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ABSTRACT

Large language models (LLM) are being increasingly applied to tasks requiring
commonsense reasoning. Despite their outstanding potential, the reasoning pro-
cess of LLMs is prone to errors and hallucinations that hinder their applicabil-
ity, especially in high-stakes scenarios. Several works have attempted to enhance
commonsense reasoning performance of LLMs by (i) using prompting styles that
elicit more accurate reasoning, (ii) utilizing the LLM as a semantic parser for a
symbolic reasoner, or (iii) enforcing the LLM to simulate a logical inference rule.
However, all these solutions have critical limitations: they are unable to leverage
the internal commonsense knowledge of the LLM in tandem with an axiomatic
knowledge base, they lack a mechanism to reliably repair erroneous inference
steps, and their application is restricted to small knowledge bases that fit the con-
text limit of the LLM. In this work, we present LLM-based Typed Hyperresolution
(LLM-TH), a logical commonsense reasoning framework that leverages “theory
resolution”, a concept from classical logical inference which enables integrat-
ing LLMs into the “resolution” inference rule, thus mitigating reasoning errors
and hallucinations and enabling verification of the reasoning procedure. LLM-
TH is also equipped with a mechanism for repairing erroneous inference steps
supported by theoretical guarantees. Using “Hyperresolution” and “Typed infer-
ence” schemes, we show that LLM-TH can efficiently reason over large knowl-
edge bases consisting of tens of thousands of rules with arbitrary predicate arities.
Our experiments on three diverse language-based reasoning tasks—preference
reasoning, multi-domain deductive reasoning, and geographical question answer-
ing—showcase that LLM-TH, using merely a BART 406M parameter NLI entail-
ment model, significantly reduces reasoning errors compared to baselines using
Llama3-70B, Gemini1.5-Flash, GPT-3.5-Turbo, and Mixtral-46.7B.

1 INTRODUCTION

The breakthrough in Large Language Models (LLMs) has significantly impacted AI research, paving
the way for deploying AI-powered systems in various tasks and applications. This huge impact is
primarily due to the outstanding performance of LLMs in tasks that require substantial reasoning
skills (Chang et al., 2024; Plaat et al., 2024). LLMs have also acquired commonsense understanding,
a critical element for interacting with the real world (Zhao et al., 2024; Valmeekam et al., 2024).
However, reasoning performance of LLMs is not infallible. They commonly show reasoning errors
and make hallucinations–generating incorrect outputs that seem valid–which hinders their reliable
deployment, particularly in high-risk tasks (Tonmoy et al., 2024; Zhang et al., 2023b).

To overcome these challenges in LLM-based reasoning, several approaches have been proposed
in the literature that can be broadly categorized into three groups: (i) Using prompting styles that
can elicit more accurate reasoning from the LLM (Wei et al., 2022; Kojima et al., 2022; Zhou
et al., 2022) or augmenting the prompt by retrieved information (Lewis et al., 2020b), (ii) using
the LLM to translate natural language problem and knowledge bases (KB) for a symbolic logical
solver (Olausson et al., 2023; Pan et al., 2023), and (iii) using the LLM to emulate a logical inference
rule to solve the reasoning problem (Kazemi et al., 2023; Lee & Hwang, 2024).

These works have notably advanced the logical reasoning performance of LLMs; yet, they are all
hindered by a number of important limitations: (a) Their application is limited to small KBs that can
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Figure 1: Workflow of LLM-TH shown with a preference reasoning example. Top: Using
LLM-based typed hyperresolution to compute proof scores for each recipe option to entail user
query. Negated query is the first active clause, and each resolvent is assigned a priority tu-
ple: (type entailment score, predicate entailment score, proof length score) and pushed to the prior-
ity queue (only the foremost clause is shown for priority queue of recipe 1 which becomes the next
active clause). LLM makes two mistakes: assigning a low score to “Souvlaki” entailing “Mediter-
ranean” and a high score to “cuttlefish” entailing “fish”. Bottom: Both kinds of mistakes can be
fixed after the insertion of repair axioms, resulting in the correct recommendation of Recipe 1.

fit into the context limit of the LLM, and are not scalable to perform reasoning on practical KBs such
as the widely-used Knowledge Graphs (KG) containing thousands of facts and axioms. (b) They are
restricted to perform reasoning on a complete KB containing all rules required to solve the problem.
However, assuming access to such KB is typically unrealistic in practical use cases, thus calling for
the necessity of a methodology to leverage the internal commonsense knowledge of the LLM in the
reasoning process. (c) All steps involved in the reasoning process are not transparent and thus, the
correctness of the final answer cannot be determined by inspecting the reasoning process. (d) Upon
observation of a reasoning error, they do not provide any reliable framework to fix the error and
ensure it will not occur in the future.

In this work, we aim to address these limitations by making the following contributions:

• We introduce LLM-based Typed Hyperersolution (LLM-TH), a framework for efficient
logical commonsense reasoning with KBs containing predicates of arbitrary artities, that
facilitates the incorporation of the internal commonsense knowledge of LLMs in the rea-
soning process. LLM-TH is founded on “theory resolution” (Stickel, 1985; Baumgartner,
1992), a concept from classical logical reasoning that allows for the incorporation of spe-
cialized theorem provers into the resolution inference rule. (Section 3.1)

• We equip LLM-TH with a mechanism for incorporating the type information of the vari-
ables and constants in the problem domain to prune the proof search space and terminate
the exploration of reasoning paths that are unlikely to succeed at very early stages. Also,
using hyperresolution, an extension of resolution that enables combining clauses to per-
form several resolution steps simultaneously, we make LLM-TH an efficient and scalable
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Figure 2: An example of typing mechanism of LLM-TH. The binary predicate “contains” is com-
mon among clauses from different domains. Left: Application of resolution rule without considering
types leads to resolving a literal about “recipes” with complementary literals from domains such as
“animals”. Each incorrect resolution results in a new branch that will be explored but leads to fail-
ure, making the process inefficient. Right: in typed resolution, only literals with consistent variable
and constant types will be unified, therefore pruning the search space and enhancing efficiency.

reasoning framework for logical commonsense reasoning with LLMs. We show that LLM-
TH is easily scalable to KBs consisting of tens of thousands of rules. (Section 5.2.1)

• We show that by providing access to the exact axioms and facts used at every reasoning
step, LLM-TH results in a verifiable and faithful reasoning performance. Furthermore,
we propose a reliable repair methodology for missed inferences and incorrect reasoning
steps due to LLM hallucinations and missed inferences, and provide theoretical proof that
it reliably fixes reasoning errors. (Section 4)

• We show that by using the theory hyperresolution framework, LLM-TH is able to leverage
the internal commonsense knowledge of the LLM to compensate for KB incompleteness
and perform accurate and reliable reasoning. (Section 5.2.2)

• We experiment with LLM-TH on three different tasks involving commonsense reasoning:
preference reasoning, multi-domain deductive reasoning, and geographical QA, showcas-
ing the superiority of LLM-TH in terms of answer and reasoning accuracy over Chain
of Thought (Kojima et al., 2022; Wei et al., 2022) and retrieval augmented generation
(RAG) (Lewis et al., 2020b) baselines using orders of magnitude larger LLMs. (Section 5)

2 RELATED WORKS

Eliciting Stronger Reasoning from LLMs As LLMs scale, they exhibit emergent behaviors such
as the capability of solving problems that involve reasoning (Chang et al., 2024; Huang & Chang,
2022). However, their reasoning performance often suffers from errors and incorporating hallu-
cinated facts in their judgments (Tonmoy et al., 2024; Zhang et al., 2023b). Several works have
shown that with certain prompting techniques such as Chain of Thought (CoT) (Wei et al., 2022;
Kojima et al., 2022), Tree of thought (Yao et al., 2024), Selection-Inference (Creswell et al., 2022),
Self-consistency (Wang et al., 2022), Least to most prompting (Zhou et al., 2022), etc., more accu-
rate reasoning can be elicited from LLMs. Retrieval Augmented Generation (RAG) (Lewis et al.,
2020b) has also been noted as an effective approach in reducing reasoning errors and hallucinations
by including relevant content retrieved from a KB in the prompt to condition LLM’s reasoning on
dependable information. These methods have made significant progress in advancing the reasoning
behavior of LLMs, but even applying them does not guarantee an accurate reasoning behavior from
the LLM. Furthermore, since the LLM is entirely in charge of doing the reasoning, there is no con-
trol over the reasoning process and its correctness cannot be verified (Shanahan, 2024; Pan et al.,
2023). Moreover, the performance of these methods has been shown to degrade when being applied
to long-horizon (Dziri et al., 2024) and out-of-domain (Saparov et al., 2024) reasoning tasks as well
as problems involving negation (Anil et al., 2022) and contraposition (Zhang et al., 2024).

Formal Reasoning with LLMs To offer more control over the reasoning process, two groups of
work have been proposed for performing formal reasoning,with the use of LLMs: (i) Semantic pars-
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ing methods remove the LLM from reasoning and only use it to translate the problem into a symbolic
format and delegate the reasoning task to a symbolic solver (Pan et al., 2023; Olausson et al., 2023).
(ii) Works enforcing the LLM to emulate an established logical inference rule such as backchaining
by performing tasks like goal decomposition, rule selection, and fact-checking (Kazemi et al., 2023;
Lee & Hwang, 2024). While these groups of works make significant progress in mitigating halluci-
nations, they both rely on the existing rules in the KB and have no particular mechanism to leverage
the rich commonsense knowledge of the LLM in their reasoning. Although recent works (Toroghi
et al., 2024a) have used resolution inference rule for logical LLM-based reasoning, they are re-
stricted to unary predicates and can only do reasoning over small KBs.

LLM-based Commonsense Reasoning Commonsense knowledge, the general understanding
and knowledge that humans possess about the world, is a significant cognitive ability of humans.
Endowing AI agents with commonsense knowledge has been a longstanding challenge (Rajani et al.,
2019). LLMs have made significant progress in this regard and have shown to obtain outstanding
commonsense knowledge (Zhao et al., 2024; Krause & Stolzenburg, 2023). However, incorporat-
ing the commonsense knowledge of the LLMs in the reasoning process also comes with the risk
of hallucinations and reasoning errors (Shen & Kejriwal, 2023; Toroghi et al., 2024b). Therefore,
proposing a methodology for leveraging this rich commonsense knowledge in the formal reasoning
process to enable reasoning over incomplete KBs in a verifiable and efficient manner is essential.

3 METHODOLOGY

In this section, we first introduce the theoretical concepts that our method is founded on, and next
explain our proposed reasoning framework. In this work, we consider a function and equality-free
first-order logical (FOL) syntax in clausal normal form (Chang & Lee, 2014).

Resolution Rule and Hyperresolution Resolution is a sound and complete inference rule which
is widely used in logical reasoning. From two premise clauses containing complementary literals,
resolution rule derives a resolvent clause by canceling (resolving) the complementary literals, e.g.,

A(x) ∨B(x, y) ¬B(w, z) ∨ C(z)

A(x) ∨ C(y)
,

(1)

under the unification θ = {x/w, y/z}. Repeated application of the resolution rule will either result
in a contradiction, e.g., deriving both A(x) and ¬A(x) indicating an inconsistent clause set, or
reaching a point where no further resolutions are possible.

The efficiency of the repeated application of the resolution rule can be substantially improved by
hyeperresolution (Robinson, 1965), an extension of resolution that enables combining multiple res-
olution steps in one inference step. Concretely, it resolves positive literals with all possible matching
negative clauses simultaneously, e.g.,

A(x) ∨B1(x, y)... ∨Bn(x, y) C(z) ∨ ¬B1(w, z) ∨ ... ∨ ¬Bn(w, z)

A(x) ∨ C(y)
, θ = {x/w, y/z}.

(2)

LLM-based Theory Resolution Application of the resolution rule is originally restricted to
clauses with complementary literals that share identical predicates. Theory resolution (Stickel, 1985;
Baumgartner, 1992) relaxes this condition and broadens the applicability of the resolution rule by
integrating special-purpose theories into resolution. Based on theory resolution, given two clauses
c1 = A(x) ∨ B(x, y) and c2 = ¬C(w, z) ∨ D(z), if a theorem prover T identifies B(x, y) and
¬C(w, z) under unification θ = {x/w, y/z} to be unsatisfiable (i.e., ∀x∀yB(x, y) ∧ ¬C(x, y) ⊢T
⊥), the clauses can be resolved despite lacking complimentary literals with identical predicates:

A(x) ∨B(x, y) ¬C(w, z) ∨D(z)

A(x) ∨D(y)
, θ = {x/w, y/z}.

(3)

In this work, we use an LLM as the theory that identifies the unsatisfiable natural language predi-
cates to perform reasoning via theory resolution. Translating natural language to symbolic form, as
semantic parsing methods do, is substantially restricted. For example, they map “packs some heat”
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and being “spicy” to completely different symbolic predicates. Therefore, a symbolic reasoner is
unable to discern their entailment relationship unless given explicit axioms.

Using LLM-based theory resolution, we can integrate the LLM’s commonsense knowledge into the
reasoning process to find entailments between predicates and constants without requiring explicit
axioms. We do this in an extended version of FOL in which predicates, functions, and constants
are no longer symbols, but natural language text. In this logical system, which we call natural
language logic, the unsatisfiability condition in theory resolution reduces to natural language entail-
ment. In other words, if an LLM identifies a natural language predicate B to entail predicate D,
i.e., B(x) ⊢LLM D(x), and therefore, B(x) ∧ ¬D(x) ⊢LLM ⊥, then literals B(x) and D(x) can be
resolved. For instance, given clauses c1 =“packs some heat”(x) and c2 = ¬“spicy” (x)∨Q(x), in
which Q(x) is another literal with a natural language predicate, since the LLM identifies the natural
language entailment “packs some heat” ⊢LLM “spicy”, a theory resolution step can be performed as

“packs some heat”(x) ¬“spicy”(x) ∨Q(x)

Q(x)
.

(4)

LLM-based Typed Theory Resolution Although resolution is one of the most widely used infer-
ence rules in logical reasoning with the key properties of being sound and complete, its application
on real-world large-scale knowledge bases is computationally expensive. One of the key challenges
is that the space of possible resolutions—the combinations of literals and clauses that can potentially
be unified and resolved—can become enormous, and grows exponentially during the resolution pro-
cess, leading to inefficiencies in finding contradictions or valid derivations. This challenge is often
addressed by choosing particular orderings that first explore resolution steps that are more likely to
lead to valid proof (Baumgartner, 1992; Sanner & McIlraith, 2006).

In addition to proposing an ordering strategy which is explained in 3.1, we introduce the notion of
typing into theory resolution which considerably prunes the space of possible resolutions. Many
of the created resolvents during the resolution process, each opening a new search branch, are cre-
ated by unifying variables and constants with inconsistent ontological types. For instance, a literal
“small”(x) in a clause about vehicles can be resolved with a literal “small”(y) which is about ani-
mals. However, the search branch created by this resolvent is very unlikely to result in a valid proof
as it is created by a semantically invalid unification, and in future steps, the proof will be stopped as
no further resolutions could be made. By associating variables and constants with their ontological
types and considering type consistency in unification, we can significantly prune the space of allow-
able resolutions, by preventing the exploration of type inconsistent branches from the beginning.

Variable types can be introduced into an FOL sentence as unary predicates, e.g., “animal”(x).
Considering a universally quantified sentence in FOL as

∀x∀y H(x) ∧ T (y) ∧A(x, y) =⇒ R(x, y), (5)

where H(.) and T (.) are unary predicates indicating types of their corresponding variables, we
equivalently write the above sentence in the typed FOL as

∀x∀y A(x, y) =⇒ R(x, y)|x : H, y : T, (6)

where, x : H and y : T indicate that x and y are of type H and T respectively. This clause can be
equivalently written in the clausal form as

∀x∀y ¬A(x, y) ∨R(x, y)|x : H, y : T, (7)

Next, consider another clause in typed FOL as

∀w∀z ¬R(w, z) ∨ S(w, z)|w : M, z : N. (8)

By introducing the unifier θ = {w/x, z/y}, we can perform typed resolution between the two
clauses 7 and 8 as

¬A(x, y) ∨R(x, y)|x : H, y : T ¬R(w, z) ∨ S(w, z)|w : M, z : N

¬A(x, y) ∨ S(x, y)|x : C, y : D
,

(9)

where C and D, the types of resolvent variables are C ≡ H⊓M and D ≡ T ⊓N using the following
lemma which is proved in Appendix A. Here, ⊓ indicates unary type intersection (conjunction).
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Algorithm 1 LLM-TH Algorithm
1: Input: K, q, max proofs, max iters
2: proofs← ∅
3: PQ← ∅ // PQ is an initially empty priority queue.
4: PQ.push(¬q, (1, 1, 0)) // Negation of the initial query q has priority (1, 1, 0), PQ is ordered by

Equation 15
5: while i < max iters do
6: while PQ ̸= ∅ ∧ i < max proofs do
7: c← PQ.pop()
8: if c = ⊥ then
9: max proofs++

10: proofs← proofs ∪ {c}
11: else
12: βc ← candidate clauses in K with similar arity to c
13: for ctarget ∈ K do
14: Perform hyperresolution to compute resolvent cres of c and ctarget using Equation 2
15: PQ.push(cres, (ρ

t(cres), ρ
e(cres), ρ

l(cres)) // cf. Equations 11, 13 and 14
16: Output: proofs

Lemma 1. Resolving two disjunctive clauses c1 and c2 that include complimentary literals
l(x1, ..., xn)|x1 : T1, ..., xn : Tn and ¬l(y1, ..., yn)|y1 : H1, ..., yn : Hn under the unifier
θ = {x1/y1, ..., x2/y2} creates a resolvent cres with type variables x1 : T1 ⊓H1, ..., xn : Tn ⊓ Tn.

Typed resolution can be directly extended to typed theory resolution in our natural language-based
logical system by resolving literals B(x1, ..., xn)|x1 : T1, ..., xn : Tn and D(y1, ..., yn)|y1 :
H1, ...,Hn if the LLM identifies the natural language predicate B to entail D, i.e.,
B(x1, ..., xn) ⊢LLM D(y1, ..., yn) if their unified variables have consistent types. In the next section,
we elaborate on how type consistency is checked in our LLM-TH framework.

3.1 LLM-TH ALGORITHM

This section presents LLM-TH, our proposed algorithm for efficient logical commonsense reason-
ing, which is based on theory resolution (Stickel, 1985; Baumgartner, 1992) extended to LLM theory
resolution with predicates of arbitrary arity, hyperresolution, and simultaneous type inference. Its
workflow is shown in a worked example in Figures 1 and 2, and formalized in Algorithm 1.

Problem Definition Let Q denote a set of queries and K represent a knowledge base (KB) com-
prising a set of axioms A and facts F , all expressed in natural language logic and clausal form with
arbitrary predicate arities. In this work, we propose an inference rule i that, for each query q ∈ Q,
identifies a set of proofs, denoted as proofs. Each proof f ∈ proofs consists of a subset of clauses in
K, and is assigned a priority score ρ reflecting the priority of the proof.

Algorithm To proveK entails the query q via resolution, we need to show that repeatedly using the
resolution rule on K∧¬q leads to a contradiction, and is thus unsatisfiable. Following the backward
chaining paradigm that offers efficiency benefits (Poole & Mackworth, 2010), we pick ¬q as the first
active clause to be resolved with a clause from K. At each step, given an active clause c =

∨|c|
i=1 li

where each li is a literal of arbitrary arity, any clause ctarget ∈ K as ctarget =
∨|ctarget|

i=1 ltargeti is
considered a candidate clause to be theory resolved with c, yielding the resolvent cres, if at least one
(li, ltargeti) pair can be formed where li and ltargeti have equal arities. AsK is often large and expands
further with new resolvents being derived as resolution advances, efficiency is a key desideratum,
which LLM-TH achieves by prioritizing candidate clauses based on two criteria: (i) type consistency
and (ii) predicate entailment between the active and candidate clauses.

Restricting the Space of Resolutions with Typing: The first mechanism employed in LLM-TH to
enable efficient resolution is restricting the space of allowable resolutions by proposing typed the-
ory resolution. Since in typed theory resolution, the types of variables in the resolvent clause are
determined by the conjunction of the types of variables in their parent clause, LLM-TH prioritizes

6
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clauses with variable types that align with those of the active clause, thereby increasing the chance
of obtaining valid types in the resolvent. For example, if two candidate clauses are considered to be
resolved with an active clause of variable type “Animal”, LLM-TH prioritizes a candidate clause
with a unifying variable type “Mammal” over one with type “Vehicle”.

LLM-TH leverages the commonsense knowledge of the LLM to obtain the probability of entailment
between the variable types. Formally, for the pair of literals with equal arities (l, ltarget), denoting
the set of argument types of l and ltarget as T = {ti} and T ′ = {t′i} respectively, the plausibility of
unifying each of their variables can be obtained by calculating the entailment probabilities between
each ti and t′i. Since entailment is an asymmetric relation and its direction is unknown, we need to
calculate both ti ⊢LLM t′i and t′i ⊢LLM ti to obtain the type consistency score. The average of type
entailment scores for arguments determines ρtype(cres), the overall type priority score for cres.

ρtype(cres) =
1

|Ti|
Σi (max{p(ti ⊢LLM t′i), p(t

′
i ⊢LLM ti)}) . (10)

Since the main objective is to find the most plausible proofs, i.e., the sequences of most plausible
theory resolution steps, we define the first entry of our priority score for each cres as the overall type
consistency score of all resolution steps beginning from ¬q that led to its derivation. Let Pcres be the
set of parent clauses of cres; the proof type consistency score of cres is inductively defined as

ρt(cres) =

( ∏
c′∈Pcres

ρt(c′)

)
· ρtype

cres
. (11)

Resolution Ordering based on Predicate Entailment: Assigning the type consistency scores prunes
the resolution search space ensuring that only clauses with compatible argument types will be con-
sidered for resolution. To further enhance efficiency, LLM-TH prioritizes the remaining clauses
based on their potential for being part of a plausible proof considering their predicate entailment.
As explained, in our LLM-based theory resolution framework, LLM entailment is used to identify
unsatisfiability of clauses. Therefore, the greater probability the LLM assigns to ltarget entailing l,
the more plausible it becomes to resolve l and ltarget. Therefore we define the plausibility of a theory
resolution step between c and ctarget by resolving literals l and ltarget generating cres, denoted by ρentail

cres

ρentail
cres

= p(ltarget ⊢LLM l). (12)

These plausibility scores can help us prioritize the resolvent clauses based on their predicate entail-
ment. For example, in the scenario depicted in Figure 1, resolving “Sicilian” with “Mediterranean”
results in a higher entailment score compared to resolving “Mustard-flavored” with “Mediter-
ranean”. Hence, it is prudent to prioritize the former resolvent, as it is more likely to contribute
to the final proof. As the definition of the overall proof type consistency score, we can compute the
overall predicate entailment score inductively to obtain the second entry of our priority score as

ρe(cres) =

( ∏
c′∈Pcres

ρe(c′)

)
· ρentail

cres
. (13)

Ultimately, among equally plausible proofs, we prioritize shorter ones that circumvent unnecessary
steps. We define the proof length score, a third priority score that accounts for this preference. The
proof length score of cres is derived inductively from the maximum length of its parent clauses as

ρl(cres) = 1 + max
c′∈Pcres

ρl(c′). (14)

Each resolvent cres is assigned the priority tuple (ρt(cres), ρ
e(cres), ρ

l(cres)) and then pushed to the
priority queue PQ, in which the order of clauses is specified as

c1 ⪯ c2 ⇐⇒ [ρt(c1) > ρt(c2)] ∨ [(ρt(c1) = ρt(c2)) ∧ (ρe(c1) > ρe(c2))] (15)

∨ [(ρt(c1) = ρt(c2)) ∧ (ρe(c1) = ρe(c2)) ∧ (ρl(c1) < ρl(c2)].

By applying this prioritization scheme, the type consistency priority score first applies a hard filter to
avoid exploration of resolvents with invalid types, and the predicate entailment and length priorities
together enable an efficient inference via LLM-based theory resolution. These efficiency enhance-
ments enable LLM-TH to be applied to large-scale KBs. Furthermore, it is able to reason over
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incomplete KBs by benefiting from the commonsense knowledge of the LLM to fill in the missing
axioms by identifying entailing predicates in the theory resolution process.

At the start of each iteration of LLM-TH, the clause with the highest rank in PQ becomes the
active clause. When a resolution step yields a contradiction, the proof and its respective priority
score are added to the set of found proofs by backtracking the ancestor clauses. The algorithm
terminates when either a certain number of proofs are found or the maximum number of iterations
is exceeded. Notably, LLM-TH is not limited to proving a single query; instead, it finds a set of
proofs and assigns a strength score to each. This feature enables it to evaluate the likelihood of each
query being entailed, which is critical for tasks requiring ranking, such as answering multiple-choice
questions. Furthermore, LLM-TH can reason on incomplete KBs by using the LLM’s commonsense
knowledge to fill in the missing axioms by identifying entailed predicates via theory resolution.

4 FIXING ERRONEOUS RESOLUTIONS IN LLM-TH

LLM-TH enables the verification of the reasoning process by providing access to atomic resolution
steps. Therefore, if an incorrect theory resolution step is performed due to an erroneous entailment
probability assigned by the LLM, the source of failure can be easily identified. Here, we show that
by adding a repair rule to the KB, LLM-TH can recover from its mistake and fix the reasoning. In the
example provided in Figure 1, the LLM’s mistake in assigning a low entailment score for “Souvlaki”
to entail “Meditteranean” leads to a missed inference. Also, incorrectly considering “cuttlefish” to
entail being a “fish” leads to incorrectly resolving these literals. However, introducing the correct
axiom ∀y“Souvlaki”(y) =⇒ “Meditteranean”(y) to the KB and introducing ¬(“cuttlefish” ⊢LLM
“fish”) fix these mistakes. We formalize this property here and provide its proof in Appendix B.
Proposition 1. Consider proof Pϕ

c using axiom ϕ that derives clause c. For any incorrect LLM
reasoning axiom ϕ, a Repair Axiom ϕ′ can be inserted such that Pϕ′

c will be produced before Pϕ
c .

5 EXPERIMENTS

We empirically evaluate LLM-TH1 on three different tasks representing commonsense reasoning
with KBs on different datasets and compare it against variations of four different baselines to com-
pare them from different aspects by answering the following questions:

• RQ1-Scalability: How does the reasoning performance of LLM-TH compare to baselines
when reasoning with large, but complete knowledge bases?

• RQ2-Reasoning with incomplete KBs: How effectively do LLM-TH and the baselines
use the LLM’s commonsense knowledge to compensate for the incompleteness of the KB?

• RQ3-Efficiency: How is the efficiency of LLM-TH influenced by typed hyperresolution?

5.1 TASKS AND DATASETS DESCRIPTION

• Preference reasoning: An exemplar commonsense reasoning task is providing recom-
mendations using natural language statements of user preferences and restrictions. We use
Recipe-MPR (Zhang et al., 2023a), a benchmark dataset for this task that consists of 500
queries stating user recipe preferences, e.g., “I want French food, but I’m on a budget”
and five-way recipe options. This dataset covers a broad range of commonsense reasoning
skills such as temporal reasoning and analogical reasoning.

• Multi-domain Deductive reasoning: Since established datasets for logical commonsense
reasoning with LLMs, e.g., ProntoQA (Saparov & He, 2022) and COPA-SSE (Brassard
et al., 2022), have small KBs with less than 20 facts and axioms per query, we find them
insufficient for evaluating the reasoning capability on large KBs. Thus, following the
approach in Saparov & He (2022), we create a deductive reasoning dataset using man-
ually written commonsense axioms and ground facts sampled from Wikidata knowledge
graph (Vrandečić & Krötzsch, 2014). This dataset contains more than 32k rules about five
different domains: Biological entities, foods, vehicles, drugs and diseases, and sports, and

1https://anonymous.4open.science/r/typed-logic-release-476D/
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Table 1: Reasoning performance of methods across the three datasets on complete KBs. The prefer-
ence reasoning dataset lacks an explicit rule base, making RAG-based baselines irrelevant.

Method Preference Reasoning Deductive Reasoning Geographical QA
Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro Accuracy RS Macro RS Micro

GPT-3.5 Turbo
Zero-Shot CoT 0.86±0.04 0.60 0.80 0.69±0.02 0.45 0.48 0.71±0.03 0.60 0.77
Few-Shot CoT 0.87±0.02 0.65 0.81 0.65±0.03 0.45 0.48 0.82±0.02 0.50 0.53
RAG + Zero-Shot CoT NA NA NA 0.68±0.02 0.85 0.92 0.74±0.01 0.80 0.88
RAG + Few-Shot CoT NA NA NA 0.69±0.02 0.65 0.84 0.83±0.02 0.75 0.84

Gemini-1.5-Flash
Zero-Shot CoT 0.84±0.04 0.60 0.75 0.60±0.01 0.40 0.81 0.78±0.03 0.20 0.51
Few-Shot CoT 0.86±0.02 0.55 0.79 0.66±0.05 0.20 0.71 0.79±0.02 0.25 0.54
RAG + Zero-Shot CoT NA NA NA 0.78±0.02 0.85 0.93 0.79±0.03 0.50 0.72
RAG + Few-Shot CoT NA NA NA 0.86±0.04 0.45 0.72 0.78±0.03 0.25 0.47

Llama3 70B
Zero-Shot CoT 0.87±0.01 0.55 0.80 0.80±0.03 0.15 0.77 0.78±0.01 0.25 0.57
Few-Shot CoT 0.91±0.01 0.70 0.84 0.78± 0.02 0.55 0.58 0.87±0.02 0.45 0.45
RAG + Zero-Shot CoT NA NA NA 0.78±0.01 0.50 0.81 0.87±0.030 0.40 0.65
RAG + Few-Shot CoT NA NA NA 0.80±0.02 0.75 0.80 0.91±0.02 0.65 0.71

Mixtral 46.7B
Zero-Shot CoT 0.79±0.03 0.60 0.84 0.59±0.02 0.30 0.66 0.71±0.02 0.50 0.70
Few-Shot CoT 0.74±0.02 0.65 0.83 0.67±0.01 0.45 0.53 0.80±0.01 0.45 0.49
RAG + Zero-Shot CoT NA NA NA 0.65±0.02 0.65 0.81 0.66±0.07 0.25 0.51
RAG + Few-Shot CoT NA NA NA 0.46±0.03 0.30 0.43 0.70±0.06 0.50 0.65

LLM-TH (BART 406M) 0.84 0.90 0.94 1.00 1.00 1.00 1.00 1.00 1.00

1000 queries that answering them requires 2 to 7 reasoning steps. We release this dataset
to encourage research on LLM-based commonsense reasoning on large-scale KBs.

• Geographical QA: Using the same approach for generating the multi-domain deductive
reasoning dataset, we create a KB about geographical entities, e.g., cities, deserts, muse-
ums, etc. containing more than 12k rules and 500 queries which we also release.

5.2 BASELINES AND EVALUATION

Existing formal reasoning methods with LLMs, i.e., semantic parsing methods and methods emulat-
ing inference rules, suffer from two limitations that make them inapplicable to our studied datasets:
(i) they cannot leverage the internal commonsense knowledge of the LLM and only rely on an ex-
plicit and complete rule base to perform reasoning, which the Recipe-MPR dataset lacks. (ii) They
are limited to small KBs that can fit into the LLM context size, but our studied KBs are much larger.
We use established methodologies for eliciting more faithful reasoning from the LLMs as our com-
parison baselines: (a) zero-shot CoT (Kojima et al., 2022) and (b) few-shot CoT (Wei et al., 2022),
and (c) RAG (Lewis et al., 2020b) using a dense retriever (Song et al., 2020) to find relevant rules
from the KB and prompting the LLM with zero-shot CoT and (d) few-shot CoT methods. We exper-
iment each of these baselines using strong common LLMs: (1) Gemini 1.5-flash, (2) Llama3 (70B),
(3) Mixtral (56.7B), and (4) GPT3.5 Turbo, while using BART large (Lewis et al., 2020a)2 (406 M)
trained on MNLI (Williams et al., 2018) dataset to obtain entailment probabilities for LLM-TH. We
also use pyDatalog3 for performing hyperresolution for grounding on the KB facts and use Gemini
1.5-flash to convert natural language axioms to clausal natural language logic form.

We evaluate the reasoning performance based on both, (1) the correctness of the final answer, mea-
sured by accuracy, and (2) the correctness of the reasoning process by evaluating proofs using the
reasoning score (RS) (Kazemi et al., 2023) metric which is manually calculated for 20 randomly
chosen responses in which the final answer was correct. RS is typically assessed as a binary deci-
sion based on whether the predicted proof is entirely aligned with the ground truth proof (Kazemi
et al., 2023; Lee & Hwang, 2024), which leads to both a single erroneous step and wholly flawed
reasoning being penalized equally. To achieve a more granular evaluation of the proofs, we calculate
both the conventional macro RS and following the idea of Min et al. (2023), we propose a metric
which we call micro RS. Let P be a provided proof and P ∗ a valid ground truth proof. Using the
indicator function I, we define the micro RS for each query as RSMicro = 1

|P |
∑

p∈P I(p ∈ P ∗).

2https://huggingface.co/facebook/bart-large-mnli
3https://pypi.org/project/pyDatalog/
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Table 2: Reasoning performance on incomplete KBs. Numbers in
parenthesis indicate the difference with the method’s performance on
a complete KB (Table 1) with ↓ (↑) showing a decrease (increase).

Method
Deductive Reasoning Geographical QA

Zero-Shot CoT Few-Shot CoT Zero-Shot CoT Few-Shot CoT

GPT-3.5-Turbo 0.65±0.01 (0.03↓) 0.54±0.04 (0.15↓) 0.60±0.02 (0.14↓) 0.64±0.03 (0.19↓)

Gemini-1.5-Flash 0.73±0.02 (0.05↓) 0.73±0.01 (0.13↓) 0.68±0.02 (0.11↓) 0.66±0.02 (0.11↓)

Llama3 70B 0.77±0.02 (0.01↓) 0.77±0.01 (0.03↓) 0.66±0.02 (0.21↓) 0.66±0.02 (0.25↓)

Mixtral 46.7B 0.50±0.04 (0.14↓) 0.48±0.02 (0.03↑) 0.53±0.03 (0.12↓) 0.58±0.03 (0.13↓)

LLM-TH 0.97 - 0.95 -

Deductive Reasoning Geographical QA
Dataset

0

2

4

6

8

10

12

Re
as

on
in

g 
St

ep
s 

(A
ve

ra
ge

) Untyped
Typed

Figure 3: Influence of typing
on the efficiency of the infer-
ence algorithm.

5.2.1 RQ1: Reasoning Performance on Complete KB Results of the reasoning performance
of different methods on complete KBs are provided in Table 1. On the preference reasoning task,
which has a small KB, although zero-shot and few-shot CoT with a large LLM such as Llama 3
(70B) yield superior accuracy, LLM-TH outperforms zero-shot and few-shot CoT with Mixtral and
is competitive with zero-shot CoT using GPT3.5 and Gemini despite using a much smaller LLM.
For the reasoning scores, LLM-TH exhibits a more correct and faithful reasoning process than all
other methods. On this task, since the dataset does not contain an explicit KB, RAG-based baselines
reduce to zero-shot and few-shot CoT. On larger KBs of deductive reasoning and geographical QA
tasks, the limitations of existing LLM-based methods are revealed as none of them compare to the
accuracy of LLM-TH. Furthermore, they all obtain imperfect reasoning scores, reflecting their hal-
lucinations and reasoning errors. On these datasets, LLM-TH performs standard resolution which is
a sound and complete inference rule, as reflected in the results. While complete KBs are impractical
in real-world use cases, results of this experiment highlight that existing baselines, as opposed to
LLM-TH, exhibit reasoning failures on large scale KBs even when they are complete.

5.2.2 RQ2: Reasoning Performance on Incomplete KBs To enable reasoning over practical
KBs, leveraging the commonsense reasoning ability of the LLM to compensate for KB incomplete-
ness is essential. To assess this capability, in our experiments on deductive reasoning and geographi-
cal QA datasets that have explicit KBs, we simulate KB incompleteness by omitting one of the rules
used in the proof of each query, to test whether the LLM can use its commonsense knowledge to
deduce, e.g., “paying taxes” implies “earning revenue”. Since few-shot and zero-shot CoT meth-
ods rely solely on the internal LLM knowledge, they are irrelevant to this RQ that examines the role
of KB incompleteness. Hence, we compare LLM-TH against variations of RAG with zero-shot and
few-shot CoT prompting. Results in Table 2 show that using the theory hyperresolution framework,
LLM-TH is able to achieve significantly higher accuracies compared to the RAG-based baselines
that clearly struggle with incompleteness compared to RAG results for complete KBs in Table 1.

5.2.3 RQ3: Influence of Typing on Efficiency To verify the efficiency enhancement offered by
introducing type information to the hyperresolution framework of LLM-TH, we perform an ablation
experiment by comparing the average number of reasoning steps that LLM-TH takes to identify
answers with an untyped variant of it that does not consider variable types in prioritizing resolutions.
In summary, the results of this experiment shown in Figure 3 indicate that typed hyperresolution
effectively reduces the proof length by half, which translates to a significantly reduced search space.

6 CONCLUSION

We proposed LLM-TH for logical commonsense reasoning with large and incomplete KBs. Using
theory resolution, LLM-TH integrates LLM commonsense knowledge into the resolution inference
rule to enable reasoning over incomplete KBs with arbitrary predicates. LLM-TH shows strong
performance: it matches or outperforms baselines that use orders of magnitude larger LLMs; its use
of an LLM-based typed hyperresolution approach yields high efficiency gains; and its transparency
and repairability establish it as a solution for factual and correct reasoning on large-scale KBs. In
summary, LLM-TH holds promise to significantly reduce hallucinations in LLM-based reasoning.
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Ethics Statement: By introducing LLM-TH, we tried to enhance the transparency and increasing
control over the reasoning process of LLM-based logical commonsense reasoning. However, draw-
ing logically valid conclusions does not necessarily mean that all axioms, rules, and the internal
commonsense knowledge of the LLM which are leveraged in the reasoning process follow ethical
requirements. A responsible and credible usage of LLM-TH, like any other reasoning framework,
requires careful considerations and assessments of the knowledge base, the underlying LLM, and
the user-defined axioms to ensure desired unbiased and ethical performance.

Reproducibility Statement: We release all our code and data in the supplementary materials,
also accessible on the LLM-TH anonymous repository4. We also explain the experimental setup and
dataset descriptions in Section 5, and include all prompts utilized for the LLM usage in Appendix
C, as well as in the supplementary materials.
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A PROOF OF LEMMA 1

Lemma 1. Resolving two disjunctive clauses c1 and c2 that include complimentary literals
l(x1, ..., xn)|x1 : T1, ..., xn : Tn and ¬l(y1, ..., yn)|y1 : H1, ..., yn : Hn under the unifier
θ = {x1/y1, ..., x2/y2} creates a resolvent cres with type variables x1 : T1 ⊓H1, ..., xn : Tn ⊓ Tn.
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Proof. Assume c1 to be A(x1, ..., xn)∨l(x1, ..., xn)|x1 : T1, ..., xn : Tn and c2 to be¬l(y1, ..., yn)∨
B(y1, ..., yn)|y1 : H1, ..., yn : Hn. Following 5 and 6, we can rewrite these clauses in implication
form FOL by adding type predicates as

∀x1, ...,∀xn

n∧
i=1

Ti(xi) ∧ ¬A(x1, ..., xn) =⇒ l(x1, ..., xn), (16)

∀y1, ...,∀yn
n∧

i=1

Hi(yi) ∧ l(y1, ..., yn) =⇒ B(y1, ..., yn), (17)

Converting these clauses to the disjunctive form yields

∀x1, ...,∀xn

n∨
i=1

¬Ti(xi) ∨A(x1, ..., xn) ∨ l(x1, ..., xn), (18)

∀y1, ...,∀yn
n∨

i=1

¬Hi(yi) ∨ ¬l(y1, ..., yn) ∨B(y1, ..., yn). (19)

Now, we can resolve l(x1, ..., xn) with ¬l(y1, ..., yn) under the unifier θ = {x1/y1, ..., x2/y2} as∨n
i=1 ¬Ti(xi) ∨A(x1, ..., xn) ∨ l(x1, ..., xn)

∨n
i=1 ¬Hi(xi) ∨ ¬l(y1, ..., yn) ∨B(y1, ..., yn)∨n

i=1 ¬Ti(xi)
∨n

i=1 ¬Hi(xi) ∨A(x1, ..., xn) ∨B(x1, ..., xn)
,
,

(20)
which can be rewritten as

∀x1, ...,∀xn

n∧
i=1

Ti(xi) ∧Hi(xi) =⇒ A(x1, ..., xn) ∨B(x1, ..., xn). (21)

Therefore, the unary type predicates for each xi becomes the conjunction of the types from their
parent clauses, which in our typed FOL notation, can be equivalently written as

∀x1, ...,∀xnA(x1, ..., xn) ∨B(x1, ..., xn)|x1 : T1 ⊓H1, ..., xn : Tn ⊓Hn. (22)

B PROOF OF REPAIRABILITY OF LLM-TH

Proposition 1. Consider proof Pϕ
c using axiom ϕ that derives clause c. For any incorrect LLM

reasoning axiom ϕ, a Repair Axiom ϕ′ can be inserted such that Pϕ′

c will be produced before Pϕ
c .

Proof. A proof Pϕ
c = Pc ∪ {ϕ} can be viewed as the combined set of clauses Pc and ϕ that derive

clause c. An incorrect reasoning reasoning step ϕ can be either a missed inference due to the LLM
mistakenly assigning a low priority to a resolution, or an incorrect resolution assigned a high priority
due to an LLM misbelief.

We begin the proof for missed inference case. We can obtain the proof score ρe(Pϕ
c ) of clause c by

inductively unrolling Equation 13 for ρe(c) over all ancestor clauses Pϕ
c that derive it. This yields

a simple product form: ρe(Pϕ
c ) = ρentail

ϕ ·
∏

c′∈Pc
ρentail
c′ . Now, comparing two different derivations

Pϕ
c and Pϕ′

c of c, we can easily show that ρe(Pϕ′

c ) > ρe(Pϕ
c ) since ρe(Pϕ′

c )

ρe(Pϕ
c ))

=
ρentail
ϕ′ ·

∏
c′∈Pc

ρentail
c′

ρentail
ϕ ·

∏
c′∈Pc

ρentail
c′

=

ρentail
ϕ′

ρentail
ϕ

> 1 given that the explicit Repair Axiom has ρentail
ϕ′ = 1 (by definition) while the LLM en-

tailment score ρentail
ϕ < 1 (necessarily). Hence, the proof Pϕ′

c containing the Repair Axiom ϕ′ will
always be given precedence over Pϕ

c according to the total ordering of Equation 15 used to prioritize
proofs in the LLM-TH Algorithm 1.

Correctness of the proposition for case ϕ is an incorrect resolution that ϕ′ forbids it is obvious as
ϕ is simply removed from Pϕ

c and the proof will be continued from Pc with the next high priority
resolution.
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C PROMPTS USED FOR LANGUAGE MODELS

We provide the prompts that we used for the LLMs in the experiments of this paper. They are also
included in our repository along with the implementation code and data.

Prompt for Preference Reasoning Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query that asks for a recipe and five
options that you have to choose from. Think step by step. First
state your reason for your choice and then say: "Therefore, the
selected recipe is <recipe id>.

Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Multi-domain Deductive Reasoning Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query about some knowledge graph
entities in the form of a first order logic predicate that is
either True or False (for example, "CanHoldIn(Apple, Basket)"
which means one can hold an apple in a basket). Your task is to
identify whether the answer to this query is "True" or "False"
and also provide a proof of the answer. First, state your proof
mentioning the rules you used and then say: "Therefore, the
answer is True" or "Therefore, the answer is False". Think step
by step.
Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Multi-domain Deductive Reasoning (RAG with Zero-shot and Few-shot CoT)� �
Task: You will be given a query about some knowledge graph
entities in the form of a first order logic predicate that is
either True or False (for example, "CanHoldIn(Apple, Basket)"
which means one can hold an apple in a basket) and a Knowledge
Base containing a set of rules that will help you identify the
answer. Your task is to identify whether the answer to the query
is "True" or "False" and also provide a proof of the query using
the knowledge base. First state your proof mentioning the rules
you used and then say: "Therefore, the answer is True" or
"Therefore, the answer is False". Think step by step.
Query: {{QUERY}}
KB: {{KB}}
[Examples if few-shot:]� �

Prompt for Geographical QA Task (Zero-shot and Few-shot CoT)� �
Task: You will be given a query about geographical entities in
the form of a first order logic predicate that is either True or
False. Your task is to identify whether the answer to the query
is "True" or "False" and also provide a proof of the query. First
state your proof mentioning the rules you used and then say:
"Therefore, the answer is True" or "Therefore, the answer is
False". Think step by step.
Query: {{QUERY}}
[Examples if few-shot:]� �

Prompt for Geographical QA Task (RAG with Zero-shot and Few-shot CoT)� �
Task: You will be given a query about geographical entities in
the form of a first order logic predicate that is either True or
False, and a Knowledge Base containing a set of rules that will
help you identify the answer. Your task is to identify whether
the answer to the query is "True" or "False" and also provide a
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proof of the query using the knowledge base. First state your
proof mentioning the rules you used and then say: "Therefore, the
answer is True" or "Therefore, the answer is False". Think step
by step.
Query: {{QUERY}}
KB: {{KB}}
[Examples if few-shot:]� �
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