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A COMPONENTS OF THE PROBTS TOOLKIT

Data. The data module unifies varied data scenarios to facilitate thorough evaluation and imple-
ments standardized pre-processing techniques to ensure fair comparison. Moreover, we utilize a
quantitative approach to visually delineate datasets’ intrinsic characteristics, which employs decom-
position to assess trends and seasonality in a time series and evaluate the similarity between data
distribution and a Gaussian to depict the complexity of data distribution. Descriptions and statistics
for each dataset are listed in Table 1, and a quantitative evaluation of their inherent properties is
provided in Table 2. We attach the detailed quantitative calculation process in Appendix B.

Model. The modularized model module accommodates diverse neural network architectures, fore-
casting paradigms, and decoding schemes. Adhering to the decoupled model formulation from Sec-
tion ??, it enables the construction of various models by configuring the encoder fϕ and forecaster
pθ. For example, point estimation methods like DLinear centralize their design in the encoder, using
a linear layer or identity mapping as the forecaster, with non-autoregressive decoding. In contrast,
probabilistic models like TimeGrad incorporate general neural architectures in the encoder and ad-
vanced probabilistic techniques in the forecaster, employing autoregressive decoding.

Evaluator. The evaluator module integrates a diverse array of evaluation metrics such as Mean
Absolute Error (MAE), Normalized Mean Absolute Error (NMAE), Mean Square Error (MSE),
and Continuous Ranked Probability Score (CRPS), allowing for assessment of both point-level and
distribution-level accuracies. We employ the NMAE metric for point-level evaluation to accommo-
date different scales of errors, and unlike previous studies (Rasul et al., 2021a; Tashiro et al., 2021)
that used the CRPSsum metric, we utilize CRPS for our analysis for a refined evaluation of each
variate’s probability distribution accuracy. A detailed list of evaluation metrics and their formal
definitions can be found in Appendix C.

Implementation. To ensure the integrity of the results, ProbTS adheres to a standard imple-
mentation process, employing unified data splitting, standardization techniques, and adopting fair
settings for hyperparameter tuning across all methods. We utilize reported optimal hyperparameters
for models directly associated with specific datasets and conduct an extensive grid search to identify
the most effective settings for those hyperparameters that were not available. Details regarding the
experimental setup can be found in Appendix D.

B QUANTIFYING THE CHARACTERISTICS OF DATASETS

Trend & Seasonality To gain deeper insights into the dataset characteristics, we conducted a
quantitative evaluation of trend and seasonality for each dataset, drawing upon methodologies out-
lined in the work of Wang et al. (2006). In particular, we employed a time series decomposition
model expressed as:

yt = Tt + St +Rt,

where Tt represents the smoothed trend component, St signifies the seasonal component, and Rt

denotes the remainder component. In order to obtain each component, we followed the STL decom-
position approach 1.

1https://otexts.com/fpp2/stl.html

1

https://otexts.com/fpp2/stl.html


Table 1: Dataset Summary.

Horizon Dataset #var. range freq. timesteps Description

Long-term

ETTh1/h2 7 R+ H 17,420 Electricity transformer temperature per hour
ETTm1/m2 7 R+ 15min 69,680 Electricity transformer temperature every 15 min
Electricity 321 R+ H 26,304 Electricity consumption (Kwh)

Traffic 862 (0,1) H 17,544 Road occupancy rates
Exchange 8 R+ Busi. Day 7,588 Daily exchange rates of 8 countries

ILI 7 (0,1) W 966 Ratio of patients seen with influenza-like illness
Weather 21 R+ 10min 52,696 Local climatological data

Short-term

Exchange 8 R+ Busi. Day 6,071 Daily exchange rates of 8 countries
Solar 137 R+ H 7,009 Solar power production records

Electricity 370 R+ H 5,833 Electricity consumption
Traffic 963 (0,1) H 4,001 Road occupancy rates

Wikipedia 2,000 N D 792 Page views of 2000 Wikipedia pages

In the case of strongly trended data, the variation within the seasonally adjusted data should consid-
erably exceed that of the remainder component. Consequently, the ratio Var(Rt)/Var(Tt + Rt) is
expected to be relatively small. As such, the measure of trend strength can be formulated as:

FT = max

(
0, 1− Var(Rt)

Var(Tt +Rt)

)
.

The quantified trend strength, ranging from 0 to 1, characterizes the degree of trend presence. Simi-
larly, the evaluation of seasonal intensity employs the detrended data:

FS = max

(
0, 1− Var(Rt)

Var(St +Rt)

)
.

A series with FS near 0 indicates minimal seasonality, while strong seasonality is indicated by FS

approaching 1 due to the considerably smaller variance of Var(Rt) in comparison to Var(St +Rt).

Tables 2 depict the results for each dataset. Notably, the ETT datasets and the Exchange dataset man-
ifest conspicuous trends, whereas the Electricity, Solar, and Traffic datasets showcase marked sea-
sonality. Additionally, the Exchange dataset stands out with distinctive features. Figure 2 illustrates
that with shorter prediction windows, the Exchange dataset sustains comparatively minor fluctua-
tions, almost forming a linear trajectory. This enables effective forecasting through a straightforward
batch mean approach. As the forecasting horizon extends, the dataset appears a more pronounced
trend while retaining minimal seasonality.

Data Distribution To analyze the influence of data distribution on model performance, we mea-
sured the similarity between each dataset’s distribution and the Gaussian distribution. Specifically,
we computed the Jensen–Shannon divergence (Nielsen, 2019) within a fixed-length sliding window
for each variate. A window size of 30 was used for short-term datasets and 336 for long-term ones.
The average of these calculations yielded the overall degree of conformity of each dataset to the
Gaussian distribution. These results are summarized in Table 2.

Outliers Outliers are data points that are significantly distant from the rest, which pose challenges
in forecasting. We quantified outlier ratios from both global and local perspectives. The global
view treats the entire dataset as a Gaussian distribution and identifies Z-score normalized values
more than 3 standard deviations from the mean as outliers. The local perspective assesses outliers
within a sliding window, following the same criterion. For short-term datasets, a window size of
30 is employed, while for long-term forecasting datasets, the window size is set to 336. We present
the ratio of outliers in Table 3 for reference. From Table 3, we find that some datasets, such as
Wikipedia-S, possess a high local ratio of outliers, which can have a large impact on short-term
forecasting.

Data Visualization To offer a clearer insight into the characteristics of each dataset and the influ-
ence of varying forecasting horizons, we have illustrated instances of both short-term and long-term
forecasting datasets in Figure 1 and Figure 2 respectively. Figure 1 reveals that in short-term sce-
narios, time series are primarily governed by local variations. On the other hand, as depicted in
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Table 2: Quantitative assessment of intrinsic characteristics for each dataset. To eliminate ambiguity,
we use the suffix ”-S” and ”-L” to denote short-term and long-term forecasting datasets, respectively.
The JS Div denotes Jensen–Shannon divergence, where a lower score indicates closer approxima-
tions to a Gaussian distribution.

Dataset Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S ETTm1-L ETTm2-L
Trend FT 0.9982 0.1688 0.6443 0.2880 0.5253 0.9462 0.9770
Seasonality FS 0.1256 0.8592 0.8323 0.6656 0.2234 0.0105 0.0612

JS Div. 0.2967 0.5004 0.3579 0.2991 0.2751 0.0833 0.1701

Dataset ETTh1-L ETTh2-L Electricity-L Traffic-L Weather-L Exchange-L ILI-L
Trend FT 0.7728 0.9412 0.6476 0.1632 0.9612 0.9978 0.5438
Seasonality FS 0.4772 0.3608 0.8344 0.6798 0.2657 0.1349 0.6075

JS Div. 0.0719 0.1422 0.1533 0.1378 0.1727 0.1082 0.1112

Table 3: Ratio of outliers (%). The suffix ”-S” denotes short-term forecasting datasets, while ”-L”
signifies long-term forecasting datasets.

Dataset Exchange-S Solar-S Electricity-S Traffic-S Wikipedia-S ETTm1-L ETTm2-L
Local 0.1718 0.2228 0.1333 0.6595 1.5435 0.4126 0.4231
Global 0.0871 0.0002 0.4210 1.6890 1.1758 1.1079 1.8764

Dataset ETTh1-L ETTh2-L Electricity-L Traffic-L Weather-L Exchange-L ILI-L
Local 0.4937 0.4707 0.1529 1.4352 0.5106 0.2021 1.2422
Global 1.2951 2.1929 0.4134 1.5885 0.8323 0.0066 1.5735

Figure 2, datasets like Traffic, Electricity, and ETT, under extended forecasting horizons, display
enhanced seasonality and trends, making these series more predictable.Prediction Horizon

Short-term Dataset

Long-term Datasets

Figure 1: Time series samples extracted from the short-term forecasting dataset. The range of the
x-axis is the pre-defined length of the prediction window in each dataset.

C EVALUATION METRICS

The ProbTS toolkit incorporates a comprehensive range of metrics, spanning both point-level and
distribution-level, to offer a nuanced and multifaceted evaluation of forecasting models.

C.1 POINT-LEVEL METRICS

For point-level metrics, we primarily focused on several measures that are predominantly used in
the branch devoted to optimizing neural network architecture design.

Mean Absolute Error (MAE) The Mean Absolute Error (MAE) quantifies the average absolute
deviation between the forecasts and the true values. Since it averages the absolute errors, MAE is
robust to outliers. Its mathematical formula is given by:

MAE =
1

K × T

K∑
i=1

T∑
t=1

|xi,t − x̂i,t|,

where K is the number of variates, L is the length of series, xi,t and x̂i,t denotes the ground-
truth value and the predicted value, respectively. For multivariate time series, we also provide the
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Figure 2: Time series samples extracted from the long-term forecasting dataset. The x-axis spans
the pre-defined prediction window lengths within each dataset, with prediction lengths set to T ∈
{24, 36, 48, 60} for the ILI dataset and T ∈ {96, 192, 336, 720} for the remaining datasets.

aggregated version:

MAEsum =
1

T

T∑
t=1

|xsum
t − x̂sum

t |,

where xsum
t and x̂sum

t are the summation across the dimension K of xi,t and x̂i,t, respectively.

Normalized Mean Absolute Error (NMAE) The Normalized Mean Absolute Error (NMAE) is
a normalized version of the MAE, which is dimensionless and facilitates the comparability of the
error magnitude across different datasets or scales. The mathematical representation of NMAE is
given by:

NMAE =
1

K × T

K∑
i=1

T∑
t=1

|xi,t − x̂i,t|
|xi,t|

.

Its aggregated version is:

NMAEsum =
1

T

T∑
t=1

|xsum
t − x̂sum

t |
|xsum

t |
.

Mean Squared Error (MSE) The Mean Squared Error (MSE) is a quantitative metric used to
measure the average squared difference between the observed actual value and forecasts. It is defined
mathematically as follows:

MSE =
1

K × T

K∑
i=1

L∑
t=1

(xi,t − x̂i,t)
2.
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For multivariate time series, we also provide the aggregated version:

MSEsum =
1

T

L∑
t=1

(xsum
t − x̂sum

t )2.

Normalized Root Mean Squared Error (NRMSE) The Normalized Root Mean Squared Error
(NRMSE) is a normalized version of the Root Mean Squared Error (RMSE), which quantifies the
average squared magnitude of the error between forecasts and observations, normalized by the ex-
pectation of the observed values. It can be formally written as:

NRMSE =

√
1

K×T

∑K
i=1

∑L
t=1(xi,t − x̂i,t)2

1
K×T

∑K
i=1

∑T
t=1 |xi,t|

.

For multivariate time series, we also provide the aggregated version:

NRMSEsum =

√
1
T

∑L
t=1(x

sum
t − x̂sum

t )2

1
T

∑T
t=1 |xsum

t |
.

C.2 DISTRIBUTION-LEVEL METRICS

Continuous Ranked Probability Score (CRPS) The Continuous Ranked Probability Score
(CRPS) (Matheson & Winkler, 1976) quantifies the agreement between a cumulative distribution
function (CDF) F and an observation x, represented as:

CRPS =

∫
R

(F (z)− I{x ≤ z})2dz,

where Ix ≤ z denotes the indicator function, equating to one if x ≤ z and zero otherwise.

Being a proper scoring function, CRPS reaches its minimum when the predictive distribution F

coincides with the data distribution. When using the empirical CDF of F , denoted as F̂ (z) =
1
n

∑n
i=1 I{Xi ≤ z}, where n represents the number of samples Xi ∼ F , CRPS can be precisely

calculated from the simulated samples of the conditional distribution pθ(xt|ht). In our practice, 100
samples are employed to estimate the empirical CDF.

For multivariate time series, the aggregate CRPS, denoted as CRPSsum, is derived by summing across
the K time series, both for the ground-truth data and sampled data, and subsequently averaging over
the forecasting horizon. Formally, it is represented as:

CRPSsum = Et

[
CRPS

(
F̂sum(t),

K∑
i=1

x0
i,l

)]
.

D IMPLEMENTATION DETAILS

D.1 EXPERIMENT SETTINGS

ProbTS is implemented using PyTorch Lightning (Falcon & The PyTorch Lightning team, 2019).
During the training, we sample 100 batches per epoch and train for a maximum of 50 epochs,
employing the CRPS metric as the monitor for checkpoint saving. We employ the Adam optimizer
for all experiments, which are executed on single NVIDIA Tesla V100 GPUs using CUDA 11.3. In
the evaluation phase, we sample 100 times to report the metrics on the test set.

D.2 HYPER-PARAMETERS

We carried out an extensive grid search for models, tuning hyperparameters individually for each
method. Given the large number of models, we inlude only the partial hyperparameter settings
in Table 4. All hyperparameter configurations identified for each model on every dataset will be
accessible via a GitHub repository, to be open-sourced subsequent to the paper’s publication.
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Table 4: Hyperparameter settings for Electricity-S dataset.

Model Hyperparameter

DLinear learning rate=0.01, kernel size=3, f hidden size=40

PatchTST learning rate=0.0001, stride=3, patch len=6, n layers=3, n heads=8, dropout=0.1, kernel size=3, f hidden size=32

TimesNet learning rate=0.001, n layers=2, num kernels=6, top k=5, f hidden size=64, d ff=64

GRU NVP learning rate=0.001, f hidden size=40, num layers=2, n blocks=3, hidden size=100, conditional length=200

GRU MAF learning rate=0.001, f hidden size=40, num layers=2, n blocks=4, hidden size=100, conditional length=200

Trans MAF learning rate=0.001, f hidden size=32, num heads=8, n blocks=4, hidden size=100, conditional length=200

TimeGrad learning rate=0.001, f hidden size=128, num layers=4, conditional length=100, beta end=0.1, diff steps=100

CSDI learning rate=0.001, channels=64, emb time dim=128, emb feature dim=16, num steps=50, num heads=8, n layers=4

E ADDITIONAL RESULTS AND EXPERIMENTS

E.1 IMPACT OF DATA SCALE

To further explore critical characteristics of time-series forecasting, we have examed the correlation
between model performance gains, relative to the baseline model (GRU), and dataset dimensions,
length, and volume (see Table 5). However, our analysis does not identify a significant correlation
between these factors and model performance.

Table 5: The correlation coefficient between the data volume and the relative performance improve-
ment compared to the baseline model (GRU).

Model DLinear PatchTST GRU NVP TimeGrad CSDI
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

# Var. 0.2422 0.2422 -0.2676 -0.2676 -0.1856 -0.2136 -0.1665 -0.1793 -0.2315 -0.2592
# Total timestep -0.1422 -0.1422 0.3821 0.3821 0.3072 0.3329 0.2860 0.2971 0.3542 0.3826
# Var. × Timestep 0.0162 0.0162 0.0166 0.0166 -0.0068 -0.0011 0.0082 0.0117 -0.0053 -0.0133

E.2 STATISTICAL AND GRADIENT BOOSTING DECISION TREE BASELINES

To enhance the empirical robustness of our study, we integrate classical statistical models, includ-
ing ARIMA (Makridakis & Hibon, 1997) and ETS (Hyndman & Athanasopoulos, 2018), along
with the Gradient Boosting Decision Tree (GBDT) model, XGBoost, into the ProbTS framework.
The results in Table 6 clearly demonstrate the superior performance of deep learning methods over
simple statistical baselines, emphasizing the importance of capturing non-linear dependencies for
accurate forecasts. Notably, ARIMA and ETS exhibit varied performance across different data char-
acteristics. ARIMA struggles with datasets like Solar, characterized by weak trending and strong
seasonality, while ETS shows better adaptability. Conversely, in cases of strong trending and weak
seasonality, as observed in the ’Wikipedia’ dataset, ARIMA significantly outperforms ETS.

Utilizing the implementation from Elsayed et al. (2021), we find that XGBoost competes well, even
surpassing neural network models in certain scenarios. However, for datasets with more complex
distributions like ’Solar’ and ’Electricity,’ advanced probabilistic estimation methods demonstrate
a substantial advantage over traditional learning methods and point estimation techniques. This
highlights the adaptability and strength of advanced probabilistic methods in handling intricate fore-
casting scenarios.

E.3 EXPERIMENTS ON UNIVARIATE DATASETS

In pursuit of a comprehensive analysis spanning univariate and multivariate scenarios, we exam-
ined a subset of M4 (Makridakis et al., 2020), M5 (Makridakis et al., 2022), and TOURISM
datasets (Athanasopoulos et al., 2011)—crucial datasets for univariate time-series forecasting. Ta-
ble 7 provides a quantitative assessment of the intrinsic characteristics of these new datasets, fo-
cusing on trending strength, seasonality, and data distribution complexity, as detailed in our paper.
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Table 6: Results of statistical models and GBDT baseline on short-term forecasting datasets.

Model Exchange Rate Solar Electricity Traffic Wikipedia
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

ARIMA 0.009 0.009 1.000 1.000 0.164 0.164 0.461 0.461 0.348 0.348
ETS 0.011 0.011 0.580 0.580 0.121 0.121 0.413 0.413 0.685 0.685
ETS-prob 0.008 0.011 0.795 0.695 0.123 0.129 0.380 0.433 0.625 0.697
XGBoost 0.011 0.011 0.599 0.599 0.074 0.074 0.196 0.196 - -

DLinear 0.012.001 0.012.001 0.547.009 0.547.009 0.095.006 0.095.006 0.273.012 0.273.012 1.046.037 1.046.037
PatchTST 0.010.000 0.010.000 0.496.002 0.496.002 0.076.001 0.076.001 0.202.001 0.202.001 0.257.001 0.257.001

TimesNet 0.011.001 0.011.001 0.507.019 0.507.019 0.071.002 0.071.002 0.205.002 0.205.002 0.304.002 0.304.002

GRU NVP 0.016.003 0.020.003 0.396.021 0.507.022 0.055.002 0.073.003 0.161.006 0.203.009 0.282.003 0.330.003
GRU MAF 0.015.001 0.020.001 0.386.026 0.492.027 0.051.001 0.067.001 0.131.006 0.165.009 0.281.004 0.337.005
Trans MAF 0.011.001 0.014.001 0.400.022 0.503.022 0.054.004 0.071.005 0.129.004 0.165.006 0.289.008 0.344.008
TimeGrad 0.011.001 0.014.002 0.359.011 0.445.023 0.052.001 0.067.001 0.164.091 0.201.115 0.272.008 0.327.011
CSDI 0.008.000 0.011.000 0.366.005 0.484.008 0.050.001 0.065.001 0.146.012 0.176.013 0.219.006 0.259.009

Notably, these datasets, except for M4-Daily may exhibit fewer seasonal patterns, do not introduce
particularly unique characteristics.

Table 7: Quantitative assessment of the intrinsic characteristics of the univariate datasets. The JS
Div denotes Jensen–Shannon divergence, where a lower score indicates closer approximations to a
Gaussian distribution.

Dataset M4-Weekly M4-Daily M5 TOURISM-Monthly
Trend FT 0.7677 0.9808 0.3443 0.7979
Seasonality FS 0.3401 0.0467 0.2480 0.6826

JS Div. 0.5106 0.4916 0.6011 0.3291

Table 8 presents experimental results for representative methods, consistent with our initial obser-
vations. Probabilistic estimation methods like GRU NVP and TimeGrad excel on datasets with
complex distributions (e.g., M4-Weekly and M5), while simpler point forecasting methods such
as DLinear and PatchTST perform well on datasets with relatively simple data distribution, like
TOURISM-Monthly. Both autoregressive and non-autoregressive decoding schemes show compa-
rable performance in short-term forecasting, as discussed in the main paper.”

Table 8: Results on M4, M5, and TOURISM datasets. We utilize a lookback window of 3H, with
’H’ denoting the forecasting horizon.

Model DLinear PatchTST GRU NVP TimeGrad
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

M4-Weekly 0.081 0.081 0.089 0.089 0.066 0.077 0.055 0.065
M4-Daily 0.034 0.034 0.035 0.035 0.030 0.038 0.026 0.032
M5 0.891 0.891 0.898 0.898 0.679 0.864 - -
TOURISM-Monthly 0.168 0.168 0.136 0.136 0.171 0.223 0.152 0.191

E.4 EXPERIMENTS ON SYNTHETIC DATASETS

To enhance the rigor of the insights presented, we employ synthetic datasets, encompassing a base-
line dataset and variants with pronounced trends, strong seasonality, and complex data distribution
(see Table 9). Each dataset comprises series generated by combining trend, seasonality, noise, and
anomaly components with controlled characteristics. Subsequent experiments on these synthetic
datasets (refer to Table 10), using representative models, validate the empirical findings established
on other datasets with ProbTS. Key observations include the declining performance of autoregres-
sive decoding models, such as TimeGrad, in the presence of increasing trends, improved perfor-
mance for models using autoregressive decoding with intensifying seasonality, and the competitive
performance of probabilistic methods like CSDI in handling more complex data distributions.
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Table 9: Quantitative assessment of intrinsic characteristics for synthetic datasets. The JS Div de-
notes Jensen–Shannon divergence, where a lower score indicates closer approximations to a Gaus-
sian distribution.

Dataset Normal Strong Trend Strong Seasonality Complex Distribution
Trend FT 0.105 0.554 0.105 0.064
Seasonality FS 0.302 0.302 0.791 0.190

JS Div. 0.261 0.248 0.272 0.469

Table 10: Results on synthetic datasets. The look-back window and forecasting horizon are 30.

Model Normal Strong Trend Strong Seasonality Complex Distribution
CRPS NMAE CRPS NMAE CRPS NMAE CRPS NMAE

DLinear 0.013 0.013 0.001 0.001 0.014 0.014 0.301 0.301
PatchTST 0.012 0.012 0.001 0.001 0.012 0.012 0.275 0.275
TimeGrad 0.024 0.032 0.042 0.048 0.022 0.028 0.283 0.338
CSDI 0.013 0.014 0.010 0.007 0.020 0.027 0.269 0.301

E.5 CASE STUDY

To intuitively demonstrate the distinct characteristics of point and probabilistic estimations, a case
study was conducted on short-term datasets. Figure 3 illustrates that point estimation yields single-
valued, deterministic estimates, in contrast to probabilistic methods, which model continuous data
distributions as depicted in Figure 4. This modeling of data distributions captures the uncertainty
in forecasts, aiding decision-makers in fields such as weather and finance to make more informed
choices. It is also observed that while both methods align well with ground truth values in short-term
forecasting datasets, they struggle to accurately capture outliers, particularly noted in the Wikipedia
dataset.

E.6 MODEL EFFICIENCY

For reference, detailed results regarding memory usage and time efficiency for five representative
models on long-term forecasting datasets are provided here. Table 11 displays the computation
memory of various models with a forecasting horizon set to 96. Additionally, Table 12 compares the
inference time of these models on long-term forecasting datasets, illustrating the impact of changes
in the forecasting horizon.

Table 11: Computation memory. The batch size is 1 and the prediction horizon is set to 96.

Metric Dataset DLinear PatchTST LSTM NVP TimeGrad CSDI

NPARAMS (MB)

ETTm1 0.075 2.145 1.079 1.233 1.720
Electricity 0.076 2.146 3.680 3.472 1.370

Traffic 0.078 2.149 15.926 8.298 1.390
Weather 0.075 2.145 3.085 0.574 1.721

Exchange 0.075 0.135 1.979 0.488 1.720

Max GPU Mem. (GB)

ETTm1 0.002 0.009 0.010 0.012 0.027
Electricity 0.060 0.068 0.129 0.128 1.411

Traffic 0.161 0.168 0.361 0.333 9.102
Weather 0.004 0.012 0.021 0.012 0.070

Exchange 0.002 0.002 0.013 0.008 0.030
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Figure 3: Point forecasts from the PatchTST model and the ground-truth value on short-term fore-
casting datasets.

F FURTHER DISCUSSION ON CROSS-CHANNEL INTERACTIONS

We compile a summary table (Table 13) delineating how models from each branch address the mul-
tivariate aspect. Despite a thorough investigation, we have not identified a clear pattern linking the
modeling of cross-channel interactions to overall model performance. A notable trend is the preva-
lent use of a channel-mixing approach in most studies. However, findings are diverse; models like
DLinear and PatchTST suggest that processing channels independently can yield superior results,
while others like CSDI indicate that explicit modeling of cross-channel interactions offers signifi-
cant advantages. This diversity underscores the ongoing exploration of the impact of cross-channel
interactions on forecasting performance.

9



Figure 4: Forecasting intervals from the TimeGrad model and the ground-truth value on short-term
forecasting datasets.
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(a) Computational memory. (b) Inference time.

Figure 5: Comparison of computational efficiency. The forecasting horizon is set to 96 for calcu-
lating memory usage.

Table 12: Comparison of inference time (sec./sample).

Model pred len DLinear PatchTST LSTM NVP TimeGrad CSDI

ETTm1

96 0.0003 ± 0.0000 0.0003 ± 0.0000 0.0352 ± 0.0007 4.1067 ± 0.0504 16.3280 ± 0.0747
192 0.0003 ± 0.0000 0.0003 ± 0.0000 0.0697 ± 0.0020 7.8979 ± 0.0403 25.8378 ± 0.3124
336 0.0003 ± 0.0000 0.0003 ± 0.0000 0.1221 ± 0.0044 13.6197 ± 0.1023 39.8832 ± 0.2157
720 0.0004 ± 0.0000 0.0003 ± 0.0000 0.2603 ± 0.0020 28.6074 ± 1.1346 86.1862 ± 0.1863

Electricity

96 0.0004 ± 0.0000 0.0045 ± 0.0001 0.1783 ± 0.0006 13.8439 ± 0.0054 388.3150 ± 0.2155
192 0.0006 ± 0.0000 0.0046 ± 0.0000 0.3700 ± 0.0010 27.6683 ± 0.0368 659.4284 ± 0.2003
336 0.0008 ± 0.0000 0.0049 ± 0.0000 0.7157 ± 0.0028 48.4456 ± 0.0279 -
720 0.0015 ± 0.0000 0.0057 ± 0.0000 2.0785 ± 0.0186 104.1473 ± 0.1465 -

Traffic

96 0.0010 ± 0.0001 0.0102 ± 0.0000 0.3695 ± 0.0022 31.7644 ± 0.0101 -
192 0.0013 ± 0.0000 0.0106 ± 0.0000 0.8287 ± 0.0094 63.5832 ± 0.0060 -
336 0.0020 ± 0.0000 0.0114 ± 0.0001 1.6945 ± 0.0026 111.4147 ± 0.0169 -
720 0.0039 ± 0.0000 0.0137 ± 0.0000 5.0963 ± 0.0018 258.1274 ± 0.6088 -

Weather

96 0.0002 ± 0.0000 0.0004 ± 0.0000 0.0800 ± 0.0016 4.1261 ± 0.0812 37.8984 ± 0.0782
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Table 13: Summary of how existing models handle multivariate time series.
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