(xσ(C), C(xσ(C)))}, where xσ(C) is any instance in Xσ(C).226
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T ′
0 = T0 T ′

1 T ′
2

concept x1 x2 x3 x4 x5 x1 x2 x3 x4 x5 x1 x2 x3 x4 x5

C1 1 1 0 0 0 1 1 * 0 * 1 1 * * *
C2 1 1 0 1 0 * * 0 1 0 * * 0 * 0
C3 0 1 1 0 0 * 1 1 * 0 * 1 1 * *
C4 0 1 1 0 1 0 * * 0 1 0 * * 0 *
C5 0 0 1 1 0 0 * 1 1 * * * 1 1 *
C6 1 0 1 1 0 1 0 * * 0 * 0 * * 0
C7 0 0 0 1 1 * 0 * 1 1 * * * 1 1
C8 0 1 0 1 1 0 1 0 * * 0 * 0 * *
C9 1 0 0 0 1 1 * 0 * 1 1 * * * 1
C10 1 0 1 0 1 * 0 1 0 * * 0 * 0 *

Table 7: A second subset teaching sequence for the concept class CW .

X1 X2 X3 X4

concept x1 x2 x3 x4 x5 x6 x7 x8

C1 0 0 0 0 0 0 0 0
C2 0 1 0 1 0 1 0 1
C3 1 0 1 0 1 0 1 0
C4 1 1 1 1 1 1 1 1

Table 8: The concept class from Example 1, for the case n = 2. Highlighted in blue are the labels
chosen for teaching individual concepts with T1. Clearly, T2 can be defined to assign each concept a
singleton sample set.
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