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Abstract

Despite their ubiquity throughout science and engineering, only a handful of partial differ-
ential equations (PDEs) have analytical, or closed-form solutions. This motivates a vast
amount of classical work on numerical simulation of PDEs and more recently, a whirlwind
of research into data-driven techniques leveraging machine learning (ML). A recent line of
work indicates that a hybrid of classical numerical techniques and machine learning can offer
significant improvements over either approach alone. In this work, we show that the choice
of the numerical scheme is crucial when incorporating physics-based priors. We build upon
Fourier-based spectral methods, which are known to be more efficient than other numerical
schemes for simulating PDEs with smooth and periodic solutions. Specifically, we develop
ML-augmented spectral solvers for three common PDEs of fluid dynamics. Our models
are more accurate (2− 4×) than standard spectral solvers at the same resolution but have
longer overall runtimes (∼ 2×), due to the additional runtime cost of the neural network
component. We also demonstrate a handful of key design principles for combining machine
learning and numerical methods for solving PDEs.

1 Introduction

The numerical simulation of nonlinear partial differential equations (PDEs) permeates science and engineer-
ing, from the prediction of weather and climate to the design of engineering systems. Unfortunately, solving
PDEs on the fine grids required for high-fidelity simulations is often infeasible due to its prohibitive compu-
tational cost. This leads to inevitable trade-offs between runtime and accuracy. The status quo is to solve
PDEs on grids that are coarse enough to be computationally feasible but are often too coarse to resolve all
phenomena of interest. One classical approach is to derive coarse-grained surrogate PDEs such as Reynold’s
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Averaged Navier Stokes (RANS) and Large Eddy Simulation (LES) (Pope, 2000), which in principle can be
accurately solved on coarse grids. This family of approaches has enjoyed widespread success but is tedious
to perform, PDE-specific, and suffers from inherent accuracy limitations (Durbin, 2018; Pope, 2004).

Machine learning (ML) has the potential to overcome many of these limitations by inferring coarse-grained
models from high-resolution ground-truth simulation data. Turbulent fluid flow is an application domain
that has already reaped some of these benefits. Pure ML methods have achieved impressive results, in terms
of accuracy, on a diverse set of fluid flow problems (Li et al., 2021; Stachenfeld et al., 2022). Going beyond
accuracy, hybrid methods have combined classical numerical simulation with ML to improve stability and
generalize to new physical systems, e.g., out of sample distributions with different forcing setups (Kochkov
et al., 2021; List et al., 2022).

However, hybrid methods have been limited to low-order finite-difference and finite volume methods, with
the exception of one recent study (Frezat et al., 2022). Beyond finite differences and finite volumes, there is a
broad field of established numerical methods for solving PDEs. In this paper, we focus on spectral methods
which are used throughout computational physics (Trefethen, 2000; Burns et al., 2020) and constitute the core
of the state-of-the-art weather forecasting system (Roberts et al., 2018). Spectral methods, when applicable,
are often preferred over other numerical methods because they can be more accurate for equations with
smooth solutions. In fact, their accuracy rivals that of the recent progress made by ML. This begs the
question: Can we improve spectral solvers of turbulent fluid flows using learned corrections of coarse-grained
simulations?

Our contributions are as follows:

1. We propose a hybrid physics machine learning method that provides sub-grid corrections to classical
spectral methods.

2. We explore two toy 1D problems: the unstable Burgers’ equation and the Kuramoto-Sivashinsky
the hybrid model is able to make the largest improvements.

3. We compare spectral, finite-volume, ML-only, and our hybrid model on a 2D forced turbulence task.
Our hybrid models provide some improvement on the accuracy of spectral-only methods, which
themselves perform remarkably well compared to recently proposed ML methods. Furthermore, our
results show that a key modeling choice for both hybrid and pure ML models is the use of velocity-
rather than vorticity-based state representations.

1.1 Related work

The study of turbulent fluid dynamics is vast. We refer to Pope (2000) for a thorough introduction. Classical
approaches tend to derive mathematical approximations to the governing equations in an a priori manner.
Recently, there has been an explosion of work in data-driven methods at the interface of computational
fluid dynamics (CFD) and machine learning (ML). We loosely organize this recent work into three main
categories:

Purely Learned Surrogates fully replace numerical schemes from CFD with purely learned surrogate
models. A number of different architectures have been explored, including multi-scale convolutional neural
networks (Ronneberger et al., 2015; Wang et al., 2020), graph neural networks (Sanchez-Gonzalez et al.,
2020), and Encoder-Process-Decoder architectures (Stachenfeld et al., 2022).

Operator Learning seeks to learn the differential operator directly by mimicking the analytical properties
of its class, such as pseudo-differential or Fourier integral operators but without explicit physics-informed
components. These methods often leverage the Fourier transform (Li et al., 2021; Tran et al., 2021) and the
off-diagonal low-rank structure of the associated Green’s function (Fan et al., 2019; Li et al., 2020).

Hybrid Physics-ML is an emerging set of approaches which aim to combine classical numerical methods
with contemporary data-driven deep learning techniques. These approaches use high-resolution simulation
data to learn corrections to low-resolution numerical schemes with the goal of combining the best of both
worlds — the simplicity of PDE-based governing equations and the expressive power of neural networks.
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Our work falls into this category, along with a growing body of work (Mishra, 2018; Bar-Sinai et al., 2019;
Kochkov et al., 2021; Bruno et al., 2021; List et al., 2022; Frezat et al., 2022; Huang et al., 2022).

Some of these works stand out as being closely related to ours but with important differences. Huang et al.
(2022) also develops a hybrid approach but focuses exclusively on ODEs, not PDEs, and it is not clear
whether their techniques for stable simulations with large time-step size would also apply to PDEs. In
their recent work, Frezat et al. (2022) augmented spectral solvers for closure models exclusively focused on
climate modeling. We also learn corrections to spectral methods but rather than focusing on climate models,
we tackle more general PDEs, provide key ML architecture choices, and include comparisons to classical
numerical methods on multiple grid resolutions.

Unlike our work, San &Maulik (2018) and Subel et al. (2021) take fundamentally different approaches to ours.
San & Maulik (2018) improves classical approaches for closure modeling by using a neural network with a
single hidden layer to learn fine-tuned local corrections instead of the usual global correction methods. Their
work requires specialized knowledge of classical methods (POD, closure models, etc.) which is orthogonal to
our larger goal of automating these approaches using data-driven techniques. Subel et al. (2021) focus on a
data augmentation scheme to overcome stationary shocks that arise in Burgers’ equation. Their proposed
shifting mechanism could be used in conjunction with our work, but represents a different research direction.

2 Spectral methods for fluids

Spectral methods are a powerful method for finding high-accuracy solutions to PDEs and are often the
method of choice for solving smooth PDEs with simple boundary conditions and geometries. There is an
extensive literature on the theoretical and practical underpinnings of spectral methods (Gottlieb & Orszag,
1977; Gottlieb & Hesthaven, 2001; Canuto et al., 2007; Kopriva, 2009), particularly for methods based on
Fourier spectral collocation (Trefethen, 2000; Boyd, 2001). Below, we provide a succinct introduction.

2.1 Partial differential equations for turbulent fluids

Let u : Rd ×R+ → Rd′ be a time-varying vector field, for dimensions d and d′. We study PDEs of the form

∂tu = Du +N(u), (1)

plus initial and boundary conditions. Here D is a linear partial differential operator, and N is a non-linear
term. Equations of this form dictate the temporal evolution of u driven by its variation in space. In
practice, PDEs are solved by discretizing in space and time, which converts the continuous PDE into a set of
update rules for vectors of coefficients to approximate the state u in some discrete basis, e.g., on a grid. For
time-dependent PDEs, temporal resolution must be scaled proportionally to spatial resolution to maintain
an accurate solution. Thus, runtime for PDE solvers is O(nd+1), where d is the number of spatial dimensions
and n is the number of discretization points per dimension.

For simulations of fluids, the differential operator is typically either diffusive, D = ∂2
x, or hyper-diffusive,

D = ∂4
x. And, the non-linearity is a convective term, N = 1

2∂x(u2) = u ∂xu. Diffusion is the tendency of the
fluid velocity to become uniform due to internal friction, and convection is the tendency of the fluid to be
transported by its own inertia. Turbulent flows are characterized by a convective term that is much stronger
than diffusion.

For most turbulent flows of interest, closely approximating the exact PDE (known as Direct Numerical
Simulation) is computationally intractable because it requires prohibitively high grid resolution. Instead,
coarse-grained approximations of the PDE are solved, known as “Large Eddy Simulation” (LES). LES aug-
ments Equation (1) by adding a correction term determined by a closure model to account for averaged
effects over fine spatial length scales. In practice, this term is often omitted due to the difficulty of deriving
appropriate closure formulas (“implicit LES”) and the PDE is simply simulated with the finest computa-
tionally feasible grid resolution. In our case, correction terms are an opportunity for machine learning. If we
can accurately model PDEs on coarser grids with suitable correction terms, we may be able to significantly
reduce the computational cost of large-scale simulations.
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Figure 1: Comparing finite volume (FVM) to spectral convergence for 2D turbulence. Left: Vorticity fields
evolved up to time 9.0 with different grid sizes and numerical methods, starting from an identical initial
condition. Qualitatively, it is clear that at resolution 64x64, the spectral method has already captured
most of features of the high-resolution state. The FVM looks sharp, but clearly differs. At sufficiently high
resolution, the methods converge to the same solution. Right: Here we compare each method with high-
resolution 2048x2048 ground truth. We plot the time until the first dip below 0.95 of the correlation with
the ground truth. Note that the initial conditions for the finite volume and the spectral method are sampled
from the same distribution, but are not identical. At resolution 256, the spectral method has converged
within the accuracy limitations of single precision, so we omit higher resolutions. For the EPD baseline and
our ML Split Operator (ML Spl. Op.) models, we show performance across five different neural network
parameter initializations.

2.2 The appeal of the Fourier basis for modeling PDEs

Let us further assume that u(x, t) : [0, 2π] × R+ → R in Equation (1) is 2π-periodic, square-integrable for
all times t, and for simplicity, one-dimensional. Consider the Fourier coefficients ût of u(x, t), truncated to
lowest K + 1 frequencies (for even K):

ût = (ût−K/2, . . . , ûtk, . . . , ûtK/2) where ûtk = 1
2π

∫ 2π

0
u(x, t)e−ik·xdx. (2)

ût is a vector representing the solution at time t, containing the coefficients of the Fourier basis eikx for
k ∈ {−K/2, . . . ,K/2}. In general, the integral ûtk has no analytical solution and so we approximate it using a
trapezoidal quadrature onK+1 points. Namely, we approximate it by sampling u(x, t) on an equispaced grid.
The Fast Fourier Transform (FFT) (Cooley & Tukey, 1965) computes these Fourier coefficients efficiently in
log-linear time. Spectral methods for PDEs leverage the fact that differentiation in the Fourier domain can
be calculated by element-wise multiplication according to the identity ∂xûk = ikûk. This, in turn, makes
inverting linear differential operators easy since it is simply element-wise division (Trefethen, 2000).

When time-dependent PDEs include non-linear terms, spectral methods evaluate these terms on a grid in
real-space, which requires forward and inverse FFTs inside each time-step. These transforms introduce two
sources of error. First, the quadrature rules for ûtk produce only an approximation to the integral. Second,
there will be a truncation error when the number of frequencies K + 1 is less than the bandwidth of u(x, t).
Remarkably, it is a well-known fact of Fourier analysis that both of these errors decay super-algebraically
(i.e., faster than any power of 1/K) if u(x, t) is periodic and is in C∞ (Trefethen, 2000).1 Thus, relatively
few discretization points are needed to represent solutions which are C∞.

Because of these favorable convergence properties, spectral methods often outshine their finite difference
counterparts. For example, spectral methods are used for large-scale simulations of turbulence on GPU
super-computers (Yeung & Ravikumar, 2020). See Figure 1 for a simple comparison in the case of 2D
turbulence. This motivates us to start from spectral methods, rather than finite difference methods, and
further improve them using machine learning.

1Convergence is exponential for analytic u (Tadmor, 1986).
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3 Learned split operators for correcting spectral methods

Similarly to classical spectral numerical methods, we solve Equation (1) by representing our state in a finite
Fourier basis as ût and integrating forward in time. We model the fully known differential operators D
and N using a standard spectral method, denoted Physics-Step. The machine learning component, denoted
Learned-Correction( · ; θ), contains tune-able parameters θ which are optimized during training to match
high-resolution simulations.

Building upon traditional physics-based solvers, we use a simple explicit-Euler time integrator for the cor-
rection term (See App. D for a brief explanation of explicit methods.) This yields the following update
equation:

ût+1 = Physics-Step(ût) + h · Learned-Correction(ût; θ), (3)

where h ∈ R is the time step size. Ultimately, our work is aimed at two and three dimensional problems so
rather than present an abstract schematic as presented in the equation above (Eq. (3)), we chose to present
a more detailed, realistic schema of 2D turbulence (Eq. (6)). The spatial state variable is thus not the
generalized u as in Equation (3) but rather, the vorticity ω as defined in Section 4.5

3.1 Convolutional layers for encoding the physical prior of locality

For a small time step h, the solution at time t + h only depends locally in space on the solution at time t
(within a dependency cone usually encoded by the Courant–Friedrichs–Lewy (CFL) condition). Following
previous work (see Sec. 1.1, Hybrid Physics-ML), we incorporate this assumption into the machine learning
component of our model using Convolutional Neural Networks (CNN or ConvNet) which, by design, only
learn local features. We now provide a high-level view of our modeling choices:

Real-space vs. frequency-space. Since the Fourier basis is global, each coefficient ûtk contains informa-
tion from the full spatial domain as shown in Equation (2). Thus, in order to maintain spatial features,
which are local, we apply the ConvNet component of our Neural Split Operator model in real-space. This is
accomplished efficiently via inverse-FFT and FFT to map the signal back and forth between frequency- and
real-space.

ConvNet Padding. In this work, we tackle problems with periodic boundary conditions. This makes
periodic padding a natural choice for the ConvNets.

Neural architecture. For both 1D and 2D problems we used an Encoder-Process-Decoder (EPD) archi-
tecture (Stachenfeld et al., 2022) to facilitate fairer comparisons to pure neural network baselines. While
various forms of optimization is possible, such as model parallelism among others, we consider this to be
outside the scope of this exploratory work. See Section 4.2 for a detailed description of EPD models and
Appendix C for further information.

3.2 The split operator method for combining time scales

Due to a variety of considerations — numerical stability, computational feasibility, etc. — each term of a
PDE often warrants its own time-advancing method. This motivates split operator methods (Strang, 1968;
McLachlan & Quispel, 2002), a popular tool for solving PDEs which combine different time integrators.
In this work, we use the split operator approach to incorporate the additional terms given by the neural
network.

In the usual pattern of spectral methods, Physics-Step itself is split into two components corresponding to
the D and N terms of Equation (1). The D term of Physics-Step is solved with a Crank-Nicolson method
and the N part is solved using explicit 4th-order Runge-Kutta, which effectively runs at a time-step of h/4.
The Learned-Correction component is solved using a vanilla first-order Euler time-step with step size h,
which when compared to incorporating the learned component in the 4th-order Runge-Kutta solver, is more
accurate and has 4x faster runtime (see Sec. 4). Alternatively, omitting Physics-Step from Equation (3) gives
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Physics-Step

·h(vt
x, vt

y)ifft fft

+ ω̂t+1

Velocity-Solve nn

Learned-Correction

Figure 2: Diagram summarizing our model described in Equation (3) for the 2D Navier-Stokes equation. The
input, vorticity ω̂t, is processed by two independent components— Learned-Correction and Physics-Step—
operating at different time-scales. The output of Learned-Correction is weighted by h, as in a basic first-order
Euler stepping scheme, and combined with the output of the Physics-Step to give the state at the next time
step.

a Neural ODE model (Chen et al., 2018) with first-order time-stepping which is precisely the EPD model
described by Stachenfeld et al. (2022). This model serves as a strong baseline as shown in Section 4.

3.3 Physics-based solvers for calculating neural-net inputs

A final important consideration is the choice of input representation for the machine learning model. We
found that ML models operate better in velocity-space whereas vorticity is the more suitable represen-
tation for the numerical solver. We were able to improve accuracy by incorporating a physics-based
data pre-processing step, e.g., a velocity-solve operation, for the inputs of the neural network compo-
nent (See App. D for a brief explanation of velocity-solve). Our overall model is Learned-Correction =
fft(nn(ifft(State-Transform(ût)))), where nn is implemented a periodic ConvNet. For our 1D test prob-
lems, State-Transform is the identity transformation, but for 2D Navier-Stokes (depicted in Fig. 2) we
perform a velocity-solve operation to calculate velocity from vorticity. This turns out to be key modeling
choice, as described in Section 4.

3.4 Training and evaluation

Data preparation for spectral solvers. For ground truth data, we use fully resolved simulations, which
we then downsample to the coarse target resolution. Choosing the downsampling procedure is a key decision
for coarse-grained solvers (Frezat et al., 2022). In this work, the fully resolved trajectories are first truncated
to the target wavenumber (i.e., an ideal low-pass filter). Then, we apply an exponential filter of the form
ũk = exp(−α|k/kmax|2p)ûk, where ũk denotes the filtered field and k is the k-th wavenumber (Canuto et al.,
2006). We obtained stable trajectories using a relatively weak filter with α = 6 and p = 16. The exponential
filter smooths discontinuities in the PDE solution, which otherwise manifest themselves globally in real space
as ringing artifacts known as Gibbs Phenomena (Canuto et al., 2006).

Filtering is also used to correct aliasing errors in spectral methods that arise when evaluating non-linear
terms (Gottlieb & Hesthaven, 2001). Ideally, filtering for aliasing errors would be spatially adaptive (Boyd,
1996). In practice, however, filters for both aliasing and truncation are often chosen heuristically. While
one might aspire to learn these heuristics from data, our attempts at doing so were unsuccessful. In part
this is because insufficiently filtered simulations will often entirely diverge rather than accumulate small
errors. Thus, in addition to filtering the downsampled training data, we also used the exponential filter on
the outputs of Physics-Step of Equation (3) and consider this to be another component of Physics-Step.
Omitting this filtering also resulted in global errors which were impossible for the learned component to
correct. Figure 3 summarizes our data generation pipeline, including an explicit filtering step. In Section 4,
we present a failure mode on a model without filtering (see Fig. 5).
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Figure 3: Diagram of our training pipeline. Starting with a high resolution initial state, we run it forward
using a high-resolution spectral solver. Then we downsample by truncating higher frequencies in the Fourier
representation. This can cause “ringing effects” for which the standard approach is to apply a filtering
operator. Finally, we train a solver to mimic this process as closely as possible, as measured in `2-loss.

We experimented with larger time-step sizes, e.g. h = 0.1, h = 1.0 but found the resulting models to be
unstable. This is because the physics-component of the model quickly becomes unstable at large step sizes
which propagates to the overall model.

Training loss. We train our models to minimize the squared-error over some number of unrolled prediction
steps, which allows our model to account for compounding errors (Um et al., 2020). Let u(x, t) denote our
prediction at time t, then our training objective is given by β

∑
x,t≤T |u(x, t)−u(x, t)|2. The scaling constant

β is chosen so that the loss of predicting “no change” is one, i.e., β−1 =
∑
x,t≤T |u(x, 0)−u(x, t)|2. Relative

to the thousands of time-steps over which we hope to simulate accurately, we unroll over a relatively small
number during training (e.g., T = 32 for 2D turbulence) because training over long time windows is less
efficient and less stable (Kochkov et al., 2021).

Measuring convergence. We seek to optimize the accuracy of coarse-grained simulations. More specif-
ically, we aim to make a coarse resolution simulation as similar as possible to a high-resolution simulation
which has been coarse-grained in post-processing. Following Kochkov et al. (2021), we measure conver-
gence to a fully resolved, high-resolution ground-truth at each time t in terms of mean absolute error
(MAE), correlation, and time until correlation is less than 0.95. MAE is defined as

∑
x |u(x, t) − u(x, t)|

and correlation is defined Corr[u(·, t),u(·, t)] =
∑
x(u(x, t) · u(x, t))/(‖u(x, t)‖2‖u(x, t)‖2) (since our flows

have mean zero). Finally, we compute the first time step in which the correlation dips below 0.95, i.e.
min{t | Corr[u(·, t),u(·, t)] < 0.95}. While MAE is precise up to floating point precision, it is not readily in-
terpretable. Whereas, correlation is less sensitive but more interpretable. For this reason, we prefer to report
correlation. This potential redundancy is demonstrated in our experiment on the KS equation (Sec. 4.3),
where we included both MAE and correlation.

For the 2D Navier-Stokes equation, we only report correlation because it is sufficient. For the unstable
Burgers’ equation, the situation was the opposite: We only reported MAE because measuring correlation
did not provide additional insight — all models had correlation values close to 1.0, whereas MAE was
sensitive to the improved performance of our method.

4 Results

4.1 Model equations

We showcase our method using three model equations which capture many of the algorithmic difficulties
present in more complex systems: 1D Kuramoto–Sivashinsky (KS) equation, 1D unstable Burgers’ equation,
and 2D Kolmogorov flow, a variant of incompressible Navier-Stokes with constant forcing.
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The KS equation has smooth solutions which spectral methods are well-designed to solve. Therefore, it is
not surprising that, while our method does improve over spectral-only methods, that improvement is not
significant. On the other hand, the unstable Burgers’ equation presents a test case in which classical spec-
tral methods struggle near discontinuities. Here, our method outperforms spectral-only methods. Finally,
with two-dimensional Kolmogorov flow, we demonstrate our method on a more challenging fluid simulation.
Kolmogorov flow exhibits multiscale behavior in addition to smooth, chaotic dynamics. Without any modifi-
cation, spectral-only methods are already competitive with the latest hybrid methods (Kochkov et al., 2021).
Similar to the 1D KS equation, our method is able to provide some improvement in this case.

4.2 Baselines

Our hybrid spectral-ML method naturally gives rise to two types of baselines: spectral-only and ML-only.
On all three equations, we compare to spectral-only at various resolutions, e.g., “Spectral 32” refers to the
spectral-only method with 32 grid points.

For Kolmogorov flow, we compare to two additional baselines: (1) the Encoder-Process-Decoder (EPD)
model (Stachenfeld et al., 2022), a state-of-the-art ML-only model, and (2) a finite volume method (FVM)
as implemented by Kochkov et al. (2021) — a standard numerical technique which serves as an alternative
to the spectral method.

The EPD architecture acts in three steps. First, the spatial state is embedded into a high-dimensional space
using a feed-forward neural network encoder architecture. Then, either another feed-forward or a recurrent
architecture is applied to process the embedded state. Finally, the output of the process step is projected
to back to the spatial state using another feed-forward decoder module. This method has recently achieved
state-of-the-art on a wide range of one-, two-, and three-dimensional problems. For consistency, we used an
identical EPD model for the learned component of our model (Eq. (3)).

Finally, we included a second-order FVM on a staggered grid to illustrate the strength of the spectral
baselines. This gives context to compare to previous work in hybrid methods (Bar-Sinai et al., 2019; Kochkov
et al., 2021) which use this FVM model as a baseline.

We avoided extensive comparisons to classical subgrid modeling, such as Large Eddy Simulation (LES), since
LES is itself a nuanced class of methods with many tunable parameters. Instead, our physics-only baselines
are implicit LES models — a widely-used and well-understood model class which serves as a consistent,
parameter-free baseline. In contrast, explicit sub-grid-scale models such as Smagorinsky models include
tunable parameters, with the optimal choice depending on the scenario of interest. Furthermore, explicit
LES models typically focus on matching the energy spectrum rather than minimizing point-wise errors (List
et al., 2022).

4.3 Kuramoto-Sivashinsky (KS) equation

The Kuramoto-Sivashinsky (KS) equation is a model of unstable flame fronts. In the PDE literature, it is a
popular model system because it exhibits chaotic dynamics in only a single dimension. The KS equation is
defined as

∂tu = −u∂xu− ∂4
xu− ∂2

xu. (4)

The three terms on the right hand side of this equation correspond to convection, hyper-diffusion and anti-
diffusion, which drives the system away from equilibrium.

Because solutions are smooth, spectral methods are able to capture the dynamics of the KS equation ex-
tremely well. At a resolution of 64, the simulation is already effectively converged to the limits of single
precision arithmetic, i.e., it enjoys a perfect correlation with a high-resolution ground truth.

Considering how well-suited spectral methods are for modeling this equation, it is remarkable that our ML-
Physics hybrid model is able to achieve any improvement at all. Looking qualitatively at the left panel of
Figure 4, there is a clear improvement over the spectral 32 baseline.
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Figure 4: Comparing our model to spectral-only baselines on the KS equation. The spectral method is
essentially converged to a 1024 ground truth model at a resolution of 64. Vertical dashed line indicates the
first time step in which our model’s correlation with the ground truth is less than 0.9. Our model is still
able to some improvement over a coarse resolution (Spectral 32) baseline.
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Figure 5: Comparing our model to spectral-only baselines on the unstable Burgers’ equation (Eq. (5)).
Vertical dashed line indicates the first time step in which our model’s correlation with the ground truth
is less than 0.9. Not only is our model stable unlike the coarse (Spectral 32) baseline, it also performs
on par with a medium-grain (128) baseline, demonstrating a 4x improvement in spatial accuracy. If the
Physics-Step component of Equation (3) does not include the exponential filter as described in Section 3.4,
the Learned-Correction component diverges completely (Left panel, “No Filter”).

4.4 Unstable Burgers’ equation

Burgers’ equation is a simple one-dimensional non-linear PDE which is used as a toy model of compressible
fluid dynamics. The characteristic behavior of Burgers’ equation is that it develops shock waves. Practition-
ers use this equation to test the accuracy of discretization schemes near discontinuities.

Like turbulent flows, the behavior of Burgers’ equation is dominated by the convection, but unlike turbulent
flows, it is not chaotic. Prior studies of ML applied to Burgers’ equation imposed random forcings (Bar-Sinai
et al., 2019; Um et al., 2020), but due to the non-choatic nature of the equation, discretization errors decay
rather than compounding over time. Instead, we use an unstable viscous Burgers’ equation which slightly
amplifies low frequencies in order to make the dynamics chaotic. Sakaguchi (1999) provides the following
definition:

∂tu = −u∂xu + ν∂2
xu +

∫ L

0
g(x− x′)∂2

xu(x′)dx′ (5)

for viscosity ν > 0 and domain size L. The three terms in this unstable Burgers’ equation correspond to
convection, diffusion and a scale-selective amplification of low-frequency signals. The convolution g(x− x′)
amplifies low frequencies, decaying smoothly to zero as the frequency increases but is best described in the
Fourier space, which we defer to Appendix A.

Shock waves are challenging to model using the Fourier basis because there are discontinuities in the solution
(Sec. 3.4). Due to the mixing of length scales introduced by convection, these errors can quickly propagate
to affect the overall dynamics. This often results in instability at low resolutions, evidenced in our results
(Fig. 5, resolution 32). While there are classical methods for addressing discontinuities, e.g., adding a hyper-
viscosity term, they often modify the underlying dynamics that they are trying to model. The inadequacy of
unaltered spectral methods for solving this problem explains why our method is able to achieve approximately
4x improvement in spatial resolution over a spectral baseline. Results are summarized in Figure 5.
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Figure 6: Benchmarking our Neural Split Operator (ML Spl. Op.) to spectral-only baselines and state-of-the-
art ML-only, EPD model (Stachenfeld et al., 2022). Left: Visualizing model states starting at the time when
divergence begins to occur. At time step = 800, EPD, Neural Split Operator model, and the high-resolution
spectral-only 1024x1024 correlate well. By time step = 900, both learned models have begun to decorrelate
with the ground truth albeit in different ways. Right: Comparing model variants across different random
initializations. On the y-axis we measure the time to the first time step with correlation<0.95 with the
high-resolution spectral ground truth. Then we compared our model with the EPD model across three data
representation variations: velocity only (v), vorticity only (ω) and velocity-vorticity concatenation ((v, ω))
as well as with an Nonlinear Term Correction model (N.L. Crrtn.). Shown here are the best performing
models over five different random neural network parameter initializations.

4.5 2D turbulence

We consider 2D turbulence described by the incompressible Navier-Stokes equation with Kolmogorov forc-
ing (Kochkov et al., 2021). This equation can be written either in terms of a velocity vector field
v(x, y) = (vx,vy) or a scalar vorticity field ω := ∂xvy − ∂yvx (Boffetta & Ecke, 2012). Here we use a
vorticity formulation, which is most convenient for spectral methods and avoids the need to separately
enforce the incompressibility condition ∇ · v = 0. The equation is given by

∂tω = −v · ∇ω + ν∇2ω − αω + f, (6)

where the terms correspond to convection, diffusion, linear damping and a constant forcing f (App. B). The
velocity vector field can be recovered from the vorticity field by solving a Poisson equation −∇2ψ = ω for
the stream function ψ and then using the relation v(x, y) = (∂yψ,−∂xψ). This velocity-solve operation is
computed via element-wise multiplication and division in the Fourier basis.

For this example, we compared four types of models: spectral-only, FVM-only, EPD (ML-only), and two
types of hybrid methods: our split operator method and a nonlinear term correction method. The ML
models are all trained to minimize the error of predicted velocities, which are obtained via a velocity-solve
for the spectral-only, EPD and hybrid models that use vorticity as their state representation. The nonlinear
term correction method uses a neural network to correct the inputs to the nonlinear term v · ∇ω and avoids
using classical correction techniques, e.g., the so-called three-over-two rule (Orszag, 1971). Specifically, this
approach takes as inputs (v,∇ω) and outputs a scalar field which is incorporating into the explicit part of
the physics solver, e.g. ∂tω = −(v · ∇ω + Nonlinear-Correction(v, ω; θ)) + η∇2ω − αω + f

Results are summarized in Figure 6. Comparing Spectral 128 to FVM 1024 we can see that the spectral-
only method, without any machine learning, already comes close to a similar improvement. Thus, a ~2x
improvement over the spectral-only baseline — achieved by both the EPD and our hybrid model — is
comparable to the ~8x improvement over FVM achieved in Kochkov et al. (2021) in which they used a
hybrid ML-Physics model.
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State representation. We compare three representations for inputs to neural networks in our EPD and
split-operator methods: velocity, vorticity, and velocity-vorticity concatenation. All models represent internal
state with vorticity and learn corrections to vorticity, with the exception of velocity-only EPD models. These
models never compute vorticity — they use velocity to represent state as well as learned corrections, thus
matching previous work by Kochkov et al. (2021) and Stachenfeld et al. (2022). Interestingly, this velocity-
only representation has the best performance across the board, particularly for the fully learned EPD model,
even outperforming velocity-vorticity concatenation (Fig. 6, right panel).

The nonlinear term v · ∇ω in Equation (6) makes use of both vorticity and velocity representations. This
indicates that in order to model the dynamics, the network must learn to solve for velocity — a global
operation — making it challenging for a ConvNet restricted to local convolutions to learn. In contrast,
computing vorticity from velocity only requires evaluating derivatives, which can be easily evaluated with
local convolutions, e.g., via finite differences. This may explain the relatively-worse performance of Fourier
Neural Operators using the velocity-based representation of Stachenfeld et al. (2022) versus the vorticity-
based representation of Li et al. (2021).

Full versus nonlinear-term-only correction. To understand the value of time-splitting for the learned
correction, we also performed an experiment where we instead incorporated our ML model into the nonlinear
part of Physics-Step (Eq. (3)). This entails solving the convection term with the same 4th order explicit
Runge-Kutta method used in the numerical solver. Since velocity-space performed best with the split
operator model, we also used it here. The non-split learned correction has significantly worse performance.
Anecdotally, we observed that training with high order Runge-Kutta methods was significantly less stable.
Models were much less robust to small changes in learning rates and dilation rates (App. C) than models
trained with first-order Runge-Kutta. We believe this may be due to the increased difficulty of propagating
gradients through a network which is effectively four times deeper. Another possibility is that the polynomial
approximation of the high-order Runge-Kutta method introduces larger errors at the beginning of training
when the model is less accurate.

Analyzing learning curves. To further compare the merits of different ML approaches, we compare
the learning curves for select models in Figure 7. First, we notice that although our best EPD and hybrid
models are similarly accurate once trained, the hybrid models require drastically less compute to achieve
fixed evaluation metrics. For example, squared error of 2000 at 1024 time-steps requires only 3600 training
steps for the median ML split operator velocity model, versus 164 600 training steps for the EPD velocity
model, corresponding to 4.4 versus 170 TPU-core hours.

These learning curves also reveal that our validation loss, in this case calculated over 32 unrolled time-steps,
is not necessarily indicative of validation performance over much longer unrolls. Although our models have
never seen the exact validation data during training, many of them are still able to “overfit” to the task of
predicting short trajectories, at the cost of generalization to long unrolls. We also observe that different ML
architectures overfit to different extents. In particular, pure ML models and models with access to vorticity
overfit more than our best hybrid model, the ML split operator with only velocity inputs. The ML split
operator with access to both velocity and vorticity is particularly interesting, because it seems to undergo a
phase transition at around 30 000 training steps, with correlation for long unrolls dropping dramatically as
the model shifts into the “memorization” regime.

5 Discussion

In this paper, we demonstrated the potential of ML-augmented spectral solvers to improve upon the accuracy
of spectral-only methods. We also identified several key physically motivated modeling choices — velocity-
representation, first-order time stepping to improve sensitivity to hyperparameters, and the removal of global
spatial artifacts — which improve training for both ML-only and hybrid models. Pure ML models can match
the accuracy of hybrid models, but are considerably more expensive to train and show more indications of
overfitting.
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Figure 7: Learning curves for selected models, showing evaluation metrics after different numbers of training
steps on the held-out validation dataset. The training loss is evaluated over the first 32 unrolled steps, whereas
squared error is evaluated at 1024 steps (t = 7.2). The latter better indicates the model performance we
care about for predicting long trajectories. Separate lines show learning curves for each of our five randomly
initialized training runs.

Traditional spectral methods are a powerful set of approaches for solving equations with smooth, periodic
solutions. It is yet unclear whether ML-based solvers can achieve meaningful computational speed-ups over
classical spectral methods on PDEs of this class. In contrast to prior work which showed computational
speed-ups of up to 1-2 orders of magnitude over baseline finite volume (Kochkov et al., 2021) and finite
difference methods (List et al., 2022), the roughly 2× decrease in grid resolution for 2D turbulence with the
ML split operator would allow for at most 8× reduction in computational cost. However, our neural network
for learned corrections is about 10× slower than Physics-Step, which counteracts this potential gain. Small
speed-ups might be obtained by using smaller networks or applying corrections less frequently, but overall
there is little potential for accelerating smooth, periodic 2D turbulence beyond traditional spectral solvers.

Hybrid ML-spectral methods may enjoy more significant improvements on other problems. Examples might
include PDEs with less smooth solutions, such as 3D turbulence, where energy decays as k−5/3 versus k−3

in 2D (Pope, 2000). Or, global atmospheric models, where spectral methods do not achieve exponential
convergence (Williamson, 2008). Cases where the exact governing equations are partially unknown, such as
physical parameterizations for climate models (Brenowitz & Bretherton, 2018), also present an opportunity
for combining physical simulation with machine learning components.

12



Published in Transactions on Machine Learning Research (04/2023)

References
Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P. Brenner. Learning data-driven discretizations
for partial differential equations. Proceedings of the National Academy of Sciences, 116, July 2019. ISSN
0027-8424, 1091-6490. doi: 10.1073/pnas.1814058116. (∧∧∧ 3, 8, 9, 17)

Guido Boffetta and Robert E. Ecke. Two-Dimensional Turbulence. Annual Review of Fluid Mechanics, 44,
January 2012. ISSN 0066-4189, 1545-4479. doi: 10.1146/annurev-fluid-120710-101240. (∧∧∧ 10)

John P. Boyd. The Erfc-Log Filter and the Asymptotics of the Euler and Vandeven Sequence Accelerations.
In Ilin, A V and Scott, L Ridway (ed.), Proceedings of the Third International Conference on Spectral and
High Order Methods, Houston, 1996. Houston Journal of Mathematics. (∧∧∧ 6)

John P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Books on Mathematics. Dover Publications,
Mineola, NY, second edition, 2001. ISBN 0486411834 9780486411835. (∧∧∧ 3)

N. D. Brenowitz and C. S. Bretherton. Prognostic Validation of a Neural Network Unified Physics Parame-
terization. Geophysical Research Letters, 45, 2018. doi: https://doi.org/10.1029/2018GL078510. (∧∧∧ 12)

Oscar P. Bruno, Jan S. Hesthaven, and Daniel V. Leibovici. FC-based shock-dynamics solver with neural-
network localized artificial-viscosity assignment, 2021. (∧∧∧ 3)

Keaton J Burns, Geoffrey M Vasil, Jeffrey S Oishi, Daniel Lecoanet, and Benjamin P Brown. Dedalus: A
flexible framework for numerical simulations with spectral methods. Phys. Rev. Research, 2, April 2020.
(∧∧∧ 2)

C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Evolution to Complex Ge-
ometries and Applications to Fluid Dynamics. Scientific Computation. Springer Berlin Heidelberg, 2007.
ISBN 9783540307280. (∧∧∧ 3, 16)

Claudio Canuto, M Yousuff Hussaini, Alfio Quarteroni, and Thomas A Zang. Spectral methods: Fundamentals
in single domains. Scientific computation. Springer, Berlin, Germany, 1 edition, April 2006. (∧∧∧ 6)

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural Ordinary Differential
Equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018. (∧∧∧ 6)

J. W. Cooley and J. W. Tukey. An Algorithm for the Machine Calculation of Complex Fourier Series. Math.
Comput., 19, 1965. ISSN 00255718, 10886842. (∧∧∧ 4)

Paul A Durbin. Some Recent Developments in Turbulence Closure Modeling. Annu. Rev. Fluid Mech., 50,
2018. (∧∧∧ 2)

Yuwei Fan, Jordi Feliu-Fabà, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núñez. A multiscale neural
network based on hierarchical nested bases. Research in the Mathematical Sciences, 6, Mar. 2019. ISSN
2197-9847. doi: 10.1007/s40687-019-0183-3. (∧∧∧ 2)

Hugo Frezat, Julien Le Sommer, Ronan Fablet, Guillaume Balarac, and Redouane Lguensat. A posteriori
learning for quasi-geostrophic turbulence parametrization. arXiv, April 2022. (∧∧∧ 2, 3, 6)

D. Gottlieb and J. S. Hesthaven. Spectral methods for hyperbolic problems. Journal of Computational and
Applied Mathematics, 128, March 2001. ISSN 0377-0427. doi: 10.1016/S0377-0427(00)00510-0. (∧∧∧ 3, 6)

David Gottlieb and Steven A. Orszag. Numerical Analysis of Spectral Methods. Society for Industrial and
Applied Mathematics, 1977. doi: 10.1137/1.9781611970425. (∧∧∧ 3)

Zhongzhan Huang, Senwei Liang, Hong Zhang, Haizhao Yang, and Liang Lin. Accelerating Numerical Solvers
for Large-Scale Simulation of Dynamical System via NeurVec, August 2022. arXiv:2208.03680. (∧∧∧ 3)

13

https://pnas.org/doi/full/10.1073/pnas.1814058116
https://pnas.org/doi/full/10.1073/pnas.1814058116
https://www.annualreviews.org/doi/10.1146/annurev-fluid-120710-101240
https://api.semanticscholar.org/CorpusID:17864531
https://api.semanticscholar.org/CorpusID:119769668?utm_source=wikipedia
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078510
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018GL078510
https://arxiv.org/abs/2111.01315
https://arxiv.org/abs/2111.01315
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023068
https://link.aps.org/doi/10.1103/PhysRevResearch.2.023068
https://books.google.com/books?id=iDckv0W52cQC
https://books.google.com/books?id=iDckv0W52cQC
http://link.springer.com/10.1007/978-3-540-30726-6
http://link.springer.com/10.1007/978-3-540-30726-6
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
http://www.jstor.org/stable/2003354
http://dx.doi.org/10.1146/annurev-fluid-122316-045020
https://link.springer.com/article/10.1007/s40687-019-0183-3
https://link.springer.com/article/10.1007/s40687-019-0183-3
http://arxiv.org/abs/2204.03911
http://arxiv.org/abs/2204.03911
https://www.sciencedirect.com/science/article/pii/S0377042700005100
https://epubs.siam.org/doi/abs/10.1137/1.9781611970425
http://arxiv.org/abs/2208.03680
http://arxiv.org/abs/2208.03680


Published in Transactions on Machine Learning Research (04/2023)

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer. Machine
learning–accelerated computational fluid dynamics. Proc. Natl. Acad. Sci. U. S. A., 118, May 2021. (∧∧∧ 2,
3, 7, 8, 10, 11, 12, 17)

David A. Kopriva. Implementing Spectral Methods for Partial Differential Equations: Algorithms for Sci-
entists and Engineers. Springer Publishing Company, Incorporated, 1st edition, 2009. ISBN 9048122600.
(∧∧∧ 3)

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Multipole Graph Neural Operator for Parametric Partial Differential Equations.
In Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20,
2020. (∧∧∧ 2)

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stu-
art, and Anima Anandkumar. Fourier Neural Operator for Parametric Partial Differential Equations.
arXiv:2010.08895 [cs, math], May 2021. arXiv: 2010.08895. (∧∧∧ 2, 11)

Björn List, Li-Wei Chen, and Nils Thuerey. Learned Turbulence Modelling with Differentiable Fluid Solvers.
arXiv:2202.06988 [physics], February 2022. arXiv: 2202.06988. (∧∧∧ 2, 3, 8, 12)

Robert I. McLachlan and G. Reinout W. Quispel. Splitting methods. Acta Numerica, 11, 2002. doi:
10.1017/S0962492902000053. (∧∧∧ 5)

Siddhartha Mishra. A machine learning framework for data driven acceleration of computations of differential
equations. Mathematics in Engineering, 1, 2018. ISSN 2640-3501. doi: 10.3934/Mine.2018.1.118. (∧∧∧ 3)

Steven A. Orszag. On the Elimination of Aliasing in Finite-Difference Schemes by Filtering High-
Wavenumber Components. Journal of the Atmospheric Sciences, 28, September 1971. ISSN 0022-4928,
1520-0469. doi: 10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2. (∧∧∧ 10)

Stephen B. Pope. Turbulent Flows. Cambridge University Press, August 2000. ISBN 9780521598866. (∧∧∧ 2,
12)

Stephen B Pope. Ten questions concerning the large-eddy simulation of turbulent flows. New Journal of
Physics, 6, March 2004. ISSN 1367-2630. doi: 10.1088/1367-2630/6/1/035. (∧∧∧ 2)

Christopher D Roberts, Retish Senan, Franco Molteni, Souhail Boussetta, Michael Mayer, and Sarah PE
Keeley. Climate model configurations of the ECMWF Integrated Forecasting System (ECMWF-IFS cycle
43r1) for HighResMIP. Geoscientific model development, 11, 2018. (∧∧∧ 2)

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: Convolutional Networks for Biomedical Image
Segmentation. In Nassir Navab, Joachim Hornegger, William M. Wells, and Alejandro F. Frangi (eds.),
Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015, Cham, 2015. Springer
International Publishing. ISBN 978-3-319-24574-4. (∧∧∧ 2)

Hidetsugu Sakaguchi. Chaotic dynamics of an unstable Burgers equation. Physica D: Nonlinear Phenomena,
129, May 1999. ISSN 0167-2789. doi: 10.1016/S0167-2789(98)00317-0. (∧∧∧ 9, 16)

Omer San and Romit Maulik. Extreme learning machine for reduced order modeling of turbulent geophys-
ical flows. Physical Review E, 97(4):042322, April 2018. doi: 10.1103/PhysRevE.97.042322. Publisher:
American Physical Society. (∧∧∧ 3)

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter W. Battaglia.
Learning to Simulate Complex Physics with Graph Networks. arXiv:2002.09405 [physics, stat], September
2020. arXiv: 2002.09405. (∧∧∧ 2)

Kimberly Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff, Jonathan
Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez. Learned Coarse Models for
Efficient Turbulence Simulation. arXiv:2112.15275 [physics], January 2022. arXiv: 2112.15275. (∧∧∧ 2, 5, 6,
8, 10, 11, 17)

14

https://www.pnas.org/content/118/21/e2101784118
https://www.pnas.org/content/118/21/e2101784118
https://dl.acm.org/doi/10.5555/1643564
https://dl.acm.org/doi/10.5555/1643564
https://dl.acm.org/doi/abs/10.5555/3495724.3496291
http://arxiv.org/abs/2010.08895
http://arxiv.org/abs/2202.06988
https://www.cambridge.org/core/journals/acta-numerica/article/abs/splitting-methods/122F5736DAF3D88598989E68FE4D2EF2
https://www.aimspress.com/article/doi/10.3934/Mine.2018.1.118
https://www.aimspress.com/article/doi/10.3934/Mine.2018.1.118
http://journals.ametsoc.org/doi/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
http://journals.ametsoc.org/doi/10.1175/1520-0469(1971)028<1074:OTEOAI>2.0.CO;2
https://iopscience.iop.org/article/10.1088/1367-2630/6/1/035
https://doi.org/10.5194/gmd-11-3681-2018
https://doi.org/10.5194/gmd-11-3681-2018
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://link.springer.com/chapter/10.1007/978-3-319-24574-4_28
https://www.sciencedirect.com/science/article/pii/S0167278998003170
https://link.aps.org/doi/10.1103/PhysRevE.97.042322
https://link.aps.org/doi/10.1103/PhysRevE.97.042322
http://arxiv.org/abs/2002.09405
http://arxiv.org/abs/2112.15275
http://arxiv.org/abs/2112.15275


Published in Transactions on Machine Learning Research (04/2023)

Gilbert Strang. On the Construction and Comparison of Difference Schemes. SIAM Journal on Numerical
Analysis, 5, 1968. doi: 10.1137/0705041. (∧∧∧ 5)

Adam Subel, Ashesh Chattopadhyay, Yifei Guan, and Pedram Hassanzadeh. Data-driven subgrid-scale
modeling of forced Burgers turbulence using deep learning with generalization to higher Reynolds numbers
via transfer learning. Physics of Fluids, 33(3):031702, March 2021. ISSN 1070-6631, 1089-7666. doi:
10.1063/5.0040286. arXiv:2012.06664 [physics]. (∧∧∧ 3)

Eitan Tadmor. The Exponential Accuracy of Fourier and Chebyshev Differencing Methods. SIAM Journal
on Numerical Analysis, 23, 1986. doi: 10.1137/0723001. (∧∧∧ 4)

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized Fourier Neural Operators.
arXiv:2111.13802 [cs], November 2021. arXiv: 2111.13802. (∧∧∧ 2)

Lloyd N. Trefethen. Spectral Methods in MATLAB. Society for industrial and applied mathematics (SIAM),
2000. (∧∧∧ 2, 3, 4)

Kiwon Um, Raymond, Fei, Philipp Holl, Robert Brand, and Nils Thuerey. Solver-in-the-Loop: Learning
from Differentiable Physics to Interact with Iterative PDE-Solvers. In NeurIPS 2020, June 2020. (∧∧∧ 7, 9)

Rui Wang, Karthik Kashinath, Mustafa Mustafa, Adrian Albert, and Rose Yu. Towards Physics-informed
Deep Learning for Turbulent Flow Prediction. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, 2020. (∧∧∧ 2)

David L Williamson. Equivalent finite volume and Eulerian spectral transform horizontal resolutions estab-
lished from aqua-planet simulations. Tellus Ser. A Dyn. Meteorol. Oceanogr., 60, January 2008. (∧∧∧ 12)

P K Yeung and K Ravikumar. Advancing understanding of turbulence through extreme-scale computation:
Intermittency and simulations at large problem sizes. Phys. Rev. Fluids, 5, November 2020. (∧∧∧ 4)

Z. Yin, H.J.H. Clercx, and D.C. Montgomery. An easily implemented task-based parallel scheme for the
Fourier pseudospectral solver applied to 2D Navier–Stokes turbulence. Computers & Fluids, 33(4):509–520,
2004. ISSN 0045-7930. doi: 10.1016/j.compfluid.2003.06.003. (∧∧∧ 19)

Fisher Yu and Vladlen Koltun. Multi-Scale Context Aggregation by Dilated Convolutions. In Yoshua Bengio
and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016, San Juan,
Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. (∧∧∧ 18)

15

https://doi.org/10.1137/0705041
http://arxiv.org/abs/2012.06664
http://arxiv.org/abs/2012.06664
http://arxiv.org/abs/2012.06664
https://doi.org/10.1137/0723001
http://arxiv.org/abs/2111.13802
https://doi.org/10.1137/1.9780898719598
http://arxiv.org/abs/2007.00016
http://arxiv.org/abs/2007.00016
http://dx.doi.org/10.1145/3394486.3403198
http://dx.doi.org/10.1145/3394486.3403198
https://doi.org/10.1111/j.1600-0870.2008.00340.x
https://doi.org/10.1111/j.1600-0870.2008.00340.x
https://link.aps.org/doi/10.1103/PhysRevFluids.5.110517
https://link.aps.org/doi/10.1103/PhysRevFluids.5.110517
https://www.sciencedirect.com/science/article/abs/pii/S004579300300077X
https://www.sciencedirect.com/science/article/abs/pii/S004579300300077X
http://arxiv.org/abs/1511.07122


Published in Transactions on Machine Learning Research (04/2023)

Appendix

A Unstable Burgers

For convenience to the reader, we now provide the details of this equation as described in Sakaguchi (1999).
Writing Equation (5) in Fourier space yields a convenient representation. Consider the k-th wavenumber:

∂tûk = −(ĝ(k) + ν)k2ûk + f̂k (7)

where f̂k represents the contribution of the nonlinear term and ĝ is the Fourier transform of the convolution
g. Now we can simply let ĝ(k) = −.04e−16k2 . (Note: In Sakaguchi (1999), the authors simply define g is
Fourier space).

As shown in Figure 8, this definition for g amplifies low wave numbers while damping high wave numbers
allowing for more complex dynamics than the original Burgers’ Equation.
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Figure 8: Plot of the scaling factor of the diffusion term in the Unstable Bergers’ equation for each wave
number k.

B Data generation

All training data was generated using pseudospectral solvers. We split the linear and nonlinear terms of the
equation into implicit and explicit terms respectively, and used a Crank-Nicolson time stepping scheme with
low storage fourth order Runge-Kutta, as described in Appendix D.3 of Canuto et al. (2007). Time step
sizes were chosen according to the Courant–Friedrichs–Lewy (CFD) condition on the simulation grid, and are
proportional increased for coarser simulations. Downsampling was then performed in space (Sec. 3.4) and in
time. High resolution trajectories were downsampled to the target resolution (e.g. N = 32 or N = 64 grid
points) using a block filter in Fourier space. Gibbs Phenomena were then removed from the downsampled
trajectories using a low-pass filter as described in Section 3.4.

For simplicity, in Section 2.2 we assumed that the spatial domain of u is [0, 2π]. It is often convenient to
regard the KS Equation and unstable Burgers’ as having a larger domain since the domain size dictates the
degree of chaos.

We generated data according to the following parameters:
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Kuramoto-Sivashinsky

• Spatial domain: [0, 64], to match Bar-Sinai et al. (2019)

• Number of samples: 16

• Warm-up time: 800.0

• Simulation time: 800.0

• Reference simulation grid: 1024

• Reference simulation time step: 0.020 833 3

• Viscosity: ν = 0.01

Unstable Burgers’

• Spatial domain: [0, 40π]

• Number of samples: 16

• Warm-up time: 613.592

• Simulation time: 50 000

• Reference simulation grid: 1024

• Reference simulation time step: 0.061 359 2

• Viscosity: ν = 0.01

2D Turbulence (Kolmogorov Flow)

• Spatial domain: [0, 2π]× [0, 2π]

• Number of samples: 16

• Warm-up time: 40.0

• Simulation time: 30.0

• Reference simulation grid: 2048× 2048

• Reference simulation time step: 0.000 219 140 11

• Viscosity: ν = 1.0× 10−3

• Drag coefficient: α = 0.1

• Constant forcing f((x, y)) = −k cos(ky) with k = 4, which matches the velocity forcing from Kochkov
et al. (2021) acting on vorticity.

For each set of parameters, we created a training and a validation dataset, which only differ in the random
seed used to generate the initial conditions. All evaluation metrics are reported on the held-out validation
data. By sample we mean a sample from the initial conditions, thus 16 samples refers to a dataset which
was constructed from 16 distinct initial conditions.

C Learned model configurations

We followed the general architecture for Encoder-Process-Decoder models described in Stachenfeld et al.
(2022) but with different hyperparameters for 1D and 2D equations.
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Encoder and Decoder modules. The Encoder and Decoders modules consisted of a single convolutional
layer with kernel size = 5. For 1D models we used 128 channels and for 2D models we used 64 channels.

Process module. The Process module consistent of residual blocks that uses dilated convolutions (Yu &
Koltun, 2016), interspersed with ReLU nonlinearities. Dilation rates are written as (1, 2), which denotes a
two-layer network whose first layer has a dilation rate of one (e.g. no dilation), and second layer has dilation
rate of two. For 1D models we used three residual blocks and for 2D Kolmogorov flow we used two blocks.

For 1D models the Process module had three layers with kernel size = 3 and no dilation, i.e. with rates (1, 1, 1).

For Kolmogorov flow, we also used kernel size = 3. We experimented with the following di-
lation rates: (1, 2) and (1, 2, 4, 2, 1). For each of these, we tried the following learning rates:
[1e−5, 5e−4, 2.5e−4, 1.0e−4, 5.0e−3, 1.0e−3]. While different models did seem to prefer certain dilation
configurations, there was no general pattern across all models. For example, EPD with (1, 2) had the best
performance whereas for our split operator method, (1, 2, 4, 2, 1) had better performance.

Neural network parameter initialization. We also tested for the sensitivity to neural network param-
eter initialization shown in Figure 1, Right. From the dilation configuration by learning rate sweep described
above, we selected the best hyperparameter setting then tried 5 different random seeds for the neural network
parameter initialization. Layer biases were initialized to zero and layer weights were initialized by truncated
normal distributions.

Learning rates for 1D models. Generally, we found that performance was not significantly affected by
learning rate, once a stable learning rate was found.

Number of unroll steps. The number of unroll steps for Kolmogorov flow was set to 32, and for both
KS equation 8 and unstable Burgers’ it was set to 8.

Optimizer. All machine learning models were trained using the Adam optimizer with β1 = 0.9, β2 = 0.99
and ε = 1e−8. Our 2D turbulence models use a global batch size of 64 and train for 5e5 optimization steps.
Each model takes approximately 65 wall-clock hours to train distributed across 8 TPU v4 cores.

Final model. Weights used for validation, including the learning curves plotted in Figure 7, use an expo-
nential moving average of weights from training, with decay constant of 0.98.

Input/output scaling. Models which use `2-loss generally make a normality assumption about error
distribution. When this assumption is violated, the gradient of the parameters is often too large at the
beginning of learning resulting in unstable trajectories which are impossible to recover from. To address
this, we observed the scale of the errors with an untrained model and then rescaled the outputs of the
Learned-Correction component so that the errors had variance one. Specifically, we used the following
scales:

• KS equation: 0.5

• Unstable Burgers’: 0.1

• Kolmogorov Flow: 0.01

We found that for Kolmogorov Flow, it also helped to scale the inputs to the Learned-Correction term. We
used a scale of 0.2 for all models on Kolmogorov Flow.

D Background: Computational Fluid Dynamics

Velocity-solve operation. By velocity-solve we mean a routine for mapping vorticity to velocity. Roughly
speaking, this involves solving for the stream function and then uses the stream function to compute the
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velocity which is the standard approach. We do this in the frequency domain by inverting the Laplace
operator and scaling by the frequency mesh in the x and y-directions appropriately. A quick sketch can be
found in Yin et al. (2004).

Courant–Friedrichs–Lewy (CFL) condition. The CFL condition dictates the required time-step size
given a spatial step-size to ensure stability of numerical solutions to PDEs. Informally, the time-step size
cannot exceed the maximum rate of change (velocity) of the system. Thus,

∆x
∆t ≤ Cvmax (8)

where ∆x is given by the desired spatial resolution, the maximum velocity vmax is computed empirically by
running progressively finer simulation until convergence, and C often depends on the type of time-stepping
scheme.

Implicit and explicit time integration schemes. Explicit refers to the usual forward Euler integration
scheme whereas implicit refers to the backward Euler integration scheme. The backward method, while more
stable, often involves solving an equation algebraically to obtain an update step, e.g. ut+1 in terms of ut –
thus the term implicit since it defines an update step only implicitly. Both methods are standard practice
in any form of numerical simulation, and the choice of either type of method depends on the properties of
the equation being solved.
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