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A Object-centric Control for Articulated Objects

Motion of Part 𝑖

Relative Articulated Motion of Part j

Figure 1: Motion Decomposition of Object-centric
Control. ∀i, the motion of articulated part i + 1 can
be decomposed to rigid motion of articulated part i and
relative articulated motion of articulated part j w.r.t. ar-
ticulated part i. Both components are modeled.

After a successful grasp, the next goal is
to apply torques on robot arms and grip-
pers to move the object part i to the de-
sired pose. In Section 3.3 of the main pa-
per, we mentioned Object-centric Con-
trol for Articuated Objects (OCAO) for-
mulation. In this section, we provide more
technical details.

Different from multiple independently
moving objects, the articulated object
parts are connected with mechanical joints
and their motion is under constraints. Our
goal is to control the motion of articulated
object parts with robot grippers while re-
specting the mechanical constraints. The
core idea is to compute the desired change
of the 6D poses of robot grippers given the
desired change of the 6D pose of one of the object rigid parts and the changes of all joint angles.
As illustrated in Figure 1, to satisfy the mechanical constraints, the rigid motion of one object part
has to depend on the rigid motion of another connected object part. We define a dependency graph
for the articulated object where each node is an object rigid part and two nodes are connected by an
edge if there is a mechanical joint connecting the two object parts. The edge directions in the graph
define the dependency of rigid motion decomposition during control. We assume there is no cycle in
object joint connections, i.e. the graph is acyclic. Therefore, we can find a dependency in the graph
such that each node has exactly one dependency.

Suppose E = {(Mj ,Mi)} is the set of edges in the graph and for all i and j, revolute joint li,j
connects object parts Mj and Mi, where Mi is represented by its 6D pose [Ri, Ti] including
rotation component Ri ∈ R3×3 and translation component Ti ∈ R3, and li,j = (ai,j , ~di,j , θi,j) is
represented by joint axis anchor ai,j ∈ R3, joint axis direction ~di,j ∈ R3, and joint angle θi,j .

SupposeMi = [Ri, Ti] moves toM′i = [R′i, T
′
i ] and joint angle θi,j changes to θ′i,j after motion.

Suppose the 6D poses of robot gripper i before and after motion are [Rgi , Tgi ] and [R′gi , T
′
gi ]. To

ensure that the grasps are always valid for gripper i, there should be no relative motion between
robot gripper i and the object part being graspedMi. Therefore we have

R′gi = R′iR
−1
i ·Rgi

T ′gi = T ′i +R′iR
−1
i (Tgi − Ti)

(1)

which represents applying the rigid transformation of object part i on gripper i.
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Supposed (Mi,Mj) ∈ E , i.e. the motion ofMj depends onMi. We decompose the rigid motion
ofMj into two parts: 1) the rigid motion ofMi and 2) relative articulated motion due to the change
of joint angle θi,j . Suppose the 6D poses of robot gripper j before and after motion are [Rgj , Tgj ]
and [R′gj , T

′
gj ]. Similarly, to ensure that the grasps are always valid for gripper j, there should be no

relative motion between robot gripper j and the object part being graspedMj . Therefore we have

R′j = R′iR
−1
i ·R(~d, θ

′
i,j − θi,j) ·Rj

T ′j = T ′i +R′iR
−1
i [R(~d, θ′i,j − θi,j) · (Tj − ai,j) + ai,j︸ ︷︷ ︸

Relative Articulated Motion Due to Change of θi,j

−Ti]

︸ ︷︷ ︸
Rigid Motion of Object Part i

R′gj = R′iR
−1
i ·R(~d, θ

′
i,j − θi,j) ·Rgj

T ′gj = T ′i +R′iR
−1
i [R(~d, θ′i,j − θi,j) · (Tgj − ai,j) + ai,j︸ ︷︷ ︸

Relative Articulated Motion Due to Change of θi,j

−Ti]

︸ ︷︷ ︸
Rigid Motion of Object Part i

(2)

where R(~u, φ) ∈ R3×3 is the matrix of rotation of angle φ with respect to axis ~u.

Note that Equation (2) can be iteratively applied to all object parts based on specified dependencies
in the object part graph. After all goal poses [R′gi , T

′
gi ],∀i are computed, we use Operational Space

Control (OSC) to move the all grippers i to the goal poses, which will also move the articulated
objects to the desired configurations.

Since the dependencies between the object parts are usually not unique, the intermediate trajectory
of [R′gi , T

′
gi ] and [R′gj , T

′
gj ] in Equations (1) and (2) can be different given different object part

dependencies. We leave the study of the choice of the object part dependencies and its impact on
manipulation as future work.

B Exploration of Contact Point Combination

Algorithm 1: Contact Point Random Explo-
ration
Input: Initial demonstration set

D = {(x(i)
g1 ,x

(i)
g2 , . . . ,x

(i)
gn) | i ∈ Z},

object point cloud p = {xi ∈ R3, i ∈ Z}
Output: Training label set T
T ← D ;
while |T | < N do

contact point tuple s ∼ T ;
. randomly sample from T

new contact point tuple s′ = () ;
for i← 1 to n do

xgi ← s[i] ;
n← {x ∈ p | ||x− xgi ||2 < r}

. neighborhood points
x ∼ n . randomly sample

from neighborhood
s′[i]← x ;

end
r ← Execute contact point tuple s′ ;
if r = Success then
T = T ∪{s′}

end
end

In Section 3.4 of the main paper, we mentioned
automatic contact label generation from explo-
ration. In this section, we provide more technical
details of it. The algorithm of random exploration
of contact point combinations is illustrated in Al-
gorithm 1.

To facilitate the collection of successful contact
point combinations for grasping, we first a set of
human expert demonstrations of feasible contact
point combinations D. The human demonstra-
tions are selected intuitively, e.g. two points on
the opposite sides of the plier handle. The train-
ing label set T will be initialized with D.

We randomly sample a successful contact point
tuple from the training label set. Then from
the sampled contact points, we randomly sample
points within the neighborhood of radius r of the
successful contact points to form a new contact
point tuple. Using the new contact point tuple,
manipulation actions including inverse kinemat-
ics, planning, and Operational Space Control will
be executed. If the manipulation is successful, the
new contact point tuple will be considered a suc-
cess and added to the training label set. The above
process is repeated until the size of the training
label set is large enough.
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Figure 2: Architecture of V-MAO Neural Network during (a) training and (b) inference. Note that
the probability map has two channels because the robot gripper we use in the experiment has two
fingers. The initial three-channel feature is the RGB values.

C Neural Network Architecture

We illustrate the details of the CVAE architecture used in V-MAO in Figure 2. The neural network
architecture is instantiated by set abstraction layers from [1] and set upconv layers from [2]. During
training, we send both the 3D point cloud appended with RGB values and the same 3D point cloud
appended with probability map into the neural network while during inference, only the 3D point
cloud appended with RGB values are fed into the network.

During decoding, each layer of set upconv [2] iteratively up-sample the point cloud to recover the
resolution before down-sampling and eventually recover the original full 3D point cloud. The cross
entropy loss Lrecon = H(pc, p̂c) between the two point clouds pc and p̂c is the average/sum of the
cross entropy between the contact probability values of each corresponding point pair from the two
point clouds.

The architecture of the deterministic baseline “Top-1” is the same as the Figure 2(b), i.e. the archi-
tecture of V-MAO used during inference, except for there is no latent code z included. This ensures
V-MAO is fairly compared against the deterministic baseline.

D Experiments on Objects with Three Rigid Parts

In the main paper, we conduct experiments on two robots and articulated objects with two rigid
parts. In this section, we conduct an additional experiment on three robots and an object with three
parts. The object consists of three rectangular sticks in color of red, white and blue respectively that
can rotate with respect to the same axis. The articulated object is placed on the table surface with
random initial positions and joint angles. We use three Sawyer robots to manipulate the object. Two
of the three robots face the table in parallel and the other robot faces the table in opposite direction.
Similar to the experiment in the main paper, the goal of the manipulation is to grasp the object parts
and move them to reach the desired positions and joint angles within a certain error threshold.

We explore three types of grasping strategy for the three-rigid-part object: sequential grasp,
sequential-parallel grasp, and parallel grasp. In sequential grasp, the object parts are grasped and
moved in a sequential fashion. In the i-th step, robot gripper i grasps the i-th object part while
leaving parts i + 1 through N uncontrolled. We iterate the above step until all parts are grasped
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robot method grasp order success rate

Sawyer

Top-1 Point
parallel 80.0
sequential-parallel 86.0
sequential 90.0

V-MAO (Ours)
parallel 86.0
sequential-parallel 86.0
sequential 92.0

Table 1: Success rate of Manipulation. The baseline we compare V-MAO with is selecting the
point with the maximum contact probability from deterministic prediction. We report the results
averaged from 50 runs.
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Figure 3: Visualization of sequential grasp and manipulation using three robot arms. Rows
1 and 2 illustrate the front and side views of the manipulation of the three-rigid-part object using
three Sawyer robots. The object configuration goal of manipulation is marked by the green semi-
transparent point cloud.

and controlled. In sequential-parallel grasp, the object parts 1 through i are grasped and moved by
robots 1 through i respectively in a sequential fashion. Then the rest of the robots i + 1 through N
simultaneously grasp and move the rest of the object parts to the goal locations together. In parallel
grasp, all object parts are grasped simultaneously. Then the robots move the object parts to the goal
locations together.

We report the success rate of manipulation in Table 1. Our V-MAO can achieve more than 80%
success rate with Sawyer robot. The performance gap between the V-MAO and the deterministic
prediction baseline is small. A possible explanation is that the object parts are long sticks, so it
is unlikely for the robots to collide with each other during manipulation. Manipulation fails when
some goal locations are not possible for a gripper to reach, in which case both deterministic “Top-1
Point” baseline and our method will fail to reach the goal.

In Figure 3, we visualize the executed sequential manipulation using the contact points sampled from
the generative model. The sampled contact points combinations for all robots can avoid collision
between robots when all three grippers are grasping the object. After grasping, all three robots can
reliably control the object to reach the goal configurations marked by green point cloud.

E More Visualization of Contact Probability maps

In Section 4.3 of the main paper, we provide visualizations of sampled contact probability map from
our generative model. In this section, we provide more visualizations of sampled contact probability
map and shows how the geometric features affect the generated maps.

As illustrated in Figure 4, the articulated objects are grasped and lifted by the first gripper. The
grasping from the second gripper has not started yet. The sampled contact probability maps of the
second gripper not only depend on latent code z, but also depend on the geometry of the objects and
the scene. For example, after the pliers are lifted from the table, the sampled contact probability map
shows that grasping from both horizontal and vertical directions is feasible, while only grasping from
the vertical direction is allowed before the pliers are lifted. It further shows that our generative model
can effectively incorporate geometric features to learn the contact point distribution on articulated
objects.
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(a) (b) z = −1.0 (c) z = −0.5 (d) z = 0.0 (e) z = 0.5 (f) z = 1.0

Figure 4: Visualization of sampled and generated 3D probability maps for the second grasp
after the first grasp. From left to right in each row: (a) the colored 3D point cloud at the current
manipulation state; (b)-(f) generated probability map of the next grasp given specific latent code z,
where green and blue denote the finger 1 and 2 of the second gripper in the second grasping step.
Zoom in for better a view of the figures.
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