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ABSTRACT
Multimodal Large Language Models (MLLMs) have showcased
remarkable advances in handling various vision-language tasks.
These models typically consist of a Large Language Model (LLM),
a vision encoder and a connector structure, which is used to bridge
the modality gap between vision and language. It is challenging
for the connector to filter the right visual information for LLM ac-
cording to the task in hand. Most of the previous connectors, such
as light-weight projection and Q-former, treat visual information
for diverse tasks uniformly, therefore lacking task-specific visual
information extraction capabilities. To address the issue, this paper
proposes Q-MoE, a query-based connector with Mixture-of-Experts
(MoE) to extract task-specific information with text-driven rout-
ing. Furthermore, an optimal path based training strategy is also
proposed to find an optimal expert combination. Extensive exper-
iments on two popular open-source LLMs and several different
visual-language tasks demonstrate the effectiveness of the Q-MoE
connecter. We will open our codes upon publication.

CCS CONCEPTS
• Computing methodologies → Natural language processing;
Computer vision.

KEYWORDS
Multimodal Large LanguageModel, Query-Based Connector,Mixture-
of-Experts

1 INTRODUCTION
Visual-Language Multimodal Large Language Models (MLLMs)[2,
5, 10, 16, 21, 22, 27] exhibit significant potential in handling various
visual-language tasks, such as Visual Question Answering(VQA)[12,
28, 32], Image Captioning[25, 35] and Referring Expression Com-
prehension(REC)[17].

Instead of starting from scratch, most of MLLMs are built on
Large Language Models (LLMs) for inheriting the powerful capabil-
ity of LLMs. A typical MLLM consists of a LLM, a vision encoder
and a connector. The vision encoder, typically ViT[8], is used to
encode visual inputs for MLLM. The connector maps visual codes
to inputs of the LLM. Given a visual encoder, the connector solely
determines what visual information will be transferred to the LLM.
It is the bottleneck of visual information, and, therefore, crucial
for the MLLM to accomplish various vision-language tasks. It is
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Figure 1: Structure comparison between Q-MoE and the pre-
vious single expert connector. Q-MoE includes Mixture of task
experts and a text-guided router. The text embedding is used to
select expert in each layer. Note that blue lines donate vision stream
and black lines donate text stream.

challenging for the connector to filter the right visual information
for LLM according to the task at hand.

Existing connectors mainly include two types of designs. One
is a projection layer used in LLaVA[27], GIT[37], InfMLLM[41],
FROMAGe[19], Shikra[4] and DreamLLM[7] etc, by which visual
codes are directly mapped into the word embedding space by a
trainable projection matrix. It is a lightweight structure with the
merit of quick training. However, it is difficult for the projection
itself to transfer task-specific visual information to the LLM; al-
though instruction fine-tuning is helpful to alleviate the problem,
an extra large number of visual instructions are needed. The other
is query-based connector as used in BLIP2[21], InstructBLIP[5],
RegionBLIP[42], MiniGPT4[43],mPLUG-owl[39],VistaLLM[30] and
VPGTrans[40], etc. Q-former [21] is a typical query-based connec-
tor. It is a Transformer which introduces a set of learnable query
vectors as image inputs to extract visual features from the visual
encoder by cross-attention. Two-stage training makes the learnable
query vectors in Q-Former learn to extract visual representation
that is most informative of the text and tokens.

Textual information is introduced by cross-attending learnable
query vectors in the Q-former structure. It brings an effective text-
based visual information extraction. However, as pointed out in
[21], the model does not achieve an improved VQA performance
when providing the LLM with the in-context VQA example. We
argue that one reason is that more accurate visual information
for different tasks should be extracted. Inspired by the success of
Mixture-of-Expert (MoE)[15] in the pre-training language model
and LLM[20,31,9,29,44,11,24,38], we therefore try to employ the
MoE structure into Q-former as the second stage extractor for
more accurate visual information, where text embedding is used for
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expert routing. It also enhances the model’s capability of dealing
with various different vision-language tasks with different experts.
Furthermore, different from previous MoE training, we explore
expert path based MoE training.

On the whole, this paper proposes Q-MoE, a new Query-based
connector aiming to utilize the Mixture-of-Expert(MoE) to achieve
more accurate text-driven visual information. Specifically, we build
a MoE structure into Q-former as well as a novel router, Cross-
Router, which routes different query tokens to their Task Experts
(modelling by Feed-Forward Networks (FFNs)) by making use of
cross attention between the text representation and output of each
expert. Furthermore, an optimal expert path based training method,
ExpertPath, is employed. Instead of selecting expert layer-wise, an
optimal expert path across multiple layers is selected for training.
It turns local training of experts in previous work into global opti-
mization of experts. In this way, an expert is an expert path in our
model. It is, therefore, called optimal expert path based training,
which helps to maximize the effectiveness of expert combination.

We validate the effectiveness of Q-MoE structure with optimal
path based training strategy under the multi-task fine-tuning set-
ting, as well as zero-shot setting in various vision language tasks,
including general Visual Question Answering [12, 14], knowledge-
based VQA [28, 32], image captioning[25], and text-based image
captioning tasks(TextCaps)[35]. Our model achieves remarkable
improvements compared with the previous Q-former structure.

The contributions of our work are summarized as follows:

• We propose a novel connectorQ-MoE, a new structure of en-
abling Q-former with MoE with the text-driven router. This
structure enables second stage visual information extraction
for more accurate visual information for the text.

• We further develop the optimal expert path based training
strategy, ExpertPath, for MoE, which treats an expert as a
path consisting of several experts in different layers. This
approach upgrades the selection of layer-wise local expert
FFNs to the selection of optimal global FFN paths.

• Experiments conducted under multi-task settings as well as
zero-shot setting demonstrate the remarkable proficiency of
our model in various vision language tasks.

2 RELATEDWORK
2.1 Multimodal Large Language Models

(MLLMs)
To inherit the powerful capability of LLMs, most of the MLLMs
are built on the foundation of LLMs, with a visual encoder and a
connector to bridge the modality gap between vision and language.

There are two lines to develop the connector among the cur-
rent works. The first line simply uses a projection module to align
representation of each modality[27, 37,41, 19, 4, 7]. The projection
module can be a one or two-layer MLP. It is a lightweight structure
and offers the advantage of rapid training. Although works follow-
ing this line can project representations effectively, redundancy and
low calculation efficiency still exist. Notably, as the resolution of im-
ages increases, the token numbers of one image and the associated
computation cost would escalate dramatically. Furthermore, it is

difficult for the projection to transfer the task-specific visual infor-
mation to the LLM, causing a performance decline in downstream
tasks.

Differing from the first line, works in the second line could
decrease the representation cost of a single image. Flamingo[2]
introduces the Perceiver Resampler, which sorts to a set of learn-
able latent queries to interact with variably sized visual features
outputted by the vision encoder through layers or cross-attention
and FFNs. Q-former is proposed by BLIP2[21]. It is initialized by
a BERT-base[6] model with an inserted cross-attention layer ev-
ery two layers, where n learnable tokens are taken as queries and
visual hidden states as keys and values. Q-former is broadly used
to multiple other MLLMs [5, 42, 43, 39, 30, 40, 16]. InstructBLIP[5]
leverages Q-former by concatenating query tokens and instructions
to extract the instruction-aware visual features. LLaMA-VID [22]
abstracts one frame in a video to 2 tokens, one is a text-guided
context token from a context-attention module, while the other is
a visually-enriched content token. These query-based connectors
fuse text-related visual information into query tokens and input
them into the LLMs. However, they treat visual information for
diverse tasks uniformly, lacking of task-specific extraction capabili-
ties. To address such issues, we design a Mixture of Experts(MoE)
structure in Q-former along with text-driven routing to extract
more task-relevant visual information.

2.2 Mixture-of-Experts (MoE)
Mixture-of-Experts (MoE)[15] is a hybrid model consisting of multi-
ple sub-models, known as experts, combining the outputs of experts
via a router in an input-dependent way. Each of these experts has its
unique set of trainable weights, enabling them to generate distinct
representations for each input based on contextual information.

The MoE has been thoroughly investigated in the field of Com-
puter Vision[31], Natural Language Processing [9, 44] and Multi-
modal Learning[29]. The core component within the MoE architec-
ture is the router, which determines the extent to which experts are
differentiated. Works related to router design can be categorized
into hard router [3, 23, 34] and soft router[11, 20, 24, 29]. In the
hard router mode, each expert is typically pre-defined as a specific
pattern without the need for router learning. Soft routers facilitate
the dynamic distribution of data among diverse experts, empow-
ering each to concentrate on its specialized area and attain model
sparsity.

The Mixure-of-Experts structure has achieved remarkable suc-
cess in pre-training language models and Large Language Models.
Gshard[20] scales Transformer models in LLMs by replacing alter-
nate Transformers’ FeedForward layers with Sparsely-Gated MoE
layers. Furthermore, findings from [33] suggest that the LLMs en-
hanced with MoE exhibit more significant benefits from instruction
tuning when compared to dense LLMs. Recently in the multimodal
domain,[24] transforms LLaVA[27] structure to the MoE type, and
its 3B sparse-activated model achieves comparable performance
with 7B models. [11] proposes MoCLE, the Mixture of Cluster-
conditional LoRA Experts architecture, in which the routing of
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Figure 2: Architecture of Q-MoE and Optimal expert path based training Strategy. The left side is the architecture of our Q-MoE
based MLLMs which consists of a vision encoder, the Q-MoE and a LLM. The right side illustrates the optimal expert path based training
strategy. We only show the Expert components and their connections in transformers.

LoRA experts is based on the pre-defined clustering result of sam-
ples. Although MoCLE incorporates instruction-related informa-
tion into expert decision-making via clustering, this predetermined
clustering limits the flexibility and autonomy of the experts.

These methods typically integrate the MoE architecture into
LLMs, overlooking the encoding and transformation on the visual
side. Our work incorporates MoE in the connector of the MLLM,
instead of in LLM, to utilize different experts to filter more accurate
task-specific visual information for the MLLM. Meanwhile, instead
of the hard router, we focus on designing a text-driven soft router,
Cross-Router, effectively routing query tokens based on sample
semantics. Furthermore, we design an optimal expert path based
training method to help maximize the effectiveness of the experts
combination.

3 METHOD
3.1 Overview
As shown in Figure 2, the overall structure of the MLLM consists of
a LLM, a Q-MoE (in yellow box), and a visual encoder. The Q-MoE
acts as the connector between LLM and visual encoder.

Q-MoE consists of a Self Attention Block, a Cross Attention
Block, a Text FFN, and a Task Experts Block (the green box in
yellow box). Same as that in Q-former, Q-MoE employs a set of

learnable query tokens to interact with text and vision in Self Atten-
tion Block and Cross Attention Block. The Text FFN encodes text
representation. Different from that in Q-former, Q-MoE includes
an additional Task Experts Block, where multiple Expert FFNs and
a text-driven Cross-Router are designed. With an optimal expert
path based training strategy, the Task Experts Block is helpful to
route right visual information for the task in hand. We describe
Task Experts Block in Section 3.2 , and the optimal expert path
based training strategy in Section 3.3.

3.2 Task Experts Block
Task Experts Block consists of the Cross-Router, multiple Expert
FFNs and the General FFN. We denote 𝑁𝑞 the number of query
tokens, 𝐸 the number of Expert FFNs, and 𝐷 the hidden states
dimension. Given a set of query tokens 𝑥 ∈ 𝑅𝑁𝑞×𝐷 as input, we
product a cross attention between each output of certain Expert FFN
and the output of Text FFN in Cross-Router to help decide which
Expert FFNs is activated. The General FFN remains continuously
activated. Ultimately, the Q-MoE sums the output values of Expert
FFNs and the General FFN as the overall output.

Firstly, after interacting with text and vision through attention,
query tokens are fed into multiple Expert FFNs. Each FFN is a
single Feed Forward Network(Equation (1)), including two weight
matrix𝑊1 and𝑊2, an gelu activation, layer normalization (LN)

2024-04-13 11:17. Page 3 of 1–9.
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and residual connection. Simultaneously, the text hidden state is
processed through a Text FFN. We denote the output of the 𝑖𝑡ℎ
Expert FFN as 𝑓𝑖 (𝑥) ∈ R𝑁𝑞×𝐷 and the output from text FFN as
𝑓𝑡𝑒𝑥𝑡 (𝑥) ∈ R𝑁𝑞×𝐷 .

𝑓𝑖 (𝑥) = 𝐿𝑁
(
𝑥 +

(
𝑊2𝜎gelu (𝑊1𝑥)

))
, 𝑖 ∈ 1, 2, ..., 𝐸 (1)

Cross-Router is responsible to assign a probability value to each
Expert FFN. In Cross-Router, we take 𝑓𝑖 (𝑥) and the hidden state
ℎ𝐶𝐿𝑆 ∈ R1×𝐷 corresponding to the CLS token in 𝑓𝑡𝑒𝑥𝑡 (𝑥) as input.
Specifically, we treatℎ𝐶𝐿𝑆 as query and 𝑓𝑖 (𝑥) defined in Equation (1)
as key and value.We useℎ𝐶𝐿𝑆 and 𝑓𝑖 (𝑥) to calculate attention scores
and weight output for 𝑓𝑖 (𝑥) resulting in the output 𝑐𝑖 (𝑥) ∈ R1×𝐷 ,
as shown in Equation (2).

𝑐𝑖 (𝑥) = softmax
(
ℎ𝐶𝐿𝑆 𝑓𝑖 (𝑥)𝑇√

𝐷

)
𝑓𝑖 (𝑥) (2)

Then the routing vector𝑊𝑔 ∈ R𝐷×1 to multiply 𝑐𝑖 (𝑥). We ap-
ply a softmax function to all concatenated𝑊𝑔𝑐𝑖 (𝑥), and output
the activation probability score 𝑔(𝑥)𝑖 of 𝑖𝑡ℎ expert to determine
whether and how much it is activated according to Equation (3).
The motivation behind this design is to make the decision of FFN
activation based on the combination of processing results of the
certain FFN and the textual and task-specific information stored in
[CLS] token. We also experiment with several kinds of Routers and
will further analyze their advantages and disadvantages in Section
5.2.

𝑔(𝑥)𝑖 =
(
softmax

( [
𝑊𝑔𝑚(𝑐0 (𝑥)), . . . ,𝑊𝑔𝑚(𝑐𝐸 (𝑥))

] ) )
𝑖

(3)

For a given layer 𝑗 , the output of the 𝑖𝑡ℎ Expert is 𝑒 𝑗
𝑖
(𝑥), which

is the product of the Expert FFN output 𝑓 𝑗
𝑖
(𝑥) and the routing

probability value 𝑔 𝑗 (𝑥)𝑖 .

eji (𝑥) = 𝑔
𝑗 (𝑥)𝑖 𝑓 𝑗𝑖 (𝑥) (4)

The optimal expert path selection and training strategy will be
explained in detail in Section 3.3. In this section, we only denote
the expert output value on the optimal expert path at the top layer
of Q-MoE as eTop (𝑥).

The General FFN is a parallel structure to the Expert FFNs as
shown in Figure 2. We expect the Expert FFNs to learn to process
information based on task-specific distinctions, while the General
FFN learn generic knowledge. Since the General FFN is continuously
activated, in Equation (3), we have 𝑖 = 1 and 𝑔(𝑥) = 1, and define
its output in Equation (5).

êj (𝑥) = 𝑓 𝑗 (𝑥), 𝑥 ∈ 𝑅𝑁𝑞×𝐷 (5)

Ultimately, the overall output of Q-MoE defined in Equation (6)
is the combination of the selected Expert FFN’s output and the
General FFN’s output at the top layer.

eQMoE (𝑥) = êTop (𝑥) + eTop (𝑥) (6)

3.3 Optimal Expert Path based Training
PreviousMixture-of-Experts (MoE) normally selects the Top-K(K>=1)
experts in each layer. This is essentially a greedy search, where the
locally optimal choice of expert is made at each layer. We introduce
dynamic program for optimal path based expert path selection as
shown in Figure 2. The idea is if we consider the FFNs as nodes
and the connections between FFNs across layers as edges, different
combinations of Expert FFNs in different layers can be seen as an
different expert paths. Each path is a task expert. For the given
set of query tokens, our goal is to find the optimal path that best
leverage task information.

Algorithm 1: ExpertPath Algorithm
Input: ExLayers, E
Output: finalPath

1 isFirst <- True
2 for j in ExLayers do
3 if isFirst then
4 optimPaths <- (Path(𝑒 𝑗1 ), Path(𝑒

𝑗

2 ),...,Path(𝑒
𝑗

𝐸
))

5 isFirst <- False
6 continue
7 else
8 candidateExperts <- (Expert(𝑒 𝑗1 ), Expert(𝑒

𝑗

2 ),
Expert(𝑒 𝑗

𝐸
));

9 candidatePaths <- None
10 for path in optimPaths do
11 for expert in candidateExperts do
12 path.expertList.add(expert)
13 path.pathProb ∗ = expert.expertProb
14 candidatePaths.add(path)

15 optimPaths <- TopK(candidatePaths)

16 return finalPath <- path with highest pathProb in
optimPaths;

Specifically, assuming Task Experts Blocks are inserted into 𝑛
transformer layers with 𝐸 experts per layer, there are a total of 𝐸𝑛
expert paths. Each path can be considered a form of encoding for a
specific task or sub-task. We name the optimal expert path selection
algorithm as ExpertPath.

The ExpertPath algorithm(see Algorithm 1) can be described
as follows. Let ExLayers be the layers which Task Experts Blocks
are inserted, each layer contains 𝐸 Task Experts. Two structures:
Expert and Path are used. The attribute of the Expert is the acti-
vation probability expertProb, also known as 𝑔(𝑥)𝑖 calculated by
the router defined in the Equation (3). The attributes of the Path
include the experts selection list expertList through layers and the
path overall activation probability pathProbwhich is the production
of expertProb of all experts in the path.

The algorithm begins with initializing the optimal paths (optim-
Paths) with the first layer’s Task Experts as the initial nodes. Fur-
thermore, the current 𝑗𝑡ℎ layer’s experts (𝑒 𝑗1, 𝑒

𝑗

2, ..., 𝑒
𝑗

𝐸
) calculated by

Equation (4) are considered as candidate experts (candidateExperts).
For each expert in the candidateExperts, we add it to the expertList

2024-04-13 11:17. Page 4 of 1–9.



Un
pu
bli
sh
ed
wo
rki
ng
dra
ft.

No
t fo
r d
ist
rib
uti
on
.

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Q-MoE: Connector for MLLMs with Text-Driven Routing Conference’17, July 2017, Washington, DC, USA

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Method Connector LLM GQA OKVQA VQAv2 AOKVOA COCOCap TextCaps Average
test-dev val val test val val VQA Total

LLaVA Projection LLaMA-13B 41.3 54.4 - - - - - -
LLaVA-1.5 Projection Vicuna-7B 62.0* - 78.5* - - - - -
Qwen-VL CrossAttn Qwen-7B 59.3* 58.6* 79.5* - - - - -
MiniGPTv2 Projection LLaMA2-7B-chat 60.3* 56.9 - - - - - -
InstructBLIP Q-former Vicuna-7B 49.2 62.1* - 75.7* - - - -
InstructBLIP Q-former Vicuna-13B 49.5 - - - - 75.6* - -
QA-ViT Projection FlanT5-XXL - - 76.5* - 138.2* 101.7* - -

BLIP2 Q-former FlanT5-XXL 59.60 53.43 75.81 76.68 135.38 105.38 66.38 84.38
Ours Q-MoE FlanT5-XXL 60.39 53.26 76.72 76.76 135.41 107.29 66.75 84.95

BLIP2 Q-former Vicuna-7B 62.46 57.52 78.18 75.20 138.60 106.61 68.34 86.43
Ours Q-MoE Vicuna-7B 63.61 58.64 79.56 75.02 139.21 108.08 69.21 87.35

Table 1: Results of fine-tuning under the multi-task setting. Performance comparison of our Q-MoE based MLLM and some other
representative MLLMs with the same size. Notice results with * means the training split of the corresponding dataset is used during tuning.

of each path to form new paths. The new path’s pathProb is updated
by multiplying the expertProb of the newly added expert. These
new paths forms the candidatePaths.Among these candidate, the
local𝑇𝑜𝑝𝐾 selection is made, temporarily storing the𝑇𝑜𝑝𝐾 optimal
paths sorted by the pathProb as input for the next layer. At the top
layer, the path with the highest overall activation probability value
in expertProb is selected as the finalPath.

Compared to the greedy selection algorithm of vanilla Mixture-
of-Experts , ExpertPath temporarily requires additional storage to
store optimPaths, including expertList of the current layer’s 𝑇𝑜𝑝𝐾
optimal paths and their corresponding activation values pathProb.
The 𝑇𝑜𝑝1 selection is made at the very top layer. Since the tem-
porarily stored𝑇𝑜𝑝𝐾 information remains within the current batch,
the batch size will increase to 𝐾 times its original size as shown
in Figure 2. Since the overall hidden state of Q-MoE is not large
and the batch size only increases in the Q-MoE part, there is not a
significant impact on the overall memory usage.

In the Task Experts Block, ExpertPath algorithm is used for path
selection. At the very top layer, the results of finalPath is added
to the results of the General FFNs, serving as the overall output
according to the Equation (6).

3.4 Training Details
We fine-tune the model through the language modeling loss, where
the frozen LLM is tasked to generate the text conditioned on the
query tokens representation from Q-MoE and the text instructions.
Simultaneously, we introduce an importance auxiliary loss to help
balance the usage of Task Experts in Q-MoE. The two losses are
weighted using an 𝛼 hyperparameter.

L = L𝐿𝑀 + 𝛼 ∗ LImp (7)

LanguageModeling loss.Given the query𝑥 = [𝑥1, 𝑥2, · · · , 𝑥𝑁𝑞
]

from Q-MoE and instruction 𝑡 = [𝑡1, 𝑡2, · · · , 𝑡𝑁𝑖
] , LLM generates

the output sequence 𝑦 = [𝑦1, 𝑦2, · · · , 𝑦𝑁𝑜
], where 𝑁𝑖 and 𝑁𝑜 rep-

resents the length of the input and output sequence. The formula
is:

L𝐿𝑀 = −
𝑁∑︁
𝑖=1

log 𝑝 (𝑦 | 𝑥, 𝑡) (8)

Importance auxiliary Loss. The importance of each expert 𝑒𝑖
is defined as the sum of normalized probability values for each sam-
ple in the batch assigned to 𝑒𝑖 . Note that 𝑋 refers the whole batch,
𝑥 refers to the specific sample, and 𝑔(𝑥)𝑖 is defined in Equation
(3).

Imp𝑖 (X) :=
∑︁
x∈X

𝑔(𝑥)𝑖 (9)

The importance auxiliary loss is the squared coefficient of varia-
tion of the importance distribution over experts.

LImp (X) =
(

std(Imp(X))
mean(Imp(X))

)2
∝ var(Imp(X)) (10)

4 EXPERIMENTS
We first conduct multi-task fine-tuning experiments to assess the
capabilities of Q-MoE along with different LLMs, including Vicuna-
7B and FlanT5-XXL. While ensuring that the other components
of the model and the fine-tuning datasets remains constant, we
compared the performance of fine-tuning Q-former connector and
Q-MoE connector based on the architecture of BLIP2. We also
evaluate the zero-shot performances of these two connectors after
fine-tuning. Finally, we give ablation studies from several different
aspects.

4.1 Experimental Setup
Model Settings. Following BLIP2[21], we utilize EVA-CLIP[36] as
the vision encoder. We initialize the model based on checkpoints
pretrained on image-text pairs without instruction tuning provided
by [5]. The parameter weights of Expert FFNs and General FFN are
initialized by the parameter weights of query FFN in Q-former at the
specific layer. We insert the Task Experts Block, which consists of 3
Expert FFNs and 1 General FFN, into the top 6 Transformer layers in
Q-MoE. As for the optimal expert path based training strategy, we
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Method LLM VizWiz VSR HM NoCaps
Acc Acc Acc CIDEr

Flamingo 9B 28.80 - 57.00 -
Qwen-VL Qwen-7B 35.20 - - 121.40
MiniGPTv2 LLaMA2-7B-chat 32.90 60.60 58.20 -
BLIP2-PT Vicuna-7B 25.30 50.00 50.60 107.50
InstructBLIP Vicuna-7B 34.50 54.30 59.60 123.10

BLIP2-FT Vicuna-7B 31.35 60.55 52.60 103.85
+Q-MoE Vicuna-7B 31.79 61.04 53.80 104.54

Table 2: Zero-shot performances on the held-out datasets. VSR and HM denote HatefuleMemes and Visual-Spacial Reasoning. We
report accuracy for Vizwiz, VSR and HM, and report the CIDEr score for NoCaps. BLIP2-PT refers to the BLIP2 model after pretraining and
text-image alignment without instruction tuning. BLIP2-FT refers to the model fine-tuned under our multi-task setting. The version and
setting of Q-MoE correspond with the model listed in Table 1. The metrics for other models are from publicly reported papers.

do Top-3(𝐾 = 3) local optimal selection at each layer and perform
Top-1 expert path selection at the top layer. The hyperparameters
mentioned above constitute the default settings for the method
described in our paper. We freeze the vision encoder and the LLM
and only fine-tune the parameters in Q-MoE. We provide additional
training details in supplementary.

Dataset Settings. We conduct experiments on two major types
of tasks, VQA and image captioning. For VQA, we involve GQA[14]
for scene understanding and compositional task, OK-VQA[28] for
external knowledge based task, VQAv2[12] for general task and A-
OKVQA[32] for multi-choice task. For image captioning, we involve
COCO caption[25] for general captioning task and TextCaps[35] for
scene-text captioning task. For VQA tasks, the text input of Q-MoE
is the sample’s question and that of LLM is the question with a
random selected instruction. For image captioning tasks, we utilize
a random instruction to notify the task as the input of both Q-MoE
and LLM. The detailed instruction list is provided in supplementary,
alongside further details on the training dataset composition and
sampling strategy. Overall, our whole training dataset comprises
approximately 2M assets. We conduct performance evaluation on
the evaluation datasets corresponding to the aforementioned fine-
tune tasks and incorporate 4 additional tasks to assess whether the
model retains its generalizability after fine-tuning. The zero-shot
evaluation datasets include 3 VQA datasets (VSR[26], VizWiz[13]
and HM[18) and 1 caption dataset(NoCaps[1]).

4.2 multi-task fine-tuning Experiments
We compare the performances of our Q-MoE based model with
some other Representative MLLMs with same size on six different
datasets. Mainly, We compare Q-MoE and Q-former while remain-
ing other components and training details the same. As demon-
strated in Table 1, our Q-MoE structure based MLLM outperforms
Q-former based MLLM significantly regardless of whether the LLM
is decoder-only model(Vicuna) or encoder-decoder model(FlanT5).

We conduct the average of all VQA evaluation scores in General
VQA and average of all tasks in General Total. Under FlanT5-XXL,
our Q-MoE gains 0.4 in General VQA and 0.6 in General Total. While
under Vicuna 7B, Q-MoE shows improvements of 0.9 and 1.0 respec-
tively. InstructBLIP proves that FlanT5-based model outperforms in
multi-choice task and Vicuna-based model in open-ended task, but

Q-MoE mitigates the tendency of over-fitting single task and show
balance in multiple tasks through Task Experts Block. By treating
information from different tasks differently, Task Experts Block can
make Q-MoE learn multiple tasks relatively well, enhancing overall
model performance.

Moreover, Q-MoE exceeds QA-ViT by using similar datasets
in fine-tuning. With LLM and ViT frozen, by only fine-tuning Q-
MoE, we’ve also achieved comparable results compared to open-
source models fine-tuning LLM(LLaVA, Qwen-VL, MiniGPT-v2 and
InstructBLIP).

4.3 Zero-shot Experiments
In this section, we evaluate the zero-shot performance of our fine-
tuned Q-MoE and Q-former. According to Table 2, as a connec-
tor, Q-MoE demonstrates a certain improvement in zero-shot per-
formance compared to Q-former, suggesting that this connector
structure offers enhanced generalizability for held-out datasets.
Compared to BLIP2-pretrain, there is an improvement in zero-shot
performance on VQA tasks(VSR, VizWiz and HM), though there
is a slight decline on the NoCaps dataset. It is worth noting that
our method outperforms the same architecture’s BLIP2-pretrain
and InstructBLIP on the VSR dataset. Moreover, relative to other
models with larger amounts of fine-tuning parameters, such as
Flamingo, Qwen-VL, and MiniGPTv2, our zero-shot performance
remains competitive.

5 ABLATION STUDIES
In this section, to verify the effectiveness of Q-MoE, we conduct
extensive experiments to understand the performance improve-
ments better and analyze the impact of our method in Section 5.1.
First, we study the effect of Cross-Router and ExpertPath training
strategy which donate the main components of Q-MoE. Then in
Section 5.2, we compare the differences of designed routing func-
tions. Next, we analyze the numbers and combination of experts
Section 5.3. Furthermore, we demonstrate the adaptability of the
Q-MoE structure to multiple task combinations by increasing the
number of tasks in Section 5.4.

Due to space constraints, in the ablation studies, we report the
metrics for VQA and Caption tasks by averaging their respective in-
dicators. Specifically, "VQA" represents the average evaluation score
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Components VQA Caption Average Drop

Q-MoE 69.21 123.65 87.35
- CROSS 68.98 123.57 87.17 -0.18
- ExpertPath 68.73 123.24 86.90 -0.27

Table 3: Ablation of Main Components.We separately replace
Cross-Router and ExpertPath from Q-MoE. Default settings are
marked in gray.

routing Strategy VQA Caption Average

- - 68.34 122.60 86.43

PRE
Path
Optim

68.29 122.64 86.41
CLS 68.50 121.81 86.27
POST 68.31 123.14 86.59
CROSS 68.60 124.15 87.12

Table 4:Abaltion of routing. Compare different routing functions,
including PRE, CLS, POST, CROSS. We experiments with the Q-
MoE with 4 Task Experts and with the ExpertPath training strategy.
First line represents the results of 1 expert without routing and
strategy. Model utilizing Cross-Router is highlighted in grey.

across vqa-related datasets (GQA, VQAv2, OKVQA, AOKVQA),
while "Caption" denotes the average evaluation score for caption-
related datasets (COCOCaption, TextCaption). For detailed VQA
and Image Captioning evaluation scores, please refer to the Ap-
pendix in the supplementary.

5.1 Main Components
To investigate the effect of our core components, Cross-Router and
ExpertPath training strategy, we observed the overall impact by
removing these two components separately according to Table 3.
The first row presents the original setup of our Q-MoE.

The second row shows the replacement of Cross-Router with
POST-Router, which omits the CLS guided semantic insertion. It is
evident that there is a performance decline in both VQA and Cap-
tion tasks, indicating that incorporating CLS hidden state-related
semantic information into routing is necessary.

The third row describes the removal of the ExpertPath train-
ing strategy from Q-MoE, by reverting to the original vanilla MoE
approach. Specifically, we involve a greedy search for experts at
each layer, making single-layer decisions for the top1 expert. The
results show that ExpertPath significantly impacts the final per-
formance. This path search strategy more effectively identifies the
optimal combination of experts, surpassing the original greedy
search method in effectiveness.

5.2 Routing Functions
Determining how the inputs are routed to different experts. To
explore the effects of different routing styles, we conduct several
experiments as follows. We set the number of Expert FFNs in 4
and remove the General FFN. And we compare different activation
strategies, including PRE, POST, CLS and CROSS. PRE refers to
the vanilla MoE routing function which determines the expert

#Ex #GenEx #Param VQA Caption Average

1 188M 68.34 122.60 86.43
3 245M 69.03 123.48 87.18
2 1 245M 68.71 124.17 87.19
4 273M 68.60 124.15 87.12
3 1 273M 69.21 123.65 87.35
7 1 387M 68.77 123.96 87.16

Table 5: Ablation of Expert Setup and Combination. #Ex de-
notes the number of Expert FFNs and #GenEx denotes the number
of General FFNs. #Param means how many parameters are acti-
vated during training. Default setting is in grey.

Tasks VQA AOKVQA COCOCap TextCaps Average

VQA 65.67 65.67
67.31 67.31(+1.64)

+AOKVQA 66.83 72.49 68.24
67.08 74.32 68.89(+0.65)

+COCOCap 67.21 73.10 139.77 82.90
67.30 74.93 139.14 82.99(+0.09)

+TextCaps 66.92 75.20 138.60 106.61 86.43
67.27 75.02 139.21 108.08 87.35(+0.94)

Table 6: Ablation of Training Tasks. As the training dataset ex-
pands, we sequentially report the metrics for the evaluation set of
the fine-tuned datasets. "Average" refers to the average of the evalu-
ation scores across the datasets that participated in the assessment.

selection before FFN. As illustrated in Equation (2), the Cross-Router
operates on the cross attention result of the FFN’s output and [CLS]
token hidden states. POST and CLS Router only operates on the
FFN’s output and [CLS] token hidden states respectively. Detailed
equations of PRE, POST and CLS Router are in Appendix.

As shown in Table 4, Cross-Router which fuses the information
from FFN and sample semantic outperforms other Routers. There-
fore, using the CLS hidden state as a guide for sample semantics
during the routing process effectively directs the selection of the
FFN.

5.3 Experts Setup and Combination
We differentiate tasks in different extent by setting the number
and combination of experts. As demonstrated in Table 5, the in-
crease in the number of experts does not give rise to an increase in
overall performance. With a small number of experts, there is no
high requirement of task differentiation. While with a large number
of experts, there is a high requirement for routing, however, not
necessarily leading to performance improvement. With the join-
ing of general expert, we can regard the learning of task expert
as incremental learning, where general expert learns fundamental
knowledge and Task Expert learns incremental knowledge. Com-
bining general expert with multiple Task Experts is effective, and
among all it’s best to set 3 Task Experts and 1 general expert.
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Figure 3: Task-Specific Expert Path Selections. Vertical axis
represents the expert paths’ ids, horizontal axis represents different
tasks. Intensity of heatmap corresponds to the proportion of data
from each dataset allocated to the specific expert path.

5.4 Effects on multiple tasks
Among the six fine-tuning datasets we selected, VQA, GQA, and VQAv2
can be collectively considered as generative VQA tasks, while the sample
input spaces for AOKVQA(multi-choice VQA), COCOCaption(General cap-
tioning), and TextCaption(text-based captioning) are slightly different from
the former ones. We gradually involve these tasks and examine whether
Q-MoE can maintain stable performance across different numbers of tasks
in Table 6.

As we can see, Q-MoE out-performs Q-former in Generative VQA task
by 1.64 on General VQA metric. Additionally incorporate Multi-Choice
VQA, Q-MoE still gains 0.65 performance increase and shows significant
improvement in A-OKVQA. We believe that this is because the task forms
of Multi-Choice VQA and Open-Ended VQA are slightly different, and we
are able to bring performance gains by adding a Task-specific processing
structure that treats the two subtasks differently. Next, after introducing
Image Captioning Task, Q-MoE still outperforms Q-former by 0.09 and 0.94.

6 TASK-SPECIFIC EXPERT PATHS
To better capture how experts react to different tasks, we make visualization
of the expert paths on all datasets, using their evaluation set. As the heat-
map shown in Figure 3, under the setting of 3 task experts and 1 general
task, we select top-6 expert paths as shown in the vertical axis. The darker
block in heat-map, the more frequently task is routed into this expert path.
It is evident that samples from COCO caption and Text caption datasets are
primarily assigned to expert path 0 and 2. The VQAv2 dataset predominantly
utilizes expert path 2 and 3, while the GQA and OK-VQA tasks mainly
involve expert path 1 and 2. Despite being a VQA dataset, AOKVQA presents
a multi-choice task, which is slightly different from generative VQA dataset
and shows preference for expert path 4 and 5.

Ultimately, it shows different expert path preference between VQA tasks
and captioning tasks. Q-MoE could tell the slight difference in the distribu-
tion of tasks, proving the effectiveness of our expert routing mechanism.

7 DISCUSSION AND CONCLUSIONS
In this work, we introduced Q-MoE, an innovative connector to query task-
specific visual information utilizing a Mixture of task experts. We design

the Cross-Router to leverage sample semantics for guiding the selection
of task experts effectively. Meanwhile, we conceptualize the combination
of experts as expert paths, and design the ExpertPath training strategy.
This strategy aims to identify the optimal expert path, shifting from local
optimization to global optimization. Through extensive experimentation,
we have demonstrated the effectiveness of our method. It enhances the
performance of MLLMs under the multi-task setting.

Q-MoE aims to differentiate information within the connector in a task-
specific manner. Our findings highlight the pivotal role of designing a Router
capable of distinguishing between different tasks, and designing the strategy
to find the optimal expert collaboration. This paper presents Cross-Router
and ExpertPath as solutions to these critical points. Furthermore, we are
focusing on extending the application of Cross-Router and ExpertPath to
other components of MLLMS, broadening the utility of our approach. We
hope our method will inspire further research focusing on efficient expert
routing and more optimal expert training strategies.
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